rustc_arena/
lib.rs

1//! The arena, a fast but limited type of allocator.
2//!
3//! Arenas are a type of allocator that destroy the objects within, all at
4//! once, once the arena itself is destroyed. They do not support deallocation
5//! of individual objects while the arena itself is still alive. The benefit
6//! of an arena is very fast allocation; just a pointer bump.
7//!
8//! This crate implements several kinds of arena.
9
10// tidy-alphabetical-start
11#![allow(clippy::mut_from_ref)] // Arena allocators are one place where this pattern is fine.
12#![allow(internal_features)]
13#![cfg_attr(test, feature(test))]
14#![deny(unsafe_op_in_unsafe_fn)]
15#![doc(test(no_crate_inject, attr(deny(warnings), allow(internal_features))))]
16#![feature(core_intrinsics)]
17#![feature(decl_macro)]
18#![feature(dropck_eyepatch)]
19#![feature(maybe_uninit_slice)]
20#![feature(never_type)]
21#![feature(rustc_attrs)]
22#![feature(unwrap_infallible)]
23// tidy-alphabetical-end
24
25use std::alloc::Layout;
26use std::cell::{Cell, RefCell};
27use std::marker::PhantomData;
28use std::mem::{self, MaybeUninit};
29use std::ptr::{self, NonNull};
30use std::{cmp, intrinsics, slice};
31
32use smallvec::SmallVec;
33
34/// This calls the passed function while ensuring it won't be inlined into the caller.
35#[inline(never)]
36#[cold]
37fn outline<F: FnOnce() -> R, R>(f: F) -> R {
38    f()
39}
40
41struct ArenaChunk<T = u8> {
42    /// The raw storage for the arena chunk.
43    storage: NonNull<[MaybeUninit<T>]>,
44    /// The number of valid entries in the chunk.
45    entries: usize,
46}
47
48unsafe impl<#[may_dangle] T> Drop for ArenaChunk<T> {
49    fn drop(&mut self) {
50        unsafe { drop(Box::from_raw(self.storage.as_mut())) }
51    }
52}
53
54impl<T> ArenaChunk<T> {
55    #[inline]
56    unsafe fn new(capacity: usize) -> ArenaChunk<T> {
57        ArenaChunk {
58            storage: NonNull::from(Box::leak(Box::new_uninit_slice(capacity))),
59            entries: 0,
60        }
61    }
62
63    /// Destroys this arena chunk.
64    ///
65    /// # Safety
66    ///
67    /// The caller must ensure that `len` elements of this chunk have been initialized.
68    #[inline]
69    unsafe fn destroy(&mut self, len: usize) {
70        // The branch on needs_drop() is an -O1 performance optimization.
71        // Without the branch, dropping TypedArena<T> takes linear time.
72        if mem::needs_drop::<T>() {
73            // SAFETY: The caller must ensure that `len` elements of this chunk have
74            // been initialized.
75            unsafe {
76                let slice = self.storage.as_mut();
77                slice[..len].assume_init_drop();
78            }
79        }
80    }
81
82    // Returns a pointer to the first allocated object.
83    #[inline]
84    fn start(&mut self) -> *mut T {
85        self.storage.as_ptr() as *mut T
86    }
87
88    // Returns a pointer to the end of the allocated space.
89    #[inline]
90    fn end(&mut self) -> *mut T {
91        unsafe {
92            if size_of::<T>() == 0 {
93                // A pointer as large as possible for zero-sized elements.
94                ptr::without_provenance_mut(!0)
95            } else {
96                self.start().add(self.storage.len())
97            }
98        }
99    }
100}
101
102// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
103// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
104// we stop growing. This scales well, from arenas that are barely used up to
105// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
106// the usual sizes of pages and huge pages on Linux.
107const PAGE: usize = 4096;
108const HUGE_PAGE: usize = 2 * 1024 * 1024;
109
110/// An arena that can hold objects of only one type.
111pub struct TypedArena<T> {
112    /// A pointer to the next object to be allocated.
113    ptr: Cell<*mut T>,
114
115    /// A pointer to the end of the allocated area. When this pointer is
116    /// reached, a new chunk is allocated.
117    end: Cell<*mut T>,
118
119    /// A vector of arena chunks.
120    chunks: RefCell<Vec<ArenaChunk<T>>>,
121
122    /// Marker indicating that dropping the arena causes its owned
123    /// instances of `T` to be dropped.
