rustc_metadata/rmeta/
decoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
// Decoding metadata from a single crate's metadata

use std::iter::TrustedLen;
use std::path::Path;
use std::{io, iter, mem};

pub(super) use cstore_impl::provide;
use proc_macro::bridge::client::ProcMacro;
use rustc_ast as ast;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::owned_slice::OwnedSlice;
use rustc_data_structures::sync::{Lock, Lrc, OnceLock};
use rustc_data_structures::unhash::UnhashMap;
use rustc_expand::base::{SyntaxExtension, SyntaxExtensionKind};
use rustc_expand::proc_macro::{AttrProcMacro, BangProcMacro, DeriveProcMacro};
use rustc_hir::def::Res;
use rustc_hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_hir::definitions::{DefPath, DefPathData};
use rustc_hir::diagnostic_items::DiagnosticItems;
use rustc_index::Idx;
use rustc_middle::middle::lib_features::LibFeatures;
use rustc_middle::mir::interpret::{AllocDecodingSession, AllocDecodingState};
use rustc_middle::ty::Visibility;
use rustc_middle::ty::codec::TyDecoder;
use rustc_middle::{bug, implement_ty_decoder};
use rustc_serialize::opaque::MemDecoder;
use rustc_serialize::{Decodable, Decoder};
use rustc_session::Session;
use rustc_session::cstore::{CrateSource, ExternCrate};
use rustc_span::hygiene::HygieneDecodeContext;
use rustc_span::symbol::kw;
use rustc_span::{BytePos, DUMMY_SP, Pos, SpanData, SpanDecoder, SyntaxContext};
use tracing::debug;

use crate::creader::CStore;
use crate::rmeta::table::IsDefault;
use crate::rmeta::*;

mod cstore_impl;

/// A reference to the raw binary version of crate metadata.
/// This struct applies [`MemDecoder`]'s validation when constructed
/// so that later constructions are guaranteed to succeed.
pub(crate) struct MetadataBlob(OwnedSlice);

impl std::ops::Deref for MetadataBlob {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        &self.0[..]
    }
}

impl MetadataBlob {
    /// Runs the [`MemDecoder`] validation and if it passes, constructs a new [`MetadataBlob`].
    pub(crate) fn new(slice: OwnedSlice) -> Result<Self, ()> {
        if MemDecoder::new(&slice, 0).is_ok() { Ok(Self(slice)) } else { Err(()) }
    }

    /// Since this has passed the validation of [`MetadataBlob::new`], this returns bytes which are
    /// known to pass the [`MemDecoder`] validation.
    pub(crate) fn bytes(&self) -> &OwnedSlice {
        &self.0
    }
}

/// A map from external crate numbers (as decoded from some crate file) to
/// local crate numbers (as generated during this session). Each external
/// crate may refer to types in other external crates, and each has their
/// own crate numbers.
pub(crate) type CrateNumMap = IndexVec<CrateNum, CrateNum>;

pub(crate) struct CrateMetadata {
    /// The primary crate data - binary metadata blob.
    blob: MetadataBlob,

    // --- Some data pre-decoded from the metadata blob, usually for performance ---
    /// Data about the top-level items in a crate, as well as various crate-level metadata.
    root: CrateRoot,
    /// Trait impl data.
    /// FIXME: Used only from queries and can use query cache,
    /// so pre-decoding can probably be avoided.
    trait_impls: FxIndexMap<(u32, DefIndex), LazyArray<(DefIndex, Option<SimplifiedType>)>>,
    /// Inherent impls which do not follow the normal coherence rules.
    ///
    /// These can be introduced using either `#![rustc_coherence_is_core]`
    /// or `#[rustc_allow_incoherent_impl]`.
    incoherent_impls: FxIndexMap<SimplifiedType, LazyArray<DefIndex>>,
    /// Proc macro descriptions for this crate, if it's a proc macro crate.
    raw_proc_macros: Option<&'static [ProcMacro]>,
    /// Source maps for code from the crate.
    source_map_import_info: Lock<Vec<Option<ImportedSourceFile>>>,
    /// For every definition in this crate, maps its `DefPathHash` to its `DefIndex`.
    def_path_hash_map: DefPathHashMapRef<'static>,
    /// Likewise for ExpnHash.
    expn_hash_map: OnceLock<UnhashMap<ExpnHash, ExpnIndex>>,
    /// Used for decoding interpret::AllocIds in a cached & thread-safe manner.
    alloc_decoding_state: AllocDecodingState,
    /// Caches decoded `DefKey`s.
    def_key_cache: Lock<FxHashMap<DefIndex, DefKey>>,

    // --- Other significant crate properties ---
    /// ID of this crate, from the current compilation session's point of view.
    cnum: CrateNum,
    /// Maps crate IDs as they are were seen from this crate's compilation sessions into
    /// IDs as they are seen from the current compilation session.
    cnum_map: CrateNumMap,
    /// Same ID set as `cnum_map` plus maybe some injected crates like panic runtime.
    dependencies: Vec<CrateNum>,
    /// How to link (or not link) this crate to the currently compiled crate.
    dep_kind: CrateDepKind,
    /// Filesystem location of this crate.
    source: Lrc<CrateSource>,
    /// Whether or not this crate should be consider a private dependency.
    /// Used by the 'exported_private_dependencies' lint, and for determining
    /// whether to emit suggestions that reference this crate.
    private_dep: bool,
    /// The hash for the host proc macro. Used to support `-Z dual-proc-macro`.
    host_hash: Option<Svh>,
    /// The crate was used non-speculatively.
    used: bool,

    /// Additional data used for decoding `HygieneData` (e.g. `SyntaxContext`
    /// and `ExpnId`).
    /// Note that we store a `HygieneDecodeContext` for each `CrateMetadata`. This is
    /// because `SyntaxContext` ids are not globally unique, so we need
    /// to track which ids we've decoded on a per-crate basis.
    hygiene_context: HygieneDecodeContext,

    // --- Data used only for improving diagnostics ---
    /// Information about the `extern crate` item or path that caused this crate to be loaded.
    /// If this is `None`, then the crate was injected (e.g., by the allocator).
    extern_crate: Option<ExternCrate>,
}

/// Holds information about a rustc_span::SourceFile imported from another crate.
/// See `imported_source_file()` for more information.
#[derive(Clone)]
struct ImportedSourceFile {
    /// This SourceFile's byte-offset within the source_map of its original crate
    original_start_pos: rustc_span::BytePos,
    /// The end of this SourceFile within the source_map of its original crate
    original_end_pos: rustc_span::BytePos,
    /// The imported SourceFile's representation within the local source_map
    translated_source_file: Lrc<rustc_span::SourceFile>,
}

pub(super) struct DecodeContext<'a, 'tcx> {
    opaque: MemDecoder<'a>,
    cdata: Option<CrateMetadataRef<'a>>,
    blob: &'a MetadataBlob,
    sess: Option<&'tcx Session>,
    tcx: Option<TyCtxt<'tcx>>,

    lazy_state: LazyState,

    // Used for decoding interpret::AllocIds in a cached & thread-safe manner.
    alloc_decoding_session: Option<AllocDecodingSession<'a>>,
}

/// Abstract over the various ways one can create metadata decoders.
pub(super) trait Metadata<'a, 'tcx>: Copy {
    fn blob(self) -> &'a MetadataBlob;

    fn cdata(self) -> Option<CrateMetadataRef<'a>> {
        None
    }
    fn sess(self) -> Option<&'tcx Session> {
        None
    }
    fn tcx(self) -> Option<TyCtxt<'tcx>> {
        None
    }

    fn decoder(self, pos: usize) -> DecodeContext<'a, 'tcx> {
        let tcx = self.tcx();
        DecodeContext {
            // FIXME: This unwrap should never panic because we check that it won't when creating
            // `MetadataBlob`. Ideally we'd just have a `MetadataDecoder` and hand out subslices of
            // it as we do elsewhere in the compiler using `MetadataDecoder::split_at`. But we own
            // the data for the decoder so holding onto the `MemDecoder` too would make us a
            // self-referential struct which is downright goofy because `MetadataBlob` is already
            // self-referential. Probably `MemDecoder` should contain an `OwnedSlice`, but that
            // demands a significant refactoring due to our crate graph.
            opaque: MemDecoder::new(self.blob(), pos).unwrap(),
            cdata: self.cdata(),
            blob: self.blob(),
            sess: self.sess().or(tcx.map(|tcx| tcx.sess)),
            tcx,
            lazy_state: LazyState::NoNode,
            alloc_decoding_session: self
                .cdata()
                .map(|cdata| cdata.cdata.alloc_decoding_state.new_decoding_session()),
        }
    }
}

impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a MetadataBlob {
    #[inline]
    fn blob(self) -> &'a MetadataBlob {
        self
    }
}

impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a MetadataBlob, &'tcx Session) {
    #[inline]
    fn blob(self) -> &'a MetadataBlob {
        self.0
    }

