rustc_arena/
lib.rs

1//! The arena, a fast but limited type of allocator.
2//!
3//! Arenas are a type of allocator that destroy the objects within, all at
4//! once, once the arena itself is destroyed. They do not support deallocation
5//! of individual objects while the arena itself is still alive. The benefit
6//! of an arena is very fast allocation; just a pointer bump.
7//!
8//! This crate implements several kinds of arena.
9
10// tidy-alphabetical-start
11#![allow(clippy::mut_from_ref)] // Arena allocators are one place where this pattern is fine.
12#![allow(internal_features)]
13#![cfg_attr(test, feature(test))]
14#![deny(unsafe_op_in_unsafe_fn)]
15#![doc(
16    html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
17    test(no_crate_inject, attr(deny(warnings)))
18)]
19#![doc(rust_logo)]
20#![feature(core_intrinsics)]
21#![feature(decl_macro)]
22#![feature(dropck_eyepatch)]
23#![feature(maybe_uninit_slice)]
24#![feature(rustc_attrs)]
25#![feature(rustdoc_internals)]
26// tidy-alphabetical-end
27
28use std::alloc::Layout;
29use std::cell::{Cell, RefCell};
30use std::marker::PhantomData;
31use std::mem::{self, MaybeUninit};
32use std::ptr::{self, NonNull};
33use std::{cmp, intrinsics, slice};
34
35use smallvec::SmallVec;
36
37/// This calls the passed function while ensuring it won't be inlined into the caller.
38#[inline(never)]
39#[cold]
40fn outline<F: FnOnce() -> R, R>(f: F) -> R {
41    f()
42}
43
44struct ArenaChunk<T = u8> {
45    /// The raw storage for the arena chunk.
46    storage: NonNull<[MaybeUninit<T>]>,
47    /// The number of valid entries in the chunk.
48    entries: usize,
49}
50
51unsafe impl<#[may_dangle] T> Drop for ArenaChunk<T> {
52    fn drop(&mut self) {
53        unsafe { drop(Box::from_raw(self.storage.as_mut())) }
54    }
55}
56
57impl<T> ArenaChunk<T> {
58    #[inline]
59    unsafe fn new(capacity: usize) -> ArenaChunk<T> {
60        ArenaChunk {
61            storage: NonNull::from(Box::leak(Box::new_uninit_slice(capacity))),
62            entries: 0,
63        }
64    }
65
66    /// Destroys this arena chunk.
67    ///
68    /// # Safety
69    ///
70    /// The caller must ensure that `len` elements of this chunk have been initialized.
71    #[inline]
72    unsafe fn destroy(&mut self, len: usize) {
73        // The branch on needs_drop() is an -O1 performance optimization.
74        // Without the branch, dropping TypedArena<T> takes linear time.
75        if mem::needs_drop::<T>() {
76            // SAFETY: The caller must ensure that `len` elements of this chunk have
77            // been initialized.
78            unsafe {
79                let slice = self.storage.as_mut();
80                slice[..len].assume_init_drop();
81            }
82        }
83    }
84
85    // Returns a pointer to the first allocated object.
86    #[inline]
87    fn start(&mut self) -> *mut T {
88        self.storage.as_ptr() as *mut T
89    }
90
91    // Returns a pointer to the end of the allocated space.
92    #[inline]
93    fn end(&mut self) -> *mut T {
94        unsafe {
95            if size_of::<T>() == 0 {
96                // A pointer as large as possible for zero-sized elements.
97                ptr::without_provenance_mut(!0)
98            } else {
99                self.start().add(self.storage.len())
100            }
101        }
102    }
103}
104
105// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
106// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
107// we stop growing. This scales well, from arenas that are barely used up to
108// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
109// the usual sizes of pages and huge pages on Linux.
110const PAGE: usize = 4096;
111const HUGE_PAGE: usize = 2 * 1024 * 1024;
112
113/// An arena that can hold objects of only one type.
114pub struct TypedArena<T> {
115    /// A pointer to the next object to be allocated.
116    ptr: Cell<*mut T>,
117
118    /// A pointer to the end of the allocated area. When this pointer is
119    /// reached, a new chunk is allocated.
120    end: Cell<*mut T>,
121
122    /// A vector of arena chunks.