124    _own: PhantomData<T>,
125}
126
127impl<T> Default for TypedArena<T> {
128    /// Creates a new `TypedArena`.
129    fn default() -> TypedArena<T> {
130        TypedArena {
131            // We set both `ptr` and `end` to 0 so that the first call to
132            // alloc() will trigger a grow().
133            ptr: Cell::new(ptr::null_mut()),
134            end: Cell::new(ptr::null_mut()),
135            chunks: Default::default(),
136            _own: PhantomData,
137        }
138    }
139}
140
141impl<T> TypedArena<T> {
142    /// Allocates an object in the `TypedArena`, returning a reference to it.
143    #[inline]
144    pub fn alloc(&self, object: T) -> &mut T {
145        if self.ptr == self.end {
146            self.grow(1)
147        }
148
149        unsafe {
150            if size_of::<T>() == 0 {
151                self.ptr.set(self.ptr.get().wrapping_byte_add(1));
152                let ptr = ptr::NonNull::<T>::dangling().as_ptr();
153                // Don't drop the object. This `write` is equivalent to `forget`.
154                ptr::write(ptr, object);
155                &mut *ptr
156            } else {
157                let ptr = self.ptr.get();
158                // Advance the pointer.
159                self.ptr.set(self.ptr.get().add(1));
160                // Write into uninitialized memory.
161                ptr::write(ptr, object);
162                &mut *ptr
163            }
164        }
165    }
166
167    #[inline]
168    fn can_allocate(&self, additional: usize) -> bool {
169        // FIXME: this should *likely* use `offset_from`, but more
170        // investigation is needed (including running tests in miri).
171        let available_bytes = self.end.get().addr() - self.ptr.get().addr();
172        let additional_bytes = additional.checked_mul(size_of::<T>()).unwrap();
173        available_bytes >= additional_bytes
174    }
175
176    #[inline]
177    fn alloc_raw_slice(&self, len: usize) -> *mut T {
178        assert!(size_of::<T>() != 0);
179        assert!(len != 0);
180
181        // Ensure the current chunk can fit `len` objects.
182        if !self.can_allocate(len) {
183            self.grow(len);
184            debug_assert!(self.can_allocate(len));
185        }
186
187        let start_ptr = self.ptr.get();
188        // SAFETY: `can_allocate`/`grow` ensures that there is enough space for
189        // `len` elements.
190        unsafe { self.ptr.set(start_ptr.add(len)) };
191        start_ptr
192    }
193
194    /// Allocates the elements of this iterator into a contiguous slice in the `TypedArena`.
195    ///
196    /// Note: for reasons of reentrancy and panic safety we collect into a `SmallVec<[_; 8]>` before
197    /// storing the elements in the arena.
198    #[inline]
199    pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
200        self.try_alloc_from_iter(iter.into_iter().map(Ok::<T, !>)).into_ok()
201    }
202
203    /// Allocates the elements of this iterator into a contiguous slice in the `TypedArena`.
204    ///
205    /// Note: for reasons of reentrancy and panic safety we collect into a `SmallVec<[_; 8]>` before
206    /// storing the elements in the arena.
207    #[inline]
208    pub fn try_alloc_from_iter<E>(
209        &self,
210        iter: impl IntoIterator<Item = Result<T, E>>,
211    ) -> Result<&mut [T], E> {
212        // Despite the similarlty with `DroplessArena`, we cannot reuse their fast case. The reason
213        // is subtle: these arenas are reentrant. In other words, `iter` may very well be holding a
214        // reference to `self` and adding elements to the arena during iteration.
215        //
216        // For this reason, if we pre-allocated any space for the elements of this iterator, we'd
217        // have to track that some uninitialized elements are followed by some initialized elements,
218        // else we might accidentally drop uninitialized memory if something panics or if the
219        // iterator doesn't fill all the length we expected.
220        //
221        // So we collect all the elements beforehand, which takes care of reentrancy and panic
222        // safety. This function is much less hot than `DroplessArena::alloc_from_iter`, so it
223        // doesn't need to be hyper-optimized.
224        assert!(size_of::<T>() != 0);
225
226        let vec: Result<SmallVec<[T; 8]>, E> = iter.into_iter().collect();
227        let mut vec = vec?;
228        if vec.is_empty() {
229            return Ok(&mut []);
230        }
231        // Move the content to the arena by copying and then forgetting it.
