rustc_monomorphize/collector.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
//! Mono Item Collection
//! ====================
//!
//! This module is responsible for discovering all items that will contribute
//! to code generation of the crate. The important part here is that it not only
//! needs to find syntax-level items (functions, structs, etc) but also all
//! their monomorphized instantiations. Every non-generic, non-const function
//! maps to one LLVM artifact. Every generic function can produce
//! from zero to N artifacts, depending on the sets of type arguments it
//! is instantiated with.
//! This also applies to generic items from other crates: A generic definition
//! in crate X might produce monomorphizations that are compiled into crate Y.
//! We also have to collect these here.
//!
//! The following kinds of "mono items" are handled here:
//!
//! - Functions
//! - Methods
//! - Closures
//! - Statics
//! - Drop glue
//!
//! The following things also result in LLVM artifacts, but are not collected
//! here, since we instantiate them locally on demand when needed in a given
//! codegen unit:
//!
//! - Constants
//! - VTables
//! - Object Shims
//!
//! The main entry point is `collect_crate_mono_items`, at the bottom of this file.
//!
//! General Algorithm
//! -----------------
//! Let's define some terms first:
//!
//! - A "mono item" is something that results in a function or global in
//! the LLVM IR of a codegen unit. Mono items do not stand on their
//! own, they can use other mono items. For example, if function
//! `foo()` calls function `bar()` then the mono item for `foo()`
//! uses the mono item for function `bar()`. In general, the
//! definition for mono item A using a mono item B is that
//! the LLVM artifact produced for A uses the LLVM artifact produced
//! for B.
//!
//! - Mono items and the uses between them form a directed graph,
//! where the mono items are the nodes and uses form the edges.
//! Let's call this graph the "mono item graph".
//!
//! - The mono item graph for a program contains all mono items
//! that are needed in order to produce the complete LLVM IR of the program.
//!
//! The purpose of the algorithm implemented in this module is to build the
//! mono item graph for the current crate. It runs in two phases:
//!
//! 1. Discover the roots of the graph by traversing the HIR of the crate.
//! 2. Starting from the roots, find uses by inspecting the MIR
//! representation of the item corresponding to a given node, until no more
//! new nodes are found.
//!
//! ### Discovering roots
//! The roots of the mono item graph correspond to the public non-generic
//! syntactic items in the source code. We find them by walking the HIR of the
//! crate, and whenever we hit upon a public function, method, or static item,
//! we create a mono item consisting of the items DefId and, since we only
//! consider non-generic items, an empty type-parameters set. (In eager
//! collection mode, during incremental compilation, all non-generic functions
//! are considered as roots, as well as when the `-Clink-dead-code` option is
//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
//! functions also always act as roots.)
//!
//! ### Finding uses
//! Given a mono item node, we can discover uses by inspecting its MIR. We walk
//! the MIR to find other mono items used by each mono item. Since the mono
//! item we are currently at is always monomorphic, we also know the concrete
//! type arguments of its used mono items. The specific forms a use can take in
//! MIR are quite diverse. Here is an overview:
//!
//! #### Calling Functions/Methods
//! The most obvious way for one mono item to use another is a
//! function or method call (represented by a CALL terminator in MIR). But
//! calls are not the only thing that might introduce a use between two
//! function mono items, and as we will see below, they are just a
//! specialization of the form described next, and consequently will not get any
//! special treatment in the algorithm.
//!
//! #### Taking a reference to a function or method
//! A function does not need to actually be called in order to be used by
//! another function. It suffices to just take a reference in order to introduce
//! an edge. Consider the following example:
//!
//! ```
//! # use core::fmt::Display;
//! fn print_val<T: Display>(x: T) {
//! println!("{}", x);
//! }
//!
//! fn call_fn(f: &dyn Fn(i32), x: i32) {
//! f(x);
//! }
//!
//! fn main() {
//! let print_i32 = print_val::<i32>;
//! call_fn(&print_i32, 0);
//! }
//! ```
//! The MIR of none of these functions will contain an explicit call to
//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
//! an instance of this function. Thus, whenever we encounter a function or
//! method in operand position, we treat it as a use of the current
//! mono item. Calls are just a special case of that.
//!
//! #### Drop glue
//! Drop glue mono items are introduced by MIR drop-statements. The
//! generated mono item will have additional drop-glue item uses if the
//! type to be dropped contains nested values that also need to be dropped. It
//! might also have a function item use for the explicit `Drop::drop`
//! implementation of its type.
//!
//! #### Unsizing Casts
//! A subtle way of introducing use edges is by casting to a trait object.
//! Since the resulting wide-pointer contains a reference to a vtable, we need to
//! instantiate all dyn-compatible methods of the trait, as we need to store
//! pointers to these functions even if they never get called anywhere. This can
//! be seen as a special case of taking a function reference.
//!
//!
//! Interaction with Cross-Crate Inlining
//! -------------------------------------
//! The binary of a crate will not only contain machine code for the items
//! defined in the source code of that crate. It will also contain monomorphic
//! instantiations of any extern generic functions and of functions marked with
//! `#[inline]`.
//! The collection algorithm handles this more or less mono. If it is
//! about to create a mono item for something with an external `DefId`,
//! it will take a look if the MIR for that item is available, and if so just
//! proceed normally. If the MIR is not available, it assumes that the item is
//! just linked to and no node is created; which is exactly what we want, since
//! no machine code should be generated in the current crate for such an item.
//!
//! Eager and Lazy Collection Strategy
//! ----------------------------------
//! Mono item collection can be performed with one of two strategies:
//!
//! - Lazy strategy means that items will only be instantiated when actually
//! used. The goal is to produce the least amount of machine code
//! possible.
//!
//! - Eager strategy is meant to be used in conjunction with incremental compilation
//! where a stable set of mono items is more important than a minimal
//! one. Thus, eager strategy will instantiate drop-glue for every drop-able type
//! in the crate, even if no drop call for that type exists (yet). It will
//! also instantiate default implementations of trait methods, something that
//! otherwise is only done on demand.
//!
//! Collection-time const evaluation and "mentioned" items
//! ------------------------------------------------------
//!
//! One important role of collection is to evaluate all constants that are used by all the items
//! which are being collected. Codegen can then rely on only encountering constants that evaluate
//! successfully, and if a constant fails to evaluate, the collector has much better context to be
//! able to show where this constant comes up.
//!
//! However, the exact set of "used" items (collected as described above), and therefore the exact
//! set of used constants, can depend on optimizations. Optimizing away dead code may optimize away
//! a function call that uses a failing constant, so an unoptimized build may fail where an
//! optimized build succeeds. This is undesirable.
//!
//! To avoid this, the collector has the concept of "mentioned" items. Some time during the MIR
//! pipeline, before any optimization-level-dependent optimizations, we compute a list of all items
//! that syntactically appear in the code. These are considered "mentioned", and even if they are in
//! dead code and get optimized away (which makes them no longer "used"), they are still
//! "mentioned". For every used item, the collector ensures that all mentioned items, recursively,
//! do not use a failing constant. This is reflected via the [`CollectionMode`], which determines
//! whether we are visiting a used item or merely a mentioned item.
//!
