1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
//! The arena, a fast but limited type of allocator.
//!
//! Arenas are a type of allocator that destroy the objects within, all at
//! once, once the arena itself is destroyed. They do not support deallocation
//! of individual objects while the arena itself is still alive. The benefit
//! of an arena is very fast allocation; just a pointer bump.
//!
//! This crate implements several kinds of arena.

#![doc(
    html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
    test(no_crate_inject, attr(deny(warnings)))
)]
#![feature(dropck_eyepatch)]
#![feature(new_uninit)]
#![feature(maybe_uninit_slice)]
#![cfg_attr(test, feature(test))]

use smallvec::SmallVec;

use std::alloc::Layout;
use std::cell::{Cell, RefCell};
use std::cmp;
use std::marker::{PhantomData, Send};
use std::mem::{self, MaybeUninit};
use std::ptr;
use std::slice;

#[inline(never)]
#[cold]
pub fn cold_path<F: FnOnce() -> R, R>(f: F) -> R {
    f()
}

/// An arena that can hold objects of only one type.
pub struct TypedArena<T> {
    /// A pointer to the next object to be allocated.
    ptr: Cell<*mut T>,

    /// A pointer to the end of the allocated area. When this pointer is
    /// reached, a new chunk is allocated.
    end: Cell<*mut T>,

    /// A vector of arena chunks.
    chunks: RefCell<Vec<TypedArenaChunk<T>>>,

    /// Marker indicating that dropping the arena causes its owned
    /// instances of `T` to be dropped.
    _own: PhantomData<T>,
}

struct TypedArenaChunk<T> {
    /// The raw storage for the arena chunk.
    storage: Box<[MaybeUninit<T>]>,
    /// The number of valid entries in the chunk.
    entries: usize,
}

impl<T> TypedArenaChunk<T> {
    #[inline]
    unsafe fn new(capacity: usize) -> TypedArenaChunk<T> {
        TypedArenaChunk { storage: Box::new_uninit_slice(capacity), entries: 0 }
    }

    /// Destroys this arena chunk.
    #[inline]
    unsafe fn destroy(&mut self, len: usize) {
        // The branch on needs_drop() is an -O1 performance optimization.
        // Without the branch, dropping TypedArena<u8> takes linear time.
        if mem::needs_drop::<T>() {
            ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(&mut self.storage[..len]));
        }
    }

    // Returns a pointer to the first allocated object.
    #[inline]
    fn start(&mut self) -> *mut T {
        MaybeUninit::slice_as_mut_ptr(&mut self.storage)
    }

    // Returns a pointer to the end of the allocated space.
    #[inline]
    fn end(&mut self) -> *mut T {
        unsafe {
            if mem::size_of::<T>() == 0 {
                // A pointer as large as possible for zero-sized elements.
                !0 as *mut T
            } else {
                self.start().add(self.storage.len())
            }
        }
    }
}

// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
// we stop growing. This scales well, from arenas that are barely used up to
// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
// the usual sizes of pages and huge pages on Linux.
const PAGE: usize = 4096;
const HUGE_PAGE: usize = 2 * 1024 * 1024;

impl<T> Default for TypedArena<T> {
    /// Creates a new `TypedArena`.
    fn default() -> TypedArena<T> {
        TypedArena {
            // We set both `ptr` and `end` to 0 so that the first call to
            // alloc() will trigger a grow().
            ptr: Cell::new(ptr::null_mut()),
            end: Cell::new(ptr::null_mut()),
            chunks: RefCell::new(vec![]),
            _own: PhantomData,
        }
    }
}

impl<T> TypedArena<T> {
    /// Allocates an object in the `TypedArena`, returning a reference to it.
    #[inline]
    pub fn alloc(&self, object: T) -> &mut T {
        if self.ptr == self.end {
            self.grow(1)
        }

        unsafe {
            if mem::size_of::<T>() == 0 {
                self.ptr.set((self.ptr.get() as *mut u8).wrapping_offset(1) as *mut T);
                let ptr = mem::align_of::<T>() as *mut T;
                // Don't drop the object. This `write` is equivalent to `forget`.
                ptr::write(ptr, object);
                &mut *ptr
            } else {
                let ptr = self.ptr.get();
                // Advance the pointer.
                self.ptr.set(self.ptr.get().offset(1));
                // Write into uninitialized memory.
                ptr::write(ptr, object);
                &mut *ptr
            }
        }
    }