    #[inline]
    fn sess(self) -> Option<&'tcx Session> {
        let (_, sess) = self;
        Some(sess)
    }
}

impl<'a, 'tcx> Metadata<'a, 'tcx> for CrateMetadataRef<'a> {
    #[inline]
    fn blob(self) -> &'a MetadataBlob {
        &self.cdata.blob
    }
    #[inline]
    fn cdata(self) -> Option<CrateMetadataRef<'a>> {
        Some(self)
    }
}

impl<'a, 'tcx> Metadata<'a, 'tcx> for (CrateMetadataRef<'a>, &'tcx Session) {
    #[inline]
    fn blob(self) -> &'a MetadataBlob {
        &self.0.cdata.blob
    }
    #[inline]
    fn cdata(self) -> Option<CrateMetadataRef<'a>> {
        Some(self.0)
    }
    #[inline]
    fn sess(self) -> Option<&'tcx Session> {
        Some(self.1)
    }
}

impl<'a, 'tcx> Metadata<'a, 'tcx> for (CrateMetadataRef<'a>, TyCtxt<'tcx>) {
    #[inline]
    fn blob(self) -> &'a MetadataBlob {
        &self.0.cdata.blob
    }
    #[inline]
    fn cdata(self) -> Option<CrateMetadataRef<'a>> {
        Some(self.0)
    }
    #[inline]
    fn tcx(self) -> Option<TyCtxt<'tcx>> {
        Some(self.1)
    }
}

impl<T: ParameterizedOverTcx> LazyValue<T> {
    #[inline]
    fn decode<'a, 'tcx, M: Metadata<'a, 'tcx>>(self, metadata: M) -> T::Value<'tcx>
    where
        T::Value<'tcx>: Decodable<DecodeContext<'a, 'tcx>>,
    {
        let mut dcx = metadata.decoder(self.position.get());
        dcx.lazy_state = LazyState::NodeStart(self.position);
        T::Value::decode(&mut dcx)
    }
}

struct DecodeIterator<'a, 'tcx, T> {
    elem_counter: std::ops::Range<usize>,
    dcx: DecodeContext<'a, 'tcx>,
    _phantom: PhantomData<fn() -> T>,
}

impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> Iterator for DecodeIterator<'a, 'tcx, T> {
    type Item = T;

    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        self.elem_counter.next().map(|_| T::decode(&mut self.dcx))
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.elem_counter.size_hint()
    }
}

impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> ExactSizeIterator
    for DecodeIterator<'a, 'tcx, T>
{
    fn len(&self) -> usize {
        self.elem_counter.len()
    }
}

unsafe impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> TrustedLen
    for DecodeIterator<'a, 'tcx, T>
{
}

impl<T: ParameterizedOverTcx> LazyArray<T> {
    #[inline]
    fn decode<'a, 'tcx, M: Metadata<'a, 'tcx>>(
        self,
        metadata: M,
    ) -> DecodeIterator<'a, 'tcx, T::Value<'tcx>>
    where
        T::Value<'tcx>: Decodable<DecodeContext<'a, 'tcx>>,
    {
        let mut dcx = metadata.decoder(self.position.get());
        dcx.lazy_state = LazyState::NodeStart(self.position);
        DecodeIterator { elem_counter: (0..self.num_elems), dcx, _phantom: PhantomData }
    }
}

impl<'a, 'tcx> DecodeContext<'a, 'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        let Some(tcx) = self.tcx else {
            bug!(
                "No TyCtxt found for decoding. \
                You need to explicitly pass `(crate_metadata_ref, tcx)` to `decode` instead of just `crate_metadata_ref`."
            );
        };
        tcx
    }

    #[inline]
    pub(crate) fn blob(&self) -> &'a MetadataBlob {
        self.blob
    }

    #[inline]
    fn cdata(&self) -> CrateMetadataRef<'a> {
        debug_assert!(self.cdata.is_some(), "missing CrateMetadata in DecodeContext");
        self.cdata.unwrap()
    }

    #[inline]
    fn map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum {
        self.cdata().map_encoded_cnum_to_current(cnum)
    }

    #[inline]
    fn read_lazy_offset_then<T>(&mut self, f: impl Fn(NonZero<usize>) -> T) -> T {
        let distance = self.read_usize();
        let position = match self.lazy_state {
            LazyState::NoNode => bug!("read_lazy_with_meta: outside of a metadata node"),
            LazyState::NodeStart(start) => {
                let start = start.get();
                assert!(distance <= start);
                start - distance
            }
            LazyState::Previous(last_pos) => last_pos.get() + distance,
        };
        let position = NonZero::new(position).unwrap();
        self.lazy_state = LazyState::Previous(position);
        f(position)
    }

    fn read_lazy<T>(&mut self) -> LazyValue<T> {
        self.read_lazy_offset_then(|pos| LazyValue::from_position(pos))
    }

    fn read_lazy_array<T>(&mut self, len: usize) -> LazyArray<T> {
        self.read_lazy_offset_then(|pos| LazyArray::from_position_and_num_elems(pos, len))
    }

    fn read_lazy_table<I, T>(&mut self, width: usize, len: usize) -> LazyTable<I, T> {
        self.read_lazy_offset_then(|pos| LazyTable::from_position_and_encoded_size(pos, width, len))
    }

    #[inline]
    fn read_raw_bytes(&mut self, len: usize) -> &[u8] {
        self.opaque.read_raw_bytes(len)
    }
}

impl<'a, 'tcx> TyDecoder for DecodeContext<'a, 'tcx> {
    const CLEAR_CROSS_CRATE: bool = true;

    type I = TyCtxt<'tcx>;

    #[inline]
    fn interner(&self) -> Self::I {
        self.tcx()
    }

    fn cached_ty_for_shorthand<F>(&mut self, shorthand: usize, or_insert_with: F) -> Ty<'tcx>
    where
        F: FnOnce(&mut Self) -> Ty<'tcx>,
    {
        let tcx = self.tcx();

        let key = ty::CReaderCacheKey { cnum: Some(self.cdata().cnum), pos: shorthand };

        if let Some(&ty) = tcx.ty_rcache.borrow().get(&key) {
            return ty;
        }

        let ty = or_insert_with(self);
        tcx.ty_rcache.borrow_mut().insert(key, ty);
        ty
    }

    fn with_position<F, R>(&mut self, pos: usize, f: F) -> R
    where
        F: FnOnce(&mut Self) -> R,
    {
        let new_opaque = self.opaque.split_at(pos);
        let old_opaque = mem::replace(&mut self.opaque, new_opaque);
        let old_state = mem::replace(&mut self.lazy_state, LazyState::NoNode);
        let r = f(self);
        self.opaque = old_opaque;
        self.lazy_state = old_state;
        r
    }

    fn decode_alloc_id(&mut self) -> rustc_middle::mir::interpret::AllocId {
        if let Some(alloc_decoding_session) = self.alloc_decoding_session {
            alloc_decoding_session.decode_alloc_id(self)
        } else {
            bug!("Attempting to decode interpret::AllocId without CrateMetadata")
        }
    }
}

impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for ExpnIndex {
    #[inline]
    fn decode(d: &mut DecodeContext<'a, 'tcx>) -> ExpnIndex {
        ExpnIndex::from_u32(d.read_u32())
    }
}

impl<'a, 'tcx> SpanDecoder for DecodeContext<'a, 'tcx> {
    fn decode_attr_id(&mut self) -> rustc_span::AttrId {
        let sess = self.sess.expect("can't decode AttrId without Session");
        sess.psess.attr_id_generator.mk_attr_id()
    }

    fn decode_crate_num(&mut self) -> CrateNum {
        let cnum = CrateNum::from_u32(self.read_u32());
        self.map_encoded_cnum_to_current(cnum)
    }

    fn decode_def_index(&mut self) -> DefIndex {
        DefIndex::from_u32(self.read_u32())
    }

    fn decode_def_id(&mut self) -> DefId {
        DefId { krate: Decodable::decode(self), index: Decodable::decode(self) }
    }

    fn decode_syntax_context(&mut self) -> SyntaxContext {
        let cdata = self.cdata();

        let Some(sess) = self.sess else {
            bug!(
                "Cannot decode SyntaxContext without Session.\
                You need to explicitly pass `(crate_metadata_ref, tcx)` to `decode` instead of just `crate_metadata_ref`."
            );
        };