123    chunks: RefCell<Vec<ArenaChunk<T>>>,
124
125    /// Marker indicating that dropping the arena causes its owned
126    /// instances of `T` to be dropped.
127    _own: PhantomData<T>,
128}
129
130impl<T> Default for TypedArena<T> {
131    /// Creates a new `TypedArena`.
132    fn default() -> TypedArena<T> {
133        TypedArena {
134            // We set both `ptr` and `end` to 0 so that the first call to
135            // alloc() will trigger a grow().
136            ptr: Cell::new(ptr::null_mut()),
137            end: Cell::new(ptr::null_mut()),
138            chunks: Default::default(),
139            _own: PhantomData,
140        }
141    }
142}
143
144impl<T> TypedArena<T> {
145    /// Allocates an object in the `TypedArena`, returning a reference to it.
146    #[inline]
147    pub fn alloc(&self, object: T) -> &mut T {
148        if self.ptr == self.end {
149            self.grow(1)
150        }
151
152        unsafe {
153            if size_of::<T>() == 0 {
154                self.ptr.set(self.ptr.get().wrapping_byte_add(1));
155                let ptr = ptr::NonNull::<T>::dangling().as_ptr();
156                // Don't drop the object. This `write` is equivalent to `forget`.
157                ptr::write(ptr, object);
158                &mut *ptr
159            } else {
160                let ptr = self.ptr.get();
161                // Advance the pointer.
162                self.ptr.set(self.ptr.get().add(1));
163                // Write into uninitialized memory.
164                ptr::write(ptr, object);
165                &mut *ptr
166            }
167        }
168    }
169
170    #[inline]
171    fn can_allocate(&self, additional: usize) -> bool {
172        // FIXME: this should *likely* use `offset_from`, but more
173        // investigation is needed (including running tests in miri).
174        let available_bytes = self.end.get().addr() - self.ptr.get().addr();
175        let additional_bytes = additional.checked_mul(size_of::<T>()).unwrap();
176        available_bytes >= additional_bytes
177    }
178
179    #[inline]
180    fn alloc_raw_slice(&self, len: usize) -> *mut T {
181        assert!(size_of::<T>() != 0);
182        assert!(len != 0);
183
184        // Ensure the current chunk can fit `len` objects.
185        if !self.can_allocate(len) {
186            self.grow(len);
187            debug_assert!(self.can_allocate(len));
188        }
189
190        let start_ptr = self.ptr.get();
191        // SAFETY: `can_allocate`/`grow` ensures that there is enough space for
192        // `len` elements.
193        unsafe { self.ptr.set(start_ptr.add(len)) };
194        start_ptr
195    }
196
197    /// Allocates the elements of this iterator into a contiguous slice in the `TypedArena`.
198    ///
199    /// Note: for reasons of reentrancy and panic safety we collect into a `SmallVec<[_; 8]>` before
200    /// storing the elements in the arena.
201    #[inline]
202    pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
203        // Despite the similarlty with `DroplessArena`, we cannot reuse their fast case. The reason
204        // is subtle: these arenas are reentrant. In other words, `iter` may very well be holding a
205        // reference to `self` and adding elements to the arena during iteration.
206        //
207        // For this reason, if we pre-allocated any space for the elements of this iterator, we'd
208        // have to track that some uninitialized elements are followed by some initialized elements,
209        // else we might accidentally drop uninitialized memory if something panics or if the
210        // iterator doesn't fill all the length we expected.
211        //
212        // So we collect all the elements beforehand, which takes care of reentrancy and panic
213        // safety. This function is much less hot than `DroplessArena::alloc_from_iter`, so it
214        // doesn't need to be hyper-optimized.
215        assert!(size_of::<T>() != 0);
216
217        let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
218        if vec.is_empty() {
219            return &mut [];
220        }
221        // Move the content to the arena by copying and then forgetting it.
222        let len = vec.len();
223        let start_ptr = self.alloc_raw_slice(len);
224        unsafe {
225            vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
226            vec.set_len(0);
227            slice::from_raw_parts_mut(start_ptr, len)
228        }
229    }
230
231    /// Grows the arena.
232    #[inline(never)]
233    #[cold]
234    fn grow(&self, additional: usize) {
235        unsafe {
236            // We need the element size to convert chunk sizes (ranging from
237            // PAGE to HUGE_PAGE bytes) to element counts.