//! The collector and "mentioned items" gathering (which lives in `rustc_mir_transform::mentioned_items`)
//! need to stay in sync in the following sense:
//!
//! - For every item that the collector gather that could eventually lead to build failure (most
//! likely due to containing a constant that fails to evaluate), a corresponding mentioned item
//! must be added. This should use the exact same strategy as the ecollector to make sure they are
//! in sync. However, while the collector works on monomorphized types, mentioned items are
//! collected on generic MIR -- so any time the collector checks for a particular type (such as
//! `ty::FnDef`), we have to just onconditionally add this as a mentioned item.
//! - In `visit_mentioned_item`, we then do with that mentioned item exactly what the collector
//! would have done during regular MIR visiting. Basically you can think of the collector having
//! two stages, a pre-monomorphization stage and a post-monomorphization stage (usually quite
//! literally separated by a call to `self.monomorphize`); the pre-monomorphizationn stage is
//! duplicated in mentioned items gathering and the post-monomorphization stage is duplicated in
//! `visit_mentioned_item`.
//! - Finally, as a performance optimization, the collector should fill `used_mentioned_item` during
//! its MIR traversal with exactly what mentioned item gathering would have added in the same
//! situation. This detects mentioned items that have *not* been optimized away and hence don't
//! need a dedicated traversal.
//!
//! Open Issues
//! -----------
//! Some things are not yet fully implemented in the current version of this
//! module.
//!
//! ### Const Fns
//! Ideally, no mono item should be generated for const fns unless there
//! is a call to them that cannot be evaluated at compile time. At the moment
//! this is not implemented however: a mono item will be produced
//! regardless of whether it is actually needed or not.
use std::path::PathBuf;
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::sync::{LRef, MTLock, par_for_each_in};
use rustc_data_structures::unord::{UnordMap, UnordSet};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId};
use rustc_hir::lang_items::LangItem;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::interpret::{AllocId, ErrorHandled, GlobalAlloc, Scalar};
use rustc_middle::mir::mono::{CollectionMode, InstantiationMode, MonoItem};
use rustc_middle::mir::visit::Visitor as MirVisitor;
use rustc_middle::mir::{self, Location, MentionedItem, traversal};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCoercion};
use rustc_middle::ty::layout::ValidityRequirement;
use rustc_middle::ty::print::{shrunk_instance_name, with_no_trimmed_paths};
use rustc_middle::ty::{
self, GenericArgs, GenericParamDefKind, Instance, InstanceKind, Ty, TyCtxt, TypeFoldable,
TypeVisitableExt, VtblEntry,
};
use rustc_middle::util::Providers;
use rustc_middle::{bug, span_bug};
use rustc_session::Limit;
use rustc_session::config::EntryFnType;
use rustc_span::source_map::{Spanned, dummy_spanned, respan};
use rustc_span::{DUMMY_SP, Span, sym};
use tracing::{debug, instrument, trace};
use crate::errors::{self, EncounteredErrorWhileInstantiating, NoOptimizedMir, RecursionLimit};
#[derive(PartialEq)]
pub(crate) enum MonoItemCollectionStrategy {
Eager,
Lazy,
}
/// The state that is shared across the concurrent threads that are doing collection.
struct SharedState<'tcx> {
/// Items that have been or are currently being recursively collected.
visited: MTLock<UnordSet<MonoItem<'tcx>>>,
/// Items that have been or are currently being recursively treated as "mentioned", i.e., their
/// consts are evaluated but nothing is added to the collection.
mentioned: MTLock<UnordSet<MonoItem<'tcx>>>,
/// Which items are being used where, for better errors.
usage_map: MTLock<UsageMap<'tcx>>,
}
pub(crate) struct UsageMap<'tcx> {
// Maps every mono item to the mono items used by it.
used_map: UnordMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
// Maps every mono item to the mono items that use it.
user_map: UnordMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
}
impl<'tcx> UsageMap<'tcx> {
fn new() -> UsageMap<'tcx> {
UsageMap { used_map: Default::default(), user_map: Default::default() }
}
fn record_used<'a>(&mut self, user_item: MonoItem<'tcx>, used_items: &'a MonoItems<'tcx>)
where
'tcx: 'a,
{
for used_item in used_items.items() {
self.user_map.entry(used_item).or_default().push(user_item);
}
assert!(self.used_map.insert(user_item, used_items.items().collect()).is_none());
}
pub(crate) fn get_user_items(&self, item: MonoItem<'tcx>) -> &[MonoItem<'tcx>] {
self.user_map.get(&item).map(|items| items.as_slice()).unwrap_or(&[])
}
/// Internally iterate over all inlined items used by `item`.
pub(crate) fn for_each_inlined_used_item<F>(
&self,
tcx: TyCtxt<'tcx>,
item: MonoItem<'tcx>,
mut f: F,
) where
F: FnMut(MonoItem<'tcx>),
{
let used_items = self.used_map.get(&item).unwrap();
for used_item in used_items.iter() {
let is_inlined = used_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy;
if is_inlined {
f(*used_item);
}
}
}
}
struct MonoItems<'tcx> {
// We want a set of MonoItem + Span where trying to re-insert a MonoItem with a different Span
// is ignored. Map does that, but it looks odd.
items: FxIndexMap<MonoItem<'tcx>, Span>,
}
impl<'tcx> MonoItems<'tcx> {
fn new() -> Self {
Self { items: FxIndexMap::default() }
}
fn is_empty(&self) -> bool {
self.items.is_empty()
}
fn push(&mut self, item: Spanned<MonoItem<'tcx>>) {
// Insert only if the entry does not exist. A normal insert would stomp the first span that
// got inserted.
self.items.entry(item.node).or_insert(item.span);
}
fn items(&self) -> impl Iterator<Item = MonoItem<'tcx>> + '_ {
self.items.keys().cloned()
}
}
impl<'tcx> IntoIterator for MonoItems<'tcx> {
type Item = Spanned<MonoItem<'tcx>>;
type IntoIter = impl Iterator<Item = Spanned<MonoItem<'tcx>>>;
fn into_iter(self) -> Self::IntoIter {
self.items.into_iter().map(|(item, span)| respan(span, item))
}
}
impl<'tcx> Extend<Spanned<MonoItem<'tcx>>> for MonoItems<'tcx> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = Spanned<MonoItem<'tcx>>>,
{
for item in iter {
self.push(item)
}
}
}
/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
/// post-monomorphization error is encountered during a collection step.
///
/// `mode` determined whether we are scanning for [used items][CollectionMode::UsedItems]
/// or [mentioned items][CollectionMode::MentionedItems].
#[instrument(skip(tcx, state, recursion_depths, recursion_limit), level = "debug")]
fn collect_items_rec<'tcx>(
tcx: TyCtxt<'tcx>,
starting_item: Spanned<MonoItem<'tcx>>,
state: LRef<'_, SharedState<'tcx>>,
recursion_depths: &mut DefIdMap<usize>,
recursion_limit: Limit,
mode: CollectionMode,
) {
if mode == CollectionMode::UsedItems {
if !state.visited.lock_mut().insert(starting_item.node) {
// We've been here already, no need to search again.
return;
}
} else {
if state.visited.lock().contains(&starting_item.node) {
// We've already done a *full* visit on this one, no need to do the "mention" visit.
return;
}
if !state.mentioned.lock_mut().insert(starting_item.node) {
// We've been here already, no need to search again.
return;
}
// There's some risk that we first do a 'mention' visit and then a full visit. But there's no
// harm in that, the mention visit will trigger all the queries and the results are cached.