        let cname = cdata.root.name();
        rustc_span::hygiene::decode_syntax_context(self, &cdata.hygiene_context, |_, id| {
            debug!("SpecializedDecoder<SyntaxContext>: decoding {}", id);
            cdata
                .root
                .syntax_contexts
                .get(cdata, id)
                .unwrap_or_else(|| panic!("Missing SyntaxContext {id:?} for crate {cname:?}"))
                .decode((cdata, sess))
        })
    }

    fn decode_expn_id(&mut self) -> ExpnId {
        let local_cdata = self.cdata();

        let Some(sess) = self.sess else {
            bug!(
                "Cannot decode ExpnId without Session. \
                You need to explicitly pass `(crate_metadata_ref, tcx)` to `decode` instead of just `crate_metadata_ref`."
            );
        };

        let cnum = CrateNum::decode(self);
        let index = u32::decode(self);

        let expn_id = rustc_span::hygiene::decode_expn_id(cnum, index, |expn_id| {
            let ExpnId { krate: cnum, local_id: index } = expn_id;
            // Lookup local `ExpnData`s in our own crate data. Foreign `ExpnData`s
            // are stored in the owning crate, to avoid duplication.
            debug_assert_ne!(cnum, LOCAL_CRATE);
            let crate_data = if cnum == local_cdata.cnum {
                local_cdata
            } else {
                local_cdata.cstore.get_crate_data(cnum)
            };
            let expn_data = crate_data
                .root
                .expn_data
                .get(crate_data, index)
                .unwrap()
                .decode((crate_data, sess));
            let expn_hash = crate_data
                .root
                .expn_hashes
                .get(crate_data, index)
                .unwrap()
                .decode((crate_data, sess));
            (expn_data, expn_hash)
        });
        expn_id
    }

    fn decode_span(&mut self) -> Span {
        let start = self.position();
        let tag = SpanTag(self.peek_byte());
        let data = if tag.kind() == SpanKind::Indirect {
            // Skip past the tag we just peek'd.
            self.read_u8();
            // indirect tag lengths are safe to access, since they're (0, 8)
            let bytes_needed = tag.length().unwrap().0 as usize;
            let mut total = [0u8; usize::BITS as usize / 8];
            total[..bytes_needed].copy_from_slice(self.read_raw_bytes(bytes_needed));
            let offset_or_position = usize::from_le_bytes(total);
            let position = if tag.is_relative_offset() {
                start - offset_or_position
            } else {
                offset_or_position
            };
            self.with_position(position, SpanData::decode)
        } else {
            SpanData::decode(self)
        };
        data.span()
    }

    fn decode_symbol(&mut self) -> Symbol {
        let tag = self.read_u8();

        match tag {
            SYMBOL_STR => {
                let s = self.read_str();
                Symbol::intern(s)
            }
            SYMBOL_OFFSET => {
                // read str offset
                let pos = self.read_usize();

                // move to str offset and read
                self.opaque.with_position(pos, |d| {
                    let s = d.read_str();
                    Symbol::intern(s)
                })
            }
            SYMBOL_PREINTERNED => {
                let symbol_index = self.read_u32();
                Symbol::new_from_decoded(symbol_index)
            }
            _ => unreachable!(),
        }
    }
}

impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for SpanData {
    fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> SpanData {
        let tag = SpanTag::decode(decoder);
        let ctxt = tag.context().unwrap_or_else(|| SyntaxContext::decode(decoder));

        if tag.kind() == SpanKind::Partial {
            return DUMMY_SP.with_ctxt(ctxt).data();
        }

        debug_assert!(tag.kind() == SpanKind::Local || tag.kind() == SpanKind::Foreign);

        let lo = BytePos::decode(decoder);
        let len = tag.length().unwrap_or_else(|| BytePos::decode(decoder));
        let hi = lo + len;

        let Some(sess) = decoder.sess else {
            bug!(
                "Cannot decode Span without Session. \
                You need to explicitly pass `(crate_metadata_ref, tcx)` to `decode` instead of just `crate_metadata_ref`."
            )
        };

        // Index of the file in the corresponding crate's list of encoded files.
        let metadata_index = u32::decode(decoder);

        // There are two possibilities here:
        // 1. This is a 'local span', which is located inside a `SourceFile`
        // that came from this crate. In this case, we use the source map data
        // encoded in this crate. This branch should be taken nearly all of the time.
        // 2. This is a 'foreign span', which is located inside a `SourceFile`
        // that came from a *different* crate (some crate upstream of the one
        // whose metadata we're looking at). For example, consider this dependency graph:
        //
        // A -> B -> C
        //
        // Suppose that we're currently compiling crate A, and start deserializing
        // metadata from crate B. When we deserialize a Span from crate B's metadata,
        // there are two possibilities:
        //
        // 1. The span references a file from crate B. This makes it a 'local' span,
        // which means that we can use crate B's serialized source map information.
        // 2. The span references a file from crate C. This makes it a 'foreign' span,
        // which means we need to use Crate *C* (not crate B) to determine the source
        // map information. We only record source map information for a file in the
        // crate that 'owns' it, so deserializing a Span may require us to look at
        // a transitive dependency.
        //
        // When we encode a foreign span, we adjust its 'lo' and 'high' values
        // to be based on the *foreign* crate (e.g. crate C), not the crate
        // we are writing metadata for (e.g. crate B). This allows us to
        // treat the 'local' and 'foreign' cases almost identically during deserialization:
        // we can call `imported_source_file` for the proper crate, and binary search
        // through the returned slice using our span.
        let source_file = if tag.kind() == SpanKind::Local {
            decoder.cdata().imported_source_file(metadata_index, sess)
        } else {
            // When we encode a proc-macro crate, all `Span`s should be encoded
            // with `TAG_VALID_SPAN_LOCAL`
            if decoder.cdata().root.is_proc_macro_crate() {
                // Decode `CrateNum` as u32 - using `CrateNum::decode` will ICE
                // since we don't have `cnum_map` populated.
                let cnum = u32::decode(decoder);
                panic!(
                    "Decoding of crate {:?} tried to access proc-macro dep {:?}",
                    decoder.cdata().root.header.name,
                    cnum
                );
            }
            // tag is TAG_VALID_SPAN_FOREIGN, checked by `debug_assert` above
            let cnum = CrateNum::decode(decoder);
            debug!(
                "SpecializedDecoder<Span>::specialized_decode: loading source files from cnum {:?}",
                cnum
            );

            let foreign_data = decoder.cdata().cstore.get_crate_data(cnum);
            foreign_data.imported_source_file(metadata_index, sess)
        };

        // Make sure our span is well-formed.
        debug_assert!(
            lo + source_file.original_start_pos <= source_file.original_end_pos,
            "Malformed encoded span: lo={:?} source_file.original_start_pos={:?} source_file.original_end_pos={:?}",
            lo,
            source_file.original_start_pos,
            source_file.original_end_pos
        );

        // Make sure we correctly filtered out invalid spans during encoding.
        debug_assert!(
            hi + source_file.original_start_pos <= source_file.original_end_pos,
            "Malformed encoded span: hi={:?} source_file.original_start_pos={:?} source_file.original_end_pos={:?}",
            hi,
            source_file.original_start_pos,
            source_file.original_end_pos
        );

        let lo = lo + source_file.translated_source_file.start_pos;
        let hi = hi + source_file.translated_source_file.start_pos;

        // Do not try to decode parent for foreign spans (it wasn't encoded in the first place).
        SpanData { lo, hi, ctxt, parent: None }
    }
}

impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for &'tcx [(ty::Clause<'tcx>, Span)] {
    fn decode(d: &mut DecodeContext<'a, 'tcx>) -> Self {
        ty::codec::RefDecodable::decode(d)
    }
}

impl<'a, 'tcx, T> Decodable<DecodeContext<'a, 'tcx>> for LazyValue<T> {
    fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
        decoder.read_lazy()
    }
}

impl<'a, 'tcx, T> Decodable<DecodeContext<'a, 'tcx>> for LazyArray<T> {
    #[inline]
    fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
        let len = decoder.read_usize();
        if len == 0 { LazyArray::default() } else { decoder.read_lazy_array(len) }
    }
}

impl<'a, 'tcx, I: Idx, T> Decodable<DecodeContext<'a, 'tcx>> for LazyTable<I, T> {
    fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
        let width = decoder.read_usize();
        let len = decoder.read_usize();
        decoder.read_lazy_table(width, len)
    }
}

implement_ty_decoder!(DecodeContext<'a, 'tcx>);

impl MetadataBlob {
    pub(crate) fn check_compatibility(
        &self,
        cfg_version: &'static str,
    ) -> Result<(), Option<String>> {
        if !self.blob().starts_with(METADATA_HEADER) {
            if self.blob().starts_with(b"rust") {
                return Err(Some("<unknown rustc version>".to_owned()));
            }
            return Err(None);
        }

        let found_version =
            LazyValue::<String>::from_position(NonZero::new(METADATA_HEADER.len() + 8).unwrap())
                .decode(self);
        if rustc_version(cfg_version) != found_version {
            return Err(Some(found_version));
        }