    #[inline]
    fn can_allocate(&self, additional: usize) -> bool {
        let available_bytes = self.end.get() as usize - self.ptr.get() as usize;
        let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap();
        available_bytes >= additional_bytes
    }

    /// Ensures there's enough space in the current chunk to fit `len` objects.
    #[inline]
    fn ensure_capacity(&self, additional: usize) {
        if !self.can_allocate(additional) {
            self.grow(additional);
            debug_assert!(self.can_allocate(additional));
        }
    }

    #[inline]
    unsafe fn alloc_raw_slice(&self, len: usize) -> *mut T {
        assert!(mem::size_of::<T>() != 0);
        assert!(len != 0);

        self.ensure_capacity(len);

        let start_ptr = self.ptr.get();
        self.ptr.set(start_ptr.add(len));
        start_ptr
    }

    /// Allocates a slice of objects that are copied into the `TypedArena`, returning a mutable
    /// reference to it. Will panic if passed a zero-sized types.
    ///
    /// Panics:
    ///
    ///  - Zero-sized types
    ///  - Zero-length slices
    #[inline]
    pub fn alloc_slice(&self, slice: &[T]) -> &mut [T]
    where
        T: Copy,
    {
        unsafe {
            let len = slice.len();
            let start_ptr = self.alloc_raw_slice(len);
            slice.as_ptr().copy_to_nonoverlapping(start_ptr, len);
            slice::from_raw_parts_mut(start_ptr, len)
        }
    }

    #[inline]
    pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
        assert!(mem::size_of::<T>() != 0);
        let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
        if vec.is_empty() {
            return &mut [];
        }
        // Move the content to the arena by copying it and then forgetting
        // the content of the SmallVec
        unsafe {
            let len = vec.len();
            let start_ptr = self.alloc_raw_slice(len);
            vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
            vec.set_len(0);
            slice::from_raw_parts_mut(start_ptr, len)
        }
    }

    /// Grows the arena.
    #[inline(never)]
    #[cold]
    fn grow(&self, additional: usize) {
        unsafe {
            // We need the element size to convert chunk sizes (ranging from
            // PAGE to HUGE_PAGE bytes) to element counts.
            let elem_size = cmp::max(1, mem::size_of::<T>());
            let mut chunks = self.chunks.borrow_mut();
            let mut new_cap;
            if let Some(last_chunk) = chunks.last_mut() {
                // If a type is `!needs_drop`, we don't need to keep track of how many elements
                // the chunk stores - the field will be ignored anyway.
                if mem::needs_drop::<T>() {
                    let used_bytes = self.ptr.get() as usize - last_chunk.start() as usize;
                    last_chunk.entries = used_bytes / mem::size_of::<T>();
                }

                // If the previous chunk's len is less than HUGE_PAGE
                // bytes, then this chunk will be least double the previous
                // chunk's size.
                new_cap = last_chunk.storage.len().min(HUGE_PAGE / elem_size / 2);
                new_cap = new_cap * 2;
            } else {
                new_cap = PAGE / elem_size;
            }
            // Also ensure that this chunk can fit `additional`.
            new_cap = cmp::max(additional, new_cap);

            let mut chunk = TypedArenaChunk::<T>::new(new_cap);
            self.ptr.set(chunk.start());
            self.end.set(chunk.end());
            chunks.push(chunk);
        }
    }

    /// Clears the arena. Deallocates all but the longest chunk which may be reused.
    pub fn clear(&mut self) {
        unsafe {
            // Clear the last chunk, which is partially filled.
            let mut chunks_borrow = self.chunks.borrow_mut();
            if let Some(mut last_chunk) = chunks_borrow.last_mut() {
                self.clear_last_chunk(&mut last_chunk);
                let len = chunks_borrow.len();
                // If `T` is ZST, code below has no effect.
                for mut chunk in chunks_borrow.drain(..len - 1) {
                    chunk.destroy(chunk.entries);
                }
            }
        }
    }

    // Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
    // chunks.
    fn clear_last_chunk(&self, last_chunk: &mut TypedArenaChunk<T>) {
        // Determine how much was filled.
        let start = last_chunk.start() as usize;
        // We obtain the value of the pointer to the first uninitialized element.
        let end = self.ptr.get() as usize;
        // We then calculate the number of elements to be dropped in the last chunk,
        // which is the filled area's length.
        let diff = if mem::size_of::<T>() == 0 {
            // `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
            // the number of zero-sized values in the last and only chunk, just out of caution.
            // Recall that `end` was incremented for each allocated value.
            end - start
        } else {
            (end - start) / mem::size_of::<T>()
        };
        // Pass that to the `destroy` method.
        unsafe {
            last_chunk.destroy(diff);
        }
        // Reset the chunk.
        self.ptr.set(last_chunk.start());
    }
}

unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
    fn drop(&mut self) {
        unsafe {
            // Determine how much was filled.
            let mut chunks_borrow = self.chunks.borrow_mut();
            if let Some(mut last_chunk) = chunks_borrow.pop() {
                // Drop the contents of the last chunk.
                self.clear_last_chunk(&mut last_chunk);
                // The last chunk will be dropped. Destroy all other chunks.
                for chunk in chunks_borrow.iter_mut() {
                    chunk.destroy(chunk.entries);
                }
            }
            // Box handles deallocation of `last_chunk` and `self.chunks`.
        }
    }
}

unsafe impl<T: Send> Send for TypedArena<T> {}

pub struct DroplessArena {
    /// A pointer to the start of the free space.
    start: Cell<*mut u8>,

    /// A pointer to the end of free space.
    ///
    /// The allocation proceeds from the end of the chunk towards the start.
    /// When this pointer crosses the start pointer, a new chunk is allocated.
    end: Cell<*mut u8>,

    /// A vector of arena chunks.
    chunks: RefCell<Vec<TypedArenaChunk<u8>>>,
}

unsafe impl Send for DroplessArena {}

impl Default for DroplessArena {
    #[inline]
    fn default() -> DroplessArena {
        DroplessArena {
            start: Cell::new(ptr::null_mut()),
            end: Cell::new(ptr::null_mut()),
            chunks: Default::default(),
        }
    }
}

impl DroplessArena {
    #[inline(never)]
    #[cold]
    fn grow(&self, additional: usize) {
        unsafe {
            let mut chunks = self.chunks.borrow_mut();
            let mut new_cap;
            if let Some(last_chunk) = chunks.last_mut() {
                // There is no need to update `last_chunk.entries` because that
                // field isn't used by `DroplessArena`.

                // If the previous chunk's len is less than HUGE_PAGE
                // bytes, then this chunk will be least double the previous
                // chunk's size.
                new_cap = last_chunk.storage.len().min(HUGE_PAGE / 2);
                new_cap = new_cap * 2;
            } else {
                new_cap = PAGE;
            }
            // Also ensure that this chunk can fit `additional`.
            new_cap = cmp::max(additional, new_cap);

            let mut chunk = TypedArenaChunk::<u8>::new(new_cap);
            self.start.set(chunk.start());
            self.end.set(chunk.end());
            chunks.push(chunk);
        }
    }

    /// Allocates a byte slice with specified layout from the current memory
    /// chunk. Returns `None` if there is no free space left to satisfy the
    /// request.
    #[inline]
    fn alloc_raw_without_grow(&self, layout: Layout) -> Option<*mut u8> {
        let start = self.start.get() as usize;
        let end = self.end.get() as usize;

        let align = layout.align();
        let bytes = layout.size();

        let new_end = end.checked_sub(bytes)? & !(align - 1);
        if start <= new_end {
            let new_end = new_end as *mut u8;
            self.end.set(new_end);
            Some(new_end)
        } else {
            None
        }
    }

    #[inline]
    pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
        assert!(layout.size() != 0);
        loop {
            if let Some(a) = self.alloc_raw_without_grow(layout) {
                break a;
            }
            // No free space left. Allocate a new chunk to satisfy the request.
            // On failure the grow will panic or abort.
            self.grow(layout.size());
        }
    }

    #[inline]
    pub fn alloc<T>(&self, object: T) -> &mut T {
        assert!(!mem::needs_drop::<T>());

        let mem = self.alloc_raw(Layout::for_value::<T>(&object)) as *mut T;

        unsafe {
            // Write into uninitialized memory.
            ptr::write(mem, object);
            &mut *mem
        }
    }

