rustc_ast/
ast.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
//! The Rust abstract syntax tree module.
//!
//! This module contains common structures forming the language AST.
//! Two main entities in the module are [`Item`] (which represents an AST element with
//! additional metadata), and [`ItemKind`] (which represents a concrete type and contains
//! information specific to the type of the item).
//!
//! Other module items worth mentioning:
//! - [`Ty`] and [`TyKind`]: A parsed Rust type.
//! - [`Expr`] and [`ExprKind`]: A parsed Rust expression.
//! - [`Pat`] and [`PatKind`]: A parsed Rust pattern. Patterns are often dual to expressions.
//! - [`Stmt`] and [`StmtKind`]: An executable action that does not return a value.
//! - [`FnDecl`], [`FnHeader`] and [`Param`]: Metadata associated with a function declaration.
//! - [`Generics`], [`GenericParam`], [`WhereClause`]: Metadata associated with generic parameters.
//! - [`EnumDef`] and [`Variant`]: Enum declaration.
//! - [`MetaItemLit`] and [`LitKind`]: Literal expressions.
//! - [`MacroDef`], [`MacStmtStyle`], [`MacCall`]: Macro definition and invocation.
//! - [`Attribute`]: Metadata associated with item.
//! - [`UnOp`], [`BinOp`], and [`BinOpKind`]: Unary and binary operators.

use std::borrow::Cow;
use std::{cmp, fmt, mem};

pub use GenericArgs::*;
pub use UnsafeSource::*;
pub use rustc_ast_ir::{Movability, Mutability, Pinnedness};
use rustc_data_structures::packed::Pu128;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_data_structures::sync::Lrc;
use rustc_macros::{Decodable, Encodable, HashStable_Generic};
pub use rustc_span::AttrId;
use rustc_span::source_map::{Spanned, respan};
use rustc_span::symbol::{Ident, Symbol, kw, sym};
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span};
use thin_vec::{ThinVec, thin_vec};

pub use crate::format::*;
use crate::ptr::P;
use crate::token::{self, CommentKind, Delimiter};
use crate::tokenstream::{DelimSpan, LazyAttrTokenStream, TokenStream};
pub use crate::util::parser::ExprPrecedence;

/// A "Label" is an identifier of some point in sources,
/// e.g. in the following code:
///
/// ```rust
/// 'outer: loop {
///     break 'outer;
/// }
/// ```
///
/// `'outer` is a label.
#[derive(Clone, Encodable, Decodable, Copy, HashStable_Generic, Eq, PartialEq)]
pub struct Label {
    pub ident: Ident,
}

impl fmt::Debug for Label {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "label({:?})", self.ident)
    }
}

/// A "Lifetime" is an annotation of the scope in which variable
/// can be used, e.g. `'a` in `&'a i32`.
#[derive(Clone, Encodable, Decodable, Copy, PartialEq, Eq, Hash)]
pub struct Lifetime {
    pub id: NodeId,
    pub ident: Ident,
}

impl fmt::Debug for Lifetime {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "lifetime({}: {})", self.id, self)
    }
}

impl fmt::Display for Lifetime {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.ident.name)
    }
}

/// A "Path" is essentially Rust's notion of a name.
///
/// It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
///
/// E.g., `std::cmp::PartialEq`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Path {
    pub span: Span,
    /// The segments in the path: the things separated by `::`.
    /// Global paths begin with `kw::PathRoot`.
    pub segments: ThinVec<PathSegment>,
    pub tokens: Option<LazyAttrTokenStream>,
}

impl PartialEq<Symbol> for Path {
    #[inline]
    fn eq(&self, symbol: &Symbol) -> bool {
        self.segments.len() == 1 && { self.segments[0].ident.name == *symbol }
    }
}

impl<CTX: rustc_span::HashStableContext> HashStable<CTX> for Path {
    fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
        self.segments.len().hash_stable(hcx, hasher);
        for segment in &self.segments {
            segment.ident.hash_stable(hcx, hasher);
        }
    }
}

impl Path {
    /// Convert a span and an identifier to the corresponding
    /// one-segment path.
    pub fn from_ident(ident: Ident) -> Path {
        Path { segments: thin_vec![PathSegment::from_ident(ident)], span: ident.span, tokens: None }
    }

    pub fn is_global(&self) -> bool {
        !self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot
    }

    /// If this path is a single identifier with no arguments, does not ensure
    /// that the path resolves to a const param, the caller should check this.
    pub fn is_potential_trivial_const_arg(&self) -> bool {
        self.segments.len() == 1 && self.segments[0].args.is_none()
    }
}

/// A segment of a path: an identifier, an optional lifetime, and a set of types.
///
/// E.g., `std`, `String` or `Box<T>`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct PathSegment {
    /// The identifier portion of this path segment.
    pub ident: Ident,

    pub id: NodeId,

    /// Type/lifetime parameters attached to this path. They come in
    /// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`.
    /// `None` means that no parameter list is supplied (`Path`),
    /// `Some` means that parameter list is supplied (`Path<X, Y>`)
    /// but it can be empty (`Path<>`).
    /// `P` is used as a size optimization for the common case with no parameters.
    pub args: Option<P<GenericArgs>>,
}

impl PathSegment {
    pub fn from_ident(ident: Ident) -> Self {
        PathSegment { ident, id: DUMMY_NODE_ID, args: None }
    }

    pub fn path_root(span: Span) -> Self {
        PathSegment::from_ident(Ident::new(kw::PathRoot, span))
    }

    pub fn span(&self) -> Span {
        match &self.args {
            Some(args) => self.ident.span.to(args.span()),
            None => self.ident.span,
        }
    }
}

/// The generic arguments and associated item constraints of a path segment.
///
/// E.g., `<A, B>` as in `Foo<A, B>` or `(A, B)` as in `Foo(A, B)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericArgs {
    /// The `<'a, A, B, C>` in `foo::bar::baz::<'a, A, B, C>`.
    AngleBracketed(AngleBracketedArgs),
    /// The `(A, B)` and `C` in `Foo(A, B) -> C`.
    Parenthesized(ParenthesizedArgs),
    /// `(..)` in return type notation.
    ParenthesizedElided(Span),
}

impl GenericArgs {
    pub fn is_angle_bracketed(&self) -> bool {
        matches!(self, AngleBracketed(..))
    }

    pub fn span(&self) -> Span {
        match self {
            AngleBracketed(data) => data.span,
            Parenthesized(data) => data.span,
            ParenthesizedElided(span) => *span,
        }
    }
}

/// Concrete argument in the sequence of generic args.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericArg {
    /// `'a` in `Foo<'a>`.
    Lifetime(Lifetime),
    /// `Bar` in `Foo<Bar>`.
    Type(P<Ty>),
    /// `1` in `Foo<1>`.
    Const(AnonConst),
}

impl GenericArg {
    pub fn span(&self) -> Span {
        match self {
            GenericArg::Lifetime(lt) => lt.ident.span,
            GenericArg::Type(ty) => ty.span,
            GenericArg::Const(ct) => ct.value.span,
        }
    }
}

/// A path like `Foo<'a, T>`.
#[derive(Clone, Encodable, Decodable, Debug, Default)]
pub struct AngleBracketedArgs {
    /// The overall span.
    pub span: Span,
    /// The comma separated parts in the `<...>`.
    pub args: ThinVec<AngleBracketedArg>,
}

/// Either an argument for a generic parameter or a constraint on an associated item.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AngleBracketedArg {
    /// A generic argument for a generic parameter.
    Arg(GenericArg),
    /// A constraint on an associated item.
    Constraint(AssocItemConstraint),
}

impl AngleBracketedArg {
    pub fn span(&self) -> Span {
        match self {
            AngleBracketedArg::Arg(arg) => arg.span(),
            AngleBracketedArg::Constraint(constraint) => constraint.span,
        }
    }
}

impl Into<P<GenericArgs>> for AngleBracketedArgs {
    fn into(self) -> P<GenericArgs> {
        P(GenericArgs::AngleBracketed(self))
    }
}

impl Into<P<GenericArgs>> for ParenthesizedArgs {
    fn into(self) -> P<GenericArgs> {
        P(GenericArgs::Parenthesized(self))
    }
}

/// A path like `Foo(A, B) -> C`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct ParenthesizedArgs {
    /// ```text
    /// Foo(A, B) -> C
    /// ^^^^^^^^^^^^^^
    /// ```
    pub span: Span,

    /// `(A, B)`
    pub inputs: ThinVec<P<Ty>>,

    /// ```text
    /// Foo(A, B) -> C
    ///    ^^^^^^
    /// ```
    pub inputs_span: Span,

    /// `C`
    pub output: FnRetTy,
}

impl ParenthesizedArgs {
    pub fn as_angle_bracketed_args(&self) -> AngleBracketedArgs {
        let args = self
            .inputs
            .iter()
            .cloned()
            .map(|input| AngleBracketedArg::Arg(GenericArg::Type(input)))
            .collect();
        AngleBracketedArgs { span: self.inputs_span, args }
    }
}

pub use crate::node_id::{CRATE_NODE_ID, DUMMY_NODE_ID, NodeId};

/// Modifiers on a trait bound like `~const`, `?` and `!`.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug)]
pub struct TraitBoundModifiers {
    pub constness: BoundConstness,
    pub asyncness: BoundAsyncness,
    pub polarity: BoundPolarity,
}

impl TraitBoundModifiers {
    pub const NONE: Self = Self {
        constness: BoundConstness::Never,
        asyncness: BoundAsyncness::Normal,
        polarity: BoundPolarity::Positive,
    };
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericBound {
    Trait(PolyTraitRef),
    Outlives(Lifetime),
    /// Precise capturing syntax: `impl Sized + use<'a>`
    Use(ThinVec<PreciseCapturingArg>, Span),
}

impl GenericBound {
    pub fn span(&self) -> Span {
        match self {
            GenericBound::Trait(t, ..) => t.span,
            GenericBound::Outlives(l) => l.ident.span,
            GenericBound::Use(_, span) => *span,
        }
    }
}

pub type GenericBounds = Vec<GenericBound>;

/// Specifies the enforced ordering for generic parameters. In the future,
/// if we wanted to relax this order, we could override `PartialEq` and
/// `PartialOrd`, to allow the kinds to be unordered.
#[derive(Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum ParamKindOrd {
    Lifetime,
    TypeOrConst,
}

impl fmt::Display for ParamKindOrd {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ParamKindOrd::Lifetime => "lifetime".fmt(f),
            ParamKindOrd::TypeOrConst => "type and const".fmt(f),
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum GenericParamKind {
    /// A lifetime definition (e.g., `'a: 'b + 'c + 'd`).
    Lifetime,
    Type {
        default: Option<P<Ty>>,
    },
    Const {
        ty: P<Ty>,
        /// Span of the `const` keyword.
        kw_span: Span,
        /// Optional default value for the const generic param.
        default: Option<AnonConst>,
    },
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct GenericParam {
    pub id: NodeId,
    pub ident: Ident,
    pub attrs: AttrVec,
    pub bounds: GenericBounds,
    pub is_placeholder: bool,
    pub kind: GenericParamKind,
    pub colon_span: Option<Span>,
}

impl GenericParam {
    pub fn span(&self) -> Span {
        match &self.kind {
            GenericParamKind::Lifetime | GenericParamKind::Type { default: None } => {
                self.ident.span
            }
            GenericParamKind::Type { default: Some(ty) } => self.ident.span.to(ty.span),
            GenericParamKind::Const { kw_span, default: Some(default), .. } => {
                kw_span.to(default.value.span)
            }
            GenericParamKind::Const { kw_span, default: None, ty } => kw_span.to(ty.span),
        }
    }
}

/// Represents lifetime, type and const parameters attached to a declaration of
/// a function, enum, trait, etc.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Generics {
    pub params: ThinVec<GenericParam>,
    pub where_clause: WhereClause,
    pub span: Span,
}

impl Default for Generics {
    /// Creates an instance of `Generics`.
    fn default() -> Generics {
        Generics { params: ThinVec::new(), where_clause: Default::default(), span: DUMMY_SP }
    }
}

/// A where-clause in a definition.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereClause {
    /// `true` if we ate a `where` token.
    ///
    /// This can happen if we parsed no predicates, e.g., `struct Foo where {}`.
    /// This allows us to pretty-print accurately and provide correct suggestion diagnostics.
    pub has_where_token: bool,
    pub predicates: ThinVec<WherePredicate>,
    pub span: Span,
}

impl WhereClause {
    pub fn is_empty(&self) -> bool {
        !self.has_where_token && self.predicates.is_empty()
    }
}

impl Default for WhereClause {
    fn default() -> WhereClause {
        WhereClause { has_where_token: false, predicates: ThinVec::new(), span: DUMMY_SP }
    }
}

/// A single predicate in a where-clause.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum WherePredicate {
    /// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`).
    BoundPredicate(WhereBoundPredicate),
    /// A lifetime predicate (e.g., `'a: 'b + 'c`).
    RegionPredicate(WhereRegionPredicate),
    /// An equality predicate (unsupported).
    EqPredicate(WhereEqPredicate),
}

impl WherePredicate {
    pub fn span(&self) -> Span {
        match self {
            WherePredicate::BoundPredicate(p) => p.span,
            WherePredicate::RegionPredicate(p) => p.span,
            WherePredicate::EqPredicate(p) => p.span,
        }
    }
}

/// A type bound.
///
/// E.g., `for<'c> Foo: Send + Clone + 'c`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereBoundPredicate {
    pub span: Span,
    /// Any generics from a `for` binding.
    pub bound_generic_params: ThinVec<GenericParam>,
    /// The type being bounded.
    pub bounded_ty: P<Ty>,
    /// Trait and lifetime bounds (`Clone + Send + 'static`).
    pub bounds: GenericBounds,
}

/// A lifetime predicate.
///
/// E.g., `'a: 'b + 'c`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereRegionPredicate {
    pub span: Span,
    pub lifetime: Lifetime,
    pub bounds: GenericBounds,
}

/// An equality predicate (unsupported).
///
/// E.g., `T = int`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct WhereEqPredicate {
    pub span: Span,
    pub lhs_ty: P<Ty>,
    pub rhs_ty: P<Ty>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Crate {
    pub attrs: AttrVec,
    pub items: ThinVec<P<Item>>,
    pub spans: ModSpans,
    /// Must be equal to `CRATE_NODE_ID` after the crate root is expanded, but may hold
    /// expansion placeholders or an unassigned value (`DUMMY_NODE_ID`) before that.
    pub id: NodeId,
    pub is_placeholder: bool,
}