}
let mut used_items = MonoItems::new();
let mut mentioned_items = MonoItems::new();
let recursion_depth_reset;
// Post-monomorphization errors MVP
//
// We can encounter errors while monomorphizing an item, but we don't have a good way of
// showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
// (It's also currently unclear exactly which diagnostics and information would be interesting
// to report in such cases)
//
// This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
// shown with just a spanned piece of code causing the error, without information on where
// it was called from. This is especially obscure if the erroneous mono item is in a
// dependency. See for example issue #85155, where, before minimization, a PME happened two
// crates downstream from libcore's stdarch, without a way to know which dependency was the
// cause.
//
// If such an error occurs in the current crate, its span will be enough to locate the
// source. If the cause is in another crate, the goal here is to quickly locate which mono
// item in the current crate is ultimately responsible for causing the error.
//
// To give at least _some_ context to the user: while collecting mono items, we check the
// error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
// current step of mono items collection.
//
// FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do.
let error_count = tcx.dcx().err_count();
// In `mentioned_items` we collect items that were mentioned in this MIR but possibly do not
// need to be monomorphized. This is done to ensure that optimizing away function calls does not
// hide const-eval errors that those calls would otherwise have triggered.
match starting_item.node {
MonoItem::Static(def_id) => {
recursion_depth_reset = None;
// Statics always get evaluated (which is possible because they can't be generic), so for
// `MentionedItems` collection there's nothing to do here.
if mode == CollectionMode::UsedItems {
let instance = Instance::mono(tcx, def_id);
// Sanity check whether this ended up being collected accidentally
debug_assert!(tcx.should_codegen_locally(instance));
let DefKind::Static { nested, .. } = tcx.def_kind(def_id) else { bug!() };
// Nested statics have no type.
if !nested {
let ty = instance.ty(tcx, ty::TypingEnv::fully_monomorphized());
visit_drop_use(tcx, ty, true, starting_item.span, &mut used_items);
}
if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
for &prov in alloc.inner().provenance().ptrs().values() {
collect_alloc(tcx, prov.alloc_id(), &mut used_items);
}
}
if tcx.needs_thread_local_shim(def_id) {
used_items.push(respan(
starting_item.span,
MonoItem::Fn(Instance {
def: InstanceKind::ThreadLocalShim(def_id),
args: GenericArgs::empty(),
}),
));
}
}
// mentioned_items stays empty since there's no codegen for statics. statics don't get
// optimized, and if they did then the const-eval interpreter would have to worry about
// mentioned_items.
}
MonoItem::Fn(instance) => {
// Sanity check whether this ended up being collected accidentally
debug_assert!(tcx.should_codegen_locally(instance));
// Keep track of the monomorphization recursion depth
recursion_depth_reset = Some(check_recursion_limit(
tcx,
instance,
starting_item.span,
recursion_depths,
recursion_limit,
));
rustc_data_structures::stack::ensure_sufficient_stack(|| {
let (used, mentioned) = tcx.items_of_instance((instance, mode));
used_items.extend(used.into_iter().copied());
mentioned_items.extend(mentioned.into_iter().copied());
});
}
MonoItem::GlobalAsm(item_id) => {
assert!(
mode == CollectionMode::UsedItems,
"should never encounter global_asm when collecting mentioned items"
);
recursion_depth_reset = None;
let item = tcx.hir().item(item_id);
if let hir::ItemKind::GlobalAsm(asm) = item.kind {
for (op, op_sp) in asm.operands {
match op {
hir::InlineAsmOperand::Const { .. } => {
// Only constants which resolve to a plain integer
// are supported. Therefore the value should not
// depend on any other items.
}
hir::InlineAsmOperand::SymFn { anon_const } => {
let fn_ty =
tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
visit_fn_use(tcx, fn_ty, false, *op_sp, &mut used_items);
}
hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
let instance = Instance::mono(tcx, *def_id);
if tcx.should_codegen_locally(instance) {
trace!("collecting static {:?}", def_id);
used_items.push(dummy_spanned(MonoItem::Static(*def_id)));
}
}
hir::InlineAsmOperand::In { .. }
| hir::InlineAsmOperand::Out { .. }
| hir::InlineAsmOperand::InOut { .. }
| hir::InlineAsmOperand::SplitInOut { .. }
| hir::InlineAsmOperand::Label { .. } => {
span_bug!(*op_sp, "invalid operand type for global_asm!")
}
}
}
} else {
span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
}
// mention_items stays empty as nothing gets optimized here.
}
};
// Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
// mono item graph.
if tcx.dcx().err_count() > error_count
&& starting_item.node.is_generic_fn()
&& starting_item.node.is_user_defined()
{
let formatted_item = with_no_trimmed_paths!(starting_item.node.to_string());
tcx.dcx().emit_note(EncounteredErrorWhileInstantiating {
span: starting_item.span,
formatted_item,
});
}
// Only updating `usage_map` for used items as otherwise we may be inserting the same item
// multiple times (if it is first 'mentioned' and then later actuall used), and the usage map
// logic does not like that.
// This is part of the output of collection and hence only relevant for "used" items.
// ("Mentioned" items are only considered internally during collection.)
if mode == CollectionMode::UsedItems {
state.usage_map.lock_mut().record_used(starting_item.node, &used_items);
}
if mode == CollectionMode::MentionedItems {
assert!(used_items.is_empty(), "'mentioned' collection should never encounter used items");
} else {
for used_item in used_items {
collect_items_rec(
tcx,
used_item,
state,
recursion_depths,
recursion_limit,
CollectionMode::UsedItems,
);
}
}
// Walk over mentioned items *after* used items, so that if an item is both mentioned and used then
// the loop above has fully collected it, so this loop will skip it.
for mentioned_item in mentioned_items {
collect_items_rec(
tcx,
mentioned_item,
state,
recursion_depths,
recursion_limit,
CollectionMode::MentionedItems,
);
}
if let Some((def_id, depth)) = recursion_depth_reset {
recursion_depths.insert(def_id, depth);
}
}
fn check_recursion_limit<'tcx>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
span: Span,
recursion_depths: &mut DefIdMap<usize>,
recursion_limit: Limit,
) -> (DefId, usize) {
let def_id = instance.def_id();
let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
debug!(" => recursion depth={}", recursion_depth);
let adjusted_recursion_depth = if tcx.is_lang_item(def_id, LangItem::DropInPlace) {
// HACK: drop_in_place creates tight monomorphization loops. Give
// it more margin.
recursion_depth / 4
} else {
recursion_depth
};
// Code that needs to instantiate the same function recursively
// more than the recursion limit is assumed to be causing an
// infinite expansion.
if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
let def_span = tcx.def_span(def_id);
let def_path_str = tcx.def_path_str(def_id);
let (shrunk, written_to_path) = shrunk_instance_name(tcx, instance);
let mut path = PathBuf::new();
let was_written = if let Some(written_to_path) = written_to_path {
path = written_to_path;
true
} else {
false
};
tcx.dcx().emit_fatal(RecursionLimit {
span,
shrunk,
def_span,
def_path_str,
was_written,
path,
});
}
recursion_depths.insert(def_id, recursion_depth + 1);
(def_id, recursion_depth)
}
struct MirUsedCollector<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
body: &'a mir::Body<'tcx>,
used_items: &'a mut MonoItems<'tcx>,
/// See the comment in `collect_items_of_instance` for the purpose of this set.
