1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
use crate::lints::{
    AtomicOrderingFence, AtomicOrderingLoad, AtomicOrderingStore, ImproperCTypes,
    InvalidAtomicOrderingDiag, OnlyCastu8ToChar, OverflowingBinHex, OverflowingBinHexSign,
    OverflowingBinHexSub, OverflowingInt, OverflowingIntHelp, OverflowingLiteral, OverflowingUInt,
    RangeEndpointOutOfRange, UnusedComparisons, VariantSizeDifferencesDiag,
};
use crate::{LateContext, LateLintPass, LintContext};
use rustc_ast as ast;
use rustc_attr as attr;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{fluent, DiagnosticMessage};
use rustc_hir as hir;
use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
use rustc_span::def_id::LocalDefId;
use rustc_span::source_map;
use rustc_span::symbol::sym;
use rustc_span::{Span, Symbol};
use rustc_target::abi::{Abi, Size, WrappingRange};
use rustc_target::abi::{Integer, TagEncoding, Variants};
use rustc_target::spec::abi::Abi as SpecAbi;

use std::iter;
use std::ops::ControlFlow;

declare_lint! {
    /// The `unused_comparisons` lint detects comparisons made useless by
    /// limits of the types involved.
    ///
    /// ### Example
    ///
    /// ```rust
    /// fn foo(x: u8) {
    ///     x >= 0;
    /// }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// A useless comparison may indicate a mistake, and should be fixed or
    /// removed.
    UNUSED_COMPARISONS,
    Warn,
    "comparisons made useless by limits of the types involved"
}

declare_lint! {
    /// The `overflowing_literals` lint detects literal out of range for its
    /// type.
    ///
    /// ### Example
    ///
    /// ```rust,compile_fail
    /// let x: u8 = 1000;
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// It is usually a mistake to use a literal that overflows the type where
    /// it is used. Either use a literal that is within range, or change the
    /// type to be within the range of the literal.
    OVERFLOWING_LITERALS,
    Deny,
    "literal out of range for its type"
}

declare_lint! {
    /// The `variant_size_differences` lint detects enums with widely varying
    /// variant sizes.
    ///
    /// ### Example
    ///
    /// ```rust,compile_fail
    /// #![deny(variant_size_differences)]
    /// enum En {
    ///     V0(u8),
    ///     VBig([u8; 1024]),
    /// }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// It can be a mistake to add a variant to an enum that is much larger
    /// than the other variants, bloating the overall size required for all
    /// variants. This can impact performance and memory usage. This is
    /// triggered if one variant is more than 3 times larger than the
    /// second-largest variant.
    ///
    /// Consider placing the large variant's contents on the heap (for example
    /// via [`Box`]) to keep the overall size of the enum itself down.
    ///
    /// This lint is "allow" by default because it can be noisy, and may not be
    /// an actual problem. Decisions about this should be guided with
    /// profiling and benchmarking.
    ///
    /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
    VARIANT_SIZE_DIFFERENCES,
    Allow,
    "detects enums with widely varying variant sizes"
}

#[derive(Copy, Clone)]
pub struct TypeLimits {
    /// Id of the last visited negated expression
    negated_expr_id: Option<hir::HirId>,
}

impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);

impl TypeLimits {
    pub fn new() -> TypeLimits {
        TypeLimits { negated_expr_id: None }
    }
}

/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint (`expr..MAX+1`).
/// Returns `true` iff the lint was emitted.
fn lint_overflowing_range_endpoint<'tcx>(
    cx: &LateContext<'tcx>,
    lit: &hir::Lit,
    lit_val: u128,
    max: u128,
    expr: &'tcx hir::Expr<'tcx>,
    ty: &str,
) -> bool {
    // We only want to handle exclusive (`..`) ranges,
    // which are represented as `ExprKind::Struct`.
    let par_id = cx.tcx.hir().parent_id(expr.hir_id);
    let Node::ExprField(field) = cx.tcx.hir().get(par_id) else { return false };
    let Node::Expr(struct_expr) = cx.tcx.hir().get_parent(field.hir_id) else { return false };
    if !is_range_literal(struct_expr) {
        return false;
    };
    let ExprKind::Struct(_, eps, _) = &struct_expr.kind else { return false };
    if eps.len() != 2 {
        return false;
    }

    // We can suggest using an inclusive range
    // (`..=`) instead only if it is the `end` that is
    // overflowing and only by 1.
    if !(eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max) {
        return false;
    };
    let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) else { return false };

    use rustc_ast::{LitIntType, LitKind};
    let suffix = match lit.node {
        LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
        LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
        LitKind::Int(_, LitIntType::Unsuffixed) => "",
        _ => bug!(),
    };
    cx.emit_spanned_lint(
        OVERFLOWING_LITERALS,
        struct_expr.span,
        RangeEndpointOutOfRange {
            ty,
            suggestion: struct_expr.span,
            start,
            literal: lit_val - 1,
            suffix,
        },
    );

    // We've just emitted a lint, special cased for `(...)..MAX+1` ranges,
    // return `true` so the callers don't also emit a lint
    true
}

