rustc_codegen_ssa/back/metadata.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
//! Reading of the rustc metadata for rlibs and dylibs
use std::borrow::Cow;
use std::fs::File;
use std::io::Write;
use std::path::Path;
use object::write::{self, StandardSegment, Symbol, SymbolSection};
use object::{
Architecture, BinaryFormat, Endianness, FileFlags, Object, ObjectSection, ObjectSymbol,
SectionFlags, SectionKind, SubArchitecture, SymbolFlags, SymbolKind, SymbolScope, elf, pe,
xcoff,
};
use rustc_abi::Endian;
use rustc_data_structures::memmap::Mmap;
use rustc_data_structures::owned_slice::{OwnedSlice, try_slice_owned};
use rustc_metadata::EncodedMetadata;
use rustc_metadata::creader::MetadataLoader;
use rustc_metadata::fs::METADATA_FILENAME;
use rustc_middle::bug;
use rustc_session::Session;
use rustc_span::sym;
use rustc_target::spec::{RelocModel, Target, ef_avr_arch};
use super::apple;
/// The default metadata loader. This is used by cg_llvm and cg_clif.
///
/// # Metadata location
///
/// <dl>
/// <dt>rlib</dt>
/// <dd>The metadata can be found in the `lib.rmeta` file inside of the ar archive.</dd>
/// <dt>dylib</dt>
/// <dd>The metadata can be found in the `.rustc` section of the shared library.</dd>
/// </dl>
#[derive(Debug)]
pub(crate) struct DefaultMetadataLoader;
static AIX_METADATA_SYMBOL_NAME: &'static str = "__aix_rust_metadata";
fn load_metadata_with(
path: &Path,
f: impl for<'a> FnOnce(&'a [u8]) -> Result<&'a [u8], String>,
) -> Result<OwnedSlice, String> {
let file =
File::open(path).map_err(|e| format!("failed to open file '{}': {}", path.display(), e))?;
unsafe { Mmap::map(file) }
.map_err(|e| format!("failed to mmap file '{}': {}", path.display(), e))
.and_then(|mmap| try_slice_owned(mmap, |mmap| f(mmap)))
}
impl MetadataLoader for DefaultMetadataLoader {
fn get_rlib_metadata(&self, target: &Target, path: &Path) -> Result<OwnedSlice, String> {
load_metadata_with(path, |data| {
let archive = object::read::archive::ArchiveFile::parse(&*data)
.map_err(|e| format!("failed to parse rlib '{}': {}", path.display(), e))?;
for entry_result in archive.members() {
let entry = entry_result
.map_err(|e| format!("failed to parse rlib '{}': {}", path.display(), e))?;
if entry.name() == METADATA_FILENAME.as_bytes() {
let data = entry
.data(data)
.map_err(|e| format!("failed to parse rlib '{}': {}", path.display(), e))?;
if target.is_like_aix {
return get_metadata_xcoff(path, data);
} else {
return search_for_section(path, data, ".rmeta");
}
}
}
Err(format!("metadata not found in rlib '{}'", path.display()))
})
}
fn get_dylib_metadata(&self, target: &Target, path: &Path) -> Result<OwnedSlice, String> {
if target.is_like_aix {
load_metadata_with(path, |data| get_metadata_xcoff(path, data))
} else {
load_metadata_with(path, |data| search_for_section(path, data, ".rustc"))
}
}
}
pub(super) fn search_for_section<'a>(
path: &Path,
bytes: &'a [u8],
section: &str,
) -> Result<&'a [u8], String> {
let Ok(file) = object::File::parse(bytes) else {
// The parse above could fail for odd reasons like corruption, but for
// now we just interpret it as this target doesn't support metadata
// emission in object files so the entire byte slice itself is probably
// a metadata file. Ideally though if necessary we could at least check
// the prefix of bytes to see if it's an actual metadata object and if
// not forward the error along here.
return Ok(bytes);
};
file.section_by_name(section)
.ok_or_else(|| format!("no `{}` section in '{}'", section, path.display()))?