        Ok(())
    }

    fn root_pos(&self) -> NonZero<usize> {
        let offset = METADATA_HEADER.len();
        let pos_bytes = self.blob()[offset..][..8].try_into().unwrap();
        let pos = u64::from_le_bytes(pos_bytes);
        NonZero::new(pos as usize).unwrap()
    }

    pub(crate) fn get_header(&self) -> CrateHeader {
        let pos = self.root_pos();
        LazyValue::<CrateHeader>::from_position(pos).decode(self)
    }

    pub(crate) fn get_root(&self) -> CrateRoot {
        let pos = self.root_pos();
        LazyValue::<CrateRoot>::from_position(pos).decode(self)
    }

    pub(crate) fn list_crate_metadata(
        &self,
        out: &mut dyn io::Write,
        ls_kinds: &[String],
    ) -> io::Result<()> {
        let root = self.get_root();

        let all_ls_kinds = vec![
            "root".to_owned(),
            "lang_items".to_owned(),
            "features".to_owned(),
            "items".to_owned(),
        ];
        let ls_kinds = if ls_kinds.contains(&"all".to_owned()) { &all_ls_kinds } else { ls_kinds };

        for kind in ls_kinds {
            match &**kind {
                "root" => {
                    writeln!(out, "Crate info:")?;
                    writeln!(out, "name {}{}", root.name(), root.extra_filename)?;
                    writeln!(
                        out,
                        "hash {} stable_crate_id {:?}",
                        root.hash(),
                        root.stable_crate_id
                    )?;
                    writeln!(out, "proc_macro {:?}", root.proc_macro_data.is_some())?;
                    writeln!(out, "triple {}", root.header.triple.tuple())?;
                    writeln!(out, "edition {}", root.edition)?;
                    writeln!(out, "symbol_mangling_version {:?}", root.symbol_mangling_version)?;
                    writeln!(
                        out,
                        "required_panic_strategy {:?} panic_in_drop_strategy {:?}",
                        root.required_panic_strategy, root.panic_in_drop_strategy
                    )?;
                    writeln!(
                        out,
                        "has_global_allocator {} has_alloc_error_handler {} has_panic_handler {} has_default_lib_allocator {}",
                        root.has_global_allocator,
                        root.has_alloc_error_handler,
                        root.has_panic_handler,
                        root.has_default_lib_allocator
                    )?;
                    writeln!(
                        out,
                        "compiler_builtins {} needs_allocator {} needs_panic_runtime {} no_builtins {} panic_runtime {} profiler_runtime {}",
                        root.compiler_builtins,
                        root.needs_allocator,
                        root.needs_panic_runtime,
                        root.no_builtins,
                        root.panic_runtime,
                        root.profiler_runtime
                    )?;

                    writeln!(out, "=External Dependencies=")?;
                    let dylib_dependency_formats =
                        root.dylib_dependency_formats.decode(self).collect::<Vec<_>>();
                    for (i, dep) in root.crate_deps.decode(self).enumerate() {
                        let CrateDep { name, extra_filename, hash, host_hash, kind, is_private } =
                            dep;
                        let number = i + 1;

                        writeln!(
                            out,
                            "{number} {name}{extra_filename} hash {hash} host_hash {host_hash:?} kind {kind:?} {privacy}{linkage}",
                            privacy = if is_private { "private" } else { "public" },
                            linkage = if dylib_dependency_formats.is_empty() {
                                String::new()
                            } else {
                                format!(" linkage {:?}", dylib_dependency_formats[i])
                            }
                        )?;
                    }
                    write!(out, "\n")?;
                }

                "lang_items" => {
                    writeln!(out, "=Lang items=")?;
                    for (id, lang_item) in root.lang_items.decode(self) {
                        writeln!(
                            out,
                            "{} = crate{}",
                            lang_item.name(),
                            DefPath::make(LOCAL_CRATE, id, |parent| root
                                .tables
                                .def_keys
                                .get(self, parent)
                                .unwrap()
                                .decode(self))
                            .to_string_no_crate_verbose()
                        )?;
                    }
                    for lang_item in root.lang_items_missing.decode(self) {
                        writeln!(out, "{} = <missing>", lang_item.name())?;
                    }
                    write!(out, "\n")?;
                }

                "features" => {
                    writeln!(out, "=Lib features=")?;
                    for (feature, since) in root.lib_features.decode(self) {
                        writeln!(
                            out,
                            "{}{}",
                            feature,
                            if let FeatureStability::AcceptedSince(since) = since {
                                format!(" since {since}")
                            } else {
                                String::new()
                            }
                        )?;
                    }
                    write!(out, "\n")?;
                }

                "items" => {
                    writeln!(out, "=Items=")?;

                    fn print_item(
                        blob: &MetadataBlob,
                        out: &mut dyn io::Write,
                        item: DefIndex,
                        indent: usize,
                    ) -> io::Result<()> {
                        let root = blob.get_root();

                        let def_kind = root.tables.def_kind.get(blob, item).unwrap();
                        let def_key = root.tables.def_keys.get(blob, item).unwrap().decode(blob);
                        let def_name = if item == CRATE_DEF_INDEX {
                            rustc_span::symbol::kw::Crate
                        } else {
                            def_key
                                .disambiguated_data
                                .data
                                .get_opt_name()
                                .unwrap_or_else(|| Symbol::intern("???"))
                        };
                        let visibility =
                            root.tables.visibility.get(blob, item).unwrap().decode(blob).map_id(
                                |index| {
                                    format!(
                                        "crate{}",
                                        DefPath::make(LOCAL_CRATE, index, |parent| root
                                            .tables
                                            .def_keys
                                            .get(blob, parent)
                                            .unwrap()
                                            .decode(blob))
                                        .to_string_no_crate_verbose()
                                    )
                                },
                            );
                        write!(
                            out,
                            "{nil: <indent$}{:?} {:?} {} {{",
                            visibility,
                            def_kind,
                            def_name,
                            nil = "",
                        )?;

                        if let Some(children) =
                            root.tables.module_children_non_reexports.get(blob, item)
                        {
                            write!(out, "\n")?;
                            for child in children.decode(blob) {
                                print_item(blob, out, child, indent + 4)?;
                            }
                            writeln!(out, "{nil: <indent$}}}", nil = "")?;
                        } else {
                            writeln!(out, "}}")?;
                        }

                        Ok(())
                    }

                    print_item(self, out, CRATE_DEF_INDEX, 0)?;

                    write!(out, "\n")?;
                }

                _ => {
                    writeln!(
                        out,
                        "unknown -Zls kind. allowed values are: all, root, lang_items, features, items"
                    )?;
                }
            }
        }

        Ok(())
    }
}

impl CrateRoot {
    pub(crate) fn is_proc_macro_crate(&self) -> bool {
        self.proc_macro_data.is_some()
    }

    pub(crate) fn name(&self) -> Symbol {
        self.header.name
    }

    pub(crate) fn hash(&self) -> Svh {
        self.header.hash
    }

    pub(crate) fn stable_crate_id(&self) -> StableCrateId {
        self.stable_crate_id
    }

    pub(crate) fn decode_crate_deps<'a>(
        &self,
        metadata: &'a MetadataBlob,
    ) -> impl ExactSizeIterator<Item = CrateDep> + Captures<'a> {
        self.crate_deps.decode(metadata)
    }
}

impl<'a> CrateMetadataRef<'a> {
    fn missing(self, descr: &str, id: DefIndex) -> ! {
        bug!("missing `{descr}` for {:?}", self.local_def_id(id))
    }

    fn raw_proc_macro(self, id: DefIndex) -> &'a ProcMacro {
        // DefIndex's in root.proc_macro_data have a one-to-one correspondence
        // with items in 'raw_proc_macros'.
        let pos = self
            .root
            .proc_macro_data
            .as_ref()
            .unwrap()
            .macros
            .decode(self)
            .position(|i| i == id)
            .unwrap();
        &self.raw_proc_macros.unwrap()[pos]
    }

    fn opt_item_name(self, item_index: DefIndex) -> Option<Symbol> {
        let def_key = self.def_key(item_index);
        def_key.disambiguated_data.data.get_opt_name().or_else(|| {
            if def_key.disambiguated_data.data == DefPathData::Ctor {
                let parent_index = def_key.parent.expect("no parent for a constructor");
                self.def_key(parent_index).disambiguated_data.data.get_opt_name()
            } else {
                None
            }
        })
    }

    fn item_name(self, item_index: DefIndex) -> Symbol {
        self.opt_item_name(item_index).expect("no encoded ident for item")
    }

    fn opt_item_ident(self, item_index: DefIndex, sess: &Session) -> Option<Ident> {
        let name = self.opt_item_name(item_index)?;
        let span = self
            .root
            .tables
            .def_ident_span
            .get(self, item_index)
            .unwrap_or_else(|| self.missing("def_ident_span", item_index))
            .decode((self, sess));
        Some(Ident::new(name, span))
    }

    fn item_ident(self, item_index: DefIndex, sess: &Session) -> Ident {
        self.opt_item_ident(item_index, sess).expect("no encoded ident for item")
    }

