1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//! The code in this module gathers up all of the inherent impls in
//! the current crate and organizes them in a map. It winds up
//! touching the whole crate and thus must be recomputed completely
//! for any change, but it is very cheap to compute. In practice, most
//! code in the compiler never *directly* requests this map. Instead,
//! it requests the inherent impls specific to some type (via
//! `tcx.inherent_impls(def_id)`). That value, however,
//! is computed by selecting an idea from this table.

use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::ty::fast_reject::{simplify_type, SimplifiedType, TreatParams};
use rustc_middle::ty::{self, CrateInherentImpls, Ty, TyCtxt};
use rustc_span::symbol::sym;
use rustc_span::ErrorGuaranteed;

use crate::errors;

/// On-demand query: yields a map containing all types mapped to their inherent impls.
pub fn crate_inherent_impls(
    tcx: TyCtxt<'_>,
    (): (),
) -> Result<&'_ CrateInherentImpls, ErrorGuaranteed> {
    let mut collect = InherentCollect { tcx, impls_map: Default::default() };
    let mut res = Ok(());
    for id in tcx.hir().items() {
        res = res.and(collect.check_item(id));
    }
    res?;
    Ok(tcx.arena.alloc(collect.impls_map))
}

pub fn crate_incoherent_impls(
    tcx: TyCtxt<'_>,
    simp: SimplifiedType,
) -> Result<&[DefId], ErrorGuaranteed> {
    let crate_map = tcx.crate_inherent_impls(())?;
    Ok(tcx.arena.alloc_from_iter(
        crate_map.incoherent_impls.get(&simp).unwrap_or(&Vec::new()).iter().map(|d| d.to_def_id()),
    ))
}

/// On-demand query: yields a vector of the inherent impls for a specific type.
pub fn inherent_impls(tcx: TyCtxt<'_>, ty_def_id: LocalDefId) -> Result<&[DefId], ErrorGuaranteed> {
    let crate_map = tcx.crate_inherent_impls(())?;
    Ok(match crate_map.inherent_impls.get(&ty_def_id) {
        Some(v) => &v[..],
        None => &[],
    })
}

struct InherentCollect<'tcx> {
    tcx: TyCtxt<'tcx>,
    impls_map: CrateInherentImpls,
}

impl<'tcx> InherentCollect<'tcx> {
    fn check_def_id(
        &mut self,
        impl_def_id: LocalDefId,
        self_ty: Ty<'tcx>,
        ty_def_id: DefId,
    ) -> Result<(), ErrorGuaranteed> {
        if let Some(ty_def_id) = ty_def_id.as_local() {
            // Add the implementation to the mapping from implementation to base
            // type def ID, if there is a base type for this implementation and
            // the implementation does not have any associated traits.
            let vec = self.impls_map.inherent_impls.entry(ty_def_id).or_default();
            vec.push(impl_def_id.to_def_id());
            return Ok(());
        }

        if self.tcx.features().rustc_attrs {
            let items = self.tcx.associated_item_def_ids(impl_def_id);

            if !self.tcx.has_attr(ty_def_id, sym::rustc_has_incoherent_inherent_impls) {
                let impl_span = self.tcx.def_span(impl_def_id);
                return Err(self.tcx.dcx().emit_err(errors::InherentTyOutside { span: impl_span }));
            }

            for &impl_item in items {
                if !self.tcx.has_attr(impl_item, sym::rustc_allow_incoherent_impl) {
                    let impl_span = self.tcx.def_span(impl_def_id);
                    return Err(self.tcx.dcx().emit_err(errors::InherentTyOutsideRelevant {
                        span: impl_span,
                        help_span: self.tcx.def_span(impl_item),
                    }));
                }
            }