.data()
.map_err(|e| format!("failed to read {} section in '{}': {}", section, path.display(), e))
}
fn add_gnu_property_note(
file: &mut write::Object<'static>,
architecture: Architecture,
binary_format: BinaryFormat,
endianness: Endianness,
) {
// check bti protection
if binary_format != BinaryFormat::Elf
|| !matches!(architecture, Architecture::X86_64 | Architecture::Aarch64)
{
return;
}
let section = file.add_section(
file.segment_name(StandardSegment::Data).to_vec(),
b".note.gnu.property".to_vec(),
SectionKind::Note,
);
let mut data: Vec<u8> = Vec::new();
let n_namsz: u32 = 4; // Size of the n_name field
let n_descsz: u32 = 16; // Size of the n_desc field
let n_type: u32 = object::elf::NT_GNU_PROPERTY_TYPE_0; // Type of note descriptor
let header_values = [n_namsz, n_descsz, n_type];
header_values.iter().for_each(|v| {
data.extend_from_slice(&match endianness {
Endianness::Little => v.to_le_bytes(),
Endianness::Big => v.to_be_bytes(),
})
});
data.extend_from_slice(b"GNU\0"); // Owner of the program property note
let pr_type: u32 = match architecture {
Architecture::X86_64 => object::elf::GNU_PROPERTY_X86_FEATURE_1_AND,
Architecture::Aarch64 => object::elf::GNU_PROPERTY_AARCH64_FEATURE_1_AND,
_ => unreachable!(),
};
let pr_datasz: u32 = 4; //size of the pr_data field
let pr_data: u32 = 3; //program property descriptor
let pr_padding: u32 = 0;
let property_values = [pr_type, pr_datasz, pr_data, pr_padding];
property_values.iter().for_each(|v| {
data.extend_from_slice(&match endianness {
Endianness::Little => v.to_le_bytes(),
Endianness::Big => v.to_be_bytes(),
})
});
file.append_section_data(section, &data, 8);
}
pub(super) fn get_metadata_xcoff<'a>(path: &Path, data: &'a [u8]) -> Result<&'a [u8], String> {
let Ok(file) = object::File::parse(data) else {
return Ok(data);
};
let info_data = search_for_section(path, data, ".info")?;
if let Some(metadata_symbol) =
file.symbols().find(|sym| sym.name() == Ok(AIX_METADATA_SYMBOL_NAME))
{
let offset = metadata_symbol.address() as usize;
// The offset specifies the location of rustc metadata in the .info section of XCOFF.
// Each string stored in .info section of XCOFF is preceded by a 4-byte length field.
if offset < 4 {
return Err(format!("Invalid metadata symbol offset: {offset}"));
}
// XCOFF format uses big-endian byte order.
let len = u32::from_be_bytes(info_data[(offset - 4)..offset].try_into().unwrap()) as usize;
if offset + len > (info_data.len() as usize) {
return Err(format!(
"Metadata at offset {offset} with size {len} is beyond .info section"
));
}
Ok(&info_data[offset..(offset + len)])
} else {
Err(format!("Unable to find symbol {AIX_METADATA_SYMBOL_NAME}"))
}
}
pub(crate) fn create_object_file(sess: &Session) -> Option<write::Object<'static>> {
let endianness = match sess.target.options.endian {
Endian::Little => Endianness::Little,
Endian::Big => Endianness::Big,
};
let (architecture, sub_architecture) = match &sess.target.arch[..] {
"arm" => (Architecture::Arm, None),
"aarch64" => (
if sess.target.pointer_width == 32 {
Architecture::Aarch64_Ilp32
} else {
Architecture::Aarch64
},
None,
),
"x86" => (Architecture::I386, None),
"s390x" => (Architecture::S390x, None),
"mips" | "mips32r6" => (Architecture::Mips, None),
"mips64" | "mips64r6" => (Architecture::Mips64, None),
"x86_64" => (
if sess.target.pointer_width == 32 {
Architecture::X86_64_X32
} else {
Architecture::X86_64
},
None,
),
"powerpc" => (Architecture::PowerPc, None),
"powerpc64" => (Architecture::PowerPc64, None),
"riscv32" => (Architecture::Riscv32, None),
"riscv64" => (Architecture::Riscv64, None),
"sparc" => {
if sess.unstable_target_features.contains(&sym::v8plus) {
// Target uses V8+, aka EM_SPARC32PLUS, aka 64-bit V9 but in 32-bit mode
(Architecture::Sparc32Plus, None)
} else {
// Target uses V7 or V8, aka EM_SPARC
(Architecture::Sparc, None)
}
}
"sparc64" => (Architecture::Sparc64, None),
"avr" => (Architecture::Avr, None),
"msp430" => (Architecture::Msp430, None),
"hexagon" => (Architecture::Hexagon, None),
"bpf" => (Architecture::Bpf, None),
"loongarch64" => (Architecture::LoongArch64, None),
"csky" => (Architecture::Csky, None),
"arm64ec" => (Architecture::Aarch64, Some(SubArchitecture::Arm64EC)),
// Unsupported architecture.