    /// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
    /// reference to it. Will panic if passed a zero-sized type.
    ///
    /// Panics:
    ///
    ///  - Zero-sized types
    ///  - Zero-length slices
    #[inline]
    pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
    where
        T: Copy,
    {
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(!slice.is_empty());

        let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;

        unsafe {
            mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
            slice::from_raw_parts_mut(mem, slice.len())
        }
    }

    #[inline]
    unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
        &self,
        mut iter: I,
        len: usize,
        mem: *mut T,
    ) -> &mut [T] {
        let mut i = 0;
        // Use a manual loop since LLVM manages to optimize it better for
        // slice iterators
        loop {
            let value = iter.next();
            if i >= len || value.is_none() {
                // We only return as many items as the iterator gave us, even
                // though it was supposed to give us `len`
                return slice::from_raw_parts_mut(mem, i);
            }
            ptr::write(mem.add(i), value.unwrap());
            i += 1;
        }
    }

    #[inline]
    pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
        let iter = iter.into_iter();
        assert!(mem::size_of::<T>() != 0);
        assert!(!mem::needs_drop::<T>());

        let size_hint = iter.size_hint();

        match size_hint {
            (min, Some(max)) if min == max => {
                // We know the exact number of elements the iterator will produce here
                let len = min;

                if len == 0 {
                    return &mut [];
                }

                let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
                unsafe { self.write_from_iter(iter, len, mem) }
            }
            (_, _) => {
                cold_path(move || -> &mut [T] {
                    let mut vec: SmallVec<[_; 8]> = iter.collect();
                    if vec.is_empty() {
                        return &mut [];
                    }
                    // Move the content to the arena by copying it and then forgetting
                    // the content of the SmallVec
                    unsafe {
                        let len = vec.len();
                        let start_ptr =
                            self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
                        vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
                        vec.set_len(0);
                        slice::from_raw_parts_mut(start_ptr, len)
                    }
                })
            }
        }
    }
}

/// Calls the destructor for an object when dropped.
struct DropType {
    drop_fn: unsafe fn(*mut u8),
    obj: *mut u8,
}

unsafe fn drop_for_type<T>(to_drop: *mut u8) {
    std::ptr::drop_in_place(to_drop as *mut T)
}

impl Drop for DropType {
    fn drop(&mut self) {
        unsafe { (self.drop_fn)(self.obj) }
    }
}

/// An arena which can be used to allocate any type.
/// Allocating in this arena is unsafe since the type system
/// doesn't know which types it contains. In order to
/// allocate safely, you must store a PhantomData<T>
/// alongside this arena for each type T you allocate.
#[derive(Default)]
pub struct DropArena {
    /// A list of destructors to run when the arena drops.
    /// Ordered so `destructors` gets dropped before the arena
    /// since its destructor can reference memory in the arena.
    destructors: RefCell<Vec<DropType>>,
    arena: DroplessArena,
}

impl DropArena {
    #[inline]
    pub unsafe fn alloc<T>(&self, object: T) -> &mut T {
        let mem = self.arena.alloc_raw(Layout::new::<T>()) as *mut T;
        // Write into uninitialized memory.
        ptr::write(mem, object);
        let result = &mut *mem;
        // Record the destructor after doing the allocation as that may panic
        // and would cause `object`'s destructor to run twice if it was recorded before
        self.destructors
            .borrow_mut()
            .push(DropType { drop_fn: drop_for_type::<T>, obj: result as *mut T as *mut u8 });
        result
    }

    #[inline]
    pub unsafe fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
        let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
        if vec.is_empty() {
            return &mut [];
        }
        let len = vec.len();

        let start_ptr = self.arena.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;

        let mut destructors = self.destructors.borrow_mut();
        // Reserve space for the destructors so we can't panic while adding them
        destructors.reserve(len);

        // Move the content to the arena by copying it and then forgetting
        // the content of the SmallVec
        vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
        mem::forget(vec.drain(..));

