rustc_mir_transform/coverage/
mappings.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
use std::collections::BTreeSet;

use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::graph::DirectedGraph;
use rustc_index::IndexVec;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::coverage::{
    BlockMarkerId, BranchSpan, ConditionId, ConditionInfo, CoverageInfoHi, CoverageKind,
};
use rustc_middle::mir::{self, BasicBlock, StatementKind};
use rustc_middle::ty::TyCtxt;
use rustc_span::Span;

use crate::coverage::ExtractedHirInfo;
use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph, START_BCB};
use crate::coverage::spans::extract_refined_covspans;
use crate::coverage::unexpand::unexpand_into_body_span;
use crate::errors::MCDCExceedsTestVectorLimit;

/// Associates an ordinary executable code span with its corresponding BCB.
#[derive(Debug)]
pub(super) struct CodeMapping {
    pub(super) span: Span,
    pub(super) bcb: BasicCoverageBlock,
}

/// This is separate from [`MCDCBranch`] to help prepare for larger changes
/// that will be needed for improved branch coverage in the future.
/// (See <https://github.com/rust-lang/rust/pull/124217>.)
#[derive(Debug)]
pub(super) struct BranchPair {
    pub(super) span: Span,
    pub(super) true_bcb: BasicCoverageBlock,
    pub(super) false_bcb: BasicCoverageBlock,
}

/// Associates an MC/DC branch span with condition info besides fields for normal branch.
#[derive(Debug)]
pub(super) struct MCDCBranch {
    pub(super) span: Span,
    pub(super) true_bcb: BasicCoverageBlock,
    pub(super) false_bcb: BasicCoverageBlock,
    pub(super) condition_info: ConditionInfo,
    // Offset added to test vector idx if this branch is evaluated to true.
    pub(super) true_index: usize,
    // Offset added to test vector idx if this branch is evaluated to false.
    pub(super) false_index: usize,
}

/// Associates an MC/DC decision with its join BCBs.
#[derive(Debug)]
pub(super) struct MCDCDecision {
    pub(super) span: Span,
    pub(super) end_bcbs: BTreeSet<BasicCoverageBlock>,
    pub(super) bitmap_idx: usize,
    pub(super) num_test_vectors: usize,
    pub(super) decision_depth: u16,
}

// LLVM uses `i32` to index the bitmap. Thus `i32::MAX` is the hard limit for number of all test vectors
// in a function.
const MCDC_MAX_BITMAP_SIZE: usize = i32::MAX as usize;

#[derive(Default)]
pub(super) struct ExtractedMappings {
    /// Store our own copy of [`CoverageGraph::num_nodes`], so that we don't
    /// need access to the whole graph when allocating per-BCB data. This is
    /// only public so that other code can still use exhaustive destructuring.
    pub(super) num_bcbs: usize,
    pub(super) code_mappings: Vec<CodeMapping>,
    pub(super) branch_pairs: Vec<BranchPair>,
    pub(super) mcdc_bitmap_bits: usize,
    pub(super) mcdc_degraded_branches: Vec<MCDCBranch>,
    pub(super) mcdc_mappings: Vec<(MCDCDecision, Vec<MCDCBranch>)>,
}

/// Extracts coverage-relevant spans from MIR, and associates them with
/// their corresponding BCBs.
pub(super) fn extract_all_mapping_info_from_mir<'tcx>(
    tcx: TyCtxt<'tcx>,
    mir_body: &mir::Body<'tcx>,
    hir_info: &ExtractedHirInfo,
    graph: &CoverageGraph,
) -> ExtractedMappings {
    let mut code_mappings = vec![];
    let mut branch_pairs = vec![];
    let mut mcdc_bitmap_bits = 0;
    let mut mcdc_degraded_branches = vec![];
    let mut mcdc_mappings = vec![];

    if hir_info.is_async_fn || tcx.sess.coverage_no_mir_spans() {
        // An async function desugars into a function that returns a future,
        // with the user code wrapped in a closure. Any spans in the desugared
        // outer function will be unhelpful, so just keep the signature span
        // and ignore all of the spans in the MIR body.
        //
        // When debugging flag `-Zcoverage-options=no-mir-spans` is set, we need
        // to give the same treatment to _all_ functions, because `llvm-cov`
        // seems to ignore functions that don't have any ordinary code spans.
        if let Some(span) = hir_info.fn_sig_span_extended {
            code_mappings.push(CodeMapping { span, bcb: START_BCB });
        }
    } else {
        // Extract coverage spans from MIR statements/terminators as normal.
        extract_refined_covspans(mir_body, hir_info, graph, &mut code_mappings);
    }