232        let len = vec.len();
233        let start_ptr = self.alloc_raw_slice(len);
234        Ok(unsafe {
235            vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
236            vec.set_len(0);
237            slice::from_raw_parts_mut(start_ptr, len)
238        })
239    }
240
241    /// Grows the arena.
242    #[inline(never)]
243    #[cold]
244    fn grow(&self, additional: usize) {
245        unsafe {
246            // We need the element size to convert chunk sizes (ranging from
247            // PAGE to HUGE_PAGE bytes) to element counts.
248            let elem_size = cmp::max(1, size_of::<T>());
249            let mut chunks = self.chunks.borrow_mut();
250            let mut new_cap;
251            if let Some(last_chunk) = chunks.last_mut() {
252                // If a type is `!needs_drop`, we don't need to keep track of how many elements
253                // the chunk stores - the field will be ignored anyway.
254                if mem::needs_drop::<T>() {
255                    // FIXME: this should *likely* use `offset_from`, but more
256                    // investigation is needed (including running tests in miri).
257                    let used_bytes = self.ptr.get().addr() - last_chunk.start().addr();
258                    last_chunk.entries = used_bytes / size_of::<T>();
259                }
260
261                // If the previous chunk's len is less than HUGE_PAGE
262                // bytes, then this chunk will be least double the previous
263                // chunk's size.
264                new_cap = last_chunk.storage.len().min(HUGE_PAGE / elem_size / 2);
265                new_cap *= 2;
266            } else {
267                new_cap = PAGE / elem_size;
268            }
269            // Also ensure that this chunk can fit `additional`.
270            new_cap = cmp::max(additional, new_cap);
271
272            let mut chunk = ArenaChunk::<T>::new(new_cap);
273            self.ptr.set(chunk.start());
274            self.end.set(chunk.end());
275            chunks.push(chunk);
276        }
277    }
278
279    // Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
280    // chunks.
281    fn clear_last_chunk(&self, last_chunk: &mut ArenaChunk<T>) {
282        // Determine how much was filled.
283        let start = last_chunk.start().addr();
284        // We obtain the value of the pointer to the first uninitialized element.
285        let end = self.ptr.get().addr();
286        // We then calculate the number of elements to be dropped in the last chunk,
287        // which is the filled area's length.
288        let diff = if size_of::<T>() == 0 {
289            // `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
290            // the number of zero-sized values in the last and only chunk, just out of caution.
291            // Recall that `end` was incremented for each allocated value.
292            end - start
293        } else {
294            // FIXME: this should *likely* use `offset_from`, but more
295            // investigation is needed (including running tests in miri).
296            (end - start) / size_of::<T>()
297        };
298        // Pass that to the `destroy` method.
299        unsafe {
300            last_chunk.destroy(diff);
301        }
302        // Reset the chunk.
303        self.ptr.set(last_chunk.start());
304    }
305}
306
307unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
308    fn drop(&mut self) {
309        unsafe {
310            // Determine how much was filled.
311            let mut chunks_borrow = self.chunks.borrow_mut();
312            if let Some(mut last_chunk) = chunks_borrow.pop() {
313                // Drop the contents of the last chunk.
314                self.clear_last_chunk(&mut last_chunk);
315                // The last chunk will be dropped. Destroy all other chunks.
316                for chunk in chunks_borrow.iter_mut() {
317                    chunk.destroy(chunk.entries);
318                }
319            }
320            // Box handles deallocation of `last_chunk` and `self.chunks`.
321        }
322    }
323}
324
325unsafe impl<T: Send> Send for TypedArena<T> {}
326
327#[inline(always)]
328fn align_down(val: usize, align: usize) -> usize {
329    debug_assert!(align.is_power_of_two());
330    val & !(align - 1)
331}
332
333#[inline(always)]
334fn align_up(val: usize, align: usize) -> usize {
335    debug_assert!(align.is_power_of_two());
336    (val + align - 1) & !(align - 1)
337}
338
339// Pointer alignment is common in compiler types, so keep `DroplessArena` aligned to them
340// to optimize away alignment code.
341const DROPLESS_ALIGNMENT: usize = align_of::<usize>();
342
343/// An arena that can hold objects of multiple different types that impl `Copy`
344/// and/or satisfy `!mem::needs_drop`.
345pub struct DroplessArena {
346    /// A pointer to the start of the free space.
347    start: Cell<*mut u8>,
348
349    /// A pointer to the end of free space.
350    ///
351    /// The allocation proceeds downwards from the end of the chunk towards the
352    /// start. (This is slightly simpler and faster than allocating upwards,
353    /// see <https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html>.)