/// A semantic representation of a meta item. A meta item is a slightly
/// restricted form of an attribute -- it can only contain expressions in
/// certain leaf positions, rather than arbitrary token streams -- that is used
/// for most built-in attributes.
///
/// E.g., `#[test]`, `#[derive(..)]`, `#[rustfmt::skip]` or `#[feature = "foo"]`.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct MetaItem {
    pub unsafety: Safety,
    pub path: Path,
    pub kind: MetaItemKind,
    pub span: Span,
}

/// The meta item kind, containing the data after the initial path.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum MetaItemKind {
    /// Word meta item.
    ///
    /// E.g., `#[test]`, which lacks any arguments after `test`.
    Word,

    /// List meta item.
    ///
    /// E.g., `#[derive(..)]`, where the field represents the `..`.
    List(ThinVec<MetaItemInner>),

    /// Name value meta item.
    ///
    /// E.g., `#[feature = "foo"]`, where the field represents the `"foo"`.
    NameValue(MetaItemLit),
}

/// Values inside meta item lists.
///
/// E.g., each of `Clone`, `Copy` in `#[derive(Clone, Copy)]`.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum MetaItemInner {
    /// A full MetaItem, for recursive meta items.
    MetaItem(MetaItem),

    /// A literal.
    ///
    /// E.g., `"foo"`, `64`, `true`.
    Lit(MetaItemLit),
}

/// A block (`{ .. }`).
///
/// E.g., `{ .. }` as in `fn foo() { .. }`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Block {
    /// The statements in the block.
    pub stmts: ThinVec<Stmt>,
    pub id: NodeId,
    /// Distinguishes between `unsafe { ... }` and `{ ... }`.
    pub rules: BlockCheckMode,
    pub span: Span,
    pub tokens: Option<LazyAttrTokenStream>,
    /// The following *isn't* a parse error, but will cause multiple errors in following stages.
    /// ```compile_fail
    /// let x = {
    ///     foo: var
    /// };
    /// ```
    /// #34255
    pub could_be_bare_literal: bool,
}

/// A match pattern.
///
/// Patterns appear in match statements and some other contexts, such as `let` and `if let`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Pat {
    pub id: NodeId,
    pub kind: PatKind,
    pub span: Span,
    pub tokens: Option<LazyAttrTokenStream>,
}

impl Pat {
    /// Attempt reparsing the pattern as a type.
    /// This is intended for use by diagnostics.
    pub fn to_ty(&self) -> Option<P<Ty>> {
        let kind = match &self.kind {
            // In a type expression `_` is an inference variable.
            PatKind::Wild => TyKind::Infer,
            // An IDENT pattern with no binding mode would be valid as path to a type. E.g. `u32`.
            PatKind::Ident(BindingMode::NONE, ident, None) => {
                TyKind::Path(None, Path::from_ident(*ident))
            }
            PatKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
            PatKind::MacCall(mac) => TyKind::MacCall(mac.clone()),
            // `&mut? P` can be reinterpreted as `&mut? T` where `T` is `P` reparsed as a type.
            PatKind::Ref(pat, mutbl) => {
                pat.to_ty().map(|ty| TyKind::Ref(None, MutTy { ty, mutbl: *mutbl }))?
            }
            // A slice/array pattern `[P]` can be reparsed as `[T]`, an unsized array,
            // when `P` can be reparsed as a type `T`.
            PatKind::Slice(pats) if let [pat] = pats.as_slice() => {
                pat.to_ty().map(TyKind::Slice)?
            }
            // A tuple pattern `(P0, .., Pn)` can be reparsed as `(T0, .., Tn)`
            // assuming `T0` to `Tn` are all syntactically valid as types.
            PatKind::Tuple(pats) => {
                let mut tys = ThinVec::with_capacity(pats.len());
                // FIXME(#48994) - could just be collected into an Option<Vec>
                for pat in pats {
                    tys.push(pat.to_ty()?);
                }
                TyKind::Tup(tys)
            }
            _ => return None,
        };

        Some(P(Ty { kind, id: self.id, span: self.span, tokens: None }))
    }

    /// Walk top-down and call `it` in each place where a pattern occurs
    /// starting with the root pattern `walk` is called on. If `it` returns
    /// false then we will descend no further but siblings will be processed.
    pub fn walk(&self, it: &mut impl FnMut(&Pat) -> bool) {
        if !it(self) {
            return;
        }

        match &self.kind {
            // Walk into the pattern associated with `Ident` (if any).
            PatKind::Ident(_, _, Some(p)) => p.walk(it),

            // Walk into each field of struct.
            PatKind::Struct(_, _, fields, _) => fields.iter().for_each(|field| field.pat.walk(it)),

            // Sequence of patterns.
            PatKind::TupleStruct(_, _, s)
            | PatKind::Tuple(s)
            | PatKind::Slice(s)
            | PatKind::Or(s) => s.iter().for_each(|p| p.walk(it)),

            // Trivial wrappers over inner patterns.
            PatKind::Box(s) | PatKind::Deref(s) | PatKind::Ref(s, _) | PatKind::Paren(s) => {
                s.walk(it)
            }

            // These patterns do not contain subpatterns, skip.
            PatKind::Wild
            | PatKind::Rest
            | PatKind::Never
            | PatKind::Lit(_)
            | PatKind::Range(..)
            | PatKind::Ident(..)
            | PatKind::Path(..)
            | PatKind::MacCall(_)
            | PatKind::Err(_) => {}
        }
    }

    /// Is this a `..` pattern?
    pub fn is_rest(&self) -> bool {
        matches!(self.kind, PatKind::Rest)
    }

    /// Whether this could be a never pattern, taking into account that a macro invocation can
    /// return a never pattern. Used to inform errors during parsing.
    pub fn could_be_never_pattern(&self) -> bool {
        let mut could_be_never_pattern = false;
        self.walk(&mut |pat| match &pat.kind {
            PatKind::Never | PatKind::MacCall(_) => {
                could_be_never_pattern = true;
                false
            }
            PatKind::Or(s) => {
                could_be_never_pattern = s.iter().all(|p| p.could_be_never_pattern());
                false
            }
            _ => true,
        });
        could_be_never_pattern
    }

    /// Whether this contains a `!` pattern. This in particular means that a feature gate error will
    /// be raised if the feature is off. Used to avoid gating the feature twice.
    pub fn contains_never_pattern(&self) -> bool {
        let mut contains_never_pattern = false;
        self.walk(&mut |pat| {
            if matches!(pat.kind, PatKind::Never) {
                contains_never_pattern = true;
            }
            true
        });
        contains_never_pattern
    }

    /// Return a name suitable for diagnostics.
    pub fn descr(&self) -> Option<String> {
        match &self.kind {
            PatKind::Wild => Some("_".to_string()),
            PatKind::Ident(BindingMode::NONE, ident, None) => Some(format!("{ident}")),
            PatKind::Ref(pat, mutbl) => pat.descr().map(|d| format!("&{}{d}", mutbl.prefix_str())),
            _ => None,
        }
    }
}

/// A single field in a struct pattern.
///
/// Patterns like the fields of `Foo { x, ref y, ref mut z }`
/// are treated the same as `x: x, y: ref y, z: ref mut z`,
/// except when `is_shorthand` is true.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct PatField {
    /// The identifier for the field.
    pub ident: Ident,
    /// The pattern the field is destructured to.
    pub pat: P<Pat>,
    pub is_shorthand: bool,
    pub attrs: AttrVec,
    pub id: NodeId,
    pub span: Span,
    pub is_placeholder: bool,
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum ByRef {
    Yes(Mutability),
    No,
}

impl ByRef {
    #[must_use]
    pub fn cap_ref_mutability(mut self, mutbl: Mutability) -> Self {
        if let ByRef::Yes(old_mutbl) = &mut self {
            *old_mutbl = cmp::min(*old_mutbl, mutbl);
        }
        self
    }
}

/// The mode of a binding (`mut`, `ref mut`, etc).
/// Used for both the explicit binding annotations given in the HIR for a binding
/// and the final binding mode that we infer after type inference/match ergonomics.
/// `.0` is the by-reference mode (`ref`, `ref mut`, or by value),
/// `.1` is the mutability of the binding.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub struct BindingMode(pub ByRef, pub Mutability);

impl BindingMode {
    pub const NONE: Self = Self(ByRef::No, Mutability::Not);
    pub const REF: Self = Self(ByRef::Yes(Mutability::Not), Mutability::Not);
    pub const MUT: Self = Self(ByRef::No, Mutability::Mut);
    pub const REF_MUT: Self = Self(ByRef::Yes(Mutability::Mut), Mutability::Not);
    pub const MUT_REF: Self = Self(ByRef::Yes(Mutability::Not), Mutability::Mut);
    pub const MUT_REF_MUT: Self = Self(ByRef::Yes(Mutability::Mut), Mutability::Mut);

    pub fn prefix_str(self) -> &'static str {
        match self {
            Self::NONE => "",
            Self::REF => "ref ",
            Self::MUT => "mut ",
            Self::REF_MUT => "ref mut ",
            Self::MUT_REF => "mut ref ",
            Self::MUT_REF_MUT => "mut ref mut ",
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum RangeEnd {
    /// `..=` or `...`
    Included(RangeSyntax),
    /// `..`
    Excluded,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum RangeSyntax {
    /// `...`
    DotDotDot,
    /// `..=`
    DotDotEq,
}

/// All the different flavors of pattern that Rust recognizes.
//
// Adding a new variant? Please update `test_pat` in `tests/ui/macros/stringify.rs`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum PatKind {
    /// Represents a wildcard pattern (`_`).
    Wild,

    /// A `PatKind::Ident` may either be a new bound variable (`ref mut binding @ OPT_SUBPATTERN`),
    /// or a unit struct/variant pattern, or a const pattern (in the last two cases the third
    /// field must be `None`). Disambiguation cannot be done with parser alone, so it happens
    /// during name resolution.
    Ident(BindingMode, Ident, Option<P<Pat>>),

    /// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`).
    Struct(Option<P<QSelf>>, Path, ThinVec<PatField>, PatFieldsRest),

    /// A tuple struct/variant pattern (`Variant(x, y, .., z)`).
    TupleStruct(Option<P<QSelf>>, Path, ThinVec<P<Pat>>),

    /// An or-pattern `A | B | C`.
    /// Invariant: `pats.len() >= 2`.
    Or(ThinVec<P<Pat>>),

    /// A possibly qualified path pattern.
    /// Unqualified path patterns `A::B::C` can legally refer to variants, structs, constants
    /// or associated constants. Qualified path patterns `<A>::B::C`/`<A as Trait>::B::C` can
    /// only legally refer to associated constants.
    Path(Option<P<QSelf>>, Path),

    /// A tuple pattern (`(a, b)`).
    Tuple(ThinVec<P<Pat>>),

    /// A `box` pattern.
    Box(P<Pat>),

    /// A `deref` pattern (currently `deref!()` macro-based syntax).
    Deref(P<Pat>),

    /// A reference pattern (e.g., `&mut (a, b)`).
    Ref(P<Pat>, Mutability),

    /// A literal.
    Lit(P<Expr>),

    /// A range pattern (e.g., `1...2`, `1..2`, `1..`, `..2`, `1..=2`, `..=2`).
    Range(Option<P<Expr>>, Option<P<Expr>>, Spanned<RangeEnd>),

    /// A slice pattern `[a, b, c]`.
    Slice(ThinVec<P<Pat>>),

    /// A rest pattern `..`.
    ///
    /// Syntactically it is valid anywhere.
    ///
    /// Semantically however, it only has meaning immediately inside:
    /// - a slice pattern: `[a, .., b]`,
    /// - a binding pattern immediately inside a slice pattern: `[a, r @ ..]`,
    /// - a tuple pattern: `(a, .., b)`,
    /// - a tuple struct/variant pattern: `$path(a, .., b)`.
    ///
    /// In all of these cases, an additional restriction applies,
    /// only one rest pattern may occur in the pattern sequences.
    Rest,

    // A never pattern `!`.
    Never,

    /// Parentheses in patterns used for grouping (i.e., `(PAT)`).
    Paren(P<Pat>),

    /// A macro pattern; pre-expansion.
    MacCall(P<MacCall>),

    /// Placeholder for a pattern that wasn't syntactically well formed in some way.
    Err(ErrorGuaranteed),
}

/// Whether the `..` is present in a struct fields pattern.
#[derive(Clone, Copy, Encodable, Decodable, Debug, PartialEq)]
pub enum PatFieldsRest {
    /// `module::StructName { field, ..}`
    Rest,
    /// `module::StructName { field }`
    None,
}

/// The kind of borrow in an `AddrOf` expression,
/// e.g., `&place` or `&raw const place`.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum BorrowKind {
    /// A normal borrow, `&$expr` or `&mut $expr`.
    /// The resulting type is either `&'a T` or `&'a mut T`
    /// where `T = typeof($expr)` and `'a` is some lifetime.
    Ref,
    /// A raw borrow, `&raw const $expr` or `&raw mut $expr`.
    /// The resulting type is either `*const T` or `*mut T`
    /// where `T = typeof($expr)`.
    Raw,
}

#[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum BinOpKind {
    /// The `+` operator (addition)
    Add,
    /// The `-` operator (subtraction)
    Sub,
    /// The `*` operator (multiplication)
    Mul,
    /// The `/` operator (division)
    Div,
    /// The `%` operator (modulus)
    Rem,
    /// The `&&` operator (logical and)
    And,
    /// The `||` operator (logical or)
    Or,
    /// The `^` operator (bitwise xor)
    BitXor,
    /// The `&` operator (bitwise and)
    BitAnd,
    /// The `|` operator (bitwise or)
    BitOr,
    /// The `<<` operator (shift left)
    Shl,
    /// The `>>` operator (shift right)
    Shr,
    /// The `==` operator (equality)
    Eq,
    /// The `<` operator (less than)
    Lt,
    /// The `<=` operator (less than or equal to)
    Le,
    /// The `!=` operator (not equal to)
    Ne,
    /// The `>=` operator (greater than or equal to)
    Ge,
    /// The `>` operator (greater than)
    Gt,
}

impl BinOpKind {
    pub fn as_str(&self) -> &'static str {
        use BinOpKind::*;
        match self {
            Add => "+",
            Sub => "-",
            Mul => "*",
            Div => "/",
            Rem => "%",
            And => "&&",
            Or => "||",
            BitXor => "^",
            BitAnd => "&",
            BitOr => "|",
            Shl => "<<",
            Shr => ">>",
            Eq => "==",
            Lt => "<",
            Le => "<=",
            Ne => "!=",
            Ge => ">=",
            Gt => ">",
        }
    }

    pub fn is_lazy(&self) -> bool {
        matches!(self, BinOpKind::And | BinOpKind::Or)
    }

    pub fn is_comparison(self) -> bool {
        crate::util::parser::AssocOp::from_ast_binop(self).is_comparison()
    }