    branch_pairs.extend(extract_branch_pairs(mir_body, hir_info, graph));

    extract_mcdc_mappings(
        mir_body,
        tcx,
        hir_info.body_span,
        graph,
        &mut mcdc_bitmap_bits,
        &mut mcdc_degraded_branches,
        &mut mcdc_mappings,
    );

    ExtractedMappings {
        num_bcbs: graph.num_nodes(),
        code_mappings,
        branch_pairs,
        mcdc_bitmap_bits,
        mcdc_degraded_branches,
        mcdc_mappings,
    }
}

impl ExtractedMappings {
    pub(super) fn all_bcbs_with_counter_mappings(&self) -> BitSet<BasicCoverageBlock> {
        // Fully destructure self to make sure we don't miss any fields that have mappings.
        let Self {
            num_bcbs,
            code_mappings,
            branch_pairs,
            mcdc_bitmap_bits: _,
            mcdc_degraded_branches,
            mcdc_mappings,
        } = self;

        // Identify which BCBs have one or more mappings.
        let mut bcbs_with_counter_mappings = BitSet::new_empty(*num_bcbs);
        let mut insert = |bcb| {
            bcbs_with_counter_mappings.insert(bcb);
        };

        for &CodeMapping { span: _, bcb } in code_mappings {
            insert(bcb);
        }
        for &BranchPair { true_bcb, false_bcb, .. } in branch_pairs {
            insert(true_bcb);
            insert(false_bcb);
        }
        for &MCDCBranch { true_bcb, false_bcb, .. } in mcdc_degraded_branches
            .iter()
            .chain(mcdc_mappings.iter().map(|(_, branches)| branches.into_iter()).flatten())
        {
            insert(true_bcb);
            insert(false_bcb);
        }

        // MC/DC decisions refer to BCBs, but don't require those BCBs to have counters.
        if bcbs_with_counter_mappings.is_empty() {
            debug_assert!(
                mcdc_mappings.is_empty(),
                "A function with no counter mappings shouldn't have any decisions: {mcdc_mappings:?}",
            );
        }

        bcbs_with_counter_mappings
    }

    /// Returns the set of BCBs that have one or more `Code` mappings.
    pub(super) fn bcbs_with_ordinary_code_mappings(&self) -> BitSet<BasicCoverageBlock> {
        let mut bcbs = BitSet::new_empty(self.num_bcbs);
        for &CodeMapping { span: _, bcb } in &self.code_mappings {
            bcbs.insert(bcb);
        }
        bcbs
    }
}

fn resolve_block_markers(
    coverage_info_hi: &CoverageInfoHi,
    mir_body: &mir::Body<'_>,
) -> IndexVec<BlockMarkerId, Option<BasicBlock>> {
    let mut block_markers = IndexVec::<BlockMarkerId, Option<BasicBlock>>::from_elem_n(
        None,
        coverage_info_hi.num_block_markers,
    );

    // Fill out the mapping from block marker IDs to their enclosing blocks.
    for (bb, data) in mir_body.basic_blocks.iter_enumerated() {
        for statement in &data.statements {
            if let StatementKind::Coverage(CoverageKind::BlockMarker { id }) = statement.kind {
                block_markers[id] = Some(bb);
            }
        }
    }

    block_markers
}

// FIXME: There is currently a lot of redundancy between
// `extract_branch_pairs` and `extract_mcdc_mappings`. This is needed so
// that they can each be modified without interfering with the other, but in
// the long term we should try to bring them together again when branch coverage
// and MC/DC coverage support are more mature.

