1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
//! THIR datatypes and definitions. See the [rustc dev guide] for more info.
//!
//! If you compare the THIR [`ExprKind`] to [`hir::ExprKind`], you will see it is
//! a good bit simpler. In fact, a number of the more straight-forward
//! MIR simplifications are already done in the lowering to THIR. For
//! example, method calls and overloaded operators are absent: they are
//! expected to be converted into [`ExprKind::Call`] instances.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/thir.html

use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_hir as hir;
use rustc_hir::def::CtorKind;
use rustc_hir::def_id::DefId;
use rustc_hir::RangeEnd;
use rustc_index::newtype_index;
use rustc_index::vec::IndexVec;
use rustc_middle::infer::canonical::Canonical;
use rustc_middle::middle::region;
use rustc_middle::mir::interpret::AllocId;
use rustc_middle::mir::{
    self, BinOp, BorrowKind, FakeReadCause, Field, Mutability, UnOp, UserTypeProjection,
};
use rustc_middle::ty::adjustment::PointerCast;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, AdtDef, Ty, UpvarSubsts, UserType};
use rustc_middle::ty::{
    CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations,
};
use rustc_span::{Span, Symbol, DUMMY_SP};
use rustc_target::abi::VariantIdx;
use rustc_target::asm::InlineAsmRegOrRegClass;

use std::fmt;
use std::ops::Index;

pub mod abstract_const;
pub mod visit;

newtype_index! {
    /// An index to an [`Arm`] stored in [`Thir::arms`]
    #[derive(HashStable)]
    pub struct ArmId {
        DEBUG_FORMAT = "a{}"
    }
}

newtype_index! {
    /// An index to an [`Expr`] stored in [`Thir::exprs`]
    #[derive(HashStable)]
    pub struct ExprId {
        DEBUG_FORMAT = "e{}"
    }
}

newtype_index! {
    #[derive(HashStable)]
    /// An index to a [`Stmt`] stored in [`Thir::stmts`]
    pub struct StmtId {
        DEBUG_FORMAT = "s{}"
    }
}

macro_rules! thir_with_elements {
    ($($name:ident: $id:ty => $value:ty,)*) => {
        /// A container for a THIR body.
        ///
        /// This can be indexed directly by any THIR index (e.g. [`ExprId`]).
        #[derive(Debug, HashStable, Clone)]
        pub struct Thir<'tcx> {
            $(
                pub $name: IndexVec<$id, $value>,
            )*
        }

        impl<'tcx> Thir<'tcx> {
            pub fn new() -> Thir<'tcx> {
                Thir {
                    $(
                        $name: IndexVec::new(),
                    )*
                }
            }
        }

        $(
            impl<'tcx> Index<$id> for Thir<'tcx> {
                type Output = $value;
                fn index(&self, index: $id) -> &Self::Output {
                    &self.$name[index]
                }
            }
        )*
    }
}

thir_with_elements! {
    arms: ArmId => Arm<'tcx>,
    exprs: ExprId => Expr<'tcx>,
    stmts: StmtId => Stmt<'tcx>,
}

#[derive(Copy, Clone, Debug, HashStable)]
pub enum LintLevel {
    Inherited,
    Explicit(hir::HirId),
}

#[derive(Clone, Debug, HashStable)]
pub struct Block {
    /// Whether the block itself has a label. Used by `label: {}`
    /// and `try` blocks.
    ///
    /// This does *not* include labels on loops, e.g. `'label: loop {}`.
    pub targeted_by_break: bool,
    pub region_scope: region::Scope,
    pub opt_destruction_scope: Option<region::Scope>,
    /// The span of the block, including the opening braces,
    /// the label, and the `unsafe` keyword, if present.
    pub span: Span,
    /// The statements in the blocK.
    pub stmts: Box<[StmtId]>,
    /// The trailing expression of the block, if any.
    pub expr: Option<ExprId>,
    pub safety_mode: BlockSafety,
}

#[derive(Clone, Debug, HashStable)]
pub struct Adt<'tcx> {
    /// The ADT we're constructing.
    pub adt_def: AdtDef<'tcx>,
    /// The variant of the ADT.
    pub variant_index: VariantIdx,
    pub substs: SubstsRef<'tcx>,