238            let elem_size = cmp::max(1, size_of::<T>());
239            let mut chunks = self.chunks.borrow_mut();
240            let mut new_cap;
241            if let Some(last_chunk) = chunks.last_mut() {
242                // If a type is `!needs_drop`, we don't need to keep track of how many elements
243                // the chunk stores - the field will be ignored anyway.
244                if mem::needs_drop::<T>() {
245                    // FIXME: this should *likely* use `offset_from`, but more
246                    // investigation is needed (including running tests in miri).
247                    let used_bytes = self.ptr.get().addr() - last_chunk.start().addr();
248                    last_chunk.entries = used_bytes / size_of::<T>();
249                }
250
251                // If the previous chunk's len is less than HUGE_PAGE
252                // bytes, then this chunk will be least double the previous
253                // chunk's size.
254                new_cap = last_chunk.storage.len().min(HUGE_PAGE / elem_size / 2);
255                new_cap *= 2;
256            } else {
257                new_cap = PAGE / elem_size;
258            }
259            // Also ensure that this chunk can fit `additional`.
260            new_cap = cmp::max(additional, new_cap);
261
262            let mut chunk = ArenaChunk::<T>::new(new_cap);
263            self.ptr.set(chunk.start());
264            self.end.set(chunk.end());
265            chunks.push(chunk);
266        }
267    }
268
269    // Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
270    // chunks.
271    fn clear_last_chunk(&self, last_chunk: &mut ArenaChunk<T>) {
272        // Determine how much was filled.
273        let start = last_chunk.start().addr();
274        // We obtain the value of the pointer to the first uninitialized element.
275        let end = self.ptr.get().addr();
276        // We then calculate the number of elements to be dropped in the last chunk,
277        // which is the filled area's length.
278        let diff = if size_of::<T>() == 0 {
279            // `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
280            // the number of zero-sized values in the last and only chunk, just out of caution.
281            // Recall that `end` was incremented for each allocated value.
282            end - start
283        } else {
284            // FIXME: this should *likely* use `offset_from`, but more
285            // investigation is needed (including running tests in miri).
286            (end - start) / size_of::<T>()
287        };
288        // Pass that to the `destroy` method.
289        unsafe {
290            last_chunk.destroy(diff);
291        }
292        // Reset the chunk.
293        self.ptr.set(last_chunk.start());
294    }
295}
296
297unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
298    fn drop(&mut self) {
299        unsafe {
300            // Determine how much was filled.
301            let mut chunks_borrow = self.chunks.borrow_mut();
302            if let Some(mut last_chunk) = chunks_borrow.pop() {
303                // Drop the contents of the last chunk.
304                self.clear_last_chunk(&mut last_chunk);
305                // The last chunk will be dropped. Destroy all other chunks.
306                for chunk in chunks_borrow.iter_mut() {
307                    chunk.destroy(chunk.entries);
308                }
309            }
310            // Box handles deallocation of `last_chunk` and `self.chunks`.
311        }
312    }
313}
314
315unsafe impl<T: Send> Send for TypedArena<T> {}
316
317#[inline(always)]
318fn align_down(val: usize, align: usize) -> usize {
319    debug_assert!(align.is_power_of_two());
320    val & !(align - 1)
321}
322
323#[inline(always)]
324fn align_up(val: usize, align: usize) -> usize {
325    debug_assert!(align.is_power_of_two());
326    (val + align - 1) & !(align - 1)
327}
328
329// Pointer alignment is common in compiler types, so keep `DroplessArena` aligned to them
330// to optimize away alignment code.
331const DROPLESS_ALIGNMENT: usize = align_of::<usize>();
332
333/// An arena that can hold objects of multiple different types that impl `Copy`
334/// and/or satisfy `!mem::needs_drop`.
335pub struct DroplessArena {
336    /// A pointer to the start of the free space.
337    start: Cell<*mut u8>,
338
339    /// A pointer to the end of free space.
340    ///
341    /// The allocation proceeds downwards from the end of the chunk towards the
342    /// start. (This is slightly simpler and faster than allocating upwards,
343    /// see <https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html>.)
344    /// When this pointer crosses the start pointer, a new chunk is allocated.