    #[inline]
    pub(super) fn map_encoded_cnum_to_current(self, cnum: CrateNum) -> CrateNum {
        if cnum == LOCAL_CRATE { self.cnum } else { self.cnum_map[cnum] }
    }

    fn def_kind(self, item_id: DefIndex) -> DefKind {
        self.root
            .tables
            .def_kind
            .get(self, item_id)
            .unwrap_or_else(|| self.missing("def_kind", item_id))
    }

    fn get_span(self, index: DefIndex, sess: &Session) -> Span {
        self.root
            .tables
            .def_span
            .get(self, index)
            .unwrap_or_else(|| self.missing("def_span", index))
            .decode((self, sess))
    }

    fn load_proc_macro<'tcx>(self, id: DefIndex, tcx: TyCtxt<'tcx>) -> SyntaxExtension {
        let (name, kind, helper_attrs) = match *self.raw_proc_macro(id) {
            ProcMacro::CustomDerive { trait_name, attributes, client } => {
                let helper_attrs =
                    attributes.iter().cloned().map(Symbol::intern).collect::<Vec<_>>();
                (
                    trait_name,
                    SyntaxExtensionKind::Derive(Box::new(DeriveProcMacro { client })),
                    helper_attrs,
                )
            }
            ProcMacro::Attr { name, client } => {
                (name, SyntaxExtensionKind::Attr(Box::new(AttrProcMacro { client })), Vec::new())
            }
            ProcMacro::Bang { name, client } => {
                (name, SyntaxExtensionKind::Bang(Box::new(BangProcMacro { client })), Vec::new())
            }
        };

        let sess = tcx.sess;
        let attrs: Vec<_> = self.get_item_attrs(id, sess).collect();
        SyntaxExtension::new(
            sess,
            tcx.features(),
            kind,
            self.get_span(id, sess),
            helper_attrs,
            self.root.edition,
            Symbol::intern(name),
            &attrs,
            false,
        )
    }

    fn get_variant(
        self,
        kind: DefKind,
        index: DefIndex,
        parent_did: DefId,
    ) -> (VariantIdx, ty::VariantDef) {
        let adt_kind = match kind {
            DefKind::Variant => ty::AdtKind::Enum,
            DefKind::Struct => ty::AdtKind::Struct,
            DefKind::Union => ty::AdtKind::Union,
            _ => bug!(),
        };

        let data = self.root.tables.variant_data.get(self, index).unwrap().decode(self);

        let variant_did =
            if adt_kind == ty::AdtKind::Enum { Some(self.local_def_id(index)) } else { None };
        let ctor = data.ctor.map(|(kind, index)| (kind, self.local_def_id(index)));

        (
            data.idx,
            ty::VariantDef::new(
                self.item_name(index),
                variant_did,
                ctor,
                data.discr,
                self.get_associated_item_or_field_def_ids(index)
                    .map(|did| ty::FieldDef {
                        did,
                        name: self.item_name(did.index),
                        vis: self.get_visibility(did.index),
                    })
                    .collect(),
                adt_kind,
                parent_did,
                None,
                data.is_non_exhaustive,
            ),
        )
    }

    fn get_adt_def<'tcx>(self, item_id: DefIndex, tcx: TyCtxt<'tcx>) -> ty::AdtDef<'tcx> {
        let kind = self.def_kind(item_id);
        let did = self.local_def_id(item_id);

        let adt_kind = match kind {
            DefKind::Enum => ty::AdtKind::Enum,
            DefKind::Struct => ty::AdtKind::Struct,
            DefKind::Union => ty::AdtKind::Union,
            _ => bug!("get_adt_def called on a non-ADT {:?}", did),
        };
        let repr = self.root.tables.repr_options.get(self, item_id).unwrap().decode(self);

        let mut variants: Vec<_> = if let ty::AdtKind::Enum = adt_kind {
            self.root
                .tables
                .module_children_non_reexports
                .get(self, item_id)
                .expect("variants are not encoded for an enum")
                .decode(self)
                .filter_map(|index| {
                    let kind = self.def_kind(index);
                    match kind {
                        DefKind::Ctor(..) => None,
                        _ => Some(self.get_variant(kind, index, did)),
                    }
                })
                .collect()
        } else {
            std::iter::once(self.get_variant(kind, item_id, did)).collect()
        };

        variants.sort_by_key(|(idx, _)| *idx);

        tcx.mk_adt_def(
            did,
            adt_kind,
            variants.into_iter().map(|(_, variant)| variant).collect(),
            repr,
        )
    }

    fn get_visibility(self, id: DefIndex) -> Visibility<DefId> {
        self.root
            .tables
            .visibility
            .get(self, id)
            .unwrap_or_else(|| self.missing("visibility", id))
            .decode(self)
            .map_id(|index| self.local_def_id(index))
    }

    fn get_trait_item_def_id(self, id: DefIndex) -> Option<DefId> {
        self.root.tables.trait_item_def_id.get(self, id).map(|d| d.decode_from_cdata(self))
    }

    fn get_expn_that_defined(self, id: DefIndex, sess: &Session) -> ExpnId {
        self.root
            .tables
            .expn_that_defined
            .get(self, id)
            .unwrap_or_else(|| self.missing("expn_that_defined", id))
            .decode((self, sess))
    }

    fn get_debugger_visualizers(self) -> Vec<DebuggerVisualizerFile> {
        self.root.debugger_visualizers.decode(self).collect::<Vec<_>>()
    }

    /// Iterates over all the stability attributes in the given crate.
    fn get_lib_features(self) -> LibFeatures {
        LibFeatures {
            stability: self
                .root
                .lib_features
                .decode(self)
                .map(|(sym, stab)| (sym, (stab, DUMMY_SP)))
                .collect(),
        }
    }

    /// Iterates over the stability implications in the given crate (when a `#[unstable]` attribute
    /// has an `implied_by` meta item, then the mapping from the implied feature to the actual
    /// feature is a stability implication).
    fn get_stability_implications<'tcx>(self, tcx: TyCtxt<'tcx>) -> &'tcx [(Symbol, Symbol)] {
        tcx.arena.alloc_from_iter(self.root.stability_implications.decode(self))
    }

    /// Iterates over the lang items in the given crate.
    fn get_lang_items<'tcx>(self, tcx: TyCtxt<'tcx>) -> &'tcx [(DefId, LangItem)] {
        tcx.arena.alloc_from_iter(
            self.root
                .lang_items
                .decode(self)
                .map(move |(def_index, index)| (self.local_def_id(def_index), index)),
        )
    }

    fn get_stripped_cfg_items<'tcx>(
        self,
        cnum: CrateNum,
        tcx: TyCtxt<'tcx>,
    ) -> &'tcx [StrippedCfgItem] {
        let item_names = self
            .root
            .stripped_cfg_items
            .decode((self, tcx))
            .map(|item| item.map_mod_id(|index| DefId { krate: cnum, index }));
        tcx.arena.alloc_from_iter(item_names)
    }

    /// Iterates over the diagnostic items in the given crate.
    fn get_diagnostic_items(self) -> DiagnosticItems {
        let mut id_to_name = DefIdMap::default();
        let name_to_id = self
            .root
            .diagnostic_items
            .decode(self)
            .map(|(name, def_index)| {
                let id = self.local_def_id(def_index);
                id_to_name.insert(id, name);
                (name, id)
            })
            .collect();
        DiagnosticItems { id_to_name, name_to_id }
    }

    fn get_mod_child(self, id: DefIndex, sess: &Session) -> ModChild {
        let ident = self.item_ident(id, sess);
        let res = Res::Def(self.def_kind(id), self.local_def_id(id));
        let vis = self.get_visibility(id);

