1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//! Pattern analysis sometimes wants to print patterns as part of a user-visible
//! diagnostic.
//!
//! Historically it did so by creating a synthetic [`thir::Pat`](rustc_middle::thir::Pat)
//! and printing that, but doing so was making it hard to modify the THIR pattern
//! representation for other purposes.
//!
//! So this module contains a forked copy of `thir::Pat` that is used _only_
//! for diagnostics, and has been partly simplified to remove things that aren't
//! needed for printing.

use std::fmt;

use rustc_middle::bug;
use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt};
use rustc_span::sym;
use rustc_target::abi::{FieldIdx, VariantIdx};

#[derive(Clone, Debug)]
pub(crate) struct FieldPat {
    pub(crate) field: FieldIdx,
    pub(crate) pattern: String,
    pub(crate) is_wildcard: bool,
}

/// Returns a closure that will return `""` when called the first time,
/// and then return `", "` when called any subsequent times.
/// Useful for printing comma-separated lists.
fn start_or_comma() -> impl FnMut() -> &'static str {
    let mut first = true;
    move || {
        if first {
            first = false;
            ""
        } else {
            ", "
        }
    }
}

#[derive(Clone, Debug)]
pub(crate) enum EnumInfo<'tcx> {
    Enum { adt_def: AdtDef<'tcx>, variant_index: VariantIdx },
    NotEnum,
}

pub(crate) fn write_struct_like<'tcx>(
    f: &mut impl fmt::Write,
    tcx: TyCtxt<'_>,
    ty: Ty<'tcx>,
    enum_info: &EnumInfo<'tcx>,
    subpatterns: &[FieldPat],
) -> fmt::Result {
    let variant_and_name = match *enum_info {
        EnumInfo::Enum { adt_def, variant_index } => {
            let variant = adt_def.variant(variant_index);
            let adt_did = adt_def.did();
            let name = if tcx.is_diagnostic_item(sym::Option, adt_did)
                || tcx.is_diagnostic_item(sym::Result, adt_did)
            {
                variant.name.to_string()
            } else {
                format!("{}::{}", tcx.def_path_str(adt_def.did()), variant.name)
            };
            Some((variant, name))
        }
        EnumInfo::NotEnum => ty.ty_adt_def().and_then(|adt_def| {
            Some((adt_def.non_enum_variant(), tcx.def_path_str(adt_def.did())))
        }),
    };

    let mut start_or_comma = start_or_comma();

    if let Some((variant, name)) = &variant_and_name {
        write!(f, "{name}")?;

        // Only for Adt we can have `S {...}`,
        // which we handle separately here.
        if variant.ctor.is_none() {
            write!(f, " {{ ")?;

            let mut printed = 0;
            for &FieldPat { field, ref pattern, is_wildcard } in subpatterns {
                if is_wildcard {
                    continue;
                }
                let field_name = variant.fields[field].name;
                write!(f, "{}{field_name}: {pattern}", start_or_comma())?;
                printed += 1;
            }

            let is_union = ty.ty_adt_def().is_some_and(|adt| adt.is_union());
            if printed < variant.fields.len() && (!is_union || printed == 0) {
                write!(f, "{}..", start_or_comma())?;
            }

            return write!(f, " }}");
        }
    }

    let num_fields = variant_and_name.as_ref().map_or(subpatterns.len(), |(v, _)| v.fields.len());
    if num_fields != 0 || variant_and_name.is_none() {
        write!(f, "(")?;
        for i in 0..num_fields {
            write!(f, "{}", start_or_comma())?;

            // Common case: the field is where we expect it.
            if let Some(p) = subpatterns.get(i) {
                if p.field.index() == i {
                    write!(f, "{}", p.pattern)?;
                    continue;
                }
            }

            // Otherwise, we have to go looking for it.
            if let Some(p) = subpatterns.iter().find(|p| p.field.index() == i) {
                write!(f, "{}", p.pattern)?;
            } else {
                write!(f, "_")?;
            }
        }
        write!(f, ")")?;
    }

    Ok(())
}

pub(crate) fn write_ref_like<'tcx>(
    f: &mut impl fmt::Write,
    ty: Ty<'tcx>,
    subpattern: &str,
) -> fmt::Result {
    match ty.kind() {
        ty::Ref(_, _, mutbl) => {
            write!(f, "&{}", mutbl.prefix_str())?;
        }
        _ => bug!("{ty} is a bad ref pattern type"),
    }
    write!(f, "{subpattern}")
}

pub(crate) fn write_slice_like(
    f: &mut impl fmt::Write,
    prefix: &[String],
    has_dot_dot: bool,
    suffix: &[String],
) -> fmt::Result {
    let mut start_or_comma = start_or_comma();
    write!(f, "[")?;
    for p in prefix.iter() {
        write!(f, "{}{}", start_or_comma(), p)?;
    }
    if has_dot_dot {
        write!(f, "{}..", start_or_comma())?;
    }
    for p in suffix.iter() {
        write!(f, "{}{}", start_or_comma(), p)?;
    }
    write!(f, "]")
}