345    ///
346    /// This is kept aligned to DROPLESS_ALIGNMENT.
347    end: Cell<*mut u8>,
348
349    /// A vector of arena chunks.
350    chunks: RefCell<Vec<ArenaChunk>>,
351}
352
353unsafe impl Send for DroplessArena {}
354
355impl Default for DroplessArena {
356    #[inline]
357    fn default() -> DroplessArena {
358        DroplessArena {
359            // We set both `start` and `end` to 0 so that the first call to
360            // alloc() will trigger a grow().
361            start: Cell::new(ptr::null_mut()),
362            end: Cell::new(ptr::null_mut()),
363            chunks: Default::default(),
364        }
365    }
366}
367
368impl DroplessArena {
369    #[inline(never)]
370    #[cold]
371    fn grow(&self, layout: Layout) {
372        // Add some padding so we can align `self.end` while
373        // still fitting in a `layout` allocation.
374        let additional = layout.size() + cmp::max(DROPLESS_ALIGNMENT, layout.align()) - 1;
375
376        unsafe {
377            let mut chunks = self.chunks.borrow_mut();
378            let mut new_cap;
379            if let Some(last_chunk) = chunks.last_mut() {
380                // There is no need to update `last_chunk.entries` because that
381                // field isn't used by `DroplessArena`.
382
383                // If the previous chunk's len is less than HUGE_PAGE
384                // bytes, then this chunk will be least double the previous
385                // chunk's size.
386                new_cap = last_chunk.storage.len().min(HUGE_PAGE / 2);
387                new_cap *= 2;
388            } else {
389                new_cap = PAGE;
390            }
391            // Also ensure that this chunk can fit `additional`.
392            new_cap = cmp::max(additional, new_cap);
393
394            let mut chunk = ArenaChunk::new(align_up(new_cap, PAGE));
395            self.start.set(chunk.start());
396
397            // Align the end to DROPLESS_ALIGNMENT.
398            let end = align_down(chunk.end().addr(), DROPLESS_ALIGNMENT);
399
400            // Make sure we don't go past `start`. This should not happen since the allocation
401            // should be at least DROPLESS_ALIGNMENT - 1 bytes.
402            debug_assert!(chunk.start().addr() <= end);
403
404            self.end.set(chunk.end().with_addr(end));
405
406            chunks.push(chunk);
407        }
408    }
409
410    #[inline]
411    pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
412        assert!(layout.size() != 0);
413
414        // This loop executes once or twice: if allocation fails the first
415        // time, the `grow` ensures it will succeed the second time.
416        loop {
417            let start = self.start.get().addr();
418            let old_end = self.end.get();
419            let end = old_end.addr();
420
421            // Align allocated bytes so that `self.end` stays aligned to
422            // DROPLESS_ALIGNMENT.
423            let bytes = align_up(layout.size(), DROPLESS_ALIGNMENT);
424
425            // Tell LLVM that `end` is aligned to DROPLESS_ALIGNMENT.
426            unsafe { intrinsics::assume(end == align_down(end, DROPLESS_ALIGNMENT)) };
427
428            if let Some(sub) = end.checked_sub(bytes) {
429                let new_end = align_down(sub, layout.align());
430                if start <= new_end {
431                    let new_end = old_end.with_addr(new_end);
432                    // `new_end` is aligned to DROPLESS_ALIGNMENT as `align_down`
433                    // preserves alignment as both `end` and `bytes` are already
434                    // aligned to DROPLESS_ALIGNMENT.
435                    self.end.set(new_end);
436                    return new_end;
437                }
438            }
439
440            // No free space left. Allocate a new chunk to satisfy the request.
441            // On failure the grow will panic or abort.
442            self.grow(layout);
443        }
444    }
445
446    #[inline]
447    pub fn alloc<T>(&self, object: T) -> &mut T {
448        assert!(!mem::needs_drop::<T>());
449        assert!(size_of::<T>() != 0);
450
451        let mem = self.alloc_raw(Layout::new::<T>()) as *mut T;
452
453        unsafe {
454            // Write into uninitialized memory.
455            ptr::write(mem, object);
456            &mut *mem
457        }
458    }
459
460    /// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
461    /// reference to it. Will panic if passed a zero-sized type.