// For `isize` & `usize`, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms.
fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
    match int_ty {
        ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
        ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
        ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
        ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
        ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
        ty::IntTy::I128 => (i128::MIN, i128::MAX),
    }
}

fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
    let max = match uint_ty {
        ty::UintTy::Usize => u64::MAX.into(),
        ty::UintTy::U8 => u8::MAX.into(),
        ty::UintTy::U16 => u16::MAX.into(),
        ty::UintTy::U32 => u32::MAX.into(),
        ty::UintTy::U64 => u64::MAX.into(),
        ty::UintTy::U128 => u128::MAX,
    };
    (0, max)
}

fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
    let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
    let firstch = src.chars().next()?;

    if firstch == '0' {
        match src.chars().nth(1) {
            Some('x' | 'b') => return Some(src),
            _ => return None,
        }
    }

    None
}

fn report_bin_hex_error(
    cx: &LateContext<'_>,
    expr: &hir::Expr<'_>,
    ty: attr::IntType,
    size: Size,
    repr_str: String,
    val: u128,
    negative: bool,
) {
    let (t, actually) = match ty {
        attr::IntType::SignedInt(t) => {
            let actually = if negative {
                -(size.sign_extend(val) as i128)
            } else {
                size.sign_extend(val) as i128
            };
            (t.name_str(), actually.to_string())
        }
        attr::IntType::UnsignedInt(t) => {
            let actually = size.truncate(val);
            (t.name_str(), actually.to_string())
        }
    };
    let sign =
        if negative { OverflowingBinHexSign::Negative } else { OverflowingBinHexSign::Positive };
    let sub = get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative).map(
        |suggestion_ty| {
            if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
                let (sans_suffix, _) = repr_str.split_at(pos);
                OverflowingBinHexSub::Suggestion { span: expr.span, suggestion_ty, sans_suffix }
            } else {
                OverflowingBinHexSub::Help { suggestion_ty }
            }
        },
    );
    cx.emit_spanned_lint(
        OVERFLOWING_LITERALS,
        expr.span,
        OverflowingBinHex { ty: t, lit: repr_str.clone(), dec: val, actually, sign, sub },
    )
}

// This function finds the next fitting type and generates a suggestion string.
// It searches for fitting types in the following way (`X < Y`):
//  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
//  - `-iX` => `iY`
//  - `uX` => `uY`
//
// No suggestion for: `isize`, `usize`.
fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
    use ty::IntTy::*;
    use ty::UintTy::*;
    macro_rules! find_fit {
        ($ty:expr, $val:expr, $negative:expr,
         $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
            {
                let _neg = if negative { 1 } else { 0 };
                match $ty {
                    $($type => {
                        $(if !negative && val <= uint_ty_range($utypes).1 {
                            return Some($utypes.name_str())
                        })*
                        $(if val <= int_ty_range($itypes).1 as u128 + _neg {
                            return Some($itypes.name_str())
                        })*
                        None
                    },)+
                    _ => None
                }
            }
        }
    }
    match t.kind() {
        ty::Int(i) => find_fit!(i, val, negative,
                      I8 => [U8] => [I16, I32, I64, I128],
                      I16 => [U16] => [I32, I64, I128],
                      I32 => [U32] => [I64, I128],
                      I64 => [U64] => [I128],
                      I128 => [U128] => []),
        ty::Uint(u) => find_fit!(u, val, negative,
                      U8 => [U8, U16, U32, U64, U128] => [],
                      U16 => [U16, U32, U64, U128] => [],
                      U32 => [U32, U64, U128] => [],
                      U64 => [U64, U128] => [],
                      U128 => [U128] => []),
        _ => None,
    }
}

fn lint_int_literal<'tcx>(
    cx: &LateContext<'tcx>,
    type_limits: &TypeLimits,
    e: &'tcx hir::Expr<'tcx>,
    lit: &hir::Lit,
    t: ty::IntTy,
    v: u128,
) {
    let int_type = t.normalize(cx.sess().target.pointer_width);
    let (min, max) = int_ty_range(int_type);
    let max = max as u128;
    let negative = type_limits.negated_expr_id == Some(e.hir_id);

    // Detect literal value out of range [min, max] inclusive
    // avoiding use of -min to prevent overflow/panic
    if (negative && v > max + 1) || (!negative && v > max) {
        if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
            report_bin_hex_error(
                cx,
                e,
                attr::IntType::SignedInt(ty::ast_int_ty(t)),
                Integer::from_int_ty(cx, t).size(),
                repr_str,
                v,
                negative,
            );
            return;
        }

        if lint_overflowing_range_endpoint(cx, lit, v, max, e, t.name_str()) {
            // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
            return;
        }

        let lit = cx
            .sess()
            .source_map()
            .span_to_snippet(lit.span)
            .expect("must get snippet from literal");
        let help = get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
            .map(|suggestion_ty| OverflowingIntHelp { suggestion_ty });

        cx.emit_spanned_lint(
            OVERFLOWING_LITERALS,
            e.span,
            OverflowingInt { ty: t.name_str(), lit, min, max, help },
        );
    }
}