    /// Returns `true` if the binary operator takes its arguments by value.
    pub fn is_by_value(self) -> bool {
        !self.is_comparison()
    }
}

pub type BinOp = Spanned<BinOpKind>;

/// Unary operator.
///
/// Note that `&data` is not an operator, it's an `AddrOf` expression.
#[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum UnOp {
    /// The `*` operator for dereferencing
    Deref,
    /// The `!` operator for logical inversion
    Not,
    /// The `-` operator for negation
    Neg,
}

impl UnOp {
    pub fn as_str(&self) -> &'static str {
        match self {
            UnOp::Deref => "*",
            UnOp::Not => "!",
            UnOp::Neg => "-",
        }
    }

    /// Returns `true` if the unary operator takes its argument by value.
    pub fn is_by_value(self) -> bool {
        matches!(self, Self::Neg | Self::Not)
    }
}

/// A statement. No `attrs` or `tokens` fields because each `StmtKind` variant
/// contains an AST node with those fields. (Except for `StmtKind::Empty`,
/// which never has attrs or tokens)
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Stmt {
    pub id: NodeId,
    pub kind: StmtKind,
    pub span: Span,
}

impl Stmt {
    pub fn has_trailing_semicolon(&self) -> bool {
        match &self.kind {
            StmtKind::Semi(_) => true,
            StmtKind::MacCall(mac) => matches!(mac.style, MacStmtStyle::Semicolon),
            _ => false,
        }
    }

    /// Converts a parsed `Stmt` to a `Stmt` with
    /// a trailing semicolon.
    ///
    /// This only modifies the parsed AST struct, not the attached
    /// `LazyAttrTokenStream`. The parser is responsible for calling
    /// `ToAttrTokenStream::add_trailing_semi` when there is actually
    /// a semicolon in the tokenstream.
    pub fn add_trailing_semicolon(mut self) -> Self {
        self.kind = match self.kind {
            StmtKind::Expr(expr) => StmtKind::Semi(expr),
            StmtKind::MacCall(mac) => {
                StmtKind::MacCall(mac.map(|MacCallStmt { mac, style: _, attrs, tokens }| {
                    MacCallStmt { mac, style: MacStmtStyle::Semicolon, attrs, tokens }
                }))
            }
            kind => kind,
        };

        self
    }

    pub fn is_item(&self) -> bool {
        matches!(self.kind, StmtKind::Item(_))
    }

    pub fn is_expr(&self) -> bool {
        matches!(self.kind, StmtKind::Expr(_))
    }
}

// Adding a new variant? Please update `test_stmt` in `tests/ui/macros/stringify.rs`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum StmtKind {
    /// A local (let) binding.
    Let(P<Local>),
    /// An item definition.
    Item(P<Item>),
    /// Expr without trailing semi-colon.
    Expr(P<Expr>),
    /// Expr with a trailing semi-colon.
    Semi(P<Expr>),
    /// Just a trailing semi-colon.
    Empty,
    /// Macro.
    MacCall(P<MacCallStmt>),
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct MacCallStmt {
    pub mac: P<MacCall>,
    pub style: MacStmtStyle,
    pub attrs: AttrVec,
    pub tokens: Option<LazyAttrTokenStream>,
}

#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug)]
pub enum MacStmtStyle {
    /// The macro statement had a trailing semicolon (e.g., `foo! { ... };`
    /// `foo!(...);`, `foo![...];`).
    Semicolon,
    /// The macro statement had braces (e.g., `foo! { ... }`).
    Braces,
    /// The macro statement had parentheses or brackets and no semicolon (e.g.,
    /// `foo!(...)`). All of these will end up being converted into macro
    /// expressions.
    NoBraces,
}

/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Local {
    pub id: NodeId,
    pub pat: P<Pat>,
    pub ty: Option<P<Ty>>,
    pub kind: LocalKind,
    pub span: Span,
    pub colon_sp: Option<Span>,
    pub attrs: AttrVec,
    pub tokens: Option<LazyAttrTokenStream>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum LocalKind {
    /// Local declaration.
    /// Example: `let x;`
    Decl,
    /// Local declaration with an initializer.
    /// Example: `let x = y;`
    Init(P<Expr>),
    /// Local declaration with an initializer and an `else` clause.
    /// Example: `let Some(x) = y else { return };`
    InitElse(P<Expr>, P<Block>),
}

impl LocalKind {
    pub fn init(&self) -> Option<&Expr> {
        match self {
            Self::Decl => None,
            Self::Init(i) | Self::InitElse(i, _) => Some(i),
        }
    }

    pub fn init_else_opt(&self) -> Option<(&Expr, Option<&Block>)> {
        match self {
            Self::Decl => None,
            Self::Init(init) => Some((init, None)),
            Self::InitElse(init, els) => Some((init, Some(els))),
        }
    }
}

/// An arm of a 'match'.
///
/// E.g., `0..=10 => { println!("match!") }` as in
///
/// ```
/// match 123 {
///     0..=10 => { println!("match!") },
///     _ => { println!("no match!") },
/// }
/// ```
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Arm {
    pub attrs: AttrVec,
    /// Match arm pattern, e.g. `10` in `match foo { 10 => {}, _ => {} }`.
    pub pat: P<Pat>,
    /// Match arm guard, e.g. `n > 10` in `match foo { n if n > 10 => {}, _ => {} }`.
    pub guard: Option<P<Expr>>,
    /// Match arm body. Omitted if the pattern is a never pattern.
    pub body: Option<P<Expr>>,
    pub span: Span,
    pub id: NodeId,
    pub is_placeholder: bool,
}

/// A single field in a struct expression, e.g. `x: value` and `y` in `Foo { x: value, y }`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct ExprField {
    pub attrs: AttrVec,
    pub id: NodeId,
    pub span: Span,
    pub ident: Ident,
    pub expr: P<Expr>,
    pub is_shorthand: bool,
    pub is_placeholder: bool,
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
pub enum BlockCheckMode {
    Default,
    Unsafe(UnsafeSource),
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
pub enum UnsafeSource {
    CompilerGenerated,
    UserProvided,
}

/// A constant (expression) that's not an item or associated item,
/// but needs its own `DefId` for type-checking, const-eval, etc.
/// These are usually found nested inside types (e.g., array lengths)
/// or expressions (e.g., repeat counts), and also used to define
/// explicit discriminant values for enum variants.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct AnonConst {
    pub id: NodeId,
    pub value: P<Expr>,
}

/// An expression.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Expr {
    pub id: NodeId,
    pub kind: ExprKind,
    pub span: Span,
    pub attrs: AttrVec,
    pub tokens: Option<LazyAttrTokenStream>,
}

impl Expr {
    /// Is this expr either `N`, or `{ N }`.
    ///
    /// If this is not the case, name resolution does not resolve `N` when using
    /// `min_const_generics` as more complex expressions are not supported.
    ///
    /// Does not ensure that the path resolves to a const param, the caller should check this.
    pub fn is_potential_trivial_const_arg(&self, strip_identity_block: bool) -> bool {
        let this = if strip_identity_block { self.maybe_unwrap_block() } else { self };

        if let ExprKind::Path(None, path) = &this.kind
            && path.is_potential_trivial_const_arg()
        {
            true
        } else {
            false
        }
    }

    /// Returns an expression with (when possible) *one* outter brace removed
    pub fn maybe_unwrap_block(&self) -> &Expr {
        if let ExprKind::Block(block, None) = &self.kind
            && let [stmt] = block.stmts.as_slice()
            && let StmtKind::Expr(expr) = &stmt.kind
        {
            expr
        } else {
            self
        }
    }

    /// Determines whether this expression is a macro call optionally wrapped in braces . If
    /// `already_stripped_block` is set then we do not attempt to peel off a layer of braces.
    ///
    /// Returns the [`NodeId`] of the macro call and whether a layer of braces has been peeled
    /// either before, or part of, this function.
    pub fn optionally_braced_mac_call(
        &self,
        already_stripped_block: bool,
    ) -> Option<(bool, NodeId)> {
        match &self.kind {
            ExprKind::Block(block, None)
                if let [stmt] = &*block.stmts
                    && !already_stripped_block =>
            {
                match &stmt.kind {
                    StmtKind::MacCall(_) => Some((true, stmt.id)),
                    StmtKind::Expr(expr) if let ExprKind::MacCall(_) = &expr.kind => {
                        Some((true, expr.id))
                    }
                    _ => None,
                }
            }
            ExprKind::MacCall(_) => Some((already_stripped_block, self.id)),
            _ => None,
        }
    }

    pub fn to_bound(&self) -> Option<GenericBound> {
        match &self.kind {
            ExprKind::Path(None, path) => Some(GenericBound::Trait(PolyTraitRef::new(
                ThinVec::new(),
                path.clone(),
                TraitBoundModifiers::NONE,
                self.span,
            ))),
            _ => None,
        }
    }

    pub fn peel_parens(&self) -> &Expr {
        let mut expr = self;
        while let ExprKind::Paren(inner) = &expr.kind {
            expr = inner;
        }
        expr
    }

    pub fn peel_parens_and_refs(&self) -> &Expr {
        let mut expr = self;
        while let ExprKind::Paren(inner) | ExprKind::AddrOf(BorrowKind::Ref, _, inner) = &expr.kind
        {
            expr = inner;
        }
        expr
    }

    /// Attempts to reparse as `Ty` (for diagnostic purposes).
    pub fn to_ty(&self) -> Option<P<Ty>> {
        let kind = match &self.kind {
            // Trivial conversions.
            ExprKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
            ExprKind::MacCall(mac) => TyKind::MacCall(mac.clone()),

            ExprKind::Paren(expr) => expr.to_ty().map(TyKind::Paren)?,

            ExprKind::AddrOf(BorrowKind::Ref, mutbl, expr) => {
                expr.to_ty().map(|ty| TyKind::Ref(None, MutTy { ty, mutbl: *mutbl }))?
            }

            ExprKind::Repeat(expr, expr_len) => {
                expr.to_ty().map(|ty| TyKind::Array(ty, expr_len.clone()))?
            }

            ExprKind::Array(exprs) if let [expr] = exprs.as_slice() => {
                expr.to_ty().map(TyKind::Slice)?
            }

            ExprKind::Tup(exprs) => {
                let tys = exprs.iter().map(|expr| expr.to_ty()).collect::<Option<ThinVec<_>>>()?;
                TyKind::Tup(tys)
            }

            // If binary operator is `Add` and both `lhs` and `rhs` are trait bounds,
            // then type of result is trait object.
            // Otherwise we don't assume the result type.
            ExprKind::Binary(binop, lhs, rhs) if binop.node == BinOpKind::Add => {
                if let (Some(lhs), Some(rhs)) = (lhs.to_bound(), rhs.to_bound()) {
                    TyKind::TraitObject(vec![lhs, rhs], TraitObjectSyntax::None)
                } else {
                    return None;
                }
            }

            ExprKind::Underscore => TyKind::Infer,

            // This expression doesn't look like a type syntactically.
            _ => return None,
        };

        Some(P(Ty { kind, id: self.id, span: self.span, tokens: None }))
    }

    pub fn precedence(&self) -> ExprPrecedence {
        match self.kind {
            ExprKind::Array(_) => ExprPrecedence::Array,
            ExprKind::ConstBlock(_) => ExprPrecedence::ConstBlock,
            ExprKind::Call(..) => ExprPrecedence::Call,
            ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
            ExprKind::Tup(_) => ExprPrecedence::Tup,
            ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node),
            ExprKind::Unary(..) => ExprPrecedence::Unary,
            ExprKind::Lit(_) | ExprKind::IncludedBytes(..) => ExprPrecedence::Lit,
            ExprKind::Cast(..) => ExprPrecedence::Cast,
            ExprKind::Let(..) => ExprPrecedence::Let,
            ExprKind::If(..) => ExprPrecedence::If,
            ExprKind::While(..) => ExprPrecedence::While,
            ExprKind::ForLoop { .. } => ExprPrecedence::ForLoop,
            ExprKind::Loop(..) => ExprPrecedence::Loop,
            ExprKind::Match(_, _, MatchKind::Prefix) => ExprPrecedence::Match,
            ExprKind::Match(_, _, MatchKind::Postfix) => ExprPrecedence::PostfixMatch,
            ExprKind::Closure(..) => ExprPrecedence::Closure,
            ExprKind::Block(..) => ExprPrecedence::Block,
            ExprKind::TryBlock(..) => ExprPrecedence::TryBlock,
            ExprKind::Gen(..) => ExprPrecedence::Gen,
            ExprKind::Await(..) => ExprPrecedence::Await,
            ExprKind::Assign(..) => ExprPrecedence::Assign,
            ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
            ExprKind::Field(..) => ExprPrecedence::Field,
            ExprKind::Index(..) => ExprPrecedence::Index,
            ExprKind::Range(..) => ExprPrecedence::Range,
            ExprKind::Underscore => ExprPrecedence::Path,
            ExprKind::Path(..) => ExprPrecedence::Path,
            ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
            ExprKind::Break(..) => ExprPrecedence::Break,
            ExprKind::Continue(..) => ExprPrecedence::Continue,
            ExprKind::Ret(..) => ExprPrecedence::Ret,
            ExprKind::Struct(..) => ExprPrecedence::Struct,
            ExprKind::Repeat(..) => ExprPrecedence::Repeat,
            ExprKind::Paren(..) => ExprPrecedence::Paren,
            ExprKind::Try(..) => ExprPrecedence::Try,
            ExprKind::Yield(..) => ExprPrecedence::Yield,
            ExprKind::Yeet(..) => ExprPrecedence::Yeet,
            ExprKind::Become(..) => ExprPrecedence::Become,
            ExprKind::InlineAsm(..)
            | ExprKind::Type(..)
            | ExprKind::OffsetOf(..)
            | ExprKind::FormatArgs(..)
            | ExprKind::MacCall(..) => ExprPrecedence::Mac,
            ExprKind::Err(_) | ExprKind::Dummy => ExprPrecedence::Err,
        }
    }