462    ///
463    /// Panics:
464    ///
465    ///  - Zero-sized types
466    ///  - Zero-length slices
467    #[inline]
468    pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
469    where
470        T: Copy,
471    {
472        assert!(!mem::needs_drop::<T>());
473        assert!(size_of::<T>() != 0);
474        assert!(!slice.is_empty());
475
476        let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;
477
478        unsafe {
479            mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
480            slice::from_raw_parts_mut(mem, slice.len())
481        }
482    }
483
484    /// Used by `Lift` to check whether this slice is allocated
485    /// in this arena.
486    #[inline]
487    pub fn contains_slice<T>(&self, slice: &[T]) -> bool {
488        for chunk in self.chunks.borrow_mut().iter_mut() {
489            let ptr = slice.as_ptr().cast::<u8>().cast_mut();
490            if chunk.start() <= ptr && chunk.end() >= ptr {
491                return true;
492            }
493        }
494        false
495    }
496
497    /// Allocates a string slice that is copied into the `DroplessArena`, returning a
498    /// reference to it. Will panic if passed an empty string.
499    ///
500    /// Panics:
501    ///
502    ///  - Zero-length string
503    #[inline]
504    pub fn alloc_str(&self, string: &str) -> &str {
505        let slice = self.alloc_slice(string.as_bytes());
506
507        // SAFETY: the result has a copy of the same valid UTF-8 bytes.
508        unsafe { std::str::from_utf8_unchecked(slice) }
509    }
510
511    /// # Safety
512    ///
513    /// The caller must ensure that `mem` is valid for writes up to `size_of::<T>() * len`, and that
514    /// that memory stays allocated and not shared for the lifetime of `self`. This must hold even
515    /// if `iter.next()` allocates onto `self`.
516    #[inline]
517    unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
518        &self,
519        mut iter: I,
520        len: usize,
521        mem: *mut T,
522    ) -> &mut [T] {
523        let mut i = 0;
524        // Use a manual loop since LLVM manages to optimize it better for
525        // slice iterators
526        loop {
527            // SAFETY: The caller must ensure that `mem` is valid for writes up to
528            // `size_of::<T>() * len`.
529            unsafe {
530                match iter.next() {
531                    Some(value) if i < len => mem.add(i).write(value),
532                    Some(_) | None => {
533                        // We only return as many items as the iterator gave us, even
534                        // though it was supposed to give us `len`
535                        return slice::from_raw_parts_mut(mem, i);
536                    }
537                }
538            }
539            i += 1;
540        }
541    }
542
543    #[inline]
544    pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
545        // Warning: this function is reentrant: `iter` could hold a reference to `&self` and
546        // allocate additional elements while we're iterating.
547        let iter = iter.into_iter();
548        assert!(size_of::<T>() != 0);
549        assert!(!mem::needs_drop::<T>());
550
551        let size_hint = iter.size_hint();
552
553        match size_hint {
554            (min, Some(max)) if min == max => {
555                // We know the exact number of elements the iterator expects to produce here.
556                let len = min;
557
558                if len == 0 {
559                    return &mut [];
560                }
561
562                let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
563                // SAFETY: `write_from_iter` doesn't touch `self`. It only touches the slice we just
564                // reserved. If the iterator panics or doesn't output `len` elements, this will
565                // leave some unallocated slots in the arena, which is fine because we do not call
566                // `drop`.
567                unsafe { self.write_from_iter(iter, len, mem) }
568            }
569            (_, _) => {
570                outline(move || -> &mut [T] {
571                    // Takes care of reentrancy.
572                    let mut vec: SmallVec<[_; 8]> = iter.collect();
573                    if vec.is_empty() {
574                        return &mut [];
575                    }
576                    // Move the content to the arena by copying it and then forgetting
577                    // the content of the SmallVec
578                    unsafe {
579                        let len = vec.len();
580                        let start_ptr =
581                            self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
582                        vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
583                        vec.set_len(0);
584                        slice::from_raw_parts_mut(start_ptr, len)
585                    }
586                })
587            }
588        }
589    }
590}
591
592/// Declare an `Arena` containing one dropless arena and many typed arenas (the
593/// types of the typed arenas are specified by the arguments).
594///
595/// There are three cases of interest.