354    /// When this pointer crosses the start pointer, a new chunk is allocated.
355    ///
356    /// This is kept aligned to DROPLESS_ALIGNMENT.
357    end: Cell<*mut u8>,
358
359    /// A vector of arena chunks.
360    chunks: RefCell<Vec<ArenaChunk>>,
361}
362
363unsafe impl Send for DroplessArena {}
364
365impl Default for DroplessArena {
366    #[inline]
367    fn default() -> DroplessArena {
368        DroplessArena {
369            // We set both `start` and `end` to 0 so that the first call to
370            // alloc() will trigger a grow().
371            start: Cell::new(ptr::null_mut()),
372            end: Cell::new(ptr::null_mut()),
373            chunks: Default::default(),
374        }
375    }
376}
377
378impl DroplessArena {
379    #[inline(never)]
380    #[cold]
381    fn grow(&self, layout: Layout) {
382        // Add some padding so we can align `self.end` while
383        // still fitting in a `layout` allocation.
384        let additional = layout.size() + cmp::max(DROPLESS_ALIGNMENT, layout.align()) - 1;
385
386        unsafe {
387            let mut chunks = self.chunks.borrow_mut();
388            let mut new_cap;
389            if let Some(last_chunk) = chunks.last_mut() {
390                // There is no need to update `last_chunk.entries` because that
391                // field isn't used by `DroplessArena`.
392
393                // If the previous chunk's len is less than HUGE_PAGE
394                // bytes, then this chunk will be least double the previous
395                // chunk's size.
396                new_cap = last_chunk.storage.len().min(HUGE_PAGE / 2);
397                new_cap *= 2;
398            } else {
399                new_cap = PAGE;
400            }
401            // Also ensure that this chunk can fit `additional`.
402            new_cap = cmp::max(additional, new_cap);
403
404            let mut chunk = ArenaChunk::new(align_up(new_cap, PAGE));
405            self.start.set(chunk.start());
406
407            // Align the end to DROPLESS_ALIGNMENT.
408            let end = align_down(chunk.end().addr(), DROPLESS_ALIGNMENT);
409
410            // Make sure we don't go past `start`. This should not happen since the allocation
411            // should be at least DROPLESS_ALIGNMENT - 1 bytes.
412            debug_assert!(chunk.start().addr() <= end);
413
414            self.end.set(chunk.end().with_addr(end));
415
416            chunks.push(chunk);
417        }
418    }
419
420    #[inline]
421    pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
422        assert!(layout.size() != 0);
423
424        // This loop executes once or twice: if allocation fails the first
425        // time, the `grow` ensures it will succeed the second time.
426        loop {
427            let start = self.start.get().addr();
428            let old_end = self.end.get();
429            let end = old_end.addr();
430
431            // Align allocated bytes so that `self.end` stays aligned to
432            // DROPLESS_ALIGNMENT.
433            let bytes = align_up(layout.size(), DROPLESS_ALIGNMENT);
434
435            // Tell LLVM that `end` is aligned to DROPLESS_ALIGNMENT.
436            unsafe { intrinsics::assume(end == align_down(end, DROPLESS_ALIGNMENT)) };
437
438            if let Some(sub) = end.checked_sub(bytes) {
439                let new_end = align_down(sub, layout.align());
440                if start <= new_end {
441                    let new_end = old_end.with_addr(new_end);
442                    // `new_end` is aligned to DROPLESS_ALIGNMENT as `align_down`
443                    // preserves alignment as both `end` and `bytes` are already
444                    // aligned to DROPLESS_ALIGNMENT.
445                    self.end.set(new_end);
446                    return new_end;
447                }
448            }
449
450            // No free space left. Allocate a new chunk to satisfy the request.
451            // On failure the grow will panic or abort.
452            self.grow(layout);
453        }
454    }
455
456    #[inline]
457    pub fn alloc<T>(&self, object: T) -> &mut T {
458        assert!(!mem::needs_drop::<T>());
459        assert!(size_of::<T>() != 0);
460
461        let mem = self.alloc_raw(Layout::new::<T>()) as *mut T;
462
463        unsafe {
464            // Write into uninitialized memory.
465            ptr::write(mem, object);
466            &mut *mem
467        }
468    }
469
470    /// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
471    /// reference to it. Will panic if passed a zero-sized type.