        ModChild { ident, res, vis, reexport_chain: Default::default() }
    }

    /// Iterates over all named children of the given module,
    /// including both proper items and reexports.
    /// Module here is understood in name resolution sense - it can be a `mod` item,
    /// or a crate root, or an enum, or a trait.
    fn get_module_children(
        self,
        id: DefIndex,
        sess: &'a Session,
    ) -> impl Iterator<Item = ModChild> + 'a {
        iter::from_coroutine(
            #[coroutine]
            move || {
                if let Some(data) = &self.root.proc_macro_data {
                    // If we are loading as a proc macro, we want to return
                    // the view of this crate as a proc macro crate.
                    if id == CRATE_DEF_INDEX {
                        for child_index in data.macros.decode(self) {
                            yield self.get_mod_child(child_index, sess);
                        }
                    }
                } else {
                    // Iterate over all children.
                    let non_reexports =
                        self.root.tables.module_children_non_reexports.get(self, id);
                    for child_index in non_reexports.unwrap().decode(self) {
                        yield self.get_mod_child(child_index, sess);
                    }

                    let reexports = self.root.tables.module_children_reexports.get(self, id);
                    if !reexports.is_default() {
                        for reexport in reexports.decode((self, sess)) {
                            yield reexport;
                        }
                    }
                }
            },
        )
    }

    fn is_ctfe_mir_available(self, id: DefIndex) -> bool {
        self.root.tables.mir_for_ctfe.get(self, id).is_some()
    }

    fn is_item_mir_available(self, id: DefIndex) -> bool {
        self.root.tables.optimized_mir.get(self, id).is_some()
    }

    fn get_fn_has_self_parameter(self, id: DefIndex, sess: &'a Session) -> bool {
        self.root
            .tables
            .fn_arg_names
            .get(self, id)
            .expect("argument names not encoded for a function")
            .decode((self, sess))
            .nth(0)
            .is_some_and(|ident| ident.name == kw::SelfLower)
    }

    fn get_associated_item_or_field_def_ids(
        self,
        id: DefIndex,
    ) -> impl Iterator<Item = DefId> + 'a {
        self.root
            .tables
            .associated_item_or_field_def_ids
            .get(self, id)
            .unwrap_or_else(|| self.missing("associated_item_or_field_def_ids", id))
            .decode(self)
            .map(move |child_index| self.local_def_id(child_index))
    }

    fn get_associated_item(self, id: DefIndex, sess: &'a Session) -> ty::AssocItem {
        let name = if self.root.tables.opt_rpitit_info.get(self, id).is_some() {
            kw::Empty
        } else {
            self.item_name(id)
        };
        let (kind, has_self) = match self.def_kind(id) {
            DefKind::AssocConst => (ty::AssocKind::Const, false),
            DefKind::AssocFn => (ty::AssocKind::Fn, self.get_fn_has_self_parameter(id, sess)),
            DefKind::AssocTy => (ty::AssocKind::Type, false),
            _ => bug!("cannot get associated-item of `{:?}`", self.def_key(id)),
        };
        let container = self.root.tables.assoc_container.get(self, id).unwrap();
        let opt_rpitit_info =
            self.root.tables.opt_rpitit_info.get(self, id).map(|d| d.decode(self));

        ty::AssocItem {
            name,
            kind,
            def_id: self.local_def_id(id),
            trait_item_def_id: self.get_trait_item_def_id(id),
            container,
            fn_has_self_parameter: has_self,
            opt_rpitit_info,
        }
    }

    fn get_ctor(self, node_id: DefIndex) -> Option<(CtorKind, DefId)> {
        match self.def_kind(node_id) {
            DefKind::Struct | DefKind::Variant => {
                let vdata = self.root.tables.variant_data.get(self, node_id).unwrap().decode(self);
                vdata.ctor.map(|(kind, index)| (kind, self.local_def_id(index)))
            }
            _ => None,
        }
    }

    fn get_item_attrs(
        self,
        id: DefIndex,
        sess: &'a Session,
    ) -> impl Iterator<Item = ast::Attribute> + 'a {
        self.root
            .tables
            .attributes
            .get(self, id)
            .unwrap_or_else(|| {
                // Structure and variant constructors don't have any attributes encoded for them,
                // but we assume that someone passing a constructor ID actually wants to look at
                // the attributes on the corresponding struct or variant.
                let def_key = self.def_key(id);
                assert_eq!(def_key.disambiguated_data.data, DefPathData::Ctor);
                let parent_id = def_key.parent.expect("no parent for a constructor");
                self.root
                    .tables
                    .attributes
                    .get(self, parent_id)
                    .expect("no encoded attributes for a structure or variant")
            })
            .decode((self, sess))
    }

    fn get_inherent_implementations_for_type<'tcx>(
        self,
        tcx: TyCtxt<'tcx>,
        id: DefIndex,
    ) -> &'tcx [DefId] {
        tcx.arena.alloc_from_iter(
            self.root
                .tables
                .inherent_impls
                .get(self, id)
                .decode(self)
                .map(|index| self.local_def_id(index)),
        )
    }

    /// Decodes all traits in the crate (for rustdoc and rustc diagnostics).
    fn get_traits(self) -> impl Iterator<Item = DefId> + 'a {
        self.root.traits.decode(self).map(move |index| self.local_def_id(index))
    }

    /// Decodes all trait impls in the crate (for rustdoc).
    fn get_trait_impls(self) -> impl Iterator<Item = DefId> + 'a {
        self.cdata.trait_impls.values().flat_map(move |impls| {
            impls.decode(self).map(move |(impl_index, _)| self.local_def_id(impl_index))
        })
    }

    fn get_incoherent_impls<'tcx>(self, tcx: TyCtxt<'tcx>, simp: SimplifiedType) -> &'tcx [DefId] {
        if let Some(impls) = self.cdata.incoherent_impls.get(&simp) {
            tcx.arena.alloc_from_iter(impls.decode(self).map(|idx| self.local_def_id(idx)))
        } else {
            &[]
        }
    }

    fn get_implementations_of_trait<'tcx>(
        self,
        tcx: TyCtxt<'tcx>,
        trait_def_id: DefId,
    ) -> &'tcx [(DefId, Option<SimplifiedType>)] {
        if self.trait_impls.is_empty() {
            return &[];
        }

        // Do a reverse lookup beforehand to avoid touching the crate_num
        // hash map in the loop below.
        let key = match self.reverse_translate_def_id(trait_def_id) {
            Some(def_id) => (def_id.krate.as_u32(), def_id.index),
            None => return &[],
        };

        if let Some(impls) = self.trait_impls.get(&key) {
            tcx.arena.alloc_from_iter(
                impls
                    .decode(self)
                    .map(|(idx, simplified_self_ty)| (self.local_def_id(idx), simplified_self_ty)),
            )
        } else {
            &[]
        }
    }

    fn get_native_libraries(self, sess: &'a Session) -> impl Iterator<Item = NativeLib> + 'a {
        self.root.native_libraries.decode((self, sess))
    }

    fn get_proc_macro_quoted_span(self, index: usize, sess: &Session) -> Span {
        self.root
            .tables
            .proc_macro_quoted_spans
            .get(self, index)
            .unwrap_or_else(|| panic!("Missing proc macro quoted span: {index:?}"))
            .decode((self, sess))
    }

    fn get_foreign_modules(self, sess: &'a Session) -> impl Iterator<Item = ForeignModule> + 'a {
        self.root.foreign_modules.decode((self, sess))
    }

    fn get_dylib_dependency_formats<'tcx>(
        self,
        tcx: TyCtxt<'tcx>,
    ) -> &'tcx [(CrateNum, LinkagePreference)] {
        tcx.arena.alloc_from_iter(
            self.root.dylib_dependency_formats.decode(self).enumerate().flat_map(|(i, link)| {
                let cnum = CrateNum::new(i + 1);
                link.map(|link| (self.cnum_map[cnum], link))
            }),
        )
    }

    fn get_missing_lang_items<'tcx>(self, tcx: TyCtxt<'tcx>) -> &'tcx [LangItem] {
        tcx.arena.alloc_from_iter(self.root.lang_items_missing.decode(self))
    }

    fn exported_symbols<'tcx>(
        self,
        tcx: TyCtxt<'tcx>,
    ) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] {
        tcx.arena.alloc_from_iter(self.root.exported_symbols.decode((self, tcx)))
    }

    fn get_macro(self, id: DefIndex, sess: &Session) -> ast::MacroDef {
        match self.def_kind(id) {
            DefKind::Macro(_) => {
                let macro_rules = self.root.tables.is_macro_rules.get(self, id);
                let body =
                    self.root.tables.macro_definition.get(self, id).unwrap().decode((self, sess));
                ast::MacroDef { macro_rules, body: ast::ptr::P(body) }
            }
            _ => bug!(),
        }
    }