    /// To a first-order approximation, is this a pattern?
    pub fn is_approximately_pattern(&self) -> bool {
        matches!(
            &self.peel_parens().kind,
            ExprKind::Array(_)
                | ExprKind::Call(_, _)
                | ExprKind::Tup(_)
                | ExprKind::Lit(_)
                | ExprKind::Range(_, _, _)
                | ExprKind::Underscore
                | ExprKind::Path(_, _)
                | ExprKind::Struct(_)
        )
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Closure {
    pub binder: ClosureBinder,
    pub capture_clause: CaptureBy,
    pub constness: Const,
    pub coroutine_kind: Option<CoroutineKind>,
    pub movability: Movability,
    pub fn_decl: P<FnDecl>,
    pub body: P<Expr>,
    /// The span of the declaration block: 'move |...| -> ...'
    pub fn_decl_span: Span,
    /// The span of the argument block `|...|`
    pub fn_arg_span: Span,
}

/// Limit types of a range (inclusive or exclusive).
#[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug)]
pub enum RangeLimits {
    /// Inclusive at the beginning, exclusive at the end.
    HalfOpen,
    /// Inclusive at the beginning and end.
    Closed,
}

/// A method call (e.g. `x.foo::<Bar, Baz>(a, b, c)`).
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct MethodCall {
    /// The method name and its generic arguments, e.g. `foo::<Bar, Baz>`.
    pub seg: PathSegment,
    /// The receiver, e.g. `x`.
    pub receiver: P<Expr>,
    /// The arguments, e.g. `a, b, c`.
    pub args: ThinVec<P<Expr>>,
    /// The span of the function, without the dot and receiver e.g. `foo::<Bar,
    /// Baz>(a, b, c)`.
    pub span: Span,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum StructRest {
    /// `..x`.
    Base(P<Expr>),
    /// `..`.
    Rest(Span),
    /// No trailing `..` or expression.
    None,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct StructExpr {
    pub qself: Option<P<QSelf>>,
    pub path: Path,
    pub fields: ThinVec<ExprField>,
    pub rest: StructRest,
}

// Adding a new variant? Please update `test_expr` in `tests/ui/macros/stringify.rs`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum ExprKind {
    /// An array (e.g, `[a, b, c, d]`).
    Array(ThinVec<P<Expr>>),
    /// Allow anonymous constants from an inline `const` block.
    ConstBlock(AnonConst),
    /// A function call.
    ///
    /// The first field resolves to the function itself,
    /// and the second field is the list of arguments.
    /// This also represents calling the constructor of
    /// tuple-like ADTs such as tuple structs and enum variants.
    Call(P<Expr>, ThinVec<P<Expr>>),
    /// A method call (e.g., `x.foo::<Bar, Baz>(a, b, c)`).
    MethodCall(Box<MethodCall>),
    /// A tuple (e.g., `(a, b, c, d)`).
    Tup(ThinVec<P<Expr>>),
    /// A binary operation (e.g., `a + b`, `a * b`).
    Binary(BinOp, P<Expr>, P<Expr>),
    /// A unary operation (e.g., `!x`, `*x`).
    Unary(UnOp, P<Expr>),
    /// A literal (e.g., `1`, `"foo"`).
    Lit(token::Lit),
    /// A cast (e.g., `foo as f64`).
    Cast(P<Expr>, P<Ty>),
    /// A type ascription (e.g., `builtin # type_ascribe(42, usize)`).
    ///
    /// Usually not written directly in user code but
    /// indirectly via the macro `type_ascribe!(...)`.
    Type(P<Expr>, P<Ty>),
    /// A `let pat = expr` expression that is only semantically allowed in the condition
    /// of `if` / `while` expressions. (e.g., `if let 0 = x { .. }`).
    ///
    /// `Span` represents the whole `let pat = expr` statement.
    Let(P<Pat>, P<Expr>, Span, Recovered),
    /// An `if` block, with an optional `else` block.
    ///
    /// `if expr { block } else { expr }`
    If(P<Expr>, P<Block>, Option<P<Expr>>),
    /// A while loop, with an optional label.
    ///
    /// `'label: while expr { block }`
    While(P<Expr>, P<Block>, Option<Label>),
    /// A `for` loop, with an optional label.
    ///
    /// `'label: for await? pat in iter { block }`
    ///
    /// This is desugared to a combination of `loop` and `match` expressions.
    ForLoop { pat: P<Pat>, iter: P<Expr>, body: P<Block>, label: Option<Label>, kind: ForLoopKind },
    /// Conditionless loop (can be exited with `break`, `continue`, or `return`).
    ///
    /// `'label: loop { block }`
    Loop(P<Block>, Option<Label>, Span),
    /// A `match` block.
    Match(P<Expr>, ThinVec<Arm>, MatchKind),
    /// A closure (e.g., `move |a, b, c| a + b + c`).
    Closure(Box<Closure>),
    /// A block (`'label: { ... }`).
    Block(P<Block>, Option<Label>),
    /// An `async` block (`async move { ... }`),
    /// or a `gen` block (`gen move { ... }`).
    ///
    /// The span is the "decl", which is the header before the body `{ }`
    /// including the `asyng`/`gen` keywords and possibly `move`.
    Gen(CaptureBy, P<Block>, GenBlockKind, Span),
    /// An await expression (`my_future.await`). Span is of await keyword.
    Await(P<Expr>, Span),

    /// A try block (`try { ... }`).
    TryBlock(P<Block>),

    /// An assignment (`a = foo()`).
    /// The `Span` argument is the span of the `=` token.
    Assign(P<Expr>, P<Expr>, Span),
    /// An assignment with an operator.
    ///
    /// E.g., `a += 1`.
    AssignOp(BinOp, P<Expr>, P<Expr>),
    /// Access of a named (e.g., `obj.foo`) or unnamed (e.g., `obj.0`) struct field.
    Field(P<Expr>, Ident),
    /// An indexing operation (e.g., `foo[2]`).
    /// The span represents the span of the `[2]`, including brackets.
    Index(P<Expr>, P<Expr>, Span),
    /// A range (e.g., `1..2`, `1..`, `..2`, `1..=2`, `..=2`; and `..` in destructuring assignment).
    Range(Option<P<Expr>>, Option<P<Expr>>, RangeLimits),
    /// An underscore, used in destructuring assignment to ignore a value.
    Underscore,

    /// Variable reference, possibly containing `::` and/or type
    /// parameters (e.g., `foo::bar::<baz>`).
    ///
    /// Optionally "qualified" (e.g., `<Vec<T> as SomeTrait>::SomeType`).
    Path(Option<P<QSelf>>, Path),

    /// A referencing operation (`&a`, `&mut a`, `&raw const a` or `&raw mut a`).
    AddrOf(BorrowKind, Mutability, P<Expr>),
    /// A `break`, with an optional label to break, and an optional expression.
    Break(Option<Label>, Option<P<Expr>>),
    /// A `continue`, with an optional label.
    Continue(Option<Label>),
    /// A `return`, with an optional value to be returned.
    Ret(Option<P<Expr>>),

    /// Output of the `asm!()` macro.
    InlineAsm(P<InlineAsm>),

    /// An `offset_of` expression (e.g., `builtin # offset_of(Struct, field)`).
    ///
    /// Usually not written directly in user code but
    /// indirectly via the macro `core::mem::offset_of!(...)`.
    OffsetOf(P<Ty>, P<[Ident]>),

    /// A macro invocation; pre-expansion.
    MacCall(P<MacCall>),

    /// A struct literal expression.
    ///
    /// E.g., `Foo {x: 1, y: 2}`, or `Foo {x: 1, .. rest}`.
    Struct(P<StructExpr>),

    /// An array literal constructed from one repeated element.
    ///
    /// E.g., `[1; 5]`. The expression is the element to be
    /// repeated; the constant is the number of times to repeat it.
    Repeat(P<Expr>, AnonConst),

    /// No-op: used solely so we can pretty-print faithfully.
    Paren(P<Expr>),

    /// A try expression (`expr?`).
    Try(P<Expr>),

    /// A `yield`, with an optional value to be yielded.
    Yield(Option<P<Expr>>),

    /// A `do yeet` (aka `throw`/`fail`/`bail`/`raise`/whatever),
    /// with an optional value to be returned.
    Yeet(Option<P<Expr>>),

    /// A tail call return, with the value to be returned.
    ///
    /// While `.0` must be a function call, we check this later, after parsing.
    Become(P<Expr>),

    /// Bytes included via `include_bytes!`
    /// Added for optimization purposes to avoid the need to escape
    /// large binary blobs - should always behave like [`ExprKind::Lit`]
    /// with a `ByteStr` literal.
    IncludedBytes(Lrc<[u8]>),

    /// A `format_args!()` expression.
    FormatArgs(P<FormatArgs>),

    /// Placeholder for an expression that wasn't syntactically well formed in some way.
    Err(ErrorGuaranteed),

    /// Acts as a null expression. Lowering it will always emit a bug.
    Dummy,
}

/// Used to differentiate between `for` loops and `for await` loops.
#[derive(Clone, Copy, Encodable, Decodable, Debug, PartialEq, Eq)]
pub enum ForLoopKind {
    For,
    ForAwait,
}

/// Used to differentiate between `async {}` blocks and `gen {}` blocks.
#[derive(Clone, Encodable, Decodable, Debug, PartialEq, Eq)]
pub enum GenBlockKind {
    Async,
    Gen,
    AsyncGen,
}

impl fmt::Display for GenBlockKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.modifier().fmt(f)
    }
}

impl GenBlockKind {
    pub fn modifier(&self) -> &'static str {
        match self {
            GenBlockKind::Async => "async",
            GenBlockKind::Gen => "gen",
            GenBlockKind::AsyncGen => "async gen",
        }
    }
}

/// The explicit `Self` type in a "qualified path". The actual
/// path, including the trait and the associated item, is stored
/// separately. `position` represents the index of the associated
/// item qualified with this `Self` type.
///
/// ```ignore (only-for-syntax-highlight)
/// <Vec<T> as a::b::Trait>::AssociatedItem
///  ^~~~~     ~~~~~~~~~~~~~~^
///  ty        position = 3
///
/// <Vec<T>>::AssociatedItem
///  ^~~~~    ^
///  ty       position = 0
/// ```
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct QSelf {
    pub ty: P<Ty>,

    /// The span of `a::b::Trait` in a path like `<Vec<T> as
    /// a::b::Trait>::AssociatedItem`; in the case where `position ==
    /// 0`, this is an empty span.
    pub path_span: Span,
    pub position: usize,
}

/// A capture clause used in closures and `async` blocks.
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum CaptureBy {
    /// `move |x| y + x`.
    Value {
        /// The span of the `move` keyword.
        move_kw: Span,
    },
    /// `move` keyword was not specified.
    Ref,
}

/// Closure lifetime binder, `for<'a, 'b>` in `for<'a, 'b> |_: &'a (), _: &'b ()|`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum ClosureBinder {
    /// The binder is not present, all closure lifetimes are inferred.
    NotPresent,
    /// The binder is present.
    For {
        /// Span of the whole `for<>` clause
        ///
        /// ```text
        /// for<'a, 'b> |_: &'a (), _: &'b ()| { ... }
        /// ^^^^^^^^^^^ -- this
        /// ```
        span: Span,

        /// Lifetimes in the `for<>` closure
        ///
        /// ```text
        /// for<'a, 'b> |_: &'a (), _: &'b ()| { ... }
        ///     ^^^^^^ -- this
        /// ```
        generic_params: ThinVec<GenericParam>,
    },
}

/// Represents a macro invocation. The `path` indicates which macro
/// is being invoked, and the `args` are arguments passed to it.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct MacCall {
    pub path: Path,
    pub args: P<DelimArgs>,
}

impl MacCall {
    pub fn span(&self) -> Span {
        self.path.span.to(self.args.dspan.entire())
    }
}

/// Arguments passed to an attribute macro.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AttrArgs {
    /// No arguments: `#[attr]`.
    Empty,
    /// Delimited arguments: `#[attr()/[]/{}]`.
    Delimited(DelimArgs),
    /// Arguments of a key-value attribute: `#[attr = "value"]`.
    Eq(
        /// Span of the `=` token.
        Span,
        /// The "value".
        AttrArgsEq,
    ),
}

// The RHS of an `AttrArgs::Eq` starts out as an expression. Once macro
// expansion is completed, all cases end up either as a meta item literal,
// which is the form used after lowering to HIR, or as an error.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AttrArgsEq {
    Ast(P<Expr>),
    Hir(MetaItemLit),
}

impl AttrArgs {
    pub fn span(&self) -> Option<Span> {
        match self {
            AttrArgs::Empty => None,
            AttrArgs::Delimited(args) => Some(args.dspan.entire()),
            AttrArgs::Eq(eq_span, AttrArgsEq::Ast(expr)) => Some(eq_span.to(expr.span)),
            AttrArgs::Eq(_, AttrArgsEq::Hir(lit)) => {
                unreachable!("in literal form when getting span: {:?}", lit);
            }
        }
    }

    /// Tokens inside the delimiters or after `=`.
    /// Proc macros see these tokens, for example.
    pub fn inner_tokens(&self) -> TokenStream {
        match self {
            AttrArgs::Empty => TokenStream::default(),
            AttrArgs::Delimited(args) => args.tokens.clone(),
            AttrArgs::Eq(_, AttrArgsEq::Ast(expr)) => TokenStream::from_ast(expr),
            AttrArgs::Eq(_, AttrArgsEq::Hir(lit)) => {
                unreachable!("in literal form when getting inner tokens: {:?}", lit)
            }
        }
    }
}

impl<CTX> HashStable<CTX> for AttrArgs
where
    CTX: crate::HashStableContext,
{
    fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
        mem::discriminant(self).hash_stable(ctx, hasher);
        match self {
            AttrArgs::Empty => {}
            AttrArgs::Delimited(args) => args.hash_stable(ctx, hasher),
            AttrArgs::Eq(_eq_span, AttrArgsEq::Ast(expr)) => {
                unreachable!("hash_stable {:?}", expr);
            }
            AttrArgs::Eq(eq_span, AttrArgsEq::Hir(lit)) => {
                eq_span.hash_stable(ctx, hasher);
                lit.hash_stable(ctx, hasher);
            }
        }
    }
}