fn lint_uint_literal<'tcx>(
    cx: &LateContext<'tcx>,
    e: &'tcx hir::Expr<'tcx>,
    lit: &hir::Lit,
    t: ty::UintTy,
) {
    let uint_type = t.normalize(cx.sess().target.pointer_width);
    let (min, max) = uint_ty_range(uint_type);
    let lit_val: u128 = match lit.node {
        // _v is u8, within range by definition
        ast::LitKind::Byte(_v) => return,
        ast::LitKind::Int(v, _) => v,
        _ => bug!(),
    };
    if lit_val < min || lit_val > max {
        let parent_id = cx.tcx.hir().parent_id(e.hir_id);
        if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
            match par_e.kind {
                hir::ExprKind::Cast(..) => {
                    if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
                        cx.emit_spanned_lint(
                            OVERFLOWING_LITERALS,
                            par_e.span,
                            OnlyCastu8ToChar { span: par_e.span, literal: lit_val },
                        );
                        return;
                    }
                }
                _ => {}
            }
        }
        if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, t.name_str()) {
            // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
            return;
        }
        if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
            report_bin_hex_error(
                cx,
                e,
                attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
                Integer::from_uint_ty(cx, t).size(),
                repr_str,
                lit_val,
                false,
            );
            return;
        }
        cx.emit_spanned_lint(
            OVERFLOWING_LITERALS,
            e.span,
            OverflowingUInt {
                ty: t.name_str(),
                lit: cx
                    .sess()
                    .source_map()
                    .span_to_snippet(lit.span)
                    .expect("must get snippet from literal"),
                min,
                max,
            },
        );
    }
}

fn lint_literal<'tcx>(
    cx: &LateContext<'tcx>,
    type_limits: &TypeLimits,
    e: &'tcx hir::Expr<'tcx>,
    lit: &hir::Lit,
) {
    match *cx.typeck_results().node_type(e.hir_id).kind() {
        ty::Int(t) => {
            match lit.node {
                ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
                    lint_int_literal(cx, type_limits, e, lit, t, v)
                }
                _ => bug!(),
            };
        }
        ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
        ty::Float(t) => {
            let is_infinite = match lit.node {
                ast::LitKind::Float(v, _) => match t {
                    ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
                    ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
                },
                _ => bug!(),
            };
            if is_infinite == Ok(true) {
                cx.emit_spanned_lint(
                    OVERFLOWING_LITERALS,
                    e.span,
                    OverflowingLiteral {
                        ty: t.name_str(),
                        lit: cx
                            .sess()
                            .source_map()
                            .span_to_snippet(lit.span)
                            .expect("must get snippet from literal"),
                    },
                );
            }
        }
        _ => {}
    }
}

impl<'tcx> LateLintPass<'tcx> for TypeLimits {
    fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
        match e.kind {
            hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
                // propagate negation, if the negation itself isn't negated
                if self.negated_expr_id != Some(e.hir_id) {
                    self.negated_expr_id = Some(expr.hir_id);
                }
            }
            hir::ExprKind::Binary(binop, ref l, ref r) => {
                if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
                    cx.emit_spanned_lint(UNUSED_COMPARISONS, e.span, UnusedComparisons);
                }
            }
            hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
            _ => {}
        };

        fn is_valid<T: PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
            match binop.node {
                hir::BinOpKind::Lt => v > min && v <= max,
                hir::BinOpKind::Le => v >= min && v < max,
                hir::BinOpKind::Gt => v >= min && v < max,
                hir::BinOpKind::Ge => v > min && v <= max,
                hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
                _ => bug!(),
            }
        }

        fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
            source_map::respan(
                binop.span,
                match binop.node {
                    hir::BinOpKind::Lt => hir::BinOpKind::Gt,
                    hir::BinOpKind::Le => hir::BinOpKind::Ge,
                    hir::BinOpKind::Gt => hir::BinOpKind::Lt,
                    hir::BinOpKind::Ge => hir::BinOpKind::Le,
                    _ => return binop,
                },
            )
        }

        fn check_limits(
            cx: &LateContext<'_>,
            binop: hir::BinOp,
            l: &hir::Expr<'_>,
            r: &hir::Expr<'_>,
        ) -> bool {
            let (lit, expr, swap) = match (&l.kind, &r.kind) {
                (&hir::ExprKind::Lit(_), _) => (l, r, true),
                (_, &hir::ExprKind::Lit(_)) => (r, l, false),
                _ => return true,
            };
            // Normalize the binop so that the literal is always on the RHS in
            // the comparison
            let norm_binop = if swap { rev_binop(binop) } else { binop };
            match *cx.typeck_results().node_type(expr.hir_id).kind() {
                ty::Int(int_ty) => {
                    let (min, max) = int_ty_range(int_ty);
                    let lit_val: i128 = match lit.kind {
                        hir::ExprKind::Lit(ref li) => match li.node {
                            ast::LitKind::Int(
                                v,
                                ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
                            ) => v as i128,
                            _ => return true,
                        },
                        _ => bug!(),
                    };
                    is_valid(norm_binop, lit_val, min, max)
                }
                ty::Uint(uint_ty) => {
                    let (min, max): (u128, u128) = uint_ty_range(uint_ty);
                    let lit_val: u128 = match lit.kind {
                        hir::ExprKind::Lit(ref li) => match li.node {
                            ast::LitKind::Int(v, _) => v,
                            _ => return true,
                        },
                        _ => bug!(),
                    };
                    is_valid(norm_binop, lit_val, min, max)
                }
                _ => true,
            }
        }