    /// Optional user-given substs: for something like `let x =
    /// Bar::<T> { ... }`.
    pub user_ty: Option<Canonical<'tcx, UserType<'tcx>>>,

    pub fields: Box<[FieldExpr]>,
    /// The base, e.g. `Foo {x: 1, .. base}`.
    pub base: Option<FruInfo<'tcx>>,
}

#[derive(Copy, Clone, Debug, HashStable)]
pub enum BlockSafety {
    Safe,
    /// A compiler-generated unsafe block
    BuiltinUnsafe,
    /// An `unsafe` block. The `HirId` is the ID of the block.
    ExplicitUnsafe(hir::HirId),
}

#[derive(Clone, Debug, HashStable)]
pub struct Stmt<'tcx> {
    pub kind: StmtKind<'tcx>,
    pub opt_destruction_scope: Option<region::Scope>,
}

#[derive(Clone, Debug, HashStable)]
pub enum StmtKind<'tcx> {
    /// An expression with a trailing semicolon.
    Expr {
        /// The scope for this statement; may be used as lifetime of temporaries.
        scope: region::Scope,

        /// The expression being evaluated in this statement.
        expr: ExprId,
    },

    /// A `let` binding.
    Let {
        /// The scope for variables bound in this `let`; it covers this and
        /// all the remaining statements in the block.
        remainder_scope: region::Scope,

        /// The scope for the initialization itself; might be used as
        /// lifetime of temporaries.
        init_scope: region::Scope,

        /// `let <PAT> = ...`
        ///
        /// If a type annotation is included, it is added as an ascription pattern.
        pattern: Pat<'tcx>,

        /// `let pat: ty = <INIT>`
        initializer: Option<ExprId>,

        /// The lint level for this `let` statement.
        lint_level: LintLevel,
    },
}

// `Expr` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
rustc_data_structures::static_assert_size!(Expr<'_>, 104);

/// A THIR expression.
#[derive(Clone, Debug, HashStable)]
pub struct Expr<'tcx> {
    /// The type of this expression
    pub ty: Ty<'tcx>,

    /// The lifetime of this expression if it should be spilled into a
    /// temporary; should be `None` only if in a constant context
    pub temp_lifetime: Option<region::Scope>,

    /// span of the expression in the source
    pub span: Span,

    /// kind of expression
    pub kind: ExprKind<'tcx>,
}

#[derive(Clone, Debug, HashStable)]
pub enum ExprKind<'tcx> {
    /// `Scope`s are used to explicitly mark destruction scopes,
    /// and to track the `HirId` of the expressions within the scope.
    Scope {
        region_scope: region::Scope,
        lint_level: LintLevel,
        value: ExprId,
    },
    /// A `box <value>` expression.
    Box {
        value: ExprId,
    },
    /// An `if` expression.
    If {
        if_then_scope: region::Scope,
        cond: ExprId,
        then: ExprId,
        else_opt: Option<ExprId>,
    },
    /// A function call. Method calls and overloaded operators are converted to plain function calls.
    Call {
        /// The type of the function. This is often a [`FnDef`] or a [`FnPtr`].
        ///
        /// [`FnDef`]: ty::TyKind::FnDef
        /// [`FnPtr`]: ty::TyKind::FnPtr
        ty: Ty<'tcx>,
        /// The function itself.
        fun: ExprId,
        /// The arguments passed to the function.
        ///
        /// Note: in some cases (like calling a closure), the function call `f(...args)` gets
        /// rewritten as a call to a function trait method (e.g. `FnOnce::call_once(f, (...args))`).
        args: Box<[ExprId]>,
        /// Whether this is from an overloaded operator rather than a
        /// function call from HIR. `true` for overloaded function call.
        from_hir_call: bool,
        /// The span of the function, without the dot and receiver
        /// (e.g. `foo(a, b)` in `x.foo(a, b)`).
        fn_span: Span,
    },
    /// A *non-overloaded* dereference.
    Deref {
        arg: ExprId,
    },
    /// A *non-overloaded* binary operation.
    Binary {
        op: BinOp,
        lhs: ExprId,
        rhs: ExprId,
    },
    /// A logical operation. This is distinct from `BinaryOp` because
    /// the operands need to be lazily evaluated.
    LogicalOp {
        op: LogicalOp,
        lhs: ExprId,
        rhs: ExprId,
    },
    /// A *non-overloaded* unary operation. Note that here the deref (`*`)
    /// operator is represented by `ExprKind::Deref`.
    Unary {
        op: UnOp,
        arg: ExprId,
    },
    /// A cast: `<source> as <type>`. The type we cast to is the type of
    /// the parent expression.
    Cast {
        source: ExprId,
    },
    Use {
        source: ExprId,
    }, // Use a lexpr to get a vexpr.
    /// A coercion from `!` to any type.
    NeverToAny {
        source: ExprId,
    },
    /// A pointer cast. More information can be found in [`PointerCast`].
    Pointer {
        cast: PointerCast,
        source: ExprId,
    },
    /// A `loop` expression.
    Loop {
        body: ExprId,
    },
    Let {
        expr: ExprId,
        pat: Pat<'tcx>,
    },
    /// A `match` expression.
    Match {
        scrutinee: ExprId,
        arms: Box<[ArmId]>,
    },
    /// A block.
    Block {
        body: Block,
    },
    /// An assignment: `lhs = rhs`.
    Assign {
        lhs: ExprId,
        rhs: ExprId,
    },
    /// A *non-overloaded* operation assignment, e.g. `lhs += rhs`.
    AssignOp {
        op: BinOp,
        lhs: ExprId,
        rhs: ExprId,
    },
    /// Access to a struct or tuple field.
    Field {
        lhs: ExprId,
        /// This can be a named (`.foo`) or unnamed (`.0`) field.
        name: Field,
    },
    /// A *non-overloaded* indexing operation.
    Index {
        lhs: ExprId,
        index: ExprId,
    },
    /// A local variable.
    VarRef {
        id: hir::HirId,
    },
    /// Used to represent upvars mentioned in a closure/generator
    UpvarRef {
        /// DefId of the closure/generator
        closure_def_id: DefId,