596/// - Types that are `Copy`: these need not be specified in the arguments. They
597///   will use the `DroplessArena`.
598/// - Types that are `!Copy` and `!Drop`: these must be specified in the
599///   arguments. An empty `TypedArena` will be created for each one, but the
600///   `DroplessArena` will always be used and the `TypedArena` will stay empty.
601///   This is odd but harmless, because an empty arena allocates no memory.
602/// - Types that are `!Copy` and `Drop`: these must be specified in the
603///   arguments. The `TypedArena` will be used for them.
604///
605#[rustc_macro_transparency = "semitransparent"]
606pub macro declare_arena([$($a:tt $name:ident: $ty:ty,)*]) {
607    #[derive(Default)]
608    pub struct Arena<'tcx> {
609        pub dropless: $crate::DroplessArena,
610        $($name: $crate::TypedArena<$ty>,)*
611    }
612
613    pub trait ArenaAllocatable<'tcx, C = rustc_arena::IsNotCopy>: Sized {
614        #[allow(clippy::mut_from_ref)]
615        fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self;
616        #[allow(clippy::mut_from_ref)]
617        fn allocate_from_iter(
618            arena: &'tcx Arena<'tcx>,
619            iter: impl ::std::iter::IntoIterator<Item = Self>,
620        ) -> &'tcx mut [Self];
621    }
622
623    // Any type that impls `Copy` can be arena-allocated in the `DroplessArena`.
624    impl<'tcx, T: Copy> ArenaAllocatable<'tcx, rustc_arena::IsCopy> for T {
625        #[inline]
626        #[allow(clippy::mut_from_ref)]
627        fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self {
628            arena.dropless.alloc(self)
629        }
630        #[inline]
631        #[allow(clippy::mut_from_ref)]
632        fn allocate_from_iter(
633            arena: &'tcx Arena<'tcx>,
634            iter: impl ::std::iter::IntoIterator<Item = Self>,
635        ) -> &'tcx mut [Self] {
636            arena.dropless.alloc_from_iter(iter)
637        }
638    }
639    $(
640        impl<'tcx> ArenaAllocatable<'tcx, rustc_arena::IsNotCopy> for $ty {
641            #[inline]
642            fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self {
643                if !::std::mem::needs_drop::<Self>() {
644                    arena.dropless.alloc(self)
645                } else {
646                    arena.$name.alloc(self)
647                }
648            }
649
650            #[inline]
651            #[allow(clippy::mut_from_ref)]
652            fn allocate_from_iter(
653                arena: &'tcx Arena<'tcx>,
654                iter: impl ::std::iter::IntoIterator<Item = Self>,
655            ) -> &'tcx mut [Self] {
656                if !::std::mem::needs_drop::<Self>() {
657                    arena.dropless.alloc_from_iter(iter)
658                } else {
659                    arena.$name.alloc_from_iter(iter)
660                }
661            }
662        }
663    )*
664
665    impl<'tcx> Arena<'tcx> {
666        #[inline]
667        #[allow(clippy::mut_from_ref)]
668        pub fn alloc<T: ArenaAllocatable<'tcx, C>, C>(&'tcx self, value: T) -> &mut T {
669            value.allocate_on(self)
670        }
671
672        // Any type that impls `Copy` can have slices be arena-allocated in the `DroplessArena`.
673        #[inline]
674        #[allow(clippy::mut_from_ref)]
675        pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
676            if value.is_empty() {
677                return &mut [];
678            }
679            self.dropless.alloc_slice(value)
680        }
681
682        #[inline]
683        pub fn alloc_str(&self, string: &str) -> &str {
684            if string.is_empty() {
685                return "";
686            }
687            self.dropless.alloc_str(string)
688        }
689
690        #[allow(clippy::mut_from_ref)]
691        pub fn alloc_from_iter<T: ArenaAllocatable<'tcx, C>, C>(
692            &'tcx self,
693            iter: impl ::std::iter::IntoIterator<Item = T>,
694        ) -> &mut [T] {
695            T::allocate_from_iter(self, iter)
696        }
697    }
698}
699
700// Marker types that let us give different behaviour for arenas allocating
701// `Copy` types vs `!Copy` types.
702pub struct IsCopy;
703pub struct IsNotCopy;
704
705#[cfg(test)]
706mod tests;