    #[inline]
    fn def_key(self, index: DefIndex) -> DefKey {
        *self
            .def_key_cache
            .lock()
            .entry(index)
            .or_insert_with(|| self.root.tables.def_keys.get(self, index).unwrap().decode(self))
    }

    // Returns the path leading to the thing with this `id`.
    fn def_path(self, id: DefIndex) -> DefPath {
        debug!("def_path(cnum={:?}, id={:?})", self.cnum, id);
        DefPath::make(self.cnum, id, |parent| self.def_key(parent))
    }

    #[inline]
    fn def_path_hash(self, index: DefIndex) -> DefPathHash {
        // This is a hack to workaround the fact that we can't easily encode/decode a Hash64
        // into the FixedSizeEncoding, as Hash64 lacks a Default impl. A future refactor to
        // relax the Default restriction will likely fix this.
        let fingerprint = Fingerprint::new(
            self.root.stable_crate_id.as_u64(),
            self.root.tables.def_path_hashes.get(self, index),
        );
        DefPathHash::new(self.root.stable_crate_id, fingerprint.split().1)
    }

    #[inline]
    fn def_path_hash_to_def_index(self, hash: DefPathHash) -> DefIndex {
        self.def_path_hash_map.def_path_hash_to_def_index(&hash)
    }

    fn expn_hash_to_expn_id(self, sess: &Session, index_guess: u32, hash: ExpnHash) -> ExpnId {
        debug_assert_eq!(ExpnId::from_hash(hash), None);
        let index_guess = ExpnIndex::from_u32(index_guess);
        let old_hash = self.root.expn_hashes.get(self, index_guess).map(|lazy| lazy.decode(self));

        let index = if old_hash == Some(hash) {
            // Fast path: the expn and its index is unchanged from the
            // previous compilation session. There is no need to decode anything
            // else.
            index_guess
        } else {
            // Slow path: We need to find out the new `DefIndex` of the provided
            // `DefPathHash`, if its still exists. This requires decoding every `DefPathHash`
            // stored in this crate.
            let map = self.cdata.expn_hash_map.get_or_init(|| {
                let end_id = self.root.expn_hashes.size() as u32;
                let mut map =
                    UnhashMap::with_capacity_and_hasher(end_id as usize, Default::default());
                for i in 0..end_id {
                    let i = ExpnIndex::from_u32(i);
                    if let Some(hash) = self.root.expn_hashes.get(self, i) {
                        map.insert(hash.decode(self), i);
                    }
                }
                map
            });
            map[&hash]
        };

        let data = self.root.expn_data.get(self, index).unwrap().decode((self, sess));
        rustc_span::hygiene::register_expn_id(self.cnum, index, data, hash)
    }

    /// Imports the source_map from an external crate into the source_map of the crate
    /// currently being compiled (the "local crate").
    ///
    /// The import algorithm works analogous to how AST items are inlined from an
    /// external crate's metadata:
    /// For every SourceFile in the external source_map an 'inline' copy is created in the
    /// local source_map. The correspondence relation between external and local
    /// SourceFiles is recorded in the `ImportedSourceFile` objects returned from this
    /// function. When an item from an external crate is later inlined into this
    /// crate, this correspondence information is used to translate the span
    /// information of the inlined item so that it refers the correct positions in
    /// the local source_map (see `<decoder::DecodeContext as SpecializedDecoder<Span>>`).
    ///
    /// The import algorithm in the function below will reuse SourceFiles already
    /// existing in the local source_map. For example, even if the SourceFile of some
    /// source file of libstd gets imported many times, there will only ever be
    /// one SourceFile object for the corresponding file in the local source_map.
    ///
    /// Note that imported SourceFiles do not actually contain the source code of the
    /// file they represent, just information about length, line breaks, and
    /// multibyte characters. This information is enough to generate valid debuginfo
    /// for items inlined from other crates.
    ///
    /// Proc macro crates don't currently export spans, so this function does not have
    /// to work for them.
    fn imported_source_file(self, source_file_index: u32, sess: &Session) -> ImportedSourceFile {
        fn filter<'a>(sess: &Session, path: Option<&'a Path>) -> Option<&'a Path> {
            path.filter(|_| {
                // Only spend time on further checks if we have what to translate *to*.
                sess.opts.real_rust_source_base_dir.is_some()
                // Some tests need the translation to be always skipped.
                && sess.opts.unstable_opts.translate_remapped_path_to_local_path
            })
            .filter(|virtual_dir| {
                // Don't translate away `/rustc/$hash` if we're still remapping to it,
                // since that means we're still building `std`/`rustc` that need it,
                // and we don't want the real path to leak into codegen/debuginfo.
                !sess.opts.remap_path_prefix.iter().any(|(_from, to)| to == virtual_dir)
            })
        }

        let try_to_translate_virtual_to_real = |name: &mut rustc_span::FileName| {
            // Translate the virtual `/rustc/$hash` prefix back to a real directory
            // that should hold actual sources, where possible.
            //
            // NOTE: if you update this, you might need to also update bootstrap's code for generating
            // the `rust-src` component in `Src::run` in `src/bootstrap/dist.rs`.
            let virtual_rust_source_base_dir = [
                filter(sess, option_env!("CFG_VIRTUAL_RUST_SOURCE_BASE_DIR").map(Path::new)),
                filter(sess, sess.opts.unstable_opts.simulate_remapped_rust_src_base.as_deref()),
            ];

            debug!(
                "try_to_translate_virtual_to_real(name={:?}): \
                 virtual_rust_source_base_dir={:?}, real_rust_source_base_dir={:?}",
                name, virtual_rust_source_base_dir, sess.opts.real_rust_source_base_dir,
            );

            for virtual_dir in virtual_rust_source_base_dir.iter().flatten() {
                if let Some(real_dir) = &sess.opts.real_rust_source_base_dir
                    && let rustc_span::FileName::Real(old_name) = name
                    && let rustc_span::RealFileName::Remapped { local_path: _, virtual_name } =
                        old_name
                    && let Ok(rest) = virtual_name.strip_prefix(virtual_dir)
                {
                    // The std library crates are in
                    // `$sysroot/lib/rustlib/src/rust/library`, whereas other crates
                    // may be in `$sysroot/lib/rustlib/src/rust/` directly. So we
                    // detect crates from the std libs and handle them specially.
                    const STD_LIBS: &[&str] = &[
                        "core",
                        "alloc",
                        "std",
                        "test",
                        "term",
                        "unwind",
                        "proc_macro",
                        "panic_abort",
                        "panic_unwind",
                        "profiler_builtins",
                        "rtstartup",
                        "rustc-std-workspace-core",
                        "rustc-std-workspace-alloc",
                        "rustc-std-workspace-std",
                        "backtrace",
                    ];
                    let is_std_lib = STD_LIBS.iter().any(|l| rest.starts_with(l));

                    let new_path = if is_std_lib {
                        real_dir.join("library").join(rest)
                    } else {
                        real_dir.join(rest)
                    };

                    debug!(
                        "try_to_translate_virtual_to_real: `{}` -> `{}`",
                        virtual_name.display(),
                        new_path.display(),
                    );

                    // Check if the translated real path is affected by any user-requested
                    // remaps via --remap-path-prefix. Apply them if so.
                    // Note that this is a special case for imported rust-src paths specified by
                    // https://rust-lang.github.io/rfcs/3127-trim-paths.html#handling-sysroot-paths.
                    // Other imported paths are not currently remapped (see #66251).
                    let (user_remapped, applied) =
                        sess.source_map().path_mapping().map_prefix(&new_path);
                    let new_name = if applied {
                        rustc_span::RealFileName::Remapped {
                            local_path: Some(new_path.clone()),
                            virtual_name: user_remapped.to_path_buf(),
                        }
                    } else {
                        rustc_span::RealFileName::LocalPath(new_path)
                    };
                    *old_name = new_name;
                }
            }
        };

        let mut import_info = self.cdata.source_map_import_info.lock();
        for _ in import_info.len()..=(source_file_index as usize) {
            import_info.push(None);
        }
        import_info[source_file_index as usize]
            .get_or_insert_with(|| {
                let source_file_to_import = self
                    .root
                    .source_map
                    .get(self, source_file_index)
                    .expect("missing source file")
                    .decode(self);