        /// HirId of the root variable
        var_hir_id: hir::HirId,
    },
    /// A borrow, e.g. `&arg`.
    Borrow {
        borrow_kind: BorrowKind,
        arg: ExprId,
    },
    /// A `&raw [const|mut] $place_expr` raw borrow resulting in type `*[const|mut] T`.
    AddressOf {
        mutability: hir::Mutability,
        arg: ExprId,
    },
    /// A `break` expression.
    Break {
        label: region::Scope,
        value: Option<ExprId>,
    },
    /// A `continue` expression.
    Continue {
        label: region::Scope,
    },
    /// A `return` expression.
    Return {
        value: Option<ExprId>,
    },
    /// An inline `const` block, e.g. `const {}`.
    ConstBlock {
        did: DefId,
        substs: SubstsRef<'tcx>,
    },
    /// An array literal constructed from one repeated element, e.g. `[1; 5]`.
    Repeat {
        value: ExprId,
        count: ty::Const<'tcx>,
    },
    /// An array, e.g. `[a, b, c, d]`.
    Array {
        fields: Box<[ExprId]>,
    },
    /// A tuple, e.g. `(a, b, c, d)`.
    Tuple {
        fields: Box<[ExprId]>,
    },
    /// An ADT constructor, e.g. `Foo {x: 1, y: 2}`.
    Adt(Box<Adt<'tcx>>),
    /// A type ascription on a place.
    PlaceTypeAscription {
        source: ExprId,
        /// Type that the user gave to this expression
        user_ty: Option<Canonical<'tcx, UserType<'tcx>>>,
    },
    /// A type ascription on a value, e.g. `42: i32`.
    ValueTypeAscription {
        source: ExprId,
        /// Type that the user gave to this expression
        user_ty: Option<Canonical<'tcx, UserType<'tcx>>>,
    },
    /// A closure definition.
    Closure {
        closure_id: DefId,
        substs: UpvarSubsts<'tcx>,
        upvars: Box<[ExprId]>,
        movability: Option<hir::Movability>,
        fake_reads: Vec<(ExprId, FakeReadCause, hir::HirId)>,
    },
    /// A literal.
    Literal {
        lit: &'tcx hir::Lit,
        neg: bool,
    },
    /// For literals that don't correspond to anything in the HIR
    NonHirLiteral {
        lit: ty::ScalarInt,
        user_ty: Option<Canonical<'tcx, UserType<'tcx>>>,
    },
    /// Associated constants and named constants
    NamedConst {
        def_id: DefId,
        substs: SubstsRef<'tcx>,
        user_ty: Option<Canonical<'tcx, UserType<'tcx>>>,
    },
    ConstParam {
        param: ty::ParamConst,
        def_id: DefId,
    },
    // FIXME improve docs for `StaticRef` by distinguishing it from `NamedConst`
    /// A literal containing the address of a `static`.
    ///
    /// This is only distinguished from `Literal` so that we can register some
    /// info for diagnostics.
    StaticRef {
        alloc_id: AllocId,
        ty: Ty<'tcx>,
        def_id: DefId,
    },
    /// Inline assembly, i.e. `asm!()`.
    InlineAsm {
        template: &'tcx [InlineAsmTemplatePiece],
        operands: Box<[InlineAsmOperand<'tcx>]>,
        options: InlineAsmOptions,
        line_spans: &'tcx [Span],
    },
    /// An expression taking a reference to a thread local.
    ThreadLocalRef(DefId),
    /// A `yield` expression.
    Yield {
        value: ExprId,
    },
}