        fn is_comparison(binop: hir::BinOp) -> bool {
            matches!(
                binop.node,
                hir::BinOpKind::Eq
                    | hir::BinOpKind::Lt
                    | hir::BinOpKind::Le
                    | hir::BinOpKind::Ne
                    | hir::BinOpKind::Ge
                    | hir::BinOpKind::Gt
            )
        }
    }
}

declare_lint! {
    /// The `improper_ctypes` lint detects incorrect use of types in foreign
    /// modules.
    ///
    /// ### Example
    ///
    /// ```rust
    /// extern "C" {
    ///     static STATIC: String;
    /// }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// The compiler has several checks to verify that types used in `extern`
    /// blocks are safe and follow certain rules to ensure proper
    /// compatibility with the foreign interfaces. This lint is issued when it
    /// detects a probable mistake in a definition. The lint usually should
    /// provide a description of the issue, along with possibly a hint on how
    /// to resolve it.
    IMPROPER_CTYPES,
    Warn,
    "proper use of libc types in foreign modules"
}

declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);

declare_lint! {
    /// The `improper_ctypes_definitions` lint detects incorrect use of
    /// [`extern` function] definitions.
    ///
    /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
    ///
    /// ### Example
    ///
    /// ```rust
    /// # #![allow(unused)]
    /// pub extern "C" fn str_type(p: &str) { }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// There are many parameter and return types that may be specified in an
    /// `extern` function that are not compatible with the given ABI. This
    /// lint is an alert that these types should not be used. The lint usually
    /// should provide a description of the issue, along with possibly a hint
    /// on how to resolve it.
    IMPROPER_CTYPES_DEFINITIONS,
    Warn,
    "proper use of libc types in foreign item definitions"
}

declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);

#[derive(Clone, Copy)]
pub(crate) enum CItemKind {
    Declaration,
    Definition,
}

struct ImproperCTypesVisitor<'a, 'tcx> {
    cx: &'a LateContext<'tcx>,
    mode: CItemKind,
}

enum FfiResult<'tcx> {
    FfiSafe,
    FfiPhantom(Ty<'tcx>),
    FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
}

pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
    tcx: TyCtxt<'tcx>,
    def: ty::AdtDef<'tcx>,
) -> bool {
    tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
}

/// `repr(transparent)` structs can have a single non-ZST field, this function returns that
/// field.
pub fn transparent_newtype_field<'a, 'tcx>(
    tcx: TyCtxt<'tcx>,
    variant: &'a ty::VariantDef,
) -> Option<&'a ty::FieldDef> {
    let param_env = tcx.param_env(variant.def_id);
    variant.fields.iter().find(|field| {
        let field_ty = tcx.type_of(field.did);
        let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
        !is_zst
    })
}

/// Is type known to be non-null?
fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
    let tcx = cx.tcx;
    match ty.kind() {
        ty::FnPtr(_) => true,
        ty::Ref(..) => true,
        ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
        ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
            let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);

            if marked_non_null {
                return true;
            }

            // `UnsafeCell` has its niche hidden.
            if def.is_unsafe_cell() {
                return false;
            }

            def.variants()
                .iter()
                .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
                .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
        }
        _ => false,
    }
}

/// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
/// If the type passed in was not scalar, returns None.
fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
    let tcx = cx.tcx;
    Some(match *ty.kind() {
        ty::Adt(field_def, field_substs) => {
            let inner_field_ty = {
                let mut first_non_zst_ty = field_def
                    .variants()
                    .iter()
                    .filter_map(|v| transparent_newtype_field(cx.tcx, v));
                debug_assert_eq!(
                    first_non_zst_ty.clone().count(),
                    1,
                    "Wrong number of fields for transparent type"
                );
                first_non_zst_ty
                    .next_back()
                    .expect("No non-zst fields in transparent type.")
                    .ty(tcx, field_substs)
            };
            return get_nullable_type(cx, inner_field_ty);
        }
        ty::Int(ty) => tcx.mk_mach_int(ty),
        ty::Uint(ty) => tcx.mk_mach_uint(ty),
        ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
        // As these types are always non-null, the nullable equivalent of
        // Option<T> of these types are their raw pointer counterparts.
        ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
        ty::FnPtr(..) => {
            // There is no nullable equivalent for Rust's function pointers -- you
            // must use an Option<fn(..) -> _> to represent it.
            ty
        }

        // We should only ever reach this case if ty_is_known_nonnull is extended
        // to other types.
        ref unhandled => {
            debug!(
                "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
                unhandled, ty
            );
            return None;
        }
    })
}

/// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
/// can, return the type that `ty` can be safely converted to, otherwise return `None`.
/// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
/// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
/// FIXME: This duplicates code in codegen.
pub(crate) fn repr_nullable_ptr<'tcx>(
    cx: &LateContext<'tcx>,
    ty: Ty<'tcx>,
    ckind: CItemKind,
) -> Option<Ty<'tcx>> {
    debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
    if let ty::Adt(ty_def, substs) = ty.kind() {
        let field_ty = match &ty_def.variants().raw[..] {
            [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
                ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
                _ => return None,
            },
            _ => return None,
        };

        if !ty_is_known_nonnull(cx, field_ty, ckind) {
            return None;
        }

        // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
        // If the computed size for the field and the enum are different, the nonnull optimization isn't
        // being applied (and we've got a problem somewhere).
        let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
        if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
            bug!("improper_ctypes: Option nonnull optimization not applied?");
        }

        // Return the nullable type this Option-like enum can be safely represented with.
        let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
        if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
            match field_ty_scalar.valid_range(cx) {
                WrappingRange { start: 0, end }
                    if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
                {
                    return Some(get_nullable_type(cx, field_ty).unwrap());
                }
                WrappingRange { start: 1, .. } => {
                    return Some(get_nullable_type(cx, field_ty).unwrap());
                }
                WrappingRange { start, end } => {
                    unreachable!("Unhandled start and end range: ({}, {})", start, end)
                }
            };
        }
    }
    None
}

impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
    /// Check if the type is array and emit an unsafe type lint.
    fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
        if let ty::Array(..) = ty.kind() {
            self.emit_ffi_unsafe_type_lint(
                ty,
                sp,
                fluent::lint_improper_ctypes_array_reason,
                Some(fluent::lint_improper_ctypes_array_help),
            );
            true
        } else {
            false
        }
    }

    /// Checks if the given field's type is "ffi-safe".
    fn check_field_type_for_ffi(
        &self,
        cache: &mut FxHashSet<Ty<'tcx>>,
        field: &ty::FieldDef,
        substs: SubstsRef<'tcx>,
    ) -> FfiResult<'tcx> {
        let field_ty = field.ty(self.cx.tcx, substs);
        if field_ty.has_opaque_types() {
            self.check_type_for_ffi(cache, field_ty)
        } else {
            let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
            self.check_type_for_ffi(cache, field_ty)
        }
    }

    /// Checks if the given `VariantDef`'s field types are "ffi-safe".
    fn check_variant_for_ffi(
        &self,
        cache: &mut FxHashSet<Ty<'tcx>>,
        ty: Ty<'tcx>,
        def: ty::AdtDef<'tcx>,
        variant: &ty::VariantDef,
        substs: SubstsRef<'tcx>,
    ) -> FfiResult<'tcx> {
        use FfiResult::*;

        let transparent_safety = def.repr().transparent().then(|| {
            // Can assume that at most one field is not a ZST, so only check
            // that field's type for FFI-safety.
            if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
                return self.check_field_type_for_ffi(cache, field, substs);
            } else {
                // All fields are ZSTs; this means that the type should behave
                // like (), which is FFI-unsafe... except if all fields are PhantomData,
                // which is tested for below
                FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_struct_zst, help: None }
            }
        });
        // We can't completely trust repr(C) markings; make sure the fields are
        // actually safe.
        let mut all_phantom = !variant.fields.is_empty();
        for field in &variant.fields {
            match self.check_field_type_for_ffi(cache, &field, substs) {
                FfiSafe => {
                    all_phantom = false;
                }
                FfiPhantom(..) if !def.repr().transparent() && def.is_enum() => {
                    return FfiUnsafe {
                        ty,
                        reason: fluent::lint_improper_ctypes_enum_phantomdata,
                        help: None,
                    };
                }
                FfiPhantom(..) => {}
                r => return transparent_safety.unwrap_or(r),
            }
        }

        if all_phantom { FfiPhantom(ty) } else { transparent_safety.unwrap_or(FfiSafe) }
    }

    /// Checks if the given type is "ffi-safe" (has a stable, well-defined
    /// representation which can be exported to C code).
    fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
        use FfiResult::*;

        let tcx = self.cx.tcx;

        // Protect against infinite recursion, for example
        // `struct S(*mut S);`.
        // FIXME: A recursion limit is necessary as well, for irregular
        // recursive types.
        if !cache.insert(ty) {
            return FfiSafe;
        }

        match *ty.kind() {
            ty::Adt(def, substs) => {
                if def.is_box() && matches!(self.mode, CItemKind::Definition) {
                    if ty.boxed_ty().is_sized(tcx, self.cx.param_env) {
                        return FfiSafe;
                    } else {
                        return FfiUnsafe {
                            ty,
                            reason: fluent::lint_improper_ctypes_box,
                            help: None,
                        };
                    }
                }
                if def.is_phantom_data() {
                    return FfiPhantom(ty);
                }
                match def.adt_kind() {
                    AdtKind::Struct | AdtKind::Union => {
                        if !def.repr().c() && !def.repr().transparent() {
                            return FfiUnsafe {
                                ty,
                                reason: if def.is_struct() {
                                    fluent::lint_improper_ctypes_struct_layout_reason
                                } else {
                                    fluent::lint_improper_ctypes_union_layout_reason
                                },
                                help: if def.is_struct() {
                                    Some(fluent::lint_improper_ctypes_struct_layout_help)
                                } else {
                                    Some(fluent::lint_improper_ctypes_union_layout_help)
                                },
                            };
                        }