pub(super) fn extract_branch_pairs(
    mir_body: &mir::Body<'_>,
    hir_info: &ExtractedHirInfo,
    graph: &CoverageGraph,
) -> Vec<BranchPair> {
    let Some(coverage_info_hi) = mir_body.coverage_info_hi.as_deref() else { return vec![] };

    let block_markers = resolve_block_markers(coverage_info_hi, mir_body);

    coverage_info_hi
        .branch_spans
        .iter()
        .filter_map(|&BranchSpan { span: raw_span, true_marker, false_marker }| {
            // For now, ignore any branch span that was introduced by
            // expansion. This makes things like assert macros less noisy.
            if !raw_span.ctxt().outer_expn_data().is_root() {
                return None;
            }
            let span = unexpand_into_body_span(raw_span, hir_info.body_span)?;

            let bcb_from_marker = |marker: BlockMarkerId| graph.bcb_from_bb(block_markers[marker]?);

            let true_bcb = bcb_from_marker(true_marker)?;
            let false_bcb = bcb_from_marker(false_marker)?;

            Some(BranchPair { span, true_bcb, false_bcb })
        })
        .collect::<Vec<_>>()
}

pub(super) fn extract_mcdc_mappings(
    mir_body: &mir::Body<'_>,
    tcx: TyCtxt<'_>,
    body_span: Span,
    graph: &CoverageGraph,
    mcdc_bitmap_bits: &mut usize,
    mcdc_degraded_branches: &mut impl Extend<MCDCBranch>,
    mcdc_mappings: &mut impl Extend<(MCDCDecision, Vec<MCDCBranch>)>,
) {
    let Some(coverage_info_hi) = mir_body.coverage_info_hi.as_deref() else { return };

    let block_markers = resolve_block_markers(coverage_info_hi, mir_body);

    let bcb_from_marker = |marker: BlockMarkerId| graph.bcb_from_bb(block_markers[marker]?);

    let check_branch_bcb =
        |raw_span: Span, true_marker: BlockMarkerId, false_marker: BlockMarkerId| {
            // For now, ignore any branch span that was introduced by
            // expansion. This makes things like assert macros less noisy.
            if !raw_span.ctxt().outer_expn_data().is_root() {
                return None;
            }
            let span = unexpand_into_body_span(raw_span, body_span)?;

            let true_bcb = bcb_from_marker(true_marker)?;
            let false_bcb = bcb_from_marker(false_marker)?;
            Some((span, true_bcb, false_bcb))
        };

    let to_mcdc_branch = |&mir::coverage::MCDCBranchSpan {
                              span: raw_span,
                              condition_info,
                              true_marker,
                              false_marker,
                          }| {
        let (span, true_bcb, false_bcb) = check_branch_bcb(raw_span, true_marker, false_marker)?;
        Some(MCDCBranch {
            span,
            true_bcb,
            false_bcb,
            condition_info,
            true_index: usize::MAX,
            false_index: usize::MAX,
        })
    };

    let mut get_bitmap_idx = |num_test_vectors: usize| -> Option<usize> {
        let bitmap_idx = *mcdc_bitmap_bits;
        let next_bitmap_bits = bitmap_idx.saturating_add(num_test_vectors);
        (next_bitmap_bits <= MCDC_MAX_BITMAP_SIZE).then(|| {
            *mcdc_bitmap_bits = next_bitmap_bits;
            bitmap_idx
        })
    };
    mcdc_degraded_branches
        .extend(coverage_info_hi.mcdc_degraded_branch_spans.iter().filter_map(to_mcdc_branch));

    mcdc_mappings.extend(coverage_info_hi.mcdc_spans.iter().filter_map(|(decision, branches)| {
        if branches.len() == 0 {
            return None;
        }
        let decision_span = unexpand_into_body_span(decision.span, body_span)?;