impl<'tcx> ExprKind<'tcx> {
    pub fn zero_sized_literal(user_ty: Option<Canonical<'tcx, UserType<'tcx>>>) -> Self {
        ExprKind::NonHirLiteral { lit: ty::ScalarInt::ZST, user_ty }
    }
}

/// Represents the association of a field identifier and an expression.
///
/// This is used in struct constructors.
#[derive(Clone, Debug, HashStable)]
pub struct FieldExpr {
    pub name: Field,
    pub expr: ExprId,
}

#[derive(Clone, Debug, HashStable)]
pub struct FruInfo<'tcx> {
    pub base: ExprId,
    pub field_types: Box<[Ty<'tcx>]>,
}

/// A `match` arm.
#[derive(Clone, Debug, HashStable)]
pub struct Arm<'tcx> {
    pub pattern: Pat<'tcx>,
    pub guard: Option<Guard<'tcx>>,
    pub body: ExprId,
    pub lint_level: LintLevel,
    pub scope: region::Scope,
    pub span: Span,
}

/// A `match` guard.
#[derive(Clone, Debug, HashStable)]
pub enum Guard<'tcx> {
    If(ExprId),
    IfLet(Pat<'tcx>, ExprId),
}

#[derive(Copy, Clone, Debug, HashStable)]
pub enum LogicalOp {
    /// The `&&` operator.
    And,
    /// The `||` operator.
    Or,
}

#[derive(Clone, Debug, HashStable)]
pub enum InlineAsmOperand<'tcx> {
    In {
        reg: InlineAsmRegOrRegClass,
        expr: ExprId,
    },
    Out {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        expr: Option<ExprId>,
    },
    InOut {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        expr: ExprId,
    },
    SplitInOut {
        reg: InlineAsmRegOrRegClass,
        late: bool,
        in_expr: ExprId,
        out_expr: Option<ExprId>,
    },
    Const {
        value: mir::ConstantKind<'tcx>,
        span: Span,
    },
    SymFn {
        value: mir::ConstantKind<'tcx>,
        span: Span,
    },
    SymStatic {
        def_id: DefId,
    },
}

#[derive(Copy, Clone, Debug, PartialEq, HashStable)]
pub enum BindingMode {
    ByValue,
    ByRef(BorrowKind),
}

#[derive(Clone, Debug, PartialEq, HashStable)]
pub struct FieldPat<'tcx> {
    pub field: Field,
    pub pattern: Pat<'tcx>,
}

#[derive(Clone, Debug, PartialEq, HashStable)]
pub struct Pat<'tcx> {
    pub ty: Ty<'tcx>,
    pub span: Span,
    pub kind: Box<PatKind<'tcx>>,
}

impl<'tcx> Pat<'tcx> {
    pub fn wildcard_from_ty(ty: Ty<'tcx>) -> Self {
        Pat { ty, span: DUMMY_SP, kind: Box::new(PatKind::Wild) }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, HashStable)]
pub struct PatTyProj<'tcx> {
    pub user_ty: CanonicalUserType<'tcx>,
}

impl<'tcx> PatTyProj<'tcx> {
    pub fn from_user_type(user_annotation: CanonicalUserType<'tcx>) -> Self {
        Self { user_ty: user_annotation }
    }