_ => return None,
};
let binary_format = if sess.target.is_like_osx {
BinaryFormat::MachO
} else if sess.target.is_like_windows {
BinaryFormat::Coff
} else if sess.target.is_like_aix {
BinaryFormat::Xcoff
} else {
BinaryFormat::Elf
};
let mut file = write::Object::new(binary_format, architecture, endianness);
file.set_sub_architecture(sub_architecture);
if sess.target.is_like_osx {
if macho_is_arm64e(&sess.target) {
file.set_macho_cpu_subtype(object::macho::CPU_SUBTYPE_ARM64E);
}
file.set_macho_build_version(macho_object_build_version_for_target(sess))
}
if binary_format == BinaryFormat::Coff {
// Disable the default mangler to avoid mangling the special "@feat.00" symbol name.
let original_mangling = file.mangling();
file.set_mangling(object::write::Mangling::None);
let mut feature = 0;
if file.architecture() == object::Architecture::I386 {
// When linking with /SAFESEH on x86, lld requires that all linker inputs be marked as
// safe exception handling compatible. Metadata files masquerade as regular COFF
// objects and are treated as linker inputs, despite containing no actual code. Thus,
// they still need to be marked as safe exception handling compatible. See #96498.
// Reference: https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
feature |= 1;
}
file.add_symbol(object::write::Symbol {
name: "@feat.00".into(),
value: feature,
size: 0,
kind: object::SymbolKind::Data,
scope: object::SymbolScope::Compilation,
weak: false,
section: object::write::SymbolSection::Absolute,
flags: object::SymbolFlags::None,
});
file.set_mangling(original_mangling);
}
let e_flags = match architecture {
Architecture::Mips => {
let arch = match sess.target.options.cpu.as_ref() {
"mips1" => elf::EF_MIPS_ARCH_1,
"mips2" => elf::EF_MIPS_ARCH_2,
"mips3" => elf::EF_MIPS_ARCH_3,
"mips4" => elf::EF_MIPS_ARCH_4,
"mips5" => elf::EF_MIPS_ARCH_5,
s if s.contains("r6") => elf::EF_MIPS_ARCH_32R6,
_ => elf::EF_MIPS_ARCH_32R2,
};
let mut e_flags = elf::EF_MIPS_CPIC | arch;
// If the ABI is explicitly given, use it or default to O32.