/// Note that this contains *not-monomorphized* items!
used_mentioned_items: &'a mut UnordSet<MentionedItem<'tcx>>,
instance: Instance<'tcx>,
}
impl<'a, 'tcx> MirUsedCollector<'a, 'tcx> {
fn monomorphize<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
trace!("monomorphize: self.instance={:?}", self.instance);
self.instance.instantiate_mir_and_normalize_erasing_regions(
self.tcx,
ty::TypingEnv::fully_monomorphized(),
ty::EarlyBinder::bind(value),
)
}
/// Evaluates a *not yet monomorphized* constant.
fn eval_constant(
&mut self,
constant: &mir::ConstOperand<'tcx>,
) -> Option<mir::ConstValue<'tcx>> {
let const_ = self.monomorphize(constant.const_);
// Evaluate the constant. This makes const eval failure a collection-time error (rather than
// a codegen-time error). rustc stops after collection if there was an error, so this
// ensures codegen never has to worry about failing consts.
// (codegen relies on this and ICEs will happen if this is violated.)
match const_.eval(self.tcx, ty::TypingEnv::fully_monomorphized(), constant.span) {
Ok(v) => Some(v),
Err(ErrorHandled::TooGeneric(..)) => span_bug!(
constant.span,
"collection encountered polymorphic constant: {:?}",
const_
),
Err(err @ ErrorHandled::Reported(..)) => {
err.emit_note(self.tcx);
return None;
}
}
}
}
impl<'a, 'tcx> MirVisitor<'tcx> for MirUsedCollector<'a, 'tcx> {
fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
debug!("visiting rvalue {:?}", *rvalue);
let span = self.body.source_info(location).span;
match *rvalue {
// When doing an cast from a regular pointer to a wide pointer, we
// have to instantiate all methods of the trait being cast to, so we
// can build the appropriate vtable.
mir::Rvalue::Cast(
mir::CastKind::PointerCoercion(PointerCoercion::Unsize, _)
| mir::CastKind::PointerCoercion(PointerCoercion::DynStar, _),
ref operand,
target_ty,
) => {
let source_ty = operand.ty(self.body, self.tcx);
// *Before* monomorphizing, record that we already handled this mention.
self.used_mentioned_items
.insert(MentionedItem::UnsizeCast { source_ty, target_ty });
let target_ty = self.monomorphize(target_ty);
let source_ty = self.monomorphize(source_ty);
let (source_ty, target_ty) =
find_vtable_types_for_unsizing(self.tcx.at(span), source_ty, target_ty);
// This could also be a different Unsize instruction, like
// from a fixed sized array to a slice. But we are only
// interested in things that produce a vtable.
if (target_ty.is_trait() && !source_ty.is_trait())
|| (target_ty.is_dyn_star() && !source_ty.is_dyn_star())
{
create_mono_items_for_vtable_methods(
self.tcx,
target_ty,
source_ty,
span,
self.used_items,
);
}
}
mir::Rvalue::Cast(
mir::CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer, _),
ref operand,
_,
) => {
let fn_ty = operand.ty(self.body, self.tcx);
// *Before* monomorphizing, record that we already handled this mention.
self.used_mentioned_items.insert(MentionedItem::Fn(fn_ty));
let fn_ty = self.monomorphize(fn_ty);
visit_fn_use(self.tcx, fn_ty, false, span, self.used_items);
}
mir::Rvalue::Cast(
mir::CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(_), _),
ref operand,
_,
) => {
let source_ty = operand.ty(self.body, self.tcx);
// *Before* monomorphizing, record that we already handled this mention.
self.used_mentioned_items.insert(MentionedItem::Closure(source_ty));
let source_ty = self.monomorphize(source_ty);
if let ty::Closure(def_id, args) = *source_ty.kind() {
let instance =
Instance::resolve_closure(self.tcx, def_id, args, ty::ClosureKind::FnOnce);
if self.tcx.should_codegen_locally(instance) {
self.used_items.push(create_fn_mono_item(self.tcx, instance, span));
}
} else {
bug!()
}
}
mir::Rvalue::ThreadLocalRef(def_id) => {
assert!(self.tcx.is_thread_local_static(def_id));
let instance = Instance::mono(self.tcx, def_id);
if self.tcx.should_codegen_locally(instance) {
trace!("collecting thread-local static {:?}", def_id);
self.used_items.push(respan(span, MonoItem::Static(def_id)));
}
}
_ => { /* not interesting */ }
}
self.super_rvalue(rvalue, location);
}
/// This does not walk the MIR of the constant as that is not needed for codegen, all we need is
/// to ensure that the constant evaluates successfully and walk the result.
#[instrument(skip(self), level = "debug")]
fn visit_const_operand(&mut self, constant: &mir::ConstOperand<'tcx>, location: Location) {
// No `super_constant` as we don't care about `visit_ty`/`visit_ty_const`.
let Some(val) = self.eval_constant(constant) else { return };
collect_const_value(self.tcx, val, self.used_items);
}
fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
debug!("visiting terminator {:?} @ {:?}", terminator, location);
let source = self.body.source_info(location).span;
let tcx = self.tcx;
let push_mono_lang_item = |this: &mut Self, lang_item: LangItem| {
let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source)));
if tcx.should_codegen_locally(instance) {
this.used_items.push(create_fn_mono_item(tcx, instance, source));
}
};
match terminator.kind {
mir::TerminatorKind::Call { ref func, .. }
| mir::TerminatorKind::TailCall { ref func, .. } => {
let callee_ty = func.ty(self.body, tcx);
// *Before* monomorphizing, record that we already handled this mention.
self.used_mentioned_items.insert(MentionedItem::Fn(callee_ty));
let callee_ty = self.monomorphize(callee_ty);
visit_fn_use(self.tcx, callee_ty, true, source, &mut self.used_items)
}
mir::TerminatorKind::Drop { ref place, .. } => {
let ty = place.ty(self.body, self.tcx).ty;
// *Before* monomorphizing, record that we already handled this mention.
self.used_mentioned_items.insert(MentionedItem::Drop(ty));
let ty = self.monomorphize(ty);
visit_drop_use(self.tcx, ty, true, source, self.used_items);
}
mir::TerminatorKind::InlineAsm { ref operands, .. } => {
for op in operands {
match *op {
mir::InlineAsmOperand::SymFn { ref value } => {
let fn_ty = value.const_.ty();
// *Before* monomorphizing, record that we already handled this mention.
