rustc_mir_transform/coverage/
mappings.rsuse std::collections::BTreeSet;
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::graph::DirectedGraph;
use rustc_index::IndexVec;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::coverage::{
BlockMarkerId, BranchSpan, ConditionId, ConditionInfo, CoverageInfoHi, CoverageKind,
};
use rustc_middle::mir::{self, BasicBlock, StatementKind};
use rustc_middle::ty::TyCtxt;
use rustc_span::Span;
use crate::coverage::ExtractedHirInfo;
use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph, START_BCB};
use crate::coverage::spans::extract_refined_covspans;
use crate::coverage::unexpand::unexpand_into_body_span;
use crate::errors::MCDCExceedsTestVectorLimit;
#[derive(Debug)]
pub(super) struct CodeMapping {
pub(super) span: Span,
pub(super) bcb: BasicCoverageBlock,
}
#[derive(Debug)]
pub(super) struct BranchPair {
pub(super) span: Span,
pub(super) true_bcb: BasicCoverageBlock,
pub(super) false_bcb: BasicCoverageBlock,
}
#[derive(Debug)]
pub(super) struct MCDCBranch {
pub(super) span: Span,
pub(super) true_bcb: BasicCoverageBlock,
pub(super) false_bcb: BasicCoverageBlock,
pub(super) condition_info: ConditionInfo,
pub(super) true_index: usize,
pub(super) false_index: usize,
}
#[derive(Debug)]
pub(super) struct MCDCDecision {
pub(super) span: Span,
pub(super) end_bcbs: BTreeSet<BasicCoverageBlock>,
pub(super) bitmap_idx: usize,
pub(super) num_test_vectors: usize,
pub(super) decision_depth: u16,
}
const MCDC_MAX_BITMAP_SIZE: usize = i32::MAX as usize;
#[derive(Default)]
pub(super) struct ExtractedMappings {
pub(super) num_bcbs: usize,
pub(super) code_mappings: Vec<CodeMapping>,
pub(super) branch_pairs: Vec<BranchPair>,
pub(super) mcdc_bitmap_bits: usize,
pub(super) mcdc_degraded_branches: Vec<MCDCBranch>,
pub(super) mcdc_mappings: Vec<(MCDCDecision, Vec<MCDCBranch>)>,
}
pub(super) fn extract_all_mapping_info_from_mir<'tcx>(
tcx: TyCtxt<'tcx>,
mir_body: &mir::Body<'tcx>,
hir_info: &ExtractedHirInfo,
graph: &CoverageGraph,
) -> ExtractedMappings {
let mut code_mappings = vec![];
let mut branch_pairs = vec![];
let mut mcdc_bitmap_bits = 0;
let mut mcdc_degraded_branches = vec![];
let mut mcdc_mappings = vec![];
if hir_info.is_async_fn || tcx.sess.coverage_no_mir_spans() {
if let Some(span) = hir_info.fn_sig_span_extended {
code_mappings.push(CodeMapping { span, bcb: START_BCB });
}
} else {
extract_refined_covspans(mir_body, hir_info, graph, &mut code_mappings);
}
branch_pairs.extend(extract_branch_pairs(mir_body, hir_info, graph));
extract_mcdc_mappings(
mir_body,
tcx,
hir_info.body_span,
graph,
&mut mcdc_bitmap_bits,
&mut mcdc_degraded_branches,
&mut mcdc_mappings,
);
ExtractedMappings {
num_bcbs: graph.num_nodes(),
code_mappings,
branch_pairs,
mcdc_bitmap_bits,
mcdc_degraded_branches,
mcdc_mappings,
}
}
impl ExtractedMappings {
pub(super) fn all_bcbs_with_counter_mappings(&self) -> BitSet<BasicCoverageBlock> {
let Self {
num_bcbs,
code_mappings,
branch_pairs,
mcdc_bitmap_bits: _,
mcdc_degraded_branches,
mcdc_mappings,
} = self;
let mut bcbs_with_counter_mappings = BitSet::new_empty(*num_bcbs);
let mut insert = |bcb| {
bcbs_with_counter_mappings.insert(bcb);
};
for &CodeMapping { span: _, bcb } in code_mappings {
insert(bcb);
}
for &BranchPair { true_bcb, false_bcb, .. } in branch_pairs {
insert(true_bcb);
insert(false_bcb);
}
for &MCDCBranch { true_bcb, false_bcb, .. } in mcdc_degraded_branches