match sess.target.options.llvm_abiname.to_lowercase().as_str() {
"n32" => e_flags |= elf::EF_MIPS_ABI2,
"o32" => e_flags |= elf::EF_MIPS_ABI_O32,
_ => e_flags |= elf::EF_MIPS_ABI_O32,
};
if sess.target.options.relocation_model != RelocModel::Static {
e_flags |= elf::EF_MIPS_PIC;
}
if sess.target.options.cpu.contains("r6") {
e_flags |= elf::EF_MIPS_NAN2008;
}
e_flags
}
Architecture::Mips64 => {
// copied from `mips64el-linux-gnuabi64-gcc foo.c -c`
let e_flags = elf::EF_MIPS_CPIC
| elf::EF_MIPS_PIC
| if sess.target.options.cpu.contains("r6") {
elf::EF_MIPS_ARCH_64R6 | elf::EF_MIPS_NAN2008
} else {
elf::EF_MIPS_ARCH_64R2
};
e_flags
}
Architecture::Riscv32 | Architecture::Riscv64 => {
// Source: https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/079772828bd10933d34121117a222b4cc0ee2200/riscv-elf.adoc
let mut e_flags: u32 = 0x0;
// Check if compressed is enabled
// `unstable_target_features` is used here because "c" is gated behind riscv_target_feature.
if sess.unstable_target_features.contains(&sym::c) {
e_flags |= elf::EF_RISCV_RVC;
}
// Set the appropriate flag based on ABI
// This needs to match LLVM `RISCVELFStreamer.cpp`
match &*sess.target.llvm_abiname {
"ilp32" | "lp64" => (),
"ilp32f" | "lp64f" => e_flags |= elf::EF_RISCV_FLOAT_ABI_SINGLE,
"ilp32d" | "lp64d" => e_flags |= elf::EF_RISCV_FLOAT_ABI_DOUBLE,
// Note that the `lp64e` is still unstable as it's not (yet) part of the ELF psABI.
"ilp32e" | "lp64e" => e_flags |= elf::EF_RISCV_RVE,
_ => bug!("unknown RISC-V ABI name"),
}
e_flags
}
Architecture::LoongArch64 => {
// Source: https://github.com/loongson/la-abi-specs/blob/release/laelf.adoc#e_flags-identifies-abi-type-and-version
let mut e_flags: u32 = elf::EF_LARCH_OBJABI_V1;
// Set the appropriate flag based on ABI
// This needs to match LLVM `LoongArchELFStreamer.cpp`
match &*sess.target.llvm_abiname {
"ilp32s" | "lp64s" => e_flags |= elf::EF_LARCH_ABI_SOFT_FLOAT,
"ilp32f" | "lp64f" => e_flags |= elf::EF_LARCH_ABI_SINGLE_FLOAT,
"ilp32d" | "lp64d" => e_flags |= elf::EF_LARCH_ABI_DOUBLE_FLOAT,
_ => bug!("unknown LoongArch ABI name"),
}
e_flags
}
Architecture::Avr => {
// Resolve the ISA revision and set
// the appropriate EF_AVR_ARCH flag.
ef_avr_arch(&sess.target.options.cpu)
}
Architecture::Csky => {
let e_flags = match sess.target.options.abi.as_ref() {
"abiv2" => elf::EF_CSKY_ABIV2,
_ => elf::EF_CSKY_ABIV1,
};
e_flags
}
_ => 0,
};
// adapted from LLVM's `MCELFObjectTargetWriter::getOSABI`
let os_abi = match sess.target.options.os.as_ref() {
"hermit" => elf::ELFOSABI_STANDALONE,
"freebsd" => elf::ELFOSABI_FREEBSD,
"solaris" => elf::ELFOSABI_SOLARIS,
_ => elf::ELFOSABI_NONE,
};
let abi_version = 0;
add_gnu_property_note(&mut file, architecture, binary_format, endianness);
file.flags = FileFlags::Elf { os_abi, abi_version, e_flags };
Some(file)
}
/// Mach-O files contain information about:
/// - The platform/OS they were built for (macOS/watchOS/Mac Catalyst/iOS simulator etc).
/// - The minimum OS version / deployment target.
/// - The version of the SDK they were targetting.
///
/// In the past, this was accomplished using the LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
/// LC_VERSION_MIN_TVOS or LC_VERSION_MIN_WATCHOS load commands, which each contain information
/// about the deployment target and SDK version, and implicitly, by their presence, which OS they
/// target. Simulator targets were determined if the architecture was x86_64, but there was e.g. a
/// LC_VERSION_MIN_IPHONEOS present.