472    ///
473    /// Panics:
474    ///
475    ///  - Zero-sized types
476    ///  - Zero-length slices
477    #[inline]
478    pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
479    where
480        T: Copy,
481    {
482        assert!(!mem::needs_drop::<T>());
483        assert!(size_of::<T>() != 0);
484        assert!(!slice.is_empty());
485
486        let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;
487
488        unsafe {
489            mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
490            slice::from_raw_parts_mut(mem, slice.len())
491        }
492    }
493
494    /// Used by `Lift` to check whether this slice is allocated
495    /// in this arena.
496    #[inline]
497    pub fn contains_slice<T>(&self, slice: &[T]) -> bool {
498        for chunk in self.chunks.borrow_mut().iter_mut() {
499            let ptr = slice.as_ptr().cast::<u8>().cast_mut();
500            if chunk.start() <= ptr && chunk.end() >= ptr {
501                return true;
502            }
503        }
504        false
505    }
506
507    /// Allocates a string slice that is copied into the `DroplessArena`, returning a
508    /// reference to it. Will panic if passed an empty string.
509    ///
510    /// Panics:
511    ///
512    ///  - Zero-length string
513    #[inline]
514    pub fn alloc_str(&self, string: &str) -> &str {
515        let slice = self.alloc_slice(string.as_bytes());
516
517        // SAFETY: the result has a copy of the same valid UTF-8 bytes.
518        unsafe { std::str::from_utf8_unchecked(slice) }
519    }
520
521    /// # Safety
522    ///
523    /// The caller must ensure that `mem` is valid for writes up to `size_of::<T>() * len`, and that
524    /// that memory stays allocated and not shared for the lifetime of `self`. This must hold even
525    /// if `iter.next()` allocates onto `self`.
526    #[inline]
527    unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
528        &self,
529        mut iter: I,
530        len: usize,
531        mem: *mut T,
532    ) -> &mut [T] {
533        let mut i = 0;
534        // Use a manual loop since LLVM manages to optimize it better for
535        // slice iterators
536        loop {
537            // SAFETY: The caller must ensure that `mem` is valid for writes up to
538            // `size_of::<T>() * len`.
539            unsafe {
540                match iter.next() {
541                    Some(value) if i < len => mem.add(i).write(value),
542                    Some(_) | None => {
543                        // We only return as many items as the iterator gave us, even
544                        // though it was supposed to give us `len`
545                        return slice::from_raw_parts_mut(mem, i);
546                    }
547                }
548            }
549            i += 1;
550        }
551    }
552
553    #[inline]
554    pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
555        // Warning: this function is reentrant: `iter` could hold a reference to `&self` and
556        // allocate additional elements while we're iterating.
557        let iter = iter.into_iter();
558        assert!(size_of::<T>() != 0);
559        assert!(!mem::needs_drop::<T>());
560
561        let size_hint = iter.size_hint();
562
563        match size_hint {
564            (min, Some(max)) if min == max => {
565                // We know the exact number of elements the iterator expects to produce here.
566                let len = min;
567
568                if len == 0 {
569                    return &mut [];
570                }
571
572                let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
573                // SAFETY: `write_from_iter` doesn't touch `self`. It only touches the slice we just
574                // reserved. If the iterator panics or doesn't output `len` elements, this will
575                // leave some unallocated slots in the arena, which is fine because we do not call
576                // `drop`.
577                unsafe { self.write_from_iter(iter, len, mem) }
578            }
579            (_, _) => outline(move || self.try_alloc_from_iter(iter.map(Ok::<T, !>)).into_ok()),
580        }
581    }
582
583    #[inline]
584    pub fn try_alloc_from_iter<T, E>(
585        &self,
586        iter: impl IntoIterator<Item = Result<T, E>>,
587    ) -> Result<&mut [T], E> {
588        // Despite the similarlty with `alloc_from_iter`, we cannot reuse their fast case, as we
589        // cannot know the minimum length of the iterator in this case.
590        assert!(size_of::<T>() != 0);
591
592        // Takes care of reentrancy.
593        let vec: Result<SmallVec<[T; 8]>, E> = iter.into_iter().collect();
594        let mut vec = vec?;
595        if vec.is_empty() {
596            return Ok(&mut []);
597        }
598        // Move the content to the arena by copying and then forgetting it.
599        let len = vec.len();
600        Ok(unsafe {
601            let start_ptr = self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
602            vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
603            vec.set_len(0);
604            slice::from_raw_parts_mut(start_ptr, len)
605        })
606    }
607}
608
609/// Declare an `Arena` containing one dropless arena and many typed arenas (the
610/// types of the typed arenas are specified by the arguments).