/// Delimited arguments, as used in `#[attr()/[]/{}]` or `mac!()/[]/{}`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct DelimArgs {
    pub dspan: DelimSpan,
    pub delim: Delimiter, // Note: `Delimiter::Invisible` never occurs
    pub tokens: TokenStream,
}

impl DelimArgs {
    /// Whether a macro with these arguments needs a semicolon
    /// when used as a standalone item or statement.
    pub fn need_semicolon(&self) -> bool {
        !matches!(self, DelimArgs { delim: Delimiter::Brace, .. })
    }
}

impl<CTX> HashStable<CTX> for DelimArgs
where
    CTX: crate::HashStableContext,
{
    fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
        let DelimArgs { dspan, delim, tokens } = self;
        dspan.hash_stable(ctx, hasher);
        delim.hash_stable(ctx, hasher);
        tokens.hash_stable(ctx, hasher);
    }
}

/// Represents a macro definition.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct MacroDef {
    pub body: P<DelimArgs>,
    /// `true` if macro was defined with `macro_rules`.
    pub macro_rules: bool,
}

#[derive(Clone, Encodable, Decodable, Debug, Copy, Hash, Eq, PartialEq)]
#[derive(HashStable_Generic)]
pub enum StrStyle {
    /// A regular string, like `"foo"`.
    Cooked,
    /// A raw string, like `r##"foo"##`.
    ///
    /// The value is the number of `#` symbols used.
    Raw(u8),
}

/// The kind of match expression
#[derive(Clone, Copy, Encodable, Decodable, Debug, PartialEq)]
pub enum MatchKind {
    /// match expr { ... }
    Prefix,
    /// expr.match { ... }
    Postfix,
}

/// A literal in a meta item.
#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct MetaItemLit {
    /// The original literal as written in the source code.
    pub symbol: Symbol,
    /// The original suffix as written in the source code.
    pub suffix: Option<Symbol>,
    /// The "semantic" representation of the literal lowered from the original tokens.
    /// Strings are unescaped, hexadecimal forms are eliminated, etc.
    pub kind: LitKind,
    pub span: Span,
}

/// Similar to `MetaItemLit`, but restricted to string literals.
#[derive(Clone, Copy, Encodable, Decodable, Debug)]
pub struct StrLit {
    /// The original literal as written in source code.
    pub symbol: Symbol,
    /// The original suffix as written in source code.
    pub suffix: Option<Symbol>,
    /// The semantic (unescaped) representation of the literal.
    pub symbol_unescaped: Symbol,
    pub style: StrStyle,
    pub span: Span,
}

impl StrLit {
    pub fn as_token_lit(&self) -> token::Lit {
        let token_kind = match self.style {
            StrStyle::Cooked => token::Str,
            StrStyle::Raw(n) => token::StrRaw(n),
        };
        token::Lit::new(token_kind, self.symbol, self.suffix)
    }
}

/// Type of the integer literal based on provided suffix.
#[derive(Clone, Copy, Encodable, Decodable, Debug, Hash, Eq, PartialEq)]
#[derive(HashStable_Generic)]
pub enum LitIntType {
    /// e.g. `42_i32`.
    Signed(IntTy),
    /// e.g. `42_u32`.
    Unsigned(UintTy),
    /// e.g. `42`.
    Unsuffixed,
}

/// Type of the float literal based on provided suffix.
#[derive(Clone, Copy, Encodable, Decodable, Debug, Hash, Eq, PartialEq)]
#[derive(HashStable_Generic)]
pub enum LitFloatType {
    /// A float literal with a suffix (`1f32` or `1E10f32`).
    Suffixed(FloatTy),
    /// A float literal without a suffix (`1.0 or 1.0E10`).
    Unsuffixed,
}

/// This type is used within both `ast::MetaItemLit` and `hir::Lit`.
///
/// Note that the entire literal (including the suffix) is considered when
/// deciding the `LitKind`. This means that float literals like `1f32` are
/// classified by this type as `Float`. This is different to `token::LitKind`
/// which does *not* consider the suffix.
#[derive(Clone, Encodable, Decodable, Debug, Hash, Eq, PartialEq, HashStable_Generic)]
pub enum LitKind {
    /// A string literal (`"foo"`). The symbol is unescaped, and so may differ
    /// from the original token's symbol.
    Str(Symbol, StrStyle),
    /// A byte string (`b"foo"`). Not stored as a symbol because it might be
    /// non-utf8, and symbols only allow utf8 strings.
    ByteStr(Lrc<[u8]>, StrStyle),
    /// A C String (`c"foo"`). Guaranteed to only have `\0` at the end.
    CStr(Lrc<[u8]>, StrStyle),
    /// A byte char (`b'f'`).
    Byte(u8),
    /// A character literal (`'a'`).
    Char(char),
    /// An integer literal (`1`).
    Int(Pu128, LitIntType),
    /// A float literal (`1.0`, `1f64` or `1E10f64`). The pre-suffix part is
    /// stored as a symbol rather than `f64` so that `LitKind` can impl `Eq`
    /// and `Hash`.
    Float(Symbol, LitFloatType),
    /// A boolean literal (`true`, `false`).
    Bool(bool),
    /// Placeholder for a literal that wasn't well-formed in some way.
    Err(ErrorGuaranteed),
}

impl LitKind {
    pub fn str(&self) -> Option<Symbol> {
        match *self {
            LitKind::Str(s, _) => Some(s),
            _ => None,
        }
    }

    /// Returns `true` if this literal is a string.
    pub fn is_str(&self) -> bool {
        matches!(self, LitKind::Str(..))
    }

    /// Returns `true` if this literal is byte literal string.
    pub fn is_bytestr(&self) -> bool {
        matches!(self, LitKind::ByteStr(..))
    }

    /// Returns `true` if this is a numeric literal.
    pub fn is_numeric(&self) -> bool {
        matches!(self, LitKind::Int(..) | LitKind::Float(..))
    }

    /// Returns `true` if this literal has no suffix.
    /// Note: this will return true for literals with prefixes such as raw strings and byte strings.
    pub fn is_unsuffixed(&self) -> bool {
        !self.is_suffixed()
    }

    /// Returns `true` if this literal has a suffix.
    pub fn is_suffixed(&self) -> bool {
        match *self {
            // suffixed variants
            LitKind::Int(_, LitIntType::Signed(..) | LitIntType::Unsigned(..))
            | LitKind::Float(_, LitFloatType::Suffixed(..)) => true,
            // unsuffixed variants
            LitKind::Str(..)
            | LitKind::ByteStr(..)
            | LitKind::CStr(..)
            | LitKind::Byte(..)
            | LitKind::Char(..)
            | LitKind::Int(_, LitIntType::Unsuffixed)
            | LitKind::Float(_, LitFloatType::Unsuffixed)
            | LitKind::Bool(..)
            | LitKind::Err(_) => false,
        }
    }
}

// N.B., If you change this, you'll probably want to change the corresponding
// type structure in `middle/ty.rs` as well.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct MutTy {
    pub ty: P<Ty>,
    pub mutbl: Mutability,
}

/// Represents a function's signature in a trait declaration,
/// trait implementation, or free function.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct FnSig {
    pub header: FnHeader,
    pub decl: P<FnDecl>,
    pub span: Span,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum FloatTy {
    F16,
    F32,
    F64,
    F128,
}

impl FloatTy {
    pub fn name_str(self) -> &'static str {
        match self {
            FloatTy::F16 => "f16",
            FloatTy::F32 => "f32",
            FloatTy::F64 => "f64",
            FloatTy::F128 => "f128",
        }
    }

    pub fn name(self) -> Symbol {
        match self {
            FloatTy::F16 => sym::f16,
            FloatTy::F32 => sym::f32,
            FloatTy::F64 => sym::f64,
            FloatTy::F128 => sym::f128,
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum IntTy {
    Isize,
    I8,
    I16,
    I32,
    I64,
    I128,
}

impl IntTy {
    pub fn name_str(&self) -> &'static str {
        match *self {
            IntTy::Isize => "isize",
            IntTy::I8 => "i8",
            IntTy::I16 => "i16",
            IntTy::I32 => "i32",
            IntTy::I64 => "i64",
            IntTy::I128 => "i128",
        }
    }

    pub fn name(&self) -> Symbol {
        match *self {
            IntTy::Isize => sym::isize,
            IntTy::I8 => sym::i8,
            IntTy::I16 => sym::i16,
            IntTy::I32 => sym::i32,
            IntTy::I64 => sym::i64,
            IntTy::I128 => sym::i128,
        }
    }
}

#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum UintTy {
    Usize,
    U8,
    U16,
    U32,
    U64,
    U128,
}

impl UintTy {
    pub fn name_str(&self) -> &'static str {
        match *self {
            UintTy::Usize => "usize",
            UintTy::U8 => "u8",
            UintTy::U16 => "u16",
            UintTy::U32 => "u32",
            UintTy::U64 => "u64",
            UintTy::U128 => "u128",
        }
    }

    pub fn name(&self) -> Symbol {
        match *self {
            UintTy::Usize => sym::usize,
            UintTy::U8 => sym::u8,
            UintTy::U16 => sym::u16,
            UintTy::U32 => sym::u32,
            UintTy::U64 => sym::u64,
            UintTy::U128 => sym::u128,
        }
    }
}

/// A constraint on an associated item.
///
/// ### Examples
///
/// * the `A = Ty` and `B = Ty` in `Trait<A = Ty, B = Ty>`
/// * the `G<Ty> = Ty` in `Trait<G<Ty> = Ty>`
/// * the `A: Bound` in `Trait<A: Bound>`
/// * the `RetTy` in `Trait(ArgTy, ArgTy) -> RetTy`
/// * the `C = { Ct }` in `Trait<C = { Ct }>` (feature `associated_const_equality`)
/// * the `f(..): Bound` in `Trait<f(..): Bound>` (feature `return_type_notation`)
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct AssocItemConstraint {
    pub id: NodeId,
    pub ident: Ident,
    pub gen_args: Option<GenericArgs>,
    pub kind: AssocItemConstraintKind,
    pub span: Span,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum Term {
    Ty(P<Ty>),
    Const(AnonConst),
}

impl From<P<Ty>> for Term {
    fn from(v: P<Ty>) -> Self {
        Term::Ty(v)
    }
}

impl From<AnonConst> for Term {
    fn from(v: AnonConst) -> Self {
        Term::Const(v)
    }
}

/// The kind of [associated item constraint][AssocItemConstraint].
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AssocItemConstraintKind {
    /// An equality constraint for an associated item (e.g., `AssocTy = Ty` in `Trait<AssocTy = Ty>`).
    ///
    /// Also known as an *associated item binding* (we *bind* an associated item to a term).
    ///
    /// Furthermore, associated type equality constraints can also be referred to as *associated type
    /// bindings*. Similarly with associated const equality constraints and *associated const bindings*.
    Equality { term: Term },
    /// A bound on an associated type (e.g., `AssocTy: Bound` in `Trait<AssocTy: Bound>`).
    Bound { bounds: GenericBounds },
}

#[derive(Encodable, Decodable, Debug)]
pub struct Ty {
    pub id: NodeId,
    pub kind: TyKind,
    pub span: Span,
    pub tokens: Option<LazyAttrTokenStream>,
}

impl Clone for Ty {
    fn clone(&self) -> Self {
        ensure_sufficient_stack(|| Self {
            id: self.id,
            kind: self.kind.clone(),
            span: self.span,
            tokens: self.tokens.clone(),
        })
    }
}

impl Ty {
    pub fn peel_refs(&self) -> &Self {
        let mut final_ty = self;
        while let TyKind::Ref(_, MutTy { ty, .. }) | TyKind::Ptr(MutTy { ty, .. }) = &final_ty.kind
        {
            final_ty = ty;
        }
        final_ty
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct BareFnTy {
    pub safety: Safety,
    pub ext: Extern,
    pub generic_params: ThinVec<GenericParam>,
    pub decl: P<FnDecl>,
    /// Span of the `[unsafe] [extern] fn(...) -> ...` part, i.e. everything
    /// after the generic params (if there are any, e.g. `for<'a>`).
    pub decl_span: Span,
}

/// The various kinds of type recognized by the compiler.
//
// Adding a new variant? Please update `test_ty` in `tests/ui/macros/stringify.rs`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum TyKind {
    /// A variable-length slice (`[T]`).
    Slice(P<Ty>),
    /// A fixed length array (`[T; n]`).
    Array(P<Ty>, AnonConst),
    /// A raw pointer (`*const T` or `*mut T`).
    Ptr(MutTy),
    /// A reference (`&'a T` or `&'a mut T`).
    Ref(Option<Lifetime>, MutTy),
    /// A pinned reference (`&'a pin const T` or `&'a pin mut T`).
    ///
    /// Desugars into `Pin<&'a T>` or `Pin<&'a mut T>`.
    PinnedRef(Option<Lifetime>, MutTy),
    /// A bare function (e.g., `fn(usize) -> bool`).
    BareFn(P<BareFnTy>),
    /// The never type (`!`).
    Never,
    /// A tuple (`(A, B, C, D,...)`).
    Tup(ThinVec<P<Ty>>),
    /// A path (`module::module::...::Type`), optionally
    /// "qualified", e.g., `<Vec<T> as SomeTrait>::SomeType`.
    ///
    /// Type parameters are stored in the `Path` itself.
    Path(Option<P<QSelf>>, Path),
    /// A trait object type `Bound1 + Bound2 + Bound3`
    /// where `Bound` is a trait or a lifetime.
    TraitObject(GenericBounds, TraitObjectSyntax),
    /// An `impl Bound1 + Bound2 + Bound3` type
    /// where `Bound` is a trait or a lifetime.
    ///
    /// The `NodeId` exists to prevent lowering from having to
    /// generate `NodeId`s on the fly, which would complicate
    /// the generation of opaque `type Foo = impl Trait` items significantly.
    ImplTrait(NodeId, GenericBounds),
    /// No-op; kept solely so that we can pretty-print faithfully.
    Paren(P<Ty>),
    /// Unused for now.
    Typeof(AnonConst),
    /// This means the type should be inferred instead of it having been
    /// specified. This can appear anywhere in a type.
    Infer,
    /// Inferred type of a `self` or `&self` argument in a method.
    ImplicitSelf,
    /// A macro in the type position.
    MacCall(P<MacCall>),
    /// Placeholder for a `va_list`.
    CVarArgs,
    /// Pattern types like `pattern_type!(u32 is 1..=)`, which is the same as `NonZero<u32>`,
    /// just as part of the type system.
    Pat(P<Ty>, P<Pat>),
    /// Sometimes we need a dummy value when no error has occurred.
    Dummy,
    /// Placeholder for a kind that has failed to be defined.
    Err(ErrorGuaranteed),
}

impl TyKind {
    pub fn is_implicit_self(&self) -> bool {
        matches!(self, TyKind::ImplicitSelf)
    }

    pub fn is_unit(&self) -> bool {
        matches!(self, TyKind::Tup(tys) if tys.is_empty())
    }

    pub fn is_simple_path(&self) -> Option<Symbol> {
        if let TyKind::Path(None, Path { segments, .. }) = &self
            && let [segment] = &segments[..]
            && segment.args.is_none()
        {
            Some(segment.ident.name)
        } else {
            None
        }
    }
}