self.used_mentioned_items.insert(MentionedItem::Fn(fn_ty));
let fn_ty = self.monomorphize(fn_ty);
visit_fn_use(self.tcx, fn_ty, false, source, self.used_items);
}
mir::InlineAsmOperand::SymStatic { def_id } => {
let instance = Instance::mono(self.tcx, def_id);
if self.tcx.should_codegen_locally(instance) {
trace!("collecting asm sym static {:?}", def_id);
self.used_items.push(respan(source, MonoItem::Static(def_id)));
}
}
_ => {}
}
}
}
mir::TerminatorKind::Assert { ref msg, .. } => match &**msg {
mir::AssertKind::BoundsCheck { .. } => {
push_mono_lang_item(self, LangItem::PanicBoundsCheck);
}
mir::AssertKind::MisalignedPointerDereference { .. } => {
push_mono_lang_item(self, LangItem::PanicMisalignedPointerDereference);
}
_ => {
push_mono_lang_item(self, msg.panic_function());
}
},
mir::TerminatorKind::UnwindTerminate(reason) => {
push_mono_lang_item(self, reason.lang_item());
}
mir::TerminatorKind::Goto { .. }
| mir::TerminatorKind::SwitchInt { .. }
| mir::TerminatorKind::UnwindResume
| mir::TerminatorKind::Return
| mir::TerminatorKind::Unreachable => {}
mir::TerminatorKind::CoroutineDrop
| mir::TerminatorKind::Yield { .. }
| mir::TerminatorKind::FalseEdge { .. }
| mir::TerminatorKind::FalseUnwind { .. } => bug!(),
}
if let Some(mir::UnwindAction::Terminate(reason)) = terminator.unwind() {
push_mono_lang_item(self, reason.lang_item());
}
self.super_terminator(terminator, location);
}
}
fn visit_drop_use<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
is_direct_call: bool,
source: Span,
output: &mut MonoItems<'tcx>,
) {
let instance = Instance::resolve_drop_in_place(tcx, ty);
visit_instance_use(tcx, instance, is_direct_call, source, output);
}
/// For every call of this function in the visitor, make sure there is a matching call in the
/// `mentioned_items` pass!
fn visit_fn_use<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
is_direct_call: bool,
source: Span,
output: &mut MonoItems<'tcx>,
) {
if let ty::FnDef(def_id, args) = *ty.kind() {
let instance = if is_direct_call {
ty::Instance::expect_resolve(
tcx,
ty::TypingEnv::fully_monomorphized(),
def_id,
args,
source,
)
} else {
match ty::Instance::resolve_for_fn_ptr(
tcx,
ty::TypingEnv::fully_monomorphized(),
def_id,
args,
) {
Some(instance) => instance,
_ => bug!("failed to resolve instance for {ty}"),
}
};
visit_instance_use(tcx, instance, is_direct_call, source, output);
}
}
fn visit_instance_use<'tcx>(
tcx: TyCtxt<'tcx>,
instance: ty::Instance<'tcx>,
is_direct_call: bool,
source: Span,
output: &mut MonoItems<'tcx>,
) {
debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
if !tcx.should_codegen_locally(instance) {
return;
}
if let ty::InstanceKind::Intrinsic(def_id) = instance.def {
let name = tcx.item_name(def_id);
if let Some(_requirement) = ValidityRequirement::from_intrinsic(name) {
// The intrinsics assert_inhabited, assert_zero_valid, and assert_mem_uninitialized_valid will
// be lowered in codegen to nothing or a call to panic_nounwind. So if we encounter any
// of those intrinsics, we need to include a mono item for panic_nounwind, else we may try to
// codegen a call to that function without generating code for the function itself.
let def_id = tcx.require_lang_item(LangItem::PanicNounwind, None);
let panic_instance = Instance::mono(tcx, def_id);
if tcx.should_codegen_locally(panic_instance) {
output.push(create_fn_mono_item(tcx, panic_instance, source));
}
} else if tcx.has_attr(def_id, sym::rustc_intrinsic)
&& !tcx.has_attr(def_id, sym::rustc_intrinsic_must_be_overridden)
{
// Codegen the fallback body of intrinsics with fallback bodies
let instance = ty::Instance::new(def_id, instance.args);
if tcx.should_codegen_locally(instance) {
output.push(create_fn_mono_item(tcx, instance, source));
}
}
}
match instance.def {
ty::InstanceKind::Virtual(..) | ty::InstanceKind::Intrinsic(_) => {
if !is_direct_call {
bug!("{:?} being reified", instance);
}
}
ty::InstanceKind::ThreadLocalShim(..) => {
bug!("{:?} being reified", instance);
}
ty::InstanceKind::DropGlue(_, None) | ty::InstanceKind::AsyncDropGlueCtorShim(_, None) => {
// Don't need to emit noop drop glue if we are calling directly.
if !is_direct_call {
output.push(create_fn_mono_item(tcx, instance, source));
}
}
ty::InstanceKind::DropGlue(_, Some(_))
| ty::InstanceKind::AsyncDropGlueCtorShim(_, Some(_))
| ty::InstanceKind::VTableShim(..)
| ty::InstanceKind::ReifyShim(..)
| ty::InstanceKind::ClosureOnceShim { .. }
| ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
| ty::InstanceKind::Item(..)
| ty::InstanceKind::FnPtrShim(..)
| ty::InstanceKind::CloneShim(..)
| ty::InstanceKind::FnPtrAddrShim(..) => {
output.push(create_fn_mono_item(tcx, instance, source));
}
}
}
/// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we
/// can just link to the upstream crate and therefore don't need a mono item.
fn should_codegen_locally<'tcx>(tcx: TyCtxtAt<'tcx>, instance: Instance<'tcx>) -> bool {
let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else {
return true;
};
if tcx.is_foreign_item(def_id) {
// Foreign items are always linked against, there's no way of instantiating them.
return false;
}
if def_id.is_local() {
// Local items cannot be referred to locally without monomorphizing them locally.
return true;
}
if tcx.is_reachable_non_generic(def_id) || instance.upstream_monomorphization(*tcx).is_some() {
// We can link to the item in question, no instance needed in this crate.
return false;
}
if let DefKind::Static { .. } = tcx.def_kind(def_id) {
// We cannot monomorphize statics from upstream crates.
return false;
}
if !tcx.is_mir_available(def_id) {
tcx.dcx().emit_fatal(NoOptimizedMir {
span: tcx.def_span(def_id),
crate_name: tcx.crate_name(def_id.krate),
});
}
true
}
/// For a given pair of source and target type that occur in an unsizing coercion,
/// this function finds the pair of types that determines the vtable linking
/// them.
///
/// For example, the source type might be `&SomeStruct` and the target type
/// might be `&dyn SomeTrait` in a cast like:
///
/// ```rust,ignore (not real code)
/// let src: &SomeStruct = ...;
/// let target = src as &dyn SomeTrait;
/// ```
///
/// Then the output of this function would be (SomeStruct, SomeTrait) since for
/// constructing the `target` wide-pointer we need the vtable for that pair.