                // We can't reuse an existing SourceFile, so allocate a new one
                // containing the information we need.
                let original_end_pos = source_file_to_import.end_position();
                let rustc_span::SourceFile {
                    mut name,
                    src_hash,
                    checksum_hash,
                    start_pos: original_start_pos,
                    source_len,
                    lines,
                    multibyte_chars,
                    normalized_pos,
                    stable_id,
                    ..
                } = source_file_to_import;

                // If this file is under $sysroot/lib/rustlib/src/
                // and the user wish to simulate remapping with -Z simulate-remapped-rust-src-base,
                // then we change `name` to a similar state as if the rust was bootstrapped
                // with `remap-debuginfo = true`.
                // This is useful for testing so that tests about the effects of
                // `try_to_translate_virtual_to_real` don't have to worry about how the
                // compiler is bootstrapped.
                if let Some(virtual_dir) = &sess.opts.unstable_opts.simulate_remapped_rust_src_base
                    && let Some(real_dir) = &sess.opts.real_rust_source_base_dir
                    && let rustc_span::FileName::Real(ref mut old_name) = name
                {
                    let relative_path = match old_name {
                        rustc_span::RealFileName::LocalPath(local) => {
                            local.strip_prefix(real_dir).ok()
                        }
                        rustc_span::RealFileName::Remapped { virtual_name, .. } => {
                            option_env!("CFG_VIRTUAL_RUST_SOURCE_BASE_DIR")
                                .and_then(|virtual_dir| virtual_name.strip_prefix(virtual_dir).ok())
                        }
                    };
                    debug!(?relative_path, ?virtual_dir, "simulate_remapped_rust_src_base");
                    for subdir in ["library", "compiler"] {
                        if let Some(rest) = relative_path.and_then(|p| p.strip_prefix(subdir).ok())
                        {
                            *old_name = rustc_span::RealFileName::Remapped {
                                local_path: None, // FIXME: maybe we should preserve this?
                                virtual_name: virtual_dir.join(subdir).join(rest),
                            };
                            break;
                        }
                    }
                }

                // If this file's path has been remapped to `/rustc/$hash`,
                // we might be able to reverse that (also see comments above,
                // on `try_to_translate_virtual_to_real`).
                try_to_translate_virtual_to_real(&mut name);

                let local_version = sess.source_map().new_imported_source_file(
                    name,
                    src_hash,
                    checksum_hash,
                    stable_id,
                    source_len.to_u32(),
                    self.cnum,
                    lines,
                    multibyte_chars,
                    normalized_pos,
                    source_file_index,
                );
                debug!(
                    "CrateMetaData::imported_source_files alloc \
                         source_file {:?} original (start_pos {:?} source_len {:?}) \
                         translated (start_pos {:?} source_len {:?})",
                    local_version.name,
                    original_start_pos,
                    source_len,
                    local_version.start_pos,
                    local_version.source_len
                );

                ImportedSourceFile {
                    original_start_pos,
                    original_end_pos,
                    translated_source_file: local_version,
                }
            })
            .clone()
    }

    fn get_attr_flags(self, index: DefIndex) -> AttrFlags {
        self.root.tables.attr_flags.get(self, index)
    }

    fn get_intrinsic(self, index: DefIndex) -> Option<ty::IntrinsicDef> {
        self.root.tables.intrinsic.get(self, index).map(|d| d.decode(self))
    }

    fn get_doc_link_resolutions(self, index: DefIndex) -> DocLinkResMap {
        self.root
            .tables
            .doc_link_resolutions
            .get(self, index)
            .expect("no resolutions for a doc link")
            .decode(self)
    }

    fn get_doc_link_traits_in_scope(self, index: DefIndex) -> impl Iterator<Item = DefId> + 'a {
        self.root
            .tables
            .doc_link_traits_in_scope
            .get(self, index)
            .expect("no traits in scope for a doc link")
            .decode(self)
    }
}

impl CrateMetadata {
    pub(crate) fn new(
        sess: &Session,
        cstore: &CStore,
        blob: MetadataBlob,
        root: CrateRoot,
        raw_proc_macros: Option<&'static [ProcMacro]>,
        cnum: CrateNum,
        cnum_map: CrateNumMap,
        dep_kind: CrateDepKind,
        source: CrateSource,
        private_dep: bool,
        host_hash: Option<Svh>,
    ) -> CrateMetadata {
        let trait_impls = root
            .impls
            .decode((&blob, sess))
            .map(|trait_impls| (trait_impls.trait_id, trait_impls.impls))
            .collect();
        let alloc_decoding_state =
            AllocDecodingState::new(root.interpret_alloc_index.decode(&blob).collect());
        let dependencies = cnum_map.iter().copied().collect();

        // Pre-decode the DefPathHash->DefIndex table. This is a cheap operation
        // that does not copy any data. It just does some data verification.
        let def_path_hash_map = root.def_path_hash_map.decode(&blob);

        let mut cdata = CrateMetadata {
            blob,
            root,
            trait_impls,
            incoherent_impls: Default::default(),
            raw_proc_macros,
            source_map_import_info: Lock::new(Vec::new()),
            def_path_hash_map,
            expn_hash_map: Default::default(),
            alloc_decoding_state,
            cnum,
            cnum_map,
            dependencies,
            dep_kind,
            source: Lrc::new(source),
            private_dep,
            host_hash,
            used: false,
            extern_crate: None,
            hygiene_context: Default::default(),
            def_key_cache: Default::default(),
        };

        // Need `CrateMetadataRef` to decode `DefId`s in simplified types.
        cdata.incoherent_impls = cdata
            .root
            .incoherent_impls
            .decode(CrateMetadataRef { cdata: &cdata, cstore })
            .map(|incoherent_impls| (incoherent_impls.self_ty, incoherent_impls.impls))
            .collect();

        cdata
    }

    pub(crate) fn dependencies(&self) -> impl Iterator<Item = CrateNum> + '_ {
        self.dependencies.iter().copied()
    }

    pub(crate) fn add_dependency(&mut self, cnum: CrateNum) {
        self.dependencies.push(cnum);
    }

    pub(crate) fn update_extern_crate(&mut self, new_extern_crate: ExternCrate) -> bool {
        let update =
            Some(new_extern_crate.rank()) > self.extern_crate.as_ref().map(ExternCrate::rank);
        if update {
            self.extern_crate = Some(new_extern_crate);
        }
        update
    }

    pub(crate) fn source(&self) -> &CrateSource {
        &*self.source
    }

    pub(crate) fn dep_kind(&self) -> CrateDepKind {
        self.dep_kind
    }

    pub(crate) fn set_dep_kind(&mut self, dep_kind: CrateDepKind) {
        self.dep_kind = dep_kind;
    }

    pub(crate) fn update_and_private_dep(&mut self, private_dep: bool) {
        self.private_dep &= private_dep;
    }

    pub(crate) fn used(&self) -> bool {
        self.used
    }

    pub(crate) fn required_panic_strategy(&self) -> Option<PanicStrategy> {
        self.root.required_panic_strategy
    }

    pub(crate) fn needs_panic_runtime(&self) -> bool {
        self.root.needs_panic_runtime
    }

    pub(crate) fn is_panic_runtime(&self) -> bool {
        self.root.panic_runtime
    }

    pub(crate) fn is_profiler_runtime(&self) -> bool {
        self.root.profiler_runtime
    }

    pub(crate) fn needs_allocator(&self) -> bool {
        self.root.needs_allocator
    }

    pub(crate) fn has_global_allocator(&self) -> bool {
        self.root.has_global_allocator
    }

    pub(crate) fn has_alloc_error_handler(&self) -> bool {
        self.root.has_alloc_error_handler
    }

    pub(crate) fn has_default_lib_allocator(&self) -> bool {
        self.root.has_default_lib_allocator
    }

    pub(crate) fn is_proc_macro_crate(&self) -> bool {
        self.root.is_proc_macro_crate()
    }

    pub(crate) fn name(&self) -> Symbol {
        self.root.header.name
    }

    pub(crate) fn hash(&self) -> Svh {
        self.root.header.hash
    }

    fn num_def_ids(&self) -> usize {
        self.root.tables.def_keys.size()
    }

    fn local_def_id(&self, index: DefIndex) -> DefId {
        DefId { krate: self.cnum, index }
    }

    // Translate a DefId from the current compilation environment to a DefId
    // for an external crate.
    fn reverse_translate_def_id(&self, did: DefId) -> Option<DefId> {
        for (local, &global) in self.cnum_map.iter_enumerated() {
            if global == did.krate {
                return Some(DefId { krate: local, index: did.index });
            }
        }

        None
    }
}