/// Syntax used to declare a trait object.
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum TraitObjectSyntax {
    Dyn,
    DynStar,
    None,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum PreciseCapturingArg {
    /// Lifetime parameter.
    Lifetime(Lifetime),
    /// Type or const parameter.
    Arg(Path, NodeId),
}

/// Inline assembly operand explicit register or register class.
///
/// E.g., `"eax"` as in `asm!("mov eax, 2", out("eax") result)`.
#[derive(Clone, Copy, Encodable, Decodable, Debug)]
pub enum InlineAsmRegOrRegClass {
    Reg(Symbol),
    RegClass(Symbol),
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, Encodable, Decodable, HashStable_Generic)]
pub struct InlineAsmOptions(u16);
bitflags::bitflags! {
    impl InlineAsmOptions: u16 {
        const PURE            = 1 << 0;
        const NOMEM           = 1 << 1;
        const READONLY        = 1 << 2;
        const PRESERVES_FLAGS = 1 << 3;
        const NORETURN        = 1 << 4;
        const NOSTACK         = 1 << 5;
        const ATT_SYNTAX      = 1 << 6;
        const RAW             = 1 << 7;
        const MAY_UNWIND      = 1 << 8;
    }
}

impl InlineAsmOptions {
    pub const COUNT: usize = Self::all().bits().count_ones() as usize;

    pub const GLOBAL_OPTIONS: Self = Self::ATT_SYNTAX.union(Self::RAW);
    pub const NAKED_OPTIONS: Self = Self::ATT_SYNTAX.union(Self::RAW);

    pub fn human_readable_names(&self) -> Vec<&'static str> {
        let mut options = vec![];

        if self.contains(InlineAsmOptions::PURE) {
            options.push("pure");
        }
        if self.contains(InlineAsmOptions::NOMEM) {
            options.push("nomem");
        }
        if self.contains(InlineAsmOptions::READONLY) {
            options.push("readonly");
        }
        if self.contains(InlineAsmOptions::PRESERVES_FLAGS) {
            options.push("preserves_flags");
        }
        if self.contains(InlineAsmOptions::NORETURN) {
            options.push("noreturn");
        }
        if self.contains(InlineAsmOptions::NOSTACK) {
            options.push("nostack");
        }
        if self.contains(InlineAsmOptions::ATT_SYNTAX) {
            options.push("att_syntax");
        }
        if self.contains(InlineAsmOptions::RAW) {
            options.push("raw");
        }
        if self.contains(InlineAsmOptions::MAY_UNWIND) {
            options.push("may_unwind");
        }

        options
    }
}

impl std::fmt::Debug for InlineAsmOptions {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        bitflags::parser::to_writer(self, f)
    }
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Hash, HashStable_Generic)]
pub enum InlineAsmTemplatePiece {
    String(Cow<'static, str>),
    Placeholder { operand_idx: usize, modifier: Option<char>, span: Span },
}

impl fmt::Display for InlineAsmTemplatePiece {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::String(s) => {
                for c in s.chars() {
                    match c {
                        '{' => f.write_str("{{")?,
                        '}' => f.write_str("}}")?,
                        _ => c.fmt(f)?,
                    }
                }
                Ok(())
            }
            Self::Placeholder { operand_idx, modifier: Some(modifier), .. } => {
                write!(f, "{{{operand_idx}:{modifier}}}")
            }
            Self::Placeholder { operand_idx, modifier: None, .. } => {
                write!(f, "{{{operand_idx}}}")
            }
        }
    }
}

impl InlineAsmTemplatePiece {
    /// Rebuilds the asm template string from its pieces.
    pub fn to_string(s: &[Self]) -> String {
        use fmt::Write;
        let mut out = String::new();
        for p in s.iter() {
            let _ = write!(out, "{p}");
        }
        out
    }
}

/// Inline assembly symbol operands get their own AST node that is somewhat
/// similar to `AnonConst`.
///
/// The main difference is that we specifically don't assign it `DefId` in
/// `DefCollector`. Instead this is deferred until AST lowering where we
/// lower it to an `AnonConst` (for functions) or a `Path` (for statics)
/// depending on what the path resolves to.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct InlineAsmSym {
    pub id: NodeId,
    pub qself: Option<P<QSelf>>,
    pub path: Path,
}

/// Inline assembly operand.
///
/// E.g., `out("eax") result` as in `asm!("mov eax, 2", out("eax") result)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum InlineAsmOperand {
    In {
        reg: InlineAsmRegOrRegClass,
        expr: P<Expr>,
    },
    Out {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        expr: Option<P<Expr>>,
    },
    InOut {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        expr: P<Expr>,
    },
    SplitInOut {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        in_expr: P<Expr>,
        out_expr: Option<P<Expr>>,
    },
    Const {
        anon_const: AnonConst,
    },
    Sym {
        sym: InlineAsmSym,
    },
    Label {
        block: P<Block>,
    },
}

impl InlineAsmOperand {
    pub fn reg(&self) -> Option<&InlineAsmRegOrRegClass> {
        match self {
            Self::In { reg, .. }
            | Self::Out { reg, .. }
            | Self::InOut { reg, .. }
            | Self::SplitInOut { reg, .. } => Some(reg),
            Self::Const { .. } | Self::Sym { .. } | Self::Label { .. } => None,
        }
    }
}

#[derive(Clone, Copy, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum AsmMacro {
    /// The `asm!` macro
    Asm,
    /// The `global_asm!` macro
    GlobalAsm,
    /// The `naked_asm!` macro
    NakedAsm,
}

impl AsmMacro {
    pub const fn macro_name(self) -> &'static str {
        match self {
            AsmMacro::Asm => "asm",
            AsmMacro::GlobalAsm => "global_asm",
            AsmMacro::NakedAsm => "naked_asm",
        }
    }

    pub const fn is_supported_option(self, option: InlineAsmOptions) -> bool {
        match self {
            AsmMacro::Asm => true,
            AsmMacro::GlobalAsm => InlineAsmOptions::GLOBAL_OPTIONS.contains(option),
            AsmMacro::NakedAsm => InlineAsmOptions::NAKED_OPTIONS.contains(option),
        }
    }

    pub const fn diverges(self, options: InlineAsmOptions) -> bool {
        match self {
            AsmMacro::Asm => options.contains(InlineAsmOptions::NORETURN),
            AsmMacro::GlobalAsm => true,
            AsmMacro::NakedAsm => true,
        }
    }
}

/// Inline assembly.
///
/// E.g., `asm!("NOP");`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct InlineAsm {
    pub asm_macro: AsmMacro,
    pub template: Vec<InlineAsmTemplatePiece>,
    pub template_strs: Box<[(Symbol, Option<Symbol>, Span)]>,
    pub operands: Vec<(InlineAsmOperand, Span)>,
    pub clobber_abis: Vec<(Symbol, Span)>,
    pub options: InlineAsmOptions,
    pub line_spans: Vec<Span>,
}

/// A parameter in a function header.
///
/// E.g., `bar: usize` as in `fn foo(bar: usize)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Param {
    pub attrs: AttrVec,
    pub ty: P<Ty>,
    pub pat: P<Pat>,
    pub id: NodeId,
    pub span: Span,
    pub is_placeholder: bool,
}

/// Alternative representation for `Arg`s describing `self` parameter of methods.
///
/// E.g., `&mut self` as in `fn foo(&mut self)`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum SelfKind {
    /// `self`, `mut self`
    Value(Mutability),
    /// `&'lt self`, `&'lt mut self`
    Region(Option<Lifetime>, Mutability),
    /// `self: TYPE`, `mut self: TYPE`
    Explicit(P<Ty>, Mutability),
}

pub type ExplicitSelf = Spanned<SelfKind>;

impl Param {
    /// Attempts to cast parameter to `ExplicitSelf`.
    pub fn to_self(&self) -> Option<ExplicitSelf> {
        if let PatKind::Ident(BindingMode(ByRef::No, mutbl), ident, _) = self.pat.kind {
            if ident.name == kw::SelfLower {
                return match self.ty.kind {
                    TyKind::ImplicitSelf => Some(respan(self.pat.span, SelfKind::Value(mutbl))),
                    TyKind::Ref(lt, MutTy { ref ty, mutbl })
                    | TyKind::PinnedRef(lt, MutTy { ref ty, mutbl })
                        if ty.kind.is_implicit_self() =>
                    {
                        Some(respan(self.pat.span, SelfKind::Region(lt, mutbl)))
                    }
                    _ => Some(respan(
                        self.pat.span.to(self.ty.span),
                        SelfKind::Explicit(self.ty.clone(), mutbl),
                    )),
                };
            }
        }
        None
    }

    /// Returns `true` if parameter is `self`.
    pub fn is_self(&self) -> bool {
        if let PatKind::Ident(_, ident, _) = self.pat.kind {
            ident.name == kw::SelfLower
        } else {
            false
        }
    }

    /// Builds a `Param` object from `ExplicitSelf`.
    pub fn from_self(attrs: AttrVec, eself: ExplicitSelf, eself_ident: Ident) -> Param {
        let span = eself.span.to(eself_ident.span);
        let infer_ty = P(Ty {
            id: DUMMY_NODE_ID,
            kind: TyKind::ImplicitSelf,
            span: eself_ident.span,
            tokens: None,
        });
        let (mutbl, ty) = match eself.node {
            SelfKind::Explicit(ty, mutbl) => (mutbl, ty),
            SelfKind::Value(mutbl) => (mutbl, infer_ty),
            SelfKind::Region(lt, mutbl) => (
                Mutability::Not,
                P(Ty {
                    id: DUMMY_NODE_ID,
                    kind: TyKind::Ref(lt, MutTy { ty: infer_ty, mutbl }),
                    span,
                    tokens: None,
                }),
            ),
        };
        Param {
            attrs,
            pat: P(Pat {
                id: DUMMY_NODE_ID,
                kind: PatKind::Ident(BindingMode(ByRef::No, mutbl), eself_ident, None),
                span,
                tokens: None,
            }),
            span,
            ty,
            id: DUMMY_NODE_ID,
            is_placeholder: false,
        }
    }
}

/// A signature (not the body) of a function declaration.
///
/// E.g., `fn foo(bar: baz)`.
///
/// Please note that it's different from `FnHeader` structure
/// which contains metadata about function safety, asyncness, constness and ABI.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct FnDecl {
    pub inputs: ThinVec<Param>,
    pub output: FnRetTy,
}

impl FnDecl {
    pub fn has_self(&self) -> bool {
        self.inputs.get(0).is_some_and(Param::is_self)
    }
    pub fn c_variadic(&self) -> bool {
        self.inputs.last().is_some_and(|arg| matches!(arg.ty.kind, TyKind::CVarArgs))
    }
}

/// Is the trait definition an auto trait?
#[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum IsAuto {
    Yes,
    No,
}

/// Safety of items.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
#[derive(HashStable_Generic)]
pub enum Safety {
    /// `unsafe` an item is explicitly marked as `unsafe`.
    Unsafe(Span),
    /// `safe` an item is explicitly marked as `safe`.
    Safe(Span),
    /// Default means no value was provided, it will take a default value given the context in
    /// which is used.
    Default,
}

/// Describes what kind of coroutine markers, if any, a function has.
///
/// Coroutine markers are things that cause the function to generate a coroutine, such as `async`,
/// which makes the function return `impl Future`, or `gen`, which makes the function return `impl
/// Iterator`.
#[derive(Copy, Clone, Encodable, Decodable, Debug)]
pub enum CoroutineKind {
    /// `async`, which returns an `impl Future`.
    Async { span: Span, closure_id: NodeId, return_impl_trait_id: NodeId },
    /// `gen`, which returns an `impl Iterator`.
    Gen { span: Span, closure_id: NodeId, return_impl_trait_id: NodeId },
    /// `async gen`, which returns an `impl AsyncIterator`.
    AsyncGen { span: Span, closure_id: NodeId, return_impl_trait_id: NodeId },
}

impl CoroutineKind {
    pub fn span(self) -> Span {
        match self {
            CoroutineKind::Async { span, .. } => span,
            CoroutineKind::Gen { span, .. } => span,
            CoroutineKind::AsyncGen { span, .. } => span,
        }
    }

    pub fn as_str(self) -> &'static str {
        match self {
            CoroutineKind::Async { .. } => "async",
            CoroutineKind::Gen { .. } => "gen",
            CoroutineKind::AsyncGen { .. } => "async gen",
        }
    }

    pub fn closure_id(self) -> NodeId {
        match self {
            CoroutineKind::Async { closure_id, .. }
            | CoroutineKind::Gen { closure_id, .. }
            | CoroutineKind::AsyncGen { closure_id, .. } => closure_id,
        }
    }

    /// In this case this is an `async` or `gen` return, the `NodeId` for the generated `impl Trait`
    /// item.
    pub fn return_id(self) -> (NodeId, Span) {
        match self {
            CoroutineKind::Async { return_impl_trait_id, span, .. }
            | CoroutineKind::Gen { return_impl_trait_id, span, .. }
            | CoroutineKind::AsyncGen { return_impl_trait_id, span, .. } => {
                (return_impl_trait_id, span)
            }
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
#[derive(HashStable_Generic)]
pub enum Const {
    Yes(Span),
    No,
}

/// Item defaultness.
/// For details see the [RFC #2532](https://github.com/rust-lang/rfcs/pull/2532).
#[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum Defaultness {
    Default(Span),
    Final,
}

#[derive(Copy, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum ImplPolarity {
    /// `impl Trait for Type`
    Positive,
    /// `impl !Trait for Type`
    Negative(Span),
}

impl fmt::Debug for ImplPolarity {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            ImplPolarity::Positive => "positive".fmt(f),
            ImplPolarity::Negative(_) => "negative".fmt(f),
        }
    }
}

