Struct rustc_span::hygiene::SyntaxContext
source · [−]pub struct SyntaxContext(u32);
Expand description
A SyntaxContext
represents a chain of pairs (ExpnId, Transparency)
named “marks”.
Tuple Fields
0: u32
Implementations
sourceimpl SyntaxContext
impl SyntaxContext
pub const fn root() -> Self
pub(crate) fn as_u32(self) -> u32
pub(crate) fn from_u32(raw: u32) -> SyntaxContext
sourcepub(crate) fn apply_mark(
self,
expn_id: ExpnId,
transparency: Transparency
) -> SyntaxContext
pub(crate) fn apply_mark(
self,
expn_id: ExpnId,
transparency: Transparency
) -> SyntaxContext
Extend a syntax context with a given expansion and transparency.
sourcepub fn remove_mark(&mut self) -> ExpnId
pub fn remove_mark(&mut self) -> ExpnId
Pulls a single mark off of the syntax context. This effectively moves the context up one macro definition level. That is, if we have a nested macro definition as follows:
macro_rules! f {
macro_rules! g {
...
}
}
and we have a SyntaxContext that is referring to something declared by an invocation of g (call it g1), calling remove_mark will result in the SyntaxContext for the invocation of f that created g1. Returns the mark that was removed.
pub fn marks(self) -> Vec<(ExpnId, Transparency)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
sourcepub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId>
pub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId>
Adjust this context for resolution in a scope created by the given expansion.
For example, consider the following three resolutions of f
:
#![feature(decl_macro)]
mod foo { pub fn f() {} } // `f`'s `SyntaxContext` is empty.
m!(f);
macro m($f:ident) {
mod bar {
pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`.
pub fn $f() {} // `$f`'s `SyntaxContext` is empty.
}
foo::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m`
//^ Since `mod foo` is outside this expansion, `adjust` removes the mark from `f`,
//| and it resolves to `::foo::f`.
bar::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m`
//^ Since `mod bar` not outside this expansion, `adjust` does not change `f`,
//| and it resolves to `::bar::f`.
bar::$f(); // `f`'s `SyntaxContext` is empty.
//^ Since `mod bar` is not outside this expansion, `adjust` does not change `$f`,
//| and it resolves to `::bar::$f`.
}
This returns the expansion whose definition scope we use to privacy check the resolution,
or None
if we privacy check as usual (i.e., not w.r.t. a macro definition scope).
sourcepub fn normalize_to_macros_2_0_and_adjust(
&mut self,
expn_id: ExpnId
) -> Option<ExpnId>
pub fn normalize_to_macros_2_0_and_adjust(
&mut self,
expn_id: ExpnId
) -> Option<ExpnId>
Like SyntaxContext::adjust
, but also normalizes self
to macros 2.0.
sourcepub fn glob_adjust(
&mut self,
expn_id: ExpnId,
glob_span: Span
) -> Option<Option<ExpnId>>
pub fn glob_adjust(
&mut self,
expn_id: ExpnId,
glob_span: Span
) -> Option<Option<ExpnId>>
Adjust this context for resolution in a scope created by the given expansion
via a glob import with the given SyntaxContext
.
For example:
#![feature(decl_macro)]
m!(f);
macro m($i:ident) {
mod foo {
pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`.
pub fn $i() {} // `$i`'s `SyntaxContext` is empty.
}
n!(f);
macro n($j:ident) {
use foo::*;
f(); // `f`'s `SyntaxContext` has a mark from `m` and a mark from `n`
//^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::f`.
$i(); // `$i`'s `SyntaxContext` has a mark from `n`
//^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::$i`.
$j(); // `$j`'s `SyntaxContext` has a mark from `m`
//^ This cannot be glob-adjusted, so this is a resolution error.
}
}
This returns None
if the context cannot be glob-adjusted.
Otherwise, it returns the scope to use when privacy checking (see adjust
for details).
sourcepub fn reverse_glob_adjust(
&mut self,
expn_id: ExpnId,
glob_span: Span
) -> Option<Option<ExpnId>>
pub fn reverse_glob_adjust(
&mut self,
expn_id: ExpnId,
glob_span: Span
) -> Option<Option<ExpnId>>
Undo glob_adjust
if possible:
if let Some(privacy_checking_scope) = self.reverse_glob_adjust(expansion, glob_ctxt) {
assert!(self.glob_adjust(expansion, glob_ctxt) == Some(privacy_checking_scope));
}
pub fn hygienic_eq(self, other: SyntaxContext, expn_id: ExpnId) -> bool
pub fn normalize_to_macros_2_0(self) -> SyntaxContext
pub fn normalize_to_macro_rules(self) -> SyntaxContext
pub fn outer_expn(self) -> ExpnId
sourcepub fn outer_expn_data(self) -> ExpnData
pub fn outer_expn_data(self) -> ExpnData
ctxt.outer_expn_data()
is equivalent to but faster than
ctxt.outer_expn().expn_data()
.
pub fn outer_mark(self) -> (ExpnId, Transparency)
pub fn dollar_crate_name(self) -> Symbol
pub fn edition(self) -> Edition
Trait Implementations
sourceimpl Clone for SyntaxContext
impl Clone for SyntaxContext
sourcefn clone(&self) -> SyntaxContext
fn clone(&self) -> SyntaxContext
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl Debug for SyntaxContext
impl Debug for SyntaxContext
sourceimpl<E: Encoder> Encodable<E> for SyntaxContext
impl<E: Encoder> Encodable<E> for SyntaxContext
sourceimpl Hash for SyntaxContext
impl Hash for SyntaxContext
sourceimpl<CTX: HashStableContext> HashStable<CTX> for SyntaxContext
impl<CTX: HashStableContext> HashStable<CTX> for SyntaxContext
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher)
sourceimpl Ord for SyntaxContext
impl Ord for SyntaxContext
sourceimpl PartialEq<SyntaxContext> for SyntaxContext
impl PartialEq<SyntaxContext> for SyntaxContext
sourcefn eq(&self, other: &SyntaxContext) -> bool
fn eq(&self, other: &SyntaxContext) -> bool
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
sourcefn ne(&self, other: &SyntaxContext) -> bool
fn ne(&self, other: &SyntaxContext) -> bool
This method tests for !=
.
sourceimpl PartialOrd<SyntaxContext> for SyntaxContext
impl PartialOrd<SyntaxContext> for SyntaxContext
sourcefn partial_cmp(&self, other: &SyntaxContext) -> Option<Ordering>
fn partial_cmp(&self, other: &SyntaxContext) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
1.0.0 · sourcefn lt(&self, other: &Rhs) -> bool
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
1.0.0 · sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
impl Copy for SyntaxContext
impl Eq for SyntaxContext
impl StructuralEq for SyntaxContext
impl StructuralPartialEq for SyntaxContext
Auto Trait Implementations
impl RefUnwindSafe for SyntaxContext
impl Send for SyntaxContext
impl Sync for SyntaxContext
impl Unpin for SyntaxContext
impl UnwindSafe for SyntaxContext
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcefn clone_into(&self, target: &mut T)
fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more
Layout
Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...)
attributes. Please see the Rust Reference’s “Type Layout” chapter for details on type layout guarantees.
Size: 4 bytes