                        let is_non_exhaustive =
                            def.non_enum_variant().is_field_list_non_exhaustive();
                        if is_non_exhaustive && !def.did().is_local() {
                            return FfiUnsafe {
                                ty,
                                reason: if def.is_struct() {
                                    fluent::lint_improper_ctypes_struct_non_exhaustive
                                } else {
                                    fluent::lint_improper_ctypes_union_non_exhaustive
                                },
                                help: None,
                            };
                        }

                        if def.non_enum_variant().fields.is_empty() {
                            return FfiUnsafe {
                                ty,
                                reason: if def.is_struct() {
                                    fluent::lint_improper_ctypes_struct_fieldless_reason
                                } else {
                                    fluent::lint_improper_ctypes_union_fieldless_reason
                                },
                                help: if def.is_struct() {
                                    Some(fluent::lint_improper_ctypes_struct_fieldless_help)
                                } else {
                                    Some(fluent::lint_improper_ctypes_union_fieldless_help)
                                },
                            };
                        }

                        self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
                    }
                    AdtKind::Enum => {
                        if def.variants().is_empty() {
                            // Empty enums are okay... although sort of useless.
                            return FfiSafe;
                        }

                        // Check for a repr() attribute to specify the size of the
                        // discriminant.
                        if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
                        {
                            // Special-case types like `Option<extern fn()>`.
                            if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
                                return FfiUnsafe {
                                    ty,
                                    reason: fluent::lint_improper_ctypes_enum_repr_reason,
                                    help: Some(fluent::lint_improper_ctypes_enum_repr_help),
                                };
                            }
                        }

                        if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
                            return FfiUnsafe {
                                ty,
                                reason: fluent::lint_improper_ctypes_non_exhaustive,
                                help: None,
                            };
                        }

                        // Check the contained variants.
                        for variant in def.variants() {
                            let is_non_exhaustive = variant.is_field_list_non_exhaustive();
                            if is_non_exhaustive && !variant.def_id.is_local() {
                                return FfiUnsafe {
                                    ty,
                                    reason: fluent::lint_improper_ctypes_non_exhaustive_variant,
                                    help: None,
                                };
                            }

                            match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
                                FfiSafe => (),
                                r => return r,
                            }
                        }

                        FfiSafe
                    }
                }
            }

            ty::Char => FfiUnsafe {
                ty,
                reason: fluent::lint_improper_ctypes_char_reason,
                help: Some(fluent::lint_improper_ctypes_char_help),
            },

            ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
                FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_128bit, help: None }
            }

            // Primitive types with a stable representation.
            ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,

            ty::Slice(_) => FfiUnsafe {
                ty,
                reason: fluent::lint_improper_ctypes_slice_reason,
                help: Some(fluent::lint_improper_ctypes_slice_help),
            },

            ty::Dynamic(..) => {
                FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_dyn, help: None }
            }

            ty::Str => FfiUnsafe {
                ty,
                reason: fluent::lint_improper_ctypes_str_reason,
                help: Some(fluent::lint_improper_ctypes_str_help),
            },

            ty::Tuple(..) => FfiUnsafe {
                ty,
                reason: fluent::lint_improper_ctypes_tuple_reason,
                help: Some(fluent::lint_improper_ctypes_tuple_help),
            },

            ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
                if {
                    matches!(self.mode, CItemKind::Definition)
                        && ty.is_sized(self.cx.tcx, self.cx.param_env)
                } =>
            {
                FfiSafe
            }

            ty::RawPtr(ty::TypeAndMut { ty, .. })
                if match ty.kind() {
                    ty::Tuple(tuple) => tuple.is_empty(),
                    _ => false,
                } =>
            {
                FfiSafe
            }

            ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
                self.check_type_for_ffi(cache, ty)
            }

            ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),

            ty::FnPtr(sig) => {
                if self.is_internal_abi(sig.abi()) {
                    return FfiUnsafe {
                        ty,
                        reason: fluent::lint_improper_ctypes_fnptr_reason,
                        help: Some(fluent::lint_improper_ctypes_fnptr_help),
                    };
                }

                let sig = tcx.erase_late_bound_regions(sig);
                if !sig.output().is_unit() {
                    let r = self.check_type_for_ffi(cache, sig.output());
                    match r {
                        FfiSafe => {}
                        _ => {
                            return r;
                        }
                    }
                }
                for arg in sig.inputs() {
                    let r = self.check_type_for_ffi(cache, *arg);
                    match r {
                        FfiSafe => {}
                        _ => {
                            return r;
                        }
                    }
                }
                FfiSafe
            }

            ty::Foreign(..) => FfiSafe,

            // While opaque types are checked for earlier, if a projection in a struct field
            // normalizes to an opaque type, then it will reach this branch.
            ty::Alias(ty::Opaque, ..) => {
                FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_opaque, help: None }
            }

            // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
            //  so they are currently ignored for the purposes of this lint.
            ty::Param(..) | ty::Alias(ty::Projection, ..)
                if matches!(self.mode, CItemKind::Definition) =>
            {
                FfiSafe
            }

            ty::Param(..)
            | ty::Alias(ty::Projection, ..)
            | ty::Infer(..)
            | ty::Bound(..)
            | ty::Error(_)
            | ty::Closure(..)
            | ty::Generator(..)
            | ty::GeneratorWitness(..)
            | ty::GeneratorWitnessMIR(..)
            | ty::Placeholder(..)
            | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
        }
    }

    fn emit_ffi_unsafe_type_lint(
        &mut self,
        ty: Ty<'tcx>,
        sp: Span,
        note: DiagnosticMessage,
        help: Option<DiagnosticMessage>,
    ) {
        let lint = match self.mode {
            CItemKind::Declaration => IMPROPER_CTYPES,
            CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
        };
        let desc = match self.mode {
            CItemKind::Declaration => "block",
            CItemKind::Definition => "fn",
        };
        let span_note = if let ty::Adt(def, _) = ty.kind()
            && let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
                Some(sp)
            } else {
                None
            };
        self.cx.emit_spanned_lint(
            lint,
            sp,
            ImproperCTypes { ty, desc, label: sp, help, note, span_note },
        );
    }

    fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
        struct ProhibitOpaqueTypes;
        impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes {
            type BreakTy = Ty<'tcx>;

            fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
                if !ty.has_opaque_types() {
                    return ControlFlow::Continue(());
                }

                if let ty::Alias(ty::Opaque, ..) = ty.kind() {
                    ControlFlow::Break(ty)
                } else {
                    ty.super_visit_with(self)
                }
            }
        }

        if let Some(ty) = self
            .cx
            .tcx
            .normalize_erasing_regions(self.cx.param_env, ty)
            .visit_with(&mut ProhibitOpaqueTypes)
            .break_value()
        {
            self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint_improper_ctypes_opaque, None);
            true
        } else {
            false
        }
    }

    fn check_type_for_ffi_and_report_errors(
        &mut self,
        sp: Span,
        ty: Ty<'tcx>,
        is_static: bool,
        is_return_type: bool,
    ) {
        // We have to check for opaque types before `normalize_erasing_regions`,
        // which will replace opaque types with their underlying concrete type.
        if self.check_for_opaque_ty(sp, ty) {
            // We've already emitted an error due to an opaque type.
            return;
        }

        // it is only OK to use this function because extern fns cannot have
        // any generic types right now:
        let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);

        // C doesn't really support passing arrays by value - the only way to pass an array by value
        // is through a struct. So, first test that the top level isn't an array, and then
        // recursively check the types inside.
        if !is_static && self.check_for_array_ty(sp, ty) {
            return;
        }

        // Don't report FFI errors for unit return types. This check exists here, and not in
        // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
        // happened.
        if is_return_type && ty.is_unit() {
            return;
        }

        match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
            FfiResult::FfiSafe => {}
            FfiResult::FfiPhantom(ty) => {
                self.emit_ffi_unsafe_type_lint(
                    ty,
                    sp,
                    fluent::lint_improper_ctypes_only_phantomdata,
                    None,
                );
            }
            // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
            // argument, which after substitution, is `()`, then this branch can be hit.
            FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
            FfiResult::FfiUnsafe { ty, reason, help } => {
                self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
            }
        }
    }

    fn check_foreign_fn(&mut self, def_id: LocalDefId, decl: &hir::FnDecl<'_>) {
        let sig = self.cx.tcx.fn_sig(def_id).subst_identity();
        let sig = self.cx.tcx.erase_late_bound_regions(sig);

        for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
            self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
        }

        if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
            let ret_ty = sig.output();
            self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
        }
    }

    fn check_foreign_static(&mut self, id: hir::OwnerId, span: Span) {
        let ty = self.cx.tcx.type_of(id);
        self.check_type_for_ffi_and_report_errors(span, ty, true, false);
    }

    fn is_internal_abi(&self, abi: SpecAbi) -> bool {
        matches!(
            abi,
            SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
        )
    }
}

impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
    fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
        let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
        let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());

        if !vis.is_internal_abi(abi) {
            match it.kind {
                hir::ForeignItemKind::Fn(ref decl, _, _) => {
                    vis.check_foreign_fn(it.owner_id.def_id, decl);
                }
                hir::ForeignItemKind::Static(ref ty, _) => {
                    vis.check_foreign_static(it.owner_id, ty.span);
                }
                hir::ForeignItemKind::Type => (),
            }
        }
    }
}

impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
    fn check_fn(
        &mut self,
        cx: &LateContext<'tcx>,
        kind: hir::intravisit::FnKind<'tcx>,
        decl: &'tcx hir::FnDecl<'_>,
        _: &'tcx hir::Body<'_>,
        _: Span,
        id: LocalDefId,
    ) {
        use hir::intravisit::FnKind;

        let abi = match kind {
            FnKind::ItemFn(_, _, header, ..) => header.abi,
            FnKind::Method(_, sig, ..) => sig.header.abi,
            _ => return,
        };

        let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
        if !vis.is_internal_abi(abi) {
            vis.check_foreign_fn(id, decl);
        }
    }
}

declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);

impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
    fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
        if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
            let t = cx.tcx.type_of(it.owner_id);
            let ty = cx.tcx.erase_regions(t);
            let Ok(layout) = cx.layout_of(ty) else { return };
            let Variants::Multiple {
                    tag_encoding: TagEncoding::Direct, tag, ref variants, ..
                } = &layout.variants else {
                return
            };

            let tag_size = tag.size(&cx.tcx).bytes();

            debug!(
                "enum `{}` is {} bytes large with layout:\n{:#?}",
                t,
                layout.size.bytes(),
                layout
            );

            let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
                .map(|(variant, variant_layout)| {
                    // Subtract the size of the enum tag.
                    let bytes = variant_layout.size.bytes().saturating_sub(tag_size);

                    debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
                    bytes
                })
                .enumerate()
                .fold((0, 0, 0), |(l, s, li), (idx, size)| {
                    if size > l {
                        (size, l, idx)
                    } else if size > s {
                        (l, size, li)
                    } else {
                        (l, s, li)
                    }
                });