/// The polarity of a trait bound.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, Hash)]
#[derive(HashStable_Generic)]
pub enum BoundPolarity {
    /// `Type: Trait`
    Positive,
    /// `Type: !Trait`
    Negative(Span),
    /// `Type: ?Trait`
    Maybe(Span),
}

impl BoundPolarity {
    pub fn as_str(self) -> &'static str {
        match self {
            Self::Positive => "",
            Self::Negative(_) => "!",
            Self::Maybe(_) => "?",
        }
    }
}

/// The constness of a trait bound.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, Hash)]
#[derive(HashStable_Generic)]
pub enum BoundConstness {
    /// `Type: Trait`
    Never,
    /// `Type: const Trait`
    Always(Span),
    /// `Type: ~const Trait`
    Maybe(Span),
}

impl BoundConstness {
    pub fn as_str(self) -> &'static str {
        match self {
            Self::Never => "",
            Self::Always(_) => "const",
            Self::Maybe(_) => "~const",
        }
    }
}

/// The asyncness of a trait bound.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug)]
#[derive(HashStable_Generic)]
pub enum BoundAsyncness {
    /// `Type: Trait`
    Normal,
    /// `Type: async Trait`
    Async(Span),
}

impl BoundAsyncness {
    pub fn as_str(self) -> &'static str {
        match self {
            Self::Normal => "",
            Self::Async(_) => "async",
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum FnRetTy {
    /// Returns type is not specified.
    ///
    /// Functions default to `()` and closures default to inference.
    /// Span points to where return type would be inserted.
    Default(Span),
    /// Everything else.
    Ty(P<Ty>),
}

impl FnRetTy {
    pub fn span(&self) -> Span {
        match self {
            &FnRetTy::Default(span) => span,
            FnRetTy::Ty(ty) => ty.span,
        }
    }
}

#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug)]
pub enum Inline {
    Yes,
    No,
}

/// Module item kind.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum ModKind {
    /// Module with inlined definition `mod foo { ... }`,
    /// or with definition outlined to a separate file `mod foo;` and already loaded from it.
    /// The inner span is from the first token past `{` to the last token until `}`,
    /// or from the first to the last token in the loaded file.
    Loaded(ThinVec<P<Item>>, Inline, ModSpans),
    /// Module with definition outlined to a separate file `mod foo;` but not yet loaded from it.
    Unloaded,
}

#[derive(Copy, Clone, Encodable, Decodable, Debug, Default)]
pub struct ModSpans {
    /// `inner_span` covers the body of the module; for a file module, its the whole file.
    /// For an inline module, its the span inside the `{ ... }`, not including the curly braces.
    pub inner_span: Span,
    pub inject_use_span: Span,
}

/// Foreign module declaration.
///
/// E.g., `extern { .. }` or `extern "C" { .. }`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct ForeignMod {
    /// Span of the `extern` keyword.
    pub extern_span: Span,
    /// `unsafe` keyword accepted syntactically for macro DSLs, but not
    /// semantically by Rust.
    pub safety: Safety,
    pub abi: Option<StrLit>,
    pub items: ThinVec<P<ForeignItem>>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct EnumDef {
    pub variants: ThinVec<Variant>,
}
/// Enum variant.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Variant {
    /// Attributes of the variant.
    pub attrs: AttrVec,
    /// Id of the variant (not the constructor, see `VariantData::ctor_id()`).
    pub id: NodeId,
    /// Span
    pub span: Span,
    /// The visibility of the variant. Syntactically accepted but not semantically.
    pub vis: Visibility,
    /// Name of the variant.
    pub ident: Ident,

    /// Fields and constructor id of the variant.
    pub data: VariantData,
    /// Explicit discriminant, e.g., `Foo = 1`.
    pub disr_expr: Option<AnonConst>,
    /// Is a macro placeholder.
    pub is_placeholder: bool,
}

/// Part of `use` item to the right of its prefix.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum UseTreeKind {
    /// `use prefix` or `use prefix as rename`
    Simple(Option<Ident>),
    /// `use prefix::{...}`
    ///
    /// The span represents the braces of the nested group and all elements within:
    ///
    /// ```text
    /// use foo::{bar, baz};
    ///          ^^^^^^^^^^
    /// ```
    Nested { items: ThinVec<(UseTree, NodeId)>, span: Span },
    /// `use prefix::*`
    Glob,
}

/// A tree of paths sharing common prefixes.
/// Used in `use` items both at top-level and inside of braces in import groups.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct UseTree {
    pub prefix: Path,
    pub kind: UseTreeKind,
    pub span: Span,
}

impl UseTree {
    pub fn ident(&self) -> Ident {
        match self.kind {
            UseTreeKind::Simple(Some(rename)) => rename,
            UseTreeKind::Simple(None) => {
                self.prefix.segments.last().expect("empty prefix in a simple import").ident
            }
            _ => panic!("`UseTree::ident` can only be used on a simple import"),
        }
    }
}

/// Distinguishes between `Attribute`s that decorate items and Attributes that
/// are contained as statements within items. These two cases need to be
/// distinguished for pretty-printing.
#[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy, HashStable_Generic)]
pub enum AttrStyle {
    Outer,
    Inner,
}

/// A list of attributes.
pub type AttrVec = ThinVec<Attribute>;

/// A syntax-level representation of an attribute.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Attribute {
    pub kind: AttrKind,
    pub id: AttrId,
    /// Denotes if the attribute decorates the following construct (outer)
    /// or the construct this attribute is contained within (inner).
    pub style: AttrStyle,
    pub span: Span,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AttrKind {
    /// A normal attribute.
    Normal(P<NormalAttr>),

    /// A doc comment (e.g. `/// ...`, `//! ...`, `/** ... */`, `/*! ... */`).
    /// Doc attributes (e.g. `#[doc="..."]`) are represented with the `Normal`
    /// variant (which is much less compact and thus more expensive).
    DocComment(CommentKind, Symbol),
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct NormalAttr {
    pub item: AttrItem,
    // Tokens for the full attribute, e.g. `#[foo]`, `#![bar]`.
    pub tokens: Option<LazyAttrTokenStream>,
}

impl NormalAttr {
    pub fn from_ident(ident: Ident) -> Self {
        Self {
            item: AttrItem {
                unsafety: Safety::Default,
                path: Path::from_ident(ident),
                args: AttrArgs::Empty,
                tokens: None,
            },
            tokens: None,
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct AttrItem {
    pub unsafety: Safety,
    pub path: Path,
    pub args: AttrArgs,
    // Tokens for the meta item, e.g. just the `foo` within `#[foo]` or `#![foo]`.
    pub tokens: Option<LazyAttrTokenStream>,
}

impl AttrItem {
    pub fn is_valid_for_outer_style(&self) -> bool {
        self.path == sym::cfg_attr
            || self.path == sym::cfg
            || self.path == sym::forbid
            || self.path == sym::warn
            || self.path == sym::allow
            || self.path == sym::deny
    }
}

/// `TraitRef`s appear in impls.
///
/// Resolution maps each `TraitRef`'s `ref_id` to its defining trait; that's all
/// that the `ref_id` is for. The `impl_id` maps to the "self type" of this impl.
/// If this impl is an `ItemKind::Impl`, the `impl_id` is redundant (it could be the
/// same as the impl's `NodeId`).
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct TraitRef {
    pub path: Path,
    pub ref_id: NodeId,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct PolyTraitRef {
    /// The `'a` in `for<'a> Foo<&'a T>`.
    pub bound_generic_params: ThinVec<GenericParam>,

    // Optional constness, asyncness, or polarity.
    pub modifiers: TraitBoundModifiers,

    /// The `Foo<&'a T>` in `<'a> Foo<&'a T>`.
    pub trait_ref: TraitRef,

    pub span: Span,
}

impl PolyTraitRef {
    pub fn new(
        generic_params: ThinVec<GenericParam>,
        path: Path,
        modifiers: TraitBoundModifiers,
        span: Span,
    ) -> Self {
        PolyTraitRef {
            bound_generic_params: generic_params,
            modifiers,
            trait_ref: TraitRef { path, ref_id: DUMMY_NODE_ID },
            span,
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Visibility {
    pub kind: VisibilityKind,
    pub span: Span,
    pub tokens: Option<LazyAttrTokenStream>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub enum VisibilityKind {
    Public,
    Restricted { path: P<Path>, id: NodeId, shorthand: bool },
    Inherited,
}

impl VisibilityKind {
    pub fn is_pub(&self) -> bool {
        matches!(self, VisibilityKind::Public)
    }
}

/// Field definition in a struct, variant or union.
///
/// E.g., `bar: usize` as in `struct Foo { bar: usize }`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct FieldDef {
    pub attrs: AttrVec,
    pub id: NodeId,
    pub span: Span,
    pub vis: Visibility,
    pub ident: Option<Ident>,

    pub ty: P<Ty>,
    pub is_placeholder: bool,
}

/// Was parsing recovery performed?
#[derive(Copy, Clone, Debug, Encodable, Decodable, HashStable_Generic)]
pub enum Recovered {
    No,
    Yes(ErrorGuaranteed),
}

/// Fields and constructor ids of enum variants and structs.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum VariantData {
    /// Struct variant.
    ///
    /// E.g., `Bar { .. }` as in `enum Foo { Bar { .. } }`.
    Struct { fields: ThinVec<FieldDef>, recovered: Recovered },
    /// Tuple variant.
    ///
    /// E.g., `Bar(..)` as in `enum Foo { Bar(..) }`.
    Tuple(ThinVec<FieldDef>, NodeId),
    /// Unit variant.
    ///
    /// E.g., `Bar = ..` as in `enum Foo { Bar = .. }`.
    Unit(NodeId),
}

impl VariantData {
    /// Return the fields of this variant.
    pub fn fields(&self) -> &[FieldDef] {
        match self {
            VariantData::Struct { fields, .. } | VariantData::Tuple(fields, _) => fields,
            _ => &[],
        }
    }

    /// Return the `NodeId` of this variant's constructor, if it has one.
    pub fn ctor_node_id(&self) -> Option<NodeId> {
        match *self {
            VariantData::Struct { .. } => None,
            VariantData::Tuple(_, id) | VariantData::Unit(id) => Some(id),
        }
    }
}

/// An item definition.
#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Item<K = ItemKind> {
    pub attrs: AttrVec,
    pub id: NodeId,
    pub span: Span,
    pub vis: Visibility,
    /// The name of the item.
    /// It might be a dummy name in case of anonymous items.
    pub ident: Ident,

    pub kind: K,

    /// Original tokens this item was parsed from. This isn't necessarily
    /// available for all items, although over time more and more items should
    /// have this be `Some`. Right now this is primarily used for procedural
    /// macros, notably custom attributes.
    ///
    /// Note that the tokens here do not include the outer attributes, but will
    /// include inner attributes.
    pub tokens: Option<LazyAttrTokenStream>,
}

impl Item {
    /// Return the span that encompasses the attributes.
    pub fn span_with_attributes(&self) -> Span {
        self.attrs.iter().fold(self.span, |acc, attr| acc.to(attr.span))
    }

    pub fn opt_generics(&self) -> Option<&Generics> {
        match &self.kind {
            ItemKind::ExternCrate(_)
            | ItemKind::Use(_)
            | ItemKind::Mod(_, _)
            | ItemKind::ForeignMod(_)
            | ItemKind::GlobalAsm(_)
            | ItemKind::MacCall(_)
            | ItemKind::Delegation(_)
            | ItemKind::DelegationMac(_)
            | ItemKind::MacroDef(_) => None,
            ItemKind::Static(_) => None,
            ItemKind::Const(i) => Some(&i.generics),
            ItemKind::Fn(i) => Some(&i.generics),
            ItemKind::TyAlias(i) => Some(&i.generics),
            ItemKind::TraitAlias(generics, _)
            | ItemKind::Enum(_, generics)
            | ItemKind::Struct(_, generics)
            | ItemKind::Union(_, generics) => Some(&generics),
            ItemKind::Trait(i) => Some(&i.generics),
            ItemKind::Impl(i) => Some(&i.generics),
        }
    }
}

/// `extern` qualifier on a function item or function type.
#[derive(Clone, Copy, Encodable, Decodable, Debug)]
pub enum Extern {
    /// No explicit extern keyword was used.
    ///
    /// E.g. `fn foo() {}`.
    None,
    /// An explicit extern keyword was used, but with implicit ABI.
    ///
    /// E.g. `extern fn foo() {}`.
    ///
    /// This is just `extern "C"` (see `rustc_target::spec::abi::Abi::FALLBACK`).
    Implicit(Span),
    /// An explicit extern keyword was used with an explicit ABI.
    ///
    /// E.g. `extern "C" fn foo() {}`.
    Explicit(StrLit, Span),
}

impl Extern {
    pub fn from_abi(abi: Option<StrLit>, span: Span) -> Extern {
        match abi {
            Some(name) => Extern::Explicit(name, span),
            None => Extern::Implicit(span),
        }
    }
}

/// A function header.
///
/// All the information between the visibility and the name of the function is
/// included in this struct (e.g., `async unsafe fn` or `const extern "C" fn`).
#[derive(Clone, Copy, Encodable, Decodable, Debug)]
pub struct FnHeader {
    /// Whether this is `unsafe`, or has a default safety.
    pub safety: Safety,
    /// Whether this is `async`, `gen`, or nothing.
    pub coroutine_kind: Option<CoroutineKind>,
    /// The `const` keyword, if any
    pub constness: Const,
    /// The `extern` keyword and corresponding ABI string, if any.
    pub ext: Extern,
}

impl FnHeader {
    /// Does this function header have any qualifiers or is it empty?
    pub fn has_qualifiers(&self) -> bool {
        let Self { safety, coroutine_kind, constness, ext } = self;
        matches!(safety, Safety::Unsafe(_))
            || coroutine_kind.is_some()
            || matches!(constness, Const::Yes(_))
            || !matches!(ext, Extern::None)
    }
}

impl Default for FnHeader {
    fn default() -> FnHeader {
        FnHeader {
            safety: Safety::Default,
            coroutine_kind: None,
            constness: Const::No,
            ext: Extern::None,
        }
    }
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Trait {
    pub safety: Safety,
    pub is_auto: IsAuto,
    pub generics: Generics,
    pub bounds: GenericBounds,
    pub items: ThinVec<P<AssocItem>>,
}