    pub fn user_ty(
        self,
        annotations: &mut CanonicalUserTypeAnnotations<'tcx>,
        inferred_ty: Ty<'tcx>,
        span: Span,
    ) -> UserTypeProjection {
        UserTypeProjection {
            base: annotations.push(CanonicalUserTypeAnnotation {
                span,
                user_ty: self.user_ty,
                inferred_ty,
            }),
            projs: Vec::new(),
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, HashStable)]
pub struct Ascription<'tcx> {
    pub user_ty: PatTyProj<'tcx>,
    /// Variance to use when relating the type `user_ty` to the **type of the value being
    /// matched**. Typically, this is `Variance::Covariant`, since the value being matched must
    /// have a type that is some subtype of the ascribed type.
    ///
    /// Note that this variance does not apply for any bindings within subpatterns. The type
    /// assigned to those bindings must be exactly equal to the `user_ty` given here.
    ///
    /// The only place where this field is not `Covariant` is when matching constants, where
    /// we currently use `Contravariant` -- this is because the constant type just needs to
    /// be "comparable" to the type of the input value. So, for example:
    ///
    /// ```text
    /// match x { "foo" => .. }
    /// ```
    ///
    /// requires that `&'static str <: T_x`, where `T_x` is the type of `x`. Really, we should
    /// probably be checking for a `PartialEq` impl instead, but this preserves the behavior
    /// of the old type-check for now. See #57280 for details.
    pub variance: ty::Variance,
    pub user_ty_span: Span,
}

#[derive(Clone, Debug, PartialEq, HashStable)]
pub enum PatKind<'tcx> {
    /// A wildward pattern: `_`.
    Wild,

    AscribeUserType {
        ascription: Ascription<'tcx>,
        subpattern: Pat<'tcx>,
    },

    /// `x`, `ref x`, `x @ P`, etc.
    Binding {
        mutability: Mutability,
        name: Symbol,
        mode: BindingMode,
        var: hir::HirId,
        ty: Ty<'tcx>,
        subpattern: Option<Pat<'tcx>>,
        /// Is this the leftmost occurrence of the binding, i.e., is `var` the
        /// `HirId` of this pattern?
        is_primary: bool,
    },

    /// `Foo(...)` or `Foo{...}` or `Foo`, where `Foo` is a variant name from an ADT with
    /// multiple variants.
    Variant {
        adt_def: AdtDef<'tcx>,
        substs: SubstsRef<'tcx>,
        variant_index: VariantIdx,
        subpatterns: Vec<FieldPat<'tcx>>,
    },

    /// `(...)`, `Foo(...)`, `Foo{...}`, or `Foo`, where `Foo` is a variant name from an ADT with
    /// a single variant.
    Leaf {
        subpatterns: Vec<FieldPat<'tcx>>,
    },

    /// `box P`, `&P`, `&mut P`, etc.
    Deref {
        subpattern: Pat<'tcx>,
    },

    /// One of the following:
    /// * `&str`, which will be handled as a string pattern and thus exhaustiveness
    ///   checking will detect if you use the same string twice in different patterns.
    /// * integer, bool, char or float, which will be handled by exhaustiveness to cover exactly
    ///   its own value, similar to `&str`, but these values are much simpler.
    /// * Opaque constants, that must not be matched structurally. So anything that does not derive
    ///   `PartialEq` and `Eq`.
    Constant {
        value: mir::ConstantKind<'tcx>,
    },

    Range(PatRange<'tcx>),

    /// Matches against a slice, checking the length and extracting elements.
    /// irrefutable when there is a slice pattern and both `prefix` and `suffix` are empty.
    /// e.g., `&[ref xs @ ..]`.
    Slice {
        prefix: Vec<Pat<'tcx>>,
        slice: Option<Pat<'tcx>>,
        suffix: Vec<Pat<'tcx>>,
    },

    /// Fixed match against an array; irrefutable.
    Array {
        prefix: Vec<Pat<'tcx>>,
        slice: Option<Pat<'tcx>>,
        suffix: Vec<Pat<'tcx>>,
    },

    /// An or-pattern, e.g. `p | q`.
    /// Invariant: `pats.len() >= 2`.
    Or {
        pats: Vec<Pat<'tcx>>,
    },
}