611///
612/// There are three cases of interest.
613/// - Types that are `Copy`: these need not be specified in the arguments. They
614///   will use the `DroplessArena`.
615/// - Types that are `!Copy` and `!Drop`: these must be specified in the
616///   arguments. An empty `TypedArena` will be created for each one, but the
617///   `DroplessArena` will always be used and the `TypedArena` will stay empty.
618///   This is odd but harmless, because an empty arena allocates no memory.
619/// - Types that are `!Copy` and `Drop`: these must be specified in the
620///   arguments. The `TypedArena` will be used for them.
621///
622#[rustc_macro_transparency = "semitransparent"]
623pub macro declare_arena([$($a:tt $name:ident: $ty:ty,)*]) {
624    #[derive(Default)]
625    pub struct Arena<'tcx> {
626        pub dropless: $crate::DroplessArena,
627        $($name: $crate::TypedArena<$ty>,)*
628    }
629
630    pub trait ArenaAllocatable<'tcx, C = rustc_arena::IsNotCopy>: Sized {
631        #[allow(clippy::mut_from_ref)]
632        fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self;
633        #[allow(clippy::mut_from_ref)]
634        fn allocate_from_iter(
635            arena: &'tcx Arena<'tcx>,
636            iter: impl ::std::iter::IntoIterator<Item = Self>,
637        ) -> &'tcx mut [Self];
638    }
639
640    // Any type that impls `Copy` can be arena-allocated in the `DroplessArena`.
641    impl<'tcx, T: Copy> ArenaAllocatable<'tcx, rustc_arena::IsCopy> for T {
642        #[inline]
643        #[allow(clippy::mut_from_ref)]
644        fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self {
645            arena.dropless.alloc(self)
646        }
647        #[inline]
648        #[allow(clippy::mut_from_ref)]
649        fn allocate_from_iter(
650            arena: &'tcx Arena<'tcx>,
651            iter: impl ::std::iter::IntoIterator<Item = Self>,
652        ) -> &'tcx mut [Self] {
653            arena.dropless.alloc_from_iter(iter)
654        }
655    }
656    $(
657        impl<'tcx> ArenaAllocatable<'tcx, rustc_arena::IsNotCopy> for $ty {
658            #[inline]
659            fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self {
660                if !::std::mem::needs_drop::<Self>() {
661                    arena.dropless.alloc(self)
662                } else {
663                    arena.$name.alloc(self)
664                }
665            }
666
667            #[inline]
668            #[allow(clippy::mut_from_ref)]
669            fn allocate_from_iter(
670                arena: &'tcx Arena<'tcx>,
671                iter: impl ::std::iter::IntoIterator<Item = Self>,
672            ) -> &'tcx mut [Self] {
673                if !::std::mem::needs_drop::<Self>() {
674                    arena.dropless.alloc_from_iter(iter)
675                } else {
676                    arena.$name.alloc_from_iter(iter)
677                }
678            }
679        }
680    )*
681
682    impl<'tcx> Arena<'tcx> {
683        #[inline]
684        #[allow(clippy::mut_from_ref)]
685        pub fn alloc<T: ArenaAllocatable<'tcx, C>, C>(&'tcx self, value: T) -> &mut T {
686            value.allocate_on(self)
687        }
688
689        // Any type that impls `Copy` can have slices be arena-allocated in the `DroplessArena`.
690        #[inline]
691        #[allow(clippy::mut_from_ref)]
692        pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
693            if value.is_empty() {
694                return &mut [];
695            }
696            self.dropless.alloc_slice(value)
697        }
698
699        #[inline]
700        pub fn alloc_str(&self, string: &str) -> &str {
701            if string.is_empty() {
702                return "";
703            }
704            self.dropless.alloc_str(string)
705        }
706
707        #[allow(clippy::mut_from_ref)]
708        pub fn alloc_from_iter<T: ArenaAllocatable<'tcx, C>, C>(
709            &'tcx self,
710            iter: impl ::std::iter::IntoIterator<Item = T>,
711        ) -> &mut [T] {
712            T::allocate_from_iter(self, iter)
713        }
714    }
715}
716
717// Marker types that let us give different behaviour for arenas allocating
718// `Copy` types vs `!Copy` types.
719pub struct IsCopy;
720pub struct IsNotCopy;
721
722#[cfg(test)]
723mod tests;