.iter()
.chain(mcdc_mappings.iter().map(|(_, branches)| branches.into_iter()).flatten())
{
insert(true_bcb);
insert(false_bcb);
}
if bcbs_with_counter_mappings.is_empty() {
debug_assert!(
mcdc_mappings.is_empty(),
"A function with no counter mappings shouldn't have any decisions: {mcdc_mappings:?}",
);
}
bcbs_with_counter_mappings
}
pub(super) fn bcbs_with_ordinary_code_mappings(&self) -> BitSet<BasicCoverageBlock> {
let mut bcbs = BitSet::new_empty(self.num_bcbs);
for &CodeMapping { span: _, bcb } in &self.code_mappings {
bcbs.insert(bcb);
}
bcbs
}
}
fn resolve_block_markers(
coverage_info_hi: &CoverageInfoHi,
mir_body: &mir::Body<'_>,
) -> IndexVec<BlockMarkerId, Option<BasicBlock>> {
let mut block_markers = IndexVec::<BlockMarkerId, Option<BasicBlock>>::from_elem_n(
None,
coverage_info_hi.num_block_markers,
);
for (bb, data) in mir_body.basic_blocks.iter_enumerated() {
for statement in &data.statements {
if let StatementKind::Coverage(CoverageKind::BlockMarker { id }) = statement.kind {
block_markers[id] = Some(bb);
}
}
}
block_markers
}
pub(super) fn extract_branch_pairs(
mir_body: &mir::Body<'_>,
hir_info: &ExtractedHirInfo,
graph: &CoverageGraph,
) -> Vec<BranchPair> {
let Some(coverage_info_hi) = mir_body.coverage_info_hi.as_deref() else { return vec![] };
let block_markers = resolve_block_markers(coverage_info_hi, mir_body);
coverage_info_hi
.branch_spans
.iter()
.filter_map(|&BranchSpan { span: raw_span, true_marker, false_marker }| {
if !raw_span.ctxt().outer_expn_data().is_root() {
return None;
}
let span = unexpand_into_body_span(raw_span, hir_info.body_span)?;
let bcb_from_marker = |marker: BlockMarkerId| graph.bcb_from_bb(block_markers[marker]?);
let true_bcb = bcb_from_marker(true_marker)?;
let false_bcb = bcb_from_marker(false_marker)?;
Some(BranchPair { span, true_bcb, false_bcb })
})
.collect::<Vec<_>>()
}
pub(super) fn extract_mcdc_mappings(
mir_body: &mir::Body<'_>,
tcx: TyCtxt<'_>,
body_span: Span,
graph: &CoverageGraph,
mcdc_bitmap_bits: &mut usize,
mcdc_degraded_branches: &mut impl Extend<MCDCBranch>,
mcdc_mappings: &mut impl Extend<(MCDCDecision, Vec<MCDCBranch>)>,
) {
let Some(coverage_info_hi) = mir_body.coverage_info_hi.as_deref() else { return };
let block_markers = resolve_block_markers(coverage_info_hi, mir_body);
let bcb_from_marker = |marker: BlockMarkerId| graph.bcb_from_bb(block_markers[marker]?);
let check_branch_bcb =
|raw_span: Span, true_marker: BlockMarkerId, false_marker: BlockMarkerId| {
if !raw_span.ctxt().outer_expn_data().is_root() {
return None;
}
let span = unexpand_into_body_span(raw_span, body_span)?;
let true_bcb = bcb_from_marker(true_marker)?;
let false_bcb = bcb_from_marker(false_marker)?;
Some((span, true_bcb, false_bcb))
};
let to_mcdc_branch = |&mir::coverage::MCDCBranchSpan {
span: raw_span,
condition_info,
true_marker,
false_marker,
}| {
let (span, true_bcb, false_bcb) = check_branch_bcb(raw_span, true_marker, false_marker)?;
Some(MCDCBranch {
span,
true_bcb,
false_bcb,
condition_info,
true_index: usize::MAX,
false_index: usize::MAX,
})
};
let mut get_bitmap_idx = |num_test_vectors: usize| -> Option<usize> {
let bitmap_idx = *mcdc_bitmap_bits;
let next_bitmap_bits = bitmap_idx.saturating_add(num_test_vectors);
(next_bitmap_bits <= MCDC_MAX_BITMAP_SIZE).then(|| {
*mcdc_bitmap_bits = next_bitmap_bits;
bitmap_idx
})
};
mcdc_degraded_branches