            if let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsCandidateKey) {
                self.impls_map.incoherent_impls.entry(simp).or_default().push(impl_def_id);
            } else {
                bug!("unexpected self type: {:?}", self_ty);
            }
            Ok(())
        } else {
            let impl_span = self.tcx.def_span(impl_def_id);
            Err(self.tcx.dcx().emit_err(errors::InherentTyOutsideNew { span: impl_span }))
        }
    }

    fn check_primitive_impl(
        &mut self,
        impl_def_id: LocalDefId,
        ty: Ty<'tcx>,
    ) -> Result<(), ErrorGuaranteed> {
        let items = self.tcx.associated_item_def_ids(impl_def_id);
        if !self.tcx.hir().rustc_coherence_is_core() {
            if self.tcx.features().rustc_attrs {
                for &impl_item in items {
                    if !self.tcx.has_attr(impl_item, sym::rustc_allow_incoherent_impl) {
                        let span = self.tcx.def_span(impl_def_id);
                        return Err(self.tcx.dcx().emit_err(errors::InherentTyOutsidePrimitive {
                            span,
                            help_span: self.tcx.def_span(impl_item),
                        }));
                    }
                }
            } else {
                let span = self.tcx.def_span(impl_def_id);
                let mut note = None;
                if let ty::Ref(_, subty, _) = ty.kind() {
                    note = Some(errors::InherentPrimitiveTyNote { subty: *subty });
                }
                return Err(self.tcx.dcx().emit_err(errors::InherentPrimitiveTy { span, note }));
            }
        }

        if let Some(simp) = simplify_type(self.tcx, ty, TreatParams::AsCandidateKey) {
            self.impls_map.incoherent_impls.entry(simp).or_default().push(impl_def_id);
        } else {
            bug!("unexpected primitive type: {:?}", ty);
        }
        Ok(())
    }

    fn check_item(&mut self, id: hir::ItemId) -> Result<(), ErrorGuaranteed> {
        if !matches!(self.tcx.def_kind(id.owner_id), DefKind::Impl { of_trait: false }) {
            return Ok(());
        }

        let id = id.owner_id.def_id;
        let item_span = self.tcx.def_span(id);
        let self_ty = self.tcx.type_of(id).instantiate_identity();
        let mut self_ty = self.tcx.peel_off_weak_alias_tys(self_ty);
        // We allow impls on pattern types exactly when we allow impls on the base type.
        // FIXME(pattern_types): Figure out the exact coherence rules we want here.
        while let ty::Pat(base, _) = *self_ty.kind() {
            self_ty = base;
        }
        match *self_ty.kind() {
            ty::Adt(def, _) => self.check_def_id(id, self_ty, def.did()),
            ty::Foreign(did) => self.check_def_id(id, self_ty, did),
            ty::Dynamic(data, ..) if data.principal_def_id().is_some() => {
                self.check_def_id(id, self_ty, data.principal_def_id().unwrap())
            }
            ty::Dynamic(..) => {
                Err(self.tcx.dcx().emit_err(errors::InherentDyn { span: item_span }))
            }
            ty::Pat(_, _) => unreachable!(),
            ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Str
            | ty::Array(..)
            | ty::Slice(_)
            | ty::RawPtr(_, _)
            | ty::Ref(..)
            | ty::Never
            | ty::FnPtr(_)
            | ty::Tuple(..) => self.check_primitive_impl(id, self_ty),
            ty::Alias(ty::Projection | ty::Inherent | ty::Opaque, _) | ty::Param(_) => {
                Err(self.tcx.dcx().emit_err(errors::InherentNominal { span: item_span }))
            }
            ty::FnDef(..)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Coroutine(..)
            | ty::CoroutineWitness(..)
            | ty::Alias(ty::Weak, _)
            | ty::Bound(..)
            | ty::Placeholder(_)
            | ty::Infer(_) => {
                bug!("unexpected impl self type of impl: {:?} {:?}", id, self_ty);
            }
            // We could bail out here, but that will silence other useful errors.
            ty::Error(_) => Ok(()),
        }
    }
}