///
/// Things can get more complicated though because there's also the case where
/// the unsized type occurs as a field:
///
/// ```rust
/// struct ComplexStruct<T: ?Sized> {
/// a: u32,
/// b: f64,
/// c: T
/// }
/// ```
///
/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
/// is unsized, `&SomeStruct` is a wide pointer, and the vtable it points to is
/// for the pair of `T` (which is a trait) and the concrete type that `T` was
/// originally coerced from:
///
/// ```rust,ignore (not real code)
/// let src: &ComplexStruct<SomeStruct> = ...;
/// let target = src as &ComplexStruct<dyn SomeTrait>;
/// ```
///
/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
/// `(SomeStruct, SomeTrait)`.
///
/// Finally, there is also the case of custom unsizing coercions, e.g., for
/// smart pointers such as `Rc` and `Arc`.
fn find_vtable_types_for_unsizing<'tcx>(
tcx: TyCtxtAt<'tcx>,
source_ty: Ty<'tcx>,
target_ty: Ty<'tcx>,
) -> (Ty<'tcx>, Ty<'tcx>) {
let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
let typing_env = ty::TypingEnv::fully_monomorphized();
let type_has_metadata = |ty: Ty<'tcx>| -> bool {
if ty.is_sized(tcx.tcx, typing_env) {
return false;
}
let tail = tcx.struct_tail_for_codegen(ty, typing_env);
match tail.kind() {
ty::Foreign(..) => false,
ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
_ => bug!("unexpected unsized tail: {:?}", tail),
}
};
if type_has_metadata(inner_source) {
(inner_source, inner_target)
} else {
tcx.struct_lockstep_tails_for_codegen(inner_source, inner_target, typing_env)
}
};
match (source_ty.kind(), target_ty.kind()) {
(&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(b, _))
| (&ty::RawPtr(a, _), &ty::RawPtr(b, _)) => ptr_vtable(a, b),
(_, _)
if let Some(source_boxed) = source_ty.boxed_ty()
&& let Some(target_boxed) = target_ty.boxed_ty() =>
{
ptr_vtable(source_boxed, target_boxed)
}
// T as dyn* Trait
(_, &ty::Dynamic(_, _, ty::DynStar)) => ptr_vtable(source_ty, target_ty),
(&ty::Adt(source_adt_def, source_args), &ty::Adt(target_adt_def, target_args)) => {
assert_eq!(source_adt_def, target_adt_def);
let CustomCoerceUnsized::Struct(coerce_index) =
match crate::custom_coerce_unsize_info(tcx, source_ty, target_ty) {
Ok(ccu) => ccu,
Err(e) => {
let e = Ty::new_error(tcx.tcx, e);
return (e, e);
}
};
let source_fields = &source_adt_def.non_enum_variant().fields;
let target_fields = &target_adt_def.non_enum_variant().fields;
assert!(
coerce_index.index() < source_fields.len()
&& source_fields.len() == target_fields.len()
);
find_vtable_types_for_unsizing(
tcx,
source_fields[coerce_index].ty(*tcx, source_args),
target_fields[coerce_index].ty(*tcx, target_args),
)
}
_ => bug!(
"find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
source_ty,
target_ty
),
}
}
#[instrument(skip(tcx), level = "debug", ret)]
fn create_fn_mono_item<'tcx>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
source: Span,
) -> Spanned<MonoItem<'tcx>> {
let def_id = instance.def_id();
if tcx.sess.opts.unstable_opts.profile_closures
&& def_id.is_local()
&& tcx.is_closure_like(def_id)
{
crate::util::dump_closure_profile(tcx, instance);
}
respan(source, MonoItem::Fn(instance))
}
/// Creates a `MonoItem` for each method that is referenced by the vtable for
/// the given trait/impl pair.
fn create_mono_items_for_vtable_methods<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ty: Ty<'tcx>,
impl_ty: Ty<'tcx>,
source: Span,
output: &mut MonoItems<'tcx>,
) {
assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
let ty::Dynamic(trait_ty, ..) = trait_ty.kind() else {
bug!("create_mono_items_for_vtable_methods: {trait_ty:?} not a trait type");
};
if let Some(principal) = trait_ty.principal() {
let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
assert!(!poly_trait_ref.has_escaping_bound_vars());
// Walk all methods of the trait, including those of its supertraits
let entries = tcx.vtable_entries(poly_trait_ref);
debug!(?entries);
let methods = entries
.iter()
.filter_map(|entry| match entry {
VtblEntry::MetadataDropInPlace
| VtblEntry::MetadataSize
| VtblEntry::MetadataAlign
| VtblEntry::Vacant => None,
VtblEntry::TraitVPtr(_) => {
// all super trait items already covered, so skip them.
None
}
VtblEntry::Method(instance) => {
Some(*instance).filter(|instance| tcx.should_codegen_locally(*instance))
}
})
.map(|item| create_fn_mono_item(tcx, item, source));
output.extend(methods);
}
// Also add the destructor.
visit_drop_use(tcx, impl_ty, false, source, output);
}
/// Scans the CTFE alloc in order to find function pointers and statics that must be monomorphized.
fn collect_alloc<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) {
match tcx.global_alloc(alloc_id) {
GlobalAlloc::Static(def_id) => {
assert!(!tcx.is_thread_local_static(def_id));
let instance = Instance::mono(tcx, def_id);
if tcx.should_codegen_locally(instance) {
trace!("collecting static {:?}", def_id);
output.push(dummy_spanned(MonoItem::Static(def_id)));
}
}
GlobalAlloc::Memory(alloc) => {
trace!("collecting {:?} with {:#?}", alloc_id, alloc);
let ptrs = alloc.inner().provenance().ptrs();
// avoid `ensure_sufficient_stack` in the common case of "no pointers"
if !ptrs.is_empty() {
rustc_data_structures::stack::ensure_sufficient_stack(move || {
for &prov in ptrs.values() {
collect_alloc(tcx, prov.alloc_id(), output);
}
});
}
}
GlobalAlloc::Function { instance, .. } => {
if tcx.should_codegen_locally(instance) {
trace!("collecting {:?} with {:#?}", alloc_id, instance);
output.push(create_fn_mono_item(tcx, instance, DUMMY_SP));
}
}
GlobalAlloc::VTable(ty, dyn_ty) => {
let alloc_id = tcx.vtable_allocation((ty, dyn_ty.principal()));
collect_alloc(tcx, alloc_id, output)
}
}
}
/// Scans the MIR in order to find function calls, closures, and drop-glue.
///
/// Anything that's found is added to `output`. Furthermore the "mentioned items" of the MIR are returned.