.extend(coverage_info_hi.mcdc_degraded_branch_spans.iter().filter_map(to_mcdc_branch));
mcdc_mappings.extend(coverage_info_hi.mcdc_spans.iter().filter_map(|(decision, branches)| {
if branches.len() == 0 {
return None;
}
let decision_span = unexpand_into_body_span(decision.span, body_span)?;
let end_bcbs = decision
.end_markers
.iter()
.map(|&marker| bcb_from_marker(marker))
.collect::<Option<_>>()?;
let mut branch_mappings: Vec<_> = branches.into_iter().filter_map(to_mcdc_branch).collect();
if branch_mappings.len() != branches.len() {
mcdc_degraded_branches.extend(branch_mappings);
return None;
}
let num_test_vectors = calc_test_vectors_index(&mut branch_mappings);
let Some(bitmap_idx) = get_bitmap_idx(num_test_vectors) else {
tcx.dcx().emit_warn(MCDCExceedsTestVectorLimit {
span: decision_span,
max_num_test_vectors: MCDC_MAX_BITMAP_SIZE,
});
mcdc_degraded_branches.extend(branch_mappings);
return None;
};
let span = branch_mappings
.iter()
.map(|branch| branch.span)
.reduce(|lhs, rhs| lhs.to(rhs))
.map(
|joint_span| {
if decision_span.contains(joint_span) { decision_span } else { joint_span }
},
)
.expect("branch mappings are ensured to be non-empty as checked above");
Some((
MCDCDecision {
span,
end_bcbs,
bitmap_idx,
num_test_vectors,
decision_depth: decision.decision_depth,
},
branch_mappings,
))
}));
}
fn calc_test_vectors_index(conditions: &mut Vec<MCDCBranch>) -> usize {
let mut indegree_stats = IndexVec::<ConditionId, usize>::from_elem_n(0, conditions.len());
let mut num_paths_stats = IndexVec::<ConditionId, usize>::from_elem_n(0, conditions.len());
let mut next_conditions = conditions
.iter_mut()
.map(|branch| {
let ConditionInfo { condition_id, true_next_id, false_next_id } = branch.condition_info;
[true_next_id, false_next_id]
.into_iter()
.flatten()
.for_each(|next_id| indegree_stats[next_id] += 1);
(condition_id, branch)
})
.collect::<FxIndexMap<_, _>>();
let mut queue = std::collections::VecDeque::from_iter(
next_conditions.swap_remove(&ConditionId::START).into_iter(),
);
num_paths_stats[ConditionId::START] = 1;
let mut decision_end_nodes = Vec::new();
while let Some(branch) = queue.pop_front() {
let ConditionInfo { condition_id, true_next_id, false_next_id } = branch.condition_info;
let (false_index, true_index) = (&mut branch.false_index, &mut branch.true_index);
let this_paths_count = num_paths_stats[condition_id];
for (next, index) in [(false_next_id, false_index), (true_next_id, true_index)] {
if let Some(next_id) = next {
let next_paths_count = &mut num_paths_stats[next_id];
*index = *next_paths_count;
*next_paths_count = next_paths_count.saturating_add(this_paths_count);
let next_indegree = &mut indegree_stats[next_id];
*next_indegree -= 1;
if *next_indegree == 0 {
queue.push_back(next_conditions.swap_remove(&next_id).expect(
"conditions with non-zero indegree before must be in next_conditions",
));
}
} else {
decision_end_nodes.push((this_paths_count, condition_id, index));
}
}
}
assert!(next_conditions.is_empty(), "the decision tree has untouched nodes");
let mut cur_idx = 0;
decision_end_nodes.sort_by_key(|(num_paths, _, _)| usize::MAX - *num_paths);
for (num_paths, condition_id, index) in decision_end_nodes {
assert_eq!(
num_paths, num_paths_stats[condition_id],
"end nodes should not be updated since they were visited"
);
assert_eq!(*index, usize::MAX, "end nodes should not be assigned index before");
*index = cur_idx;
cur_idx += num_paths;
}
cur_idx
}