        // Record the destructors after doing the allocation as that may panic
        // and would cause `object`'s destructor to run twice if it was recorded before
        for i in 0..len {
            destructors.push(DropType {
                drop_fn: drop_for_type::<T>,
                obj: start_ptr.offset(i as isize) as *mut u8,
            });
        }

        slice::from_raw_parts_mut(start_ptr, len)
    }
}

#[macro_export]
macro_rules! arena_for_type {
    ([][$ty:ty]) => {
        $crate::TypedArena<$ty>
    };
    ([few $(, $attrs:ident)*][$ty:ty]) => {
        ::std::marker::PhantomData<$ty>
    };
    ([$ignore:ident $(, $attrs:ident)*]$args:tt) => {
        $crate::arena_for_type!([$($attrs),*]$args)
    };
}

#[macro_export]
macro_rules! which_arena_for_type {
    ([][$arena:expr]) => {
        ::std::option::Option::Some($arena)
    };
    ([few$(, $attrs:ident)*][$arena:expr]) => {
        ::std::option::Option::None
    };
    ([$ignore:ident$(, $attrs:ident)*]$args:tt) => {
        $crate::which_arena_for_type!([$($attrs),*]$args)
    };
}

#[macro_export]
macro_rules! declare_arena {
    ([], [$($a:tt $name:ident: $ty:ty,)*], $tcx:lifetime) => {
        #[derive(Default)]
        pub struct Arena<$tcx> {
            pub dropless: $crate::DroplessArena,
            drop: $crate::DropArena,
            $($name: $crate::arena_for_type!($a[$ty]),)*
        }

        pub trait ArenaAllocatable<'tcx, T = Self>: Sized {
            fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self;
            fn allocate_from_iter<'a>(
                arena: &'a Arena<'tcx>,
                iter: impl ::std::iter::IntoIterator<Item = Self>,
            ) -> &'a mut [Self];
        }

        impl<'tcx, T: Copy> ArenaAllocatable<'tcx, ()> for T {
            #[inline]
            fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
                arena.dropless.alloc(self)
            }
            #[inline]
            fn allocate_from_iter<'a>(
                arena: &'a Arena<'tcx>,
                iter: impl ::std::iter::IntoIterator<Item = Self>,
            ) -> &'a mut [Self] {
                arena.dropless.alloc_from_iter(iter)
            }

        }
        $(
            impl<$tcx> ArenaAllocatable<$tcx, $ty> for $ty {
                #[inline]
                fn allocate_on<'a>(self, arena: &'a Arena<$tcx>) -> &'a mut Self {
                    if !::std::mem::needs_drop::<Self>() {
                        return arena.dropless.alloc(self);
                    }
                    match $crate::which_arena_for_type!($a[&arena.$name]) {
                        ::std::option::Option::<&$crate::TypedArena<Self>>::Some(ty_arena) => {
                            ty_arena.alloc(self)
                        }
                        ::std::option::Option::None => unsafe { arena.drop.alloc(self) },
                    }
                }

                #[inline]
                fn allocate_from_iter<'a>(
                    arena: &'a Arena<$tcx>,
                    iter: impl ::std::iter::IntoIterator<Item = Self>,
                ) -> &'a mut [Self] {
                    if !::std::mem::needs_drop::<Self>() {
                        return arena.dropless.alloc_from_iter(iter);
                    }
                    match $crate::which_arena_for_type!($a[&arena.$name]) {
                        ::std::option::Option::<&$crate::TypedArena<Self>>::Some(ty_arena) => {
                            ty_arena.alloc_from_iter(iter)
                        }
                        ::std::option::Option::None => unsafe { arena.drop.alloc_from_iter(iter) },
                    }
                }
            }
        )*

        impl<'tcx> Arena<'tcx> {
            #[inline]
            pub fn alloc<T: ArenaAllocatable<'tcx, U>, U>(&self, value: T) -> &mut T {
                value.allocate_on(self)
            }

            #[inline]
            pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
                if value.is_empty() {
                    return &mut [];
                }
                self.dropless.alloc_slice(value)
            }

            pub fn alloc_from_iter<'a, T: ArenaAllocatable<'tcx, U>, U>(
                &'a self,
                iter: impl ::std::iter::IntoIterator<Item = T>,
            ) -> &'a mut [T] {
                T::allocate_from_iter(self, iter)
            }
        }
    }
}

#[cfg(test)]
mod tests;