///
/// This is of course brittle and limited, so modern tooling emit the LC_BUILD_VERSION load
/// command (which contains all three pieces of information in one) when the deployment target is
/// high enough, or the target is something that wouldn't be encodable with the old load commands
/// (such as Mac Catalyst, or Aarch64 iOS simulator).
///
/// Since Xcode 15, Apple's LD apparently requires object files to use this load command, so this
/// returns the `MachOBuildVersion` for the target to do so.
fn macho_object_build_version_for_target(sess: &Session) -> object::write::MachOBuildVersion {
/// The `object` crate demands "X.Y.Z encoded in nibbles as xxxx.yy.zz"
/// e.g. minOS 14.0 = 0x000E0000, or SDK 16.2 = 0x00100200
fn pack_version((major, minor, patch): (u16, u8, u8)) -> u32 {
let (major, minor, patch) = (major as u32, minor as u32, patch as u32);
(major << 16) | (minor << 8) | patch
}
let platform = apple::macho_platform(&sess.target);
let min_os = apple::deployment_target(sess);
let mut build_version = object::write::MachOBuildVersion::default();
build_version.platform = platform;
build_version.minos = pack_version(min_os);
// The version here does not _really_ matter, since it is only used at runtime, and we specify
// it when linking the final binary, so we will omit the version. This is also what LLVM does,
// and the tooling also allows this (and shows the SDK version as `n/a`). Finally, it is the
// semantically correct choice, as the SDK has not influenced the binary generated by rustc at
// this point in time.
build_version.sdk = 0;
build_version
}
/// Is Apple's CPU subtype `arm64e`s
fn macho_is_arm64e(target: &Target) -> bool {
target.llvm_target.starts_with("arm64e")
}
pub(crate) enum MetadataPosition {
First,
Last,
}
/// For rlibs we "pack" rustc metadata into a dummy object file.
///
/// Historically it was needed because rustc linked rlibs as whole-archive in some cases.
/// In that case linkers try to include all files located in an archive, so if metadata is stored
/// in an archive then it needs to be of a form that the linker is able to process.
/// Now it's not clear whether metadata still needs to be wrapped into an object file or not.
///
/// Note, though, that we don't actually want this metadata to show up in any
/// final output of the compiler. Instead this is purely for rustc's own
/// metadata tracking purposes.
///
/// With the above in mind, each "flavor" of object format gets special
/// handling here depending on the target:
///
/// * MachO - macos-like targets will insert the metadata into a section that
/// is sort of fake dwarf debug info. Inspecting the source of the macos
/// linker this causes these sections to be skipped automatically because
/// it's not in an allowlist of otherwise well known dwarf section names to
/// go into the final artifact.
///
/// * WebAssembly - this uses wasm files themselves as the object file format
/// so an empty file with no linking metadata but a single custom section is
/// created holding our metadata.
///
/// * COFF - Windows-like targets create an object with a section that has
/// the `IMAGE_SCN_LNK_REMOVE` flag set which ensures that if the linker
/// ever sees the section it doesn't process it and it's removed.
///
/// * ELF - All other targets are similar to Windows in that there's a
/// `SHF_EXCLUDE` flag we can set on sections in an object file to get
/// automatically removed from the final output.
pub(crate) fn create_wrapper_file(
sess: &Session,
section_name: String,
data: &[u8],
) -> (Vec<u8>, MetadataPosition) {
let Some(mut file) = create_object_file(sess) else {
if sess.target.is_like_wasm {
return (
create_metadata_file_for_wasm(sess, data, §ion_name),
MetadataPosition::First,
);
}
// Targets using this branch don't have support implemented here yet or
// they're not yet implemented in the `object` crate and will likely
// fill out this module over time.