            // We only warn if the largest variant is at least thrice as large as
            // the second-largest.
            if largest > slargest * 3 && slargest > 0 {
                cx.emit_spanned_lint(
                    VARIANT_SIZE_DIFFERENCES,
                    enum_definition.variants[largest_index].span,
                    VariantSizeDifferencesDiag { largest },
                );
            }
        }
    }
}

declare_lint! {
    /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
    /// to an atomic operation that does not support that ordering.
    ///
    /// ### Example
    ///
    /// ```rust,compile_fail
    /// # use core::sync::atomic::{AtomicU8, Ordering};
    /// let atom = AtomicU8::new(0);
    /// let value = atom.load(Ordering::Release);
    /// # let _ = value;
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// Some atomic operations are only supported for a subset of the
    /// `atomic::Ordering` variants. Passing an unsupported variant will cause
    /// an unconditional panic at runtime, which is detected by this lint.
    ///
    /// This lint will trigger in the following cases: (where `AtomicType` is an
    /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
    /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
    ///
    /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
    ///   `AtomicType::store`.
    ///
    /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
    ///   `AtomicType::load`.
    ///
    /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
    ///   `core::sync::atomic::compiler_fence`.
    ///
    /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
    ///   ordering for any of `AtomicType::compare_exchange`,
    ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
    INVALID_ATOMIC_ORDERING,
    Deny,
    "usage of invalid atomic ordering in atomic operations and memory fences"
}

declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);

impl InvalidAtomicOrdering {
    fn inherent_atomic_method_call<'hir>(
        cx: &LateContext<'_>,
        expr: &Expr<'hir>,
        recognized_names: &[Symbol], // used for fast path calculation
    ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
        const ATOMIC_TYPES: &[Symbol] = &[
            sym::AtomicBool,
            sym::AtomicPtr,
            sym::AtomicUsize,
            sym::AtomicU8,
            sym::AtomicU16,
            sym::AtomicU32,
            sym::AtomicU64,
            sym::AtomicU128,
            sym::AtomicIsize,
            sym::AtomicI8,
            sym::AtomicI16,
            sym::AtomicI32,
            sym::AtomicI64,
            sym::AtomicI128,
        ];
        if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind
            && recognized_names.contains(&method_path.ident.name)
            && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
            && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
            && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
            // skip extension traits, only lint functions from the standard library
            && cx.tcx.trait_id_of_impl(impl_did).is_none()
            && let parent = cx.tcx.parent(adt.did())
            && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
            && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
        {
            return Some((method_path.ident.name, args));
        }
        None
    }

    fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
        let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
        let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
        let tcx = cx.tcx;
        let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
        let name = tcx.item_name(did);
        let parent = tcx.parent(did);
        [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
            |&ordering| {
                name == ordering
                    && (Some(parent) == atomic_ordering
                            // needed in case this is a ctor, not a variant
                            || tcx.opt_parent(parent) == atomic_ordering)
            },
        )
    }

    fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
        if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
            && let Some((ordering_arg, invalid_ordering)) = match method {
                sym::load => Some((&args[0], sym::Release)),
                sym::store => Some((&args[1], sym::Acquire)),
                _ => None,
            }
            && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
            && (ordering == invalid_ordering || ordering == sym::AcqRel)
        {
            if method == sym::load {
                cx.emit_spanned_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, AtomicOrderingLoad);
            } else {
                cx.emit_spanned_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, AtomicOrderingStore);
            };
        }
    }

    fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
        if let ExprKind::Call(ref func, ref args) = expr.kind
            && let ExprKind::Path(ref func_qpath) = func.kind
            && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
            && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
            && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
        {
            cx.emit_spanned_lint(INVALID_ATOMIC_ORDERING, args[0].span, AtomicOrderingFence);
        }
    }

    fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
        let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
            else {return };

        let fail_order_arg = match method {
            sym::fetch_update => &args[1],
            sym::compare_exchange | sym::compare_exchange_weak => &args[3],
            _ => return,
        };

        let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };

        if matches!(fail_ordering, sym::Release | sym::AcqRel) {
            cx.emit_spanned_lint(
                INVALID_ATOMIC_ORDERING,
                fail_order_arg.span,
                InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
            );
        }
    }
}

impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
    fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
        Self::check_atomic_load_store(cx, expr);
        Self::check_memory_fence(cx, expr);
        Self::check_atomic_compare_exchange(cx, expr);
    }
}