#[instrument(skip(tcx), level = "debug")]
fn collect_items_of_instance<'tcx>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
mode: CollectionMode,
) -> (MonoItems<'tcx>, MonoItems<'tcx>) {
// This item is getting monomorphized, do mono-time checks.
tcx.ensure().check_mono_item(instance);
let body = tcx.instance_mir(instance.def);
// Naively, in "used" collection mode, all functions get added to *both* `used_items` and
// `mentioned_items`. Mentioned items processing will then notice that they have already been
// visited, but at that point each mentioned item has been monomorphized, added to the
// `mentioned_items` worklist, and checked in the global set of visited items. To remove that
// overhead, we have a special optimization that avoids adding items to `mentioned_items` when
// they are already added in `used_items`. We could just scan `used_items`, but that's a linear
// scan and not very efficient. Furthermore we can only do that *after* monomorphizing the
// mentioned item. So instead we collect all pre-monomorphized `MentionedItem` that were already
// added to `used_items` in a hash set, which can efficiently query in the
// `body.mentioned_items` loop below without even having to monomorphize the item.
let mut used_items = MonoItems::new();
let mut mentioned_items = MonoItems::new();
let mut used_mentioned_items = Default::default();
let mut collector = MirUsedCollector {
tcx,
body,
used_items: &mut used_items,
used_mentioned_items: &mut used_mentioned_items,
instance,
};
if mode == CollectionMode::UsedItems {
for (bb, data) in traversal::mono_reachable(body, tcx, instance) {
collector.visit_basic_block_data(bb, data)
}
}
// Always visit all `required_consts`, so that we evaluate them and abort compilation if any of
// them errors.
for const_op in body.required_consts() {
if let Some(val) = collector.eval_constant(const_op) {
collect_const_value(tcx, val, &mut mentioned_items);
}
}
// Always gather mentioned items. We try to avoid processing items that we have already added to
// `used_items` above.
for item in body.mentioned_items() {
if !collector.used_mentioned_items.contains(&item.node) {
let item_mono = collector.monomorphize(item.node);
visit_mentioned_item(tcx, &item_mono, item.span, &mut mentioned_items);
}
}
(used_items, mentioned_items)
}
fn items_of_instance<'tcx>(
tcx: TyCtxt<'tcx>,
(instance, mode): (Instance<'tcx>, CollectionMode),
) -> (&'tcx [Spanned<MonoItem<'tcx>>], &'tcx [Spanned<MonoItem<'tcx>>]) {
let (used_items, mentioned_items) = collect_items_of_instance(tcx, instance, mode);
let used_items = tcx.arena.alloc_from_iter(used_items);
let mentioned_items = tcx.arena.alloc_from_iter(mentioned_items);
(used_items, mentioned_items)
}
/// `item` must be already monomorphized.
#[instrument(skip(tcx, span, output), level = "debug")]
fn visit_mentioned_item<'tcx>(
tcx: TyCtxt<'tcx>,
item: &MentionedItem<'tcx>,
span: Span,
output: &mut MonoItems<'tcx>,
) {
match *item {
MentionedItem::Fn(ty) => {
if let ty::FnDef(def_id, args) = *ty.kind() {
let instance = Instance::expect_resolve(
tcx,
ty::TypingEnv::fully_monomorphized(),
def_id,
args,
span,
);
// `visit_instance_use` was written for "used" item collection but works just as well
// for "mentioned" item collection.
// We can set `is_direct_call`; that just means we'll skip a bunch of shims that anyway
// can't have their own failing constants.
visit_instance_use(tcx, instance, /*is_direct_call*/ true, span, output);
}
}
MentionedItem::Drop(ty) => {
visit_drop_use(tcx, ty, /*is_direct_call*/ true, span, output);
}
MentionedItem::UnsizeCast { source_ty, target_ty } => {
let (source_ty, target_ty) =
find_vtable_types_for_unsizing(tcx.at(span), source_ty, target_ty);
// This could also be a different Unsize instruction, like
// from a fixed sized array to a slice. But we are only
// interested in things that produce a vtable.
if (target_ty.is_trait() && !source_ty.is_trait())
|| (target_ty.is_dyn_star() && !source_ty.is_dyn_star())
{
create_mono_items_for_vtable_methods(tcx, target_ty, source_ty, span, output);
}
}
MentionedItem::Closure(source_ty) => {
if let ty::Closure(def_id, args) = *source_ty.kind() {
let instance =
Instance::resolve_closure(tcx, def_id, args, ty::ClosureKind::FnOnce);
if tcx.should_codegen_locally(instance) {
output.push(create_fn_mono_item(tcx, instance, span));
}
} else {
bug!()
}
}
}
}
#[instrument(skip(tcx, output), level = "debug")]
fn collect_const_value<'tcx>(
tcx: TyCtxt<'tcx>,
value: mir::ConstValue<'tcx>,
output: &mut MonoItems<'tcx>,
) {
match value {
mir::ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => {
collect_alloc(tcx, ptr.provenance.alloc_id(), output)
}
mir::ConstValue::Indirect { alloc_id, .. } => collect_alloc(tcx, alloc_id, output),
mir::ConstValue::Slice { data, meta: _ } => {
for &prov in data.inner().provenance().ptrs().values() {
collect_alloc(tcx, prov.alloc_id(), output);
}
}
_ => {}
}
}
//=-----------------------------------------------------------------------------
// Root Collection
//=-----------------------------------------------------------------------------
// Find all non-generic items by walking the HIR. These items serve as roots to
// start monomorphizing from.
#[instrument(skip(tcx, mode), level = "debug")]
fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionStrategy) -> Vec<MonoItem<'_>> {
debug!("collecting roots");
let mut roots = MonoItems::new();
{
let entry_fn = tcx.entry_fn(());
debug!("collect_roots: entry_fn = {:?}", entry_fn);
let mut collector = RootCollector { tcx, strategy: mode, entry_fn, output: &mut roots };
let crate_items = tcx.hir_crate_items(());
for id in crate_items.free_items() {
collector.process_item(id);
}
for id in crate_items.impl_items() {
collector.process_impl_item(id);
}
collector.push_extra_entry_roots();
}
// We can only codegen items that are instantiable - items all of
// whose predicates hold. Luckily, items that aren't instantiable
// can't actually be used, so we can just skip codegenning them.
roots
.into_iter()
.filter_map(|Spanned { node: mono_item, .. }| {
mono_item.is_instantiable(tcx).then_some(mono_item)
})
.collect()
}
struct RootCollector<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
strategy: MonoItemCollectionStrategy,
output: &'a mut MonoItems<'tcx>,
entry_fn: Option<(DefId, EntryFnType)>,
}
impl<'v> RootCollector<'_, 'v> {
fn process_item(&mut self, id: hir::ItemId) {
match self.tcx.def_kind(id.owner_id) {
DefKind::Enum | DefKind::Struct | DefKind::Union => {
if self.strategy == MonoItemCollectionStrategy::Eager
&& self.tcx.generics_of(id.owner_id).is_empty()
{
debug!("RootCollector: ADT drop-glue for `{id:?}`",);
// This type is impossible to instantiate, so we should not try to
// generate a `drop_in_place` instance for it.
if self.tcx.instantiate_and_check_impossible_predicates((
id.owner_id.to_def_id(),
ty::List::empty(),
)) {
return;
}
let ty = self.tcx.type_of(id.owner_id.to_def_id()).no_bound_vars().unwrap();
visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
}
}
DefKind::GlobalAsm => {
debug!(
"RootCollector: ItemKind::GlobalAsm({})",
self.tcx.def_path_str(id.owner_id)
);
self.output.push(dummy_spanned(MonoItem::GlobalAsm(id)));
}
DefKind::Static { .. } => {
let def_id = id.owner_id.to_def_id();
debug!("RootCollector: ItemKind::Static({})", self.tcx.def_path_str(def_id));
self.output.push(dummy_spanned(MonoItem::Static(def_id)));
}
DefKind::Const => {
// const items only generate mono items if they are
// actually used somewhere. Just declaring them is insufficient.