return (data.to_vec(), MetadataPosition::Last);
};
let section = if file.format() == BinaryFormat::Xcoff {
file.add_section(Vec::new(), b".info".to_vec(), SectionKind::Debug)
} else {
file.add_section(
file.segment_name(StandardSegment::Debug).to_vec(),
section_name.into_bytes(),
SectionKind::Debug,
)
};
match file.format() {
BinaryFormat::Coff => {
file.section_mut(section).flags =
SectionFlags::Coff { characteristics: pe::IMAGE_SCN_LNK_REMOVE };
}
BinaryFormat::Elf => {
file.section_mut(section).flags =
SectionFlags::Elf { sh_flags: elf::SHF_EXCLUDE as u64 };
}
BinaryFormat::Xcoff => {
// AIX system linker may aborts if it meets a valid XCOFF file in archive with no .text, no .data and no .bss.
file.add_section(Vec::new(), b".text".to_vec(), SectionKind::Text);
file.section_mut(section).flags =
SectionFlags::Xcoff { s_flags: xcoff::STYP_INFO as u32 };
// Encode string stored in .info section of XCOFF.
// FIXME: The length of data here is not guaranteed to fit in a u32.
// We may have to split the data into multiple pieces in order to
// store in .info section.
let len: u32 = data.len().try_into().unwrap();
let offset = file.append_section_data(section, &len.to_be_bytes(), 1);
// Add a symbol referring to the data in .info section.
file.add_symbol(Symbol {
name: AIX_METADATA_SYMBOL_NAME.into(),
value: offset + 4,
size: 0,
kind: SymbolKind::Unknown,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::Section(section),
flags: SymbolFlags::Xcoff {
n_sclass: xcoff::C_INFO,
x_smtyp: xcoff::C_HIDEXT,
x_smclas: xcoff::C_HIDEXT,
containing_csect: None,
},
});
}
_ => {}
};
file.append_section_data(section, data, 1);
(file.write().unwrap(), MetadataPosition::First)
}
// Historical note:
//
// When using link.exe it was seen that the section name `.note.rustc`
// was getting shortened to `.note.ru`, and according to the PE and COFF
// specification:
//
// > Executable images do not use a string table and do not support
// > section names longer than 8 characters
//
// https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
//
// As a result, we choose a slightly shorter name! As to why
// `.note.rustc` works on MinGW, see
// https://github.com/llvm/llvm-project/blob/llvmorg-12.0.0/lld/COFF/Writer.cpp#L1190-L1197
pub fn create_compressed_metadata_file(
sess: &Session,
metadata: &EncodedMetadata,
symbol_name: &str,
) -> Vec<u8> {
let mut packed_metadata = rustc_metadata::METADATA_HEADER.to_vec();
packed_metadata.write_all(&(metadata.raw_data().len() as u64).to_le_bytes()).unwrap();
packed_metadata.extend(metadata.raw_data());
let Some(mut file) = create_object_file(sess) else {
if sess.target.is_like_wasm {
return create_metadata_file_for_wasm(sess, &packed_metadata, ".rustc");
}
return packed_metadata.to_vec();
};
if file.format() == BinaryFormat::Xcoff {
return create_compressed_metadata_file_for_xcoff(file, &packed_metadata, symbol_name);
}
let section = file.add_section(
file.segment_name(StandardSegment::Data).to_vec(),
b".rustc".to_vec(),
SectionKind::ReadOnlyData,
);
match file.format() {
BinaryFormat::Elf => {
// Explicitly set no flags to avoid SHF_ALLOC default for data section.
file.section_mut(section).flags = SectionFlags::Elf { sh_flags: 0 };
}
_ => {}
};
let offset = file.append_section_data(section, &packed_metadata, 1);
// For MachO and probably PE this is necessary to prevent the linker from throwing away the
// .rustc section. For ELF this isn't necessary, but it also doesn't harm.
file.add_symbol(Symbol {
name: symbol_name.as_bytes().to_vec(),
value: offset,
size: packed_metadata.len() as u64,
kind: SymbolKind::Data,
scope: SymbolScope::Dynamic,
weak: false,
section: SymbolSection::Section(section),
flags: SymbolFlags::None,
});
file.write().unwrap()
}
/// * Xcoff - On AIX, custom sections are merged into predefined sections,
/// so custom .rustc section is not preserved during linking.