        let end_bcbs = decision
            .end_markers
            .iter()
            .map(|&marker| bcb_from_marker(marker))
            .collect::<Option<_>>()?;
        let mut branch_mappings: Vec<_> = branches.into_iter().filter_map(to_mcdc_branch).collect();
        if branch_mappings.len() != branches.len() {
            mcdc_degraded_branches.extend(branch_mappings);
            return None;
        }
        let num_test_vectors = calc_test_vectors_index(&mut branch_mappings);
        let Some(bitmap_idx) = get_bitmap_idx(num_test_vectors) else {
            tcx.dcx().emit_warn(MCDCExceedsTestVectorLimit {
                span: decision_span,
                max_num_test_vectors: MCDC_MAX_BITMAP_SIZE,
            });
            mcdc_degraded_branches.extend(branch_mappings);
            return None;
        };
        // LLVM requires span of the decision contains all spans of its conditions.
        // Usually the decision span meets the requirement well but in cases like macros it may not.
        let span = branch_mappings
            .iter()
            .map(|branch| branch.span)
            .reduce(|lhs, rhs| lhs.to(rhs))
            .map(
                |joint_span| {
                    if decision_span.contains(joint_span) { decision_span } else { joint_span }
                },
            )
            .expect("branch mappings are ensured to be non-empty as checked above");
        Some((
            MCDCDecision {
                span,
                end_bcbs,
                bitmap_idx,
                num_test_vectors,
                decision_depth: decision.decision_depth,
            },
            branch_mappings,
        ))
    }));
}

// LLVM checks the executed test vector by accumulating indices of tested branches.
// We calculate number of all possible test vectors of the decision and assign indices
// to branches here.
// See [the rfc](https://discourse.llvm.org/t/rfc-coverage-new-algorithm-and-file-format-for-mc-dc/76798/)
// for more details about the algorithm.
// This function is mostly like [`TVIdxBuilder::TvIdxBuilder`](https://github.com/llvm/llvm-project/blob/d594d9f7f4dc6eb748b3261917db689fdc348b96/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp#L226)
fn calc_test_vectors_index(conditions: &mut Vec<MCDCBranch>) -> usize {
    let mut indegree_stats = IndexVec::<ConditionId, usize>::from_elem_n(0, conditions.len());
    // `num_paths` is `width` described at the llvm rfc, which indicates how many paths reaching the condition node.
    let mut num_paths_stats = IndexVec::<ConditionId, usize>::from_elem_n(0, conditions.len());
    let mut next_conditions = conditions
        .iter_mut()
        .map(|branch| {
            let ConditionInfo { condition_id, true_next_id, false_next_id } = branch.condition_info;
            [true_next_id, false_next_id]
                .into_iter()
                .flatten()
                .for_each(|next_id| indegree_stats[next_id] += 1);
            (condition_id, branch)
        })
        .collect::<FxIndexMap<_, _>>();

    let mut queue = std::collections::VecDeque::from_iter(
        next_conditions.swap_remove(&ConditionId::START).into_iter(),
    );
    num_paths_stats[ConditionId::START] = 1;
    let mut decision_end_nodes = Vec::new();
    while let Some(branch) = queue.pop_front() {
        let ConditionInfo { condition_id, true_next_id, false_next_id } = branch.condition_info;
        let (false_index, true_index) = (&mut branch.false_index, &mut branch.true_index);
        let this_paths_count = num_paths_stats[condition_id];
        // Note. First check the false next to ensure conditions are touched in same order with llvm-cov.
        for (next, index) in [(false_next_id, false_index), (true_next_id, true_index)] {
            if let Some(next_id) = next {
                let next_paths_count = &mut num_paths_stats[next_id];
                *index = *next_paths_count;
                *next_paths_count = next_paths_count.saturating_add(this_paths_count);
                let next_indegree = &mut indegree_stats[next_id];
                *next_indegree -= 1;
                if *next_indegree == 0 {
                    queue.push_back(next_conditions.swap_remove(&next_id).expect(
                        "conditions with non-zero indegree before must be in next_conditions",
                    ));
                }
            } else {
                decision_end_nodes.push((this_paths_count, condition_id, index));
            }
        }
    }
    assert!(next_conditions.is_empty(), "the decision tree has untouched nodes");
    let mut cur_idx = 0;
    // LLVM hopes the end nodes are sorted in descending order by `num_paths` so that it can
    // optimize bitmap size for decisions in tree form such as `a && b && c && d && ...`.
    decision_end_nodes.sort_by_key(|(num_paths, _, _)| usize::MAX - *num_paths);
    for (num_paths, condition_id, index) in decision_end_nodes {
        assert_eq!(
            num_paths, num_paths_stats[condition_id],
            "end nodes should not be updated since they were visited"
        );
        assert_eq!(*index, usize::MAX, "end nodes should not be assigned index before");
        *index = cur_idx;
        cur_idx += num_paths;
    }
    cur_idx
}