/// The location of a where clause on a `TyAlias` (`Span`) and whether there was
/// a `where` keyword (`bool`). This is split out from `WhereClause`, since there
/// are two locations for where clause on type aliases, but their predicates
/// are concatenated together.
///
/// Take this example:
/// ```ignore (only-for-syntax-highlight)
/// trait Foo {
///   type Assoc<'a, 'b> where Self: 'a, Self: 'b;
/// }
/// impl Foo for () {
///   type Assoc<'a, 'b> where Self: 'a = () where Self: 'b;
///   //                 ^^^^^^^^^^^^^^ first where clause
///   //                                     ^^^^^^^^^^^^^^ second where clause
/// }
/// ```
///
/// If there is no where clause, then this is `false` with `DUMMY_SP`.
#[derive(Copy, Clone, Encodable, Decodable, Debug, Default)]
pub struct TyAliasWhereClause {
    pub has_where_token: bool,
    pub span: Span,
}

/// The span information for the two where clauses on a `TyAlias`.
#[derive(Copy, Clone, Encodable, Decodable, Debug, Default)]
pub struct TyAliasWhereClauses {
    /// Before the equals sign.
    pub before: TyAliasWhereClause,
    /// After the equals sign.
    pub after: TyAliasWhereClause,
    /// The index in `TyAlias.generics.where_clause.predicates` that would split
    /// into predicates from the where clause before the equals sign and the ones
    /// from the where clause after the equals sign.
    pub split: usize,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct TyAlias {
    pub defaultness: Defaultness,
    pub generics: Generics,
    pub where_clauses: TyAliasWhereClauses,
    pub bounds: GenericBounds,
    pub ty: Option<P<Ty>>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Impl {
    pub defaultness: Defaultness,
    pub safety: Safety,
    pub generics: Generics,
    pub constness: Const,
    pub polarity: ImplPolarity,
    /// The trait being implemented, if any.
    pub of_trait: Option<TraitRef>,
    pub self_ty: P<Ty>,
    pub items: ThinVec<P<AssocItem>>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Fn {
    pub defaultness: Defaultness,
    pub generics: Generics,
    pub sig: FnSig,
    pub body: Option<P<Block>>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct Delegation {
    /// Path resolution id.
    pub id: NodeId,
    pub qself: Option<P<QSelf>>,
    pub path: Path,
    pub rename: Option<Ident>,
    pub body: Option<P<Block>>,
    /// The item was expanded from a glob delegation item.
    pub from_glob: bool,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct DelegationMac {
    pub qself: Option<P<QSelf>>,
    pub prefix: Path,
    // Some for list delegation, and None for glob delegation.
    pub suffixes: Option<ThinVec<(Ident, Option<Ident>)>>,
    pub body: Option<P<Block>>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct StaticItem {
    pub ty: P<Ty>,
    pub safety: Safety,
    pub mutability: Mutability,
    pub expr: Option<P<Expr>>,
}

#[derive(Clone, Encodable, Decodable, Debug)]
pub struct ConstItem {
    pub defaultness: Defaultness,
    pub generics: Generics,
    pub ty: P<Ty>,
    pub expr: Option<P<Expr>>,
}

// Adding a new variant? Please update `test_item` in `tests/ui/macros/stringify.rs`.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum ItemKind {
    /// An `extern crate` item, with the optional *original* crate name if the crate was renamed.
    ///
    /// E.g., `extern crate foo` or `extern crate foo_bar as foo`.
    ExternCrate(Option<Symbol>),
    /// A use declaration item (`use`).
    ///
    /// E.g., `use foo;`, `use foo::bar;` or `use foo::bar as FooBar;`.
    Use(UseTree),
    /// A static item (`static`).
    ///
    /// E.g., `static FOO: i32 = 42;` or `static FOO: &'static str = "bar";`.
    Static(Box<StaticItem>),
    /// A constant item (`const`).
    ///
    /// E.g., `const FOO: i32 = 42;`.
    Const(Box<ConstItem>),
    /// A function declaration (`fn`).
    ///
    /// E.g., `fn foo(bar: usize) -> usize { .. }`.
    Fn(Box<Fn>),
    /// A module declaration (`mod`).
    ///
    /// E.g., `mod foo;` or `mod foo { .. }`.
    /// `unsafe` keyword on modules is accepted syntactically for macro DSLs, but not
    /// semantically by Rust.
    Mod(Safety, ModKind),
    /// An external module (`extern`).
    ///
    /// E.g., `extern {}` or `extern "C" {}`.
    ForeignMod(ForeignMod),
    /// Module-level inline assembly (from `global_asm!()`).
    GlobalAsm(Box<InlineAsm>),
    /// A type alias (`type`).
    ///
    /// E.g., `type Foo = Bar<u8>;`.
    TyAlias(Box<TyAlias>),
    /// An enum definition (`enum`).
    ///
    /// E.g., `enum Foo<A, B> { C<A>, D<B> }`.
    Enum(EnumDef, Generics),
    /// A struct definition (`struct`).
    ///
    /// E.g., `struct Foo<A> { x: A }`.
    Struct(VariantData, Generics),
    /// A union definition (`union`).
    ///
    /// E.g., `union Foo<A, B> { x: A, y: B }`.
    Union(VariantData, Generics),
    /// A trait declaration (`trait`).
    ///
    /// E.g., `trait Foo { .. }`, `trait Foo<T> { .. }` or `auto trait Foo {}`.
    Trait(Box<Trait>),
    /// Trait alias.
    ///
    /// E.g., `trait Foo = Bar + Quux;`.
    TraitAlias(Generics, GenericBounds),
    /// An implementation.
    ///
    /// E.g., `impl<A> Foo<A> { .. }` or `impl<A> Trait for Foo<A> { .. }`.
    Impl(Box<Impl>),
    /// A macro invocation.
    ///
    /// E.g., `foo!(..)`.
    MacCall(P<MacCall>),

    /// A macro definition.
    MacroDef(MacroDef),

    /// A single delegation item (`reuse`).
    ///
    /// E.g. `reuse <Type as Trait>::name { target_expr_template }`.
    Delegation(Box<Delegation>),
    /// A list or glob delegation item (`reuse prefix::{a, b, c}`, `reuse prefix::*`).
    /// Treated similarly to a macro call and expanded early.
    DelegationMac(Box<DelegationMac>),
}

impl ItemKind {
    /// "a" or "an"
    pub fn article(&self) -> &'static str {
        use ItemKind::*;
        match self {
            Use(..) | Static(..) | Const(..) | Fn(..) | Mod(..) | GlobalAsm(..) | TyAlias(..)
            | Struct(..) | Union(..) | Trait(..) | TraitAlias(..) | MacroDef(..)
            | Delegation(..) | DelegationMac(..) => "a",
            ExternCrate(..) | ForeignMod(..) | MacCall(..) | Enum(..) | Impl { .. } => "an",
        }
    }

    pub fn descr(&self) -> &'static str {
        match self {
            ItemKind::ExternCrate(..) => "extern crate",
            ItemKind::Use(..) => "`use` import",
            ItemKind::Static(..) => "static item",
            ItemKind::Const(..) => "constant item",
            ItemKind::Fn(..) => "function",
            ItemKind::Mod(..) => "module",
            ItemKind::ForeignMod(..) => "extern block",
            ItemKind::GlobalAsm(..) => "global asm item",
            ItemKind::TyAlias(..) => "type alias",
            ItemKind::Enum(..) => "enum",
            ItemKind::Struct(..) => "struct",
            ItemKind::Union(..) => "union",
            ItemKind::Trait(..) => "trait",
            ItemKind::TraitAlias(..) => "trait alias",
            ItemKind::MacCall(..) => "item macro invocation",
            ItemKind::MacroDef(..) => "macro definition",
            ItemKind::Impl { .. } => "implementation",
            ItemKind::Delegation(..) => "delegated function",
            ItemKind::DelegationMac(..) => "delegation",
        }
    }

    pub fn generics(&self) -> Option<&Generics> {
        match self {
            Self::Fn(box Fn { generics, .. })
            | Self::TyAlias(box TyAlias { generics, .. })
            | Self::Const(box ConstItem { generics, .. })
            | Self::Enum(_, generics)
            | Self::Struct(_, generics)
            | Self::Union(_, generics)
            | Self::Trait(box Trait { generics, .. })
            | Self::TraitAlias(generics, _)
            | Self::Impl(box Impl { generics, .. }) => Some(generics),
            _ => None,
        }
    }
}

/// Represents associated items.
/// These include items in `impl` and `trait` definitions.
pub type AssocItem = Item<AssocItemKind>;

/// Represents associated item kinds.
///
/// The term "provided" in the variants below refers to the item having a default
/// definition / body. Meanwhile, a "required" item lacks a definition / body.
/// In an implementation, all items must be provided.
/// The `Option`s below denote the bodies, where `Some(_)`
/// means "provided" and conversely `None` means "required".
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum AssocItemKind {
    /// An associated constant, `const $ident: $ty $def?;` where `def ::= "=" $expr? ;`.
    /// If `def` is parsed, then the constant is provided, and otherwise required.
    Const(Box<ConstItem>),
    /// An associated function.
    Fn(Box<Fn>),
    /// An associated type.
    Type(Box<TyAlias>),
    /// A macro expanding to associated items.
    MacCall(P<MacCall>),
    /// An associated delegation item.
    Delegation(Box<Delegation>),
    /// An associated list or glob delegation item.
    DelegationMac(Box<DelegationMac>),
}

impl AssocItemKind {
    pub fn defaultness(&self) -> Defaultness {
        match *self {
            Self::Const(box ConstItem { defaultness, .. })
            | Self::Fn(box Fn { defaultness, .. })
            | Self::Type(box TyAlias { defaultness, .. }) => defaultness,
            Self::MacCall(..) | Self::Delegation(..) | Self::DelegationMac(..) => {
                Defaultness::Final
            }
        }
    }
}

impl From<AssocItemKind> for ItemKind {
    fn from(assoc_item_kind: AssocItemKind) -> ItemKind {
        match assoc_item_kind {
            AssocItemKind::Const(item) => ItemKind::Const(item),
            AssocItemKind::Fn(fn_kind) => ItemKind::Fn(fn_kind),
            AssocItemKind::Type(ty_alias_kind) => ItemKind::TyAlias(ty_alias_kind),
            AssocItemKind::MacCall(a) => ItemKind::MacCall(a),
            AssocItemKind::Delegation(delegation) => ItemKind::Delegation(delegation),
            AssocItemKind::DelegationMac(delegation) => ItemKind::DelegationMac(delegation),
        }
    }
}

impl TryFrom<ItemKind> for AssocItemKind {
    type Error = ItemKind;

    fn try_from(item_kind: ItemKind) -> Result<AssocItemKind, ItemKind> {
        Ok(match item_kind {
            ItemKind::Const(item) => AssocItemKind::Const(item),
            ItemKind::Fn(fn_kind) => AssocItemKind::Fn(fn_kind),
            ItemKind::TyAlias(ty_kind) => AssocItemKind::Type(ty_kind),
            ItemKind::MacCall(a) => AssocItemKind::MacCall(a),
            ItemKind::Delegation(d) => AssocItemKind::Delegation(d),
            ItemKind::DelegationMac(d) => AssocItemKind::DelegationMac(d),
            _ => return Err(item_kind),
        })
    }
}

/// An item in `extern` block.
#[derive(Clone, Encodable, Decodable, Debug)]
pub enum ForeignItemKind {
    /// A foreign static item (`static FOO: u8`).
    Static(Box<StaticItem>),
    /// An foreign function.
    Fn(Box<Fn>),
    /// An foreign type.
    TyAlias(Box<TyAlias>),
    /// A macro expanding to foreign items.
    MacCall(P<MacCall>),
}

impl From<ForeignItemKind> for ItemKind {
    fn from(foreign_item_kind: ForeignItemKind) -> ItemKind {
        match foreign_item_kind {
            ForeignItemKind::Static(box static_foreign_item) => {
                ItemKind::Static(Box::new(static_foreign_item))
            }
            ForeignItemKind::Fn(fn_kind) => ItemKind::Fn(fn_kind),
            ForeignItemKind::TyAlias(ty_alias_kind) => ItemKind::TyAlias(ty_alias_kind),
            ForeignItemKind::MacCall(a) => ItemKind::MacCall(a),
        }
    }
}

impl TryFrom<ItemKind> for ForeignItemKind {
    type Error = ItemKind;

    fn try_from(item_kind: ItemKind) -> Result<ForeignItemKind, ItemKind> {
        Ok(match item_kind {
            ItemKind::Static(box static_item) => ForeignItemKind::Static(Box::new(static_item)),
            ItemKind::Fn(fn_kind) => ForeignItemKind::Fn(fn_kind),
            ItemKind::TyAlias(ty_alias_kind) => ForeignItemKind::TyAlias(ty_alias_kind),
            ItemKind::MacCall(a) => ForeignItemKind::MacCall(a),
            _ => return Err(item_kind),
        })
    }
}

pub type ForeignItem = Item<ForeignItemKind>;

// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
    use rustc_data_structures::static_assert_size;

    use super::*;
    // tidy-alphabetical-start
    static_assert_size!(AssocItem, 88);
    static_assert_size!(AssocItemKind, 16);
    static_assert_size!(Attribute, 32);
    static_assert_size!(Block, 32);
    static_assert_size!(Expr, 72);
    static_assert_size!(ExprKind, 40);
    static_assert_size!(Fn, 160);
    static_assert_size!(ForeignItem, 88);
    static_assert_size!(ForeignItemKind, 16);
    static_assert_size!(GenericArg, 24);
    static_assert_size!(GenericBound, 88);
    static_assert_size!(Generics, 40);
    static_assert_size!(Impl, 136);
    static_assert_size!(Item, 136);
    static_assert_size!(ItemKind, 64);
    static_assert_size!(LitKind, 24);
    static_assert_size!(Local, 80);
    static_assert_size!(MetaItemLit, 40);
    static_assert_size!(Param, 40);
    static_assert_size!(Pat, 72);
    static_assert_size!(Path, 24);
    static_assert_size!(PathSegment, 24);
    static_assert_size!(PatKind, 48);
    static_assert_size!(Stmt, 32);
    static_assert_size!(StmtKind, 16);
    static_assert_size!(Ty, 64);
    static_assert_size!(TyKind, 40);
    // tidy-alphabetical-end
}