/// For this reason, we store metadata in predefined .info section, and
/// define a symbol to reference the metadata. To preserve metadata during
/// linking on AIX, we have to
/// 1. Create an empty .text section, a empty .data section.
/// 2. Define an empty symbol named `symbol_name` inside .data section.
/// 3. Define an symbol named `AIX_METADATA_SYMBOL_NAME` referencing
/// data inside .info section.
/// From XCOFF's view, (2) creates a csect entry in the symbol table, the
/// symbol created by (3) is a info symbol for the preceding csect. Thus
/// two symbols are preserved during linking and we can use the second symbol
/// to reference the metadata.
pub fn create_compressed_metadata_file_for_xcoff(
mut file: write::Object<'_>,
data: &[u8],
symbol_name: &str,
) -> Vec<u8> {
assert!(file.format() == BinaryFormat::Xcoff);
// AIX system linker may aborts if it meets a valid XCOFF file in archive with no .text, no .data and no .bss.
file.add_section(Vec::new(), b".text".to_vec(), SectionKind::Text);
let data_section = file.add_section(Vec::new(), b".data".to_vec(), SectionKind::Data);
let section = file.add_section(Vec::new(), b".info".to_vec(), SectionKind::Debug);
file.add_file_symbol("lib.rmeta".into());
file.section_mut(section).flags = SectionFlags::Xcoff { s_flags: xcoff::STYP_INFO as u32 };
// Add a global symbol to data_section.
file.add_symbol(Symbol {
name: symbol_name.as_bytes().into(),
value: 0,
size: 0,
kind: SymbolKind::Data,
scope: SymbolScope::Dynamic,
weak: true,
section: SymbolSection::Section(data_section),
flags: SymbolFlags::None,
});
let len: u32 = data.len().try_into().unwrap();
let offset = file.append_section_data(section, &len.to_be_bytes(), 1);
// Add a symbol referring to the rustc metadata.
file.add_symbol(Symbol {
name: AIX_METADATA_SYMBOL_NAME.into(),
value: offset + 4, // The metadata is preceded by a 4-byte length field.
size: 0,
kind: SymbolKind::Unknown,
scope: SymbolScope::Dynamic,
weak: false,
section: SymbolSection::Section(section),
flags: SymbolFlags::Xcoff {
n_sclass: xcoff::C_INFO,
x_smtyp: xcoff::C_HIDEXT,
x_smclas: xcoff::C_HIDEXT,
containing_csect: None,
},
});
file.append_section_data(section, data, 1);
file.write().unwrap()
}
/// Creates a simple WebAssembly object file, which is itself a wasm module,
/// that contains a custom section of the name `section_name` with contents
/// `data`.
///
/// NB: the `object` crate does not yet have support for writing the wasm
/// object file format. In lieu of that the `wasm-encoder` crate is used to
/// build a wasm file by hand.
///
/// The wasm object file format is defined at
/// <https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md>
/// and mainly consists of a `linking` custom section. In this case the custom
/// section there is empty except for a version marker indicating what format
/// it's in.
///
/// The main purpose of this is to contain a custom section with `section_name`,
/// which is then appended after `linking`.
///
/// As a further detail the object needs to have a 64-bit memory if `wasm64` is
/// the target or otherwise it's interpreted as a 32-bit object which is
/// incompatible with 64-bit ones.
pub fn create_metadata_file_for_wasm(sess: &Session, data: &[u8], section_name: &str) -> Vec<u8> {
assert!(sess.target.is_like_wasm);
let mut module = wasm_encoder::Module::new();
let mut imports = wasm_encoder::ImportSection::new();
if sess.target.pointer_width == 64 {
imports.import("env", "__linear_memory", wasm_encoder::MemoryType {
minimum: 0,
maximum: None,
memory64: true,
shared: false,
page_size_log2: None,
});
}
if imports.len() > 0 {
module.section(&imports);
}
module.section(&wasm_encoder::CustomSection {
name: "linking".into(),
data: Cow::Borrowed(&[2]),
});
module.section(&wasm_encoder::CustomSection { name: section_name.into(), data: data.into() });
module.finish()
}