#[derive(Copy, Clone, Debug, PartialEq, HashStable)]
pub struct PatRange<'tcx> {
    pub lo: mir::ConstantKind<'tcx>,
    pub hi: mir::ConstantKind<'tcx>,
    pub end: RangeEnd,
}

impl<'tcx> fmt::Display for Pat<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Printing lists is a chore.
        let mut first = true;
        let mut start_or_continue = |s| {
            if first {
                first = false;
                ""
            } else {
                s
            }
        };
        let mut start_or_comma = || start_or_continue(", ");

        match *self.kind {
            PatKind::Wild => write!(f, "_"),
            PatKind::AscribeUserType { ref subpattern, .. } => write!(f, "{}: _", subpattern),
            PatKind::Binding { mutability, name, mode, ref subpattern, .. } => {
                let is_mut = match mode {
                    BindingMode::ByValue => mutability == Mutability::Mut,
                    BindingMode::ByRef(bk) => {
                        write!(f, "ref ")?;
                        matches!(bk, BorrowKind::Mut { .. })
                    }
                };
                if is_mut {
                    write!(f, "mut ")?;
                }
                write!(f, "{}", name)?;
                if let Some(ref subpattern) = *subpattern {
                    write!(f, " @ {}", subpattern)?;
                }
                Ok(())
            }
            PatKind::Variant { ref subpatterns, .. } | PatKind::Leaf { ref subpatterns } => {
                let variant = match *self.kind {
                    PatKind::Variant { adt_def, variant_index, .. } => {
                        Some(adt_def.variant(variant_index))
                    }
                    _ => self.ty.ty_adt_def().and_then(|adt| {
                        if !adt.is_enum() { Some(adt.non_enum_variant()) } else { None }
                    }),
                };

                if let Some(variant) = variant {
                    write!(f, "{}", variant.name)?;

                    // Only for Adt we can have `S {...}`,
                    // which we handle separately here.
                    if variant.ctor_kind == CtorKind::Fictive {
                        write!(f, " {{ ")?;

                        let mut printed = 0;
                        for p in subpatterns {
                            if let PatKind::Wild = *p.pattern.kind {
                                continue;
                            }
                            let name = variant.fields[p.field.index()].name;
                            write!(f, "{}{}: {}", start_or_comma(), name, p.pattern)?;
                            printed += 1;
                        }

                        if printed < variant.fields.len() {
                            write!(f, "{}..", start_or_comma())?;
                        }

                        return write!(f, " }}");
                    }
                }

                let num_fields = variant.map_or(subpatterns.len(), |v| v.fields.len());
                if num_fields != 0 || variant.is_none() {
                    write!(f, "(")?;
                    for i in 0..num_fields {
                        write!(f, "{}", start_or_comma())?;

                        // Common case: the field is where we expect it.
                        if let Some(p) = subpatterns.get(i) {
                            if p.field.index() == i {
                                write!(f, "{}", p.pattern)?;
                                continue;
                            }
                        }

                        // Otherwise, we have to go looking for it.
                        if let Some(p) = subpatterns.iter().find(|p| p.field.index() == i) {
                            write!(f, "{}", p.pattern)?;
                        } else {
                            write!(f, "_")?;
                        }
                    }
                    write!(f, ")")?;
                }

                Ok(())
            }
            PatKind::Deref { ref subpattern } => {
                match self.ty.kind() {
                    ty::Adt(def, _) if def.is_box() => write!(f, "box ")?,
                    ty::Ref(_, _, mutbl) => {
                        write!(f, "&{}", mutbl.prefix_str())?;
                    }
                    _ => bug!("{} is a bad Deref pattern type", self.ty),
                }
                write!(f, "{}", subpattern)
            }
            PatKind::Constant { value } => write!(f, "{}", value),
            PatKind::Range(PatRange { lo, hi, end }) => {
                write!(f, "{}", lo)?;
                write!(f, "{}", end)?;
                write!(f, "{}", hi)
            }
            PatKind::Slice { ref prefix, ref slice, ref suffix }
            | PatKind::Array { ref prefix, ref slice, ref suffix } => {
                write!(f, "[")?;
                for p in prefix {
                    write!(f, "{}{}", start_or_comma(), p)?;
                }
                if let Some(ref slice) = *slice {
                    write!(f, "{}", start_or_comma())?;
                    match *slice.kind {
                        PatKind::Wild => {}
                        _ => write!(f, "{}", slice)?,
                    }
                    write!(f, "..")?;
                }
                for p in suffix {
                    write!(f, "{}{}", start_or_comma(), p)?;
                }
                write!(f, "]")
            }
            PatKind::Or { ref pats } => {
                for pat in pats {
                    write!(f, "{}{}", start_or_continue(" | "), pat)?;
                }
                Ok(())
            }
        }
    }
}