// but even just declaring them must collect the items they refer to
if let Ok(val) = self.tcx.const_eval_poly(id.owner_id.to_def_id()) {
collect_const_value(self.tcx, val, self.output);
}
}
DefKind::Impl { .. } => {
if self.strategy == MonoItemCollectionStrategy::Eager {
create_mono_items_for_default_impls(self.tcx, id, self.output);
}
}
DefKind::Fn => {
self.push_if_root(id.owner_id.def_id);
}
_ => {}
}
}
fn process_impl_item(&mut self, id: hir::ImplItemId) {
if matches!(self.tcx.def_kind(id.owner_id), DefKind::AssocFn) {
self.push_if_root(id.owner_id.def_id);
}
}
fn is_root(&self, def_id: LocalDefId) -> bool {
!self.tcx.generics_of(def_id).requires_monomorphization(self.tcx)
&& match self.strategy {
MonoItemCollectionStrategy::Eager => true,
MonoItemCollectionStrategy::Lazy => {
self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id)
|| self.tcx.is_reachable_non_generic(def_id)
|| self
.tcx
.codegen_fn_attrs(def_id)
.flags
.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
}
}
}
/// If `def_id` represents a root, pushes it onto the list of
/// outputs. (Note that all roots must be monomorphic.)
#[instrument(skip(self), level = "debug")]
fn push_if_root(&mut self, def_id: LocalDefId) {
if self.is_root(def_id) {
debug!("found root");
let instance = Instance::mono(self.tcx, def_id.to_def_id());
self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
}
}
/// As a special case, when/if we encounter the
/// `main()` function, we also have to generate a
/// monomorphized copy of the start lang item based on
/// the return type of `main`. This is not needed when
/// the user writes their own `start` manually.
fn push_extra_entry_roots(&mut self) {
let Some((main_def_id, EntryFnType::Main { .. })) = self.entry_fn else {
return;
};
let Some(start_def_id) = self.tcx.lang_items().start_fn() else {
self.tcx.dcx().emit_fatal(errors::StartNotFound);
};
let main_ret_ty = self.tcx.fn_sig(main_def_id).no_bound_vars().unwrap().output();
// Given that `main()` has no arguments,
// then its return type cannot have
// late-bound regions, since late-bound
// regions must appear in the argument
// listing.
let main_ret_ty = self.tcx.normalize_erasing_regions(
ty::TypingEnv::fully_monomorphized(),
main_ret_ty.no_bound_vars().unwrap(),
);
let start_instance = Instance::expect_resolve(
self.tcx,
ty::TypingEnv::fully_monomorphized(),
start_def_id,
self.tcx.mk_args(&[main_ret_ty.into()]),
DUMMY_SP,
);
self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
}
}
#[instrument(level = "debug", skip(tcx, output))]
fn create_mono_items_for_default_impls<'tcx>(
tcx: TyCtxt<'tcx>,
item: hir::ItemId,
output: &mut MonoItems<'tcx>,
) {
let Some(impl_) = tcx.impl_trait_header(item.owner_id) else {
return;
};
if matches!(impl_.polarity, ty::ImplPolarity::Negative) {
return;
}
if tcx.generics_of(item.owner_id).own_requires_monomorphization() {
return;
}
// Lifetimes never affect trait selection, so we are allowed to eagerly
// instantiate an instance of an impl method if the impl (and method,
// which we check below) is only parameterized over lifetime. In that case,
// we use the ReErased, which has no lifetime information associated with
// it, to validate whether or not the impl is legal to instantiate at all.
let only_region_params = |param: &ty::GenericParamDef, _: &_| match param.kind {
GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
unreachable!(
"`own_requires_monomorphization` check means that \
we should have no type/const params"
)
}
};
let impl_args = GenericArgs::for_item(tcx, item.owner_id.to_def_id(), only_region_params);
let trait_ref = impl_.trait_ref.instantiate(tcx, impl_args);
// Unlike 'lazy' monomorphization that begins by collecting items transitively
// called by `main` or other global items, when eagerly monomorphizing impl
// items, we never actually check that the predicates of this impl are satisfied
// in a empty param env (i.e. with no assumptions).
//
// Even though this impl has no type or const generic parameters, because we don't
// consider higher-ranked predicates such as `for<'a> &'a mut [u8]: Copy` to
// be trivially false. We must now check that the impl has no impossible-to-satisfy
// predicates.
if tcx.instantiate_and_check_impossible_predicates((item.owner_id.to_def_id(), impl_args)) {
return;
}
let typing_env = ty::TypingEnv::fully_monomorphized();
let trait_ref = tcx.normalize_erasing_regions(typing_env, trait_ref);
let overridden_methods = tcx.impl_item_implementor_ids(item.owner_id);
for method in tcx.provided_trait_methods(trait_ref.def_id) {
if overridden_methods.contains_key(&method.def_id) {
continue;
}
if tcx.generics_of(method.def_id).own_requires_monomorphization() {
continue;
}
// As mentioned above, the method is legal to eagerly instantiate if it
// only has lifetime generic parameters. This is validated by calling
// `own_requires_monomorphization` on both the impl and method.
let args = trait_ref.args.extend_to(tcx, method.def_id, only_region_params);
let instance = ty::Instance::expect_resolve(tcx, typing_env, method.def_id, args, DUMMY_SP);
let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
if mono_item.node.is_instantiable(tcx) && tcx.should_codegen_locally(instance) {
output.push(mono_item);
}
}
}
//=-----------------------------------------------------------------------------
// Top-level entry point, tying it all together
//=-----------------------------------------------------------------------------
#[instrument(skip(tcx, strategy), level = "debug")]
pub(crate) fn collect_crate_mono_items<'tcx>(
tcx: TyCtxt<'tcx>,
strategy: MonoItemCollectionStrategy,
) -> (Vec<MonoItem<'tcx>>, UsageMap<'tcx>) {
let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
let roots = tcx
.sess
.time("monomorphization_collector_root_collections", || collect_roots(tcx, strategy));
debug!("building mono item graph, beginning at roots");
let mut state = SharedState {
visited: MTLock::new(UnordSet::default()),
mentioned: MTLock::new(UnordSet::default()),
usage_map: MTLock::new(UsageMap::new()),
};
let recursion_limit = tcx.recursion_limit();
{
let state: LRef<'_, _> = &mut state;
tcx.sess.time("monomorphization_collector_graph_walk", || {
par_for_each_in(roots, |root| {
let mut recursion_depths = DefIdMap::default();
collect_items_rec(
tcx,
dummy_spanned(root),
state,
&mut recursion_depths,
recursion_limit,
CollectionMode::UsedItems,
);
});
});
}
// The set of MonoItems was created in an inherently indeterministic order because
// of parallelism. We sort it here to ensure that the output is deterministic.
let mono_items = tcx.with_stable_hashing_context(move |ref hcx| {
state.visited.into_inner().into_sorted(hcx, true)
});
(mono_items, state.usage_map.into_inner())
}
pub(crate) fn provide(providers: &mut Providers) {
providers.hooks.should_codegen_locally = should_codegen_locally;
providers.items_of_instance = items_of_instance;
}