rustc_middle/
thir.rs

1//! THIR datatypes and definitions. See the [rustc dev guide] for more info.
2//!
3//! If you compare the THIR [`ExprKind`] to [`hir::ExprKind`], you will see it is
4//! a good bit simpler. In fact, a number of the more straight-forward
5//! MIR simplifications are already done in the lowering to THIR. For
6//! example, method calls and overloaded operators are absent: they are
7//! expected to be converted into [`ExprKind::Call`] instances.
8//!
9//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/thir.html
10
11use std::cmp::Ordering;
12use std::fmt;
13use std::ops::Index;
14use std::sync::Arc;
15
16use rustc_abi::{FieldIdx, Integer, Size, VariantIdx};
17use rustc_ast::{AsmMacro, InlineAsmOptions, InlineAsmTemplatePiece};
18use rustc_hir as hir;
19use rustc_hir::def_id::DefId;
20use rustc_hir::{BindingMode, ByRef, HirId, MatchSource, RangeEnd};
21use rustc_index::{IndexVec, newtype_index};
22use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeVisitable};
23use rustc_span::def_id::LocalDefId;
24use rustc_span::{ErrorGuaranteed, Span, Symbol};
25use rustc_target::asm::InlineAsmRegOrRegClass;
26use tracing::instrument;
27
28use crate::middle::region;
29use crate::mir::interpret::AllocId;
30use crate::mir::{self, AssignOp, BinOp, BorrowKind, FakeReadCause, UnOp};
31use crate::thir::visit::for_each_immediate_subpat;
32use crate::ty::adjustment::PointerCoercion;
33use crate::ty::layout::IntegerExt;
34use crate::ty::{
35    self, AdtDef, CanonicalUserType, CanonicalUserTypeAnnotation, FnSig, GenericArgsRef, List, Ty,
36    TyCtxt, UpvarArgs,
37};
38
39pub mod visit;
40
41macro_rules! thir_with_elements {
42    (
43        $($name:ident: $id:ty => $value:ty => $format:literal,)*
44    ) => {
45        $(
46            newtype_index! {
47                #[derive(HashStable)]
48                #[debug_format = $format]
49                pub struct $id {}
50            }
51        )*
52
53        // Note: Making `Thir` implement `Clone` is useful for external tools that need access to
54        // THIR bodies even after the `Steal` query result has been stolen.
55        // One such tool is https://github.com/rust-corpus/qrates/.
56        /// A container for a THIR body.
57        ///
58        /// This can be indexed directly by any THIR index (e.g. [`ExprId`]).
59        #[derive(Debug, HashStable, Clone)]
60        pub struct Thir<'tcx> {
61            pub body_type: BodyTy<'tcx>,
62            $(
63                pub $name: IndexVec<$id, $value>,
64            )*
65        }
66
67        impl<'tcx> Thir<'tcx> {
68            pub fn new(body_type: BodyTy<'tcx>) -> Thir<'tcx> {
69                Thir {
70                    body_type,
71                    $(
72                        $name: IndexVec::new(),
73                    )*
74                }
75            }
76        }
77
78        $(
79            impl<'tcx> Index<$id> for Thir<'tcx> {
80                type Output = $value;
81                fn index(&self, index: $id) -> &Self::Output {
82                    &self.$name[index]
83                }
84            }
85        )*
86    }
87}
88
89thir_with_elements! {
90    arms: ArmId => Arm<'tcx> => "a{}",
91    blocks: BlockId => Block => "b{}",
92    exprs: ExprId => Expr<'tcx> => "e{}",
93    stmts: StmtId => Stmt<'tcx> => "s{}",
94    params: ParamId => Param<'tcx> => "p{}",
95}
96
97#[derive(Debug, HashStable, Clone)]
98pub enum BodyTy<'tcx> {
99    Const(Ty<'tcx>),
100    Fn(FnSig<'tcx>),
101    GlobalAsm(Ty<'tcx>),
102}
103
104/// Description of a type-checked function parameter.
105#[derive(Clone, Debug, HashStable)]
106pub struct Param<'tcx> {
107    /// The pattern that appears in the parameter list, or None for implicit parameters.
108    pub pat: Option<Box<Pat<'tcx>>>,
109    /// The possibly inferred type.
110    pub ty: Ty<'tcx>,
111    /// Span of the explicitly provided type, or None if inferred for closures.
112    pub ty_span: Option<Span>,
113    /// Whether this param is `self`, and how it is bound.
114    pub self_kind: Option<hir::ImplicitSelfKind>,
115    /// HirId for lints.
116    pub hir_id: Option<HirId>,
117}
118
119#[derive(Copy, Clone, Debug, HashStable)]
120pub enum LintLevel {
121    Inherited,
122    Explicit(HirId),
123}
124
125#[derive(Clone, Debug, HashStable)]
126pub struct Block {
127    /// Whether the block itself has a label. Used by `label: {}`
128    /// and `try` blocks.
129    ///
130    /// This does *not* include labels on loops, e.g. `'label: loop {}`.
131    pub targeted_by_break: bool,
132    pub region_scope: region::Scope,
133    /// The span of the block, including the opening braces,
134    /// the label, and the `unsafe` keyword, if present.
135    pub span: Span,
136    /// The statements in the blocK.
137    pub stmts: Box<[StmtId]>,
138    /// The trailing expression of the block, if any.
139    pub expr: Option<ExprId>,
140    pub safety_mode: BlockSafety,
141}
142
143type UserTy<'tcx> = Option<Box<CanonicalUserType<'tcx>>>;
144
145#[derive(Clone, Debug, HashStable)]
146pub struct AdtExpr<'tcx> {
147    /// The ADT we're constructing.
148    pub adt_def: AdtDef<'tcx>,
149    /// The variant of the ADT.
150    pub variant_index: VariantIdx,
151    pub args: GenericArgsRef<'tcx>,
152
153    /// Optional user-given args: for something like `let x =
154    /// Bar::<T> { ... }`.
155    pub user_ty: UserTy<'tcx>,
156
157    pub fields: Box<[FieldExpr]>,
158    /// The base, e.g. `Foo {x: 1, ..base}`.
159    pub base: AdtExprBase<'tcx>,
160}
161
162#[derive(Clone, Debug, HashStable)]
163pub enum AdtExprBase<'tcx> {
164    /// A struct expression where all the fields are explicitly enumerated: `Foo { a, b }`.
165    None,
166    /// A struct expression with a "base", an expression of the same type as the outer struct that
167    /// will be used to populate any fields not explicitly mentioned: `Foo { ..base }`
168    Base(FruInfo<'tcx>),
169    /// A struct expression with a `..` tail but no "base" expression. The values from the struct
170    /// fields' default values will be used to populate any fields not explicitly mentioned:
171    /// `Foo { .. }`.
172    DefaultFields(Box<[Ty<'tcx>]>),
173}
174
175#[derive(Clone, Debug, HashStable)]
176pub struct ClosureExpr<'tcx> {
177    pub closure_id: LocalDefId,
178    pub args: UpvarArgs<'tcx>,
179    pub upvars: Box<[ExprId]>,
180    pub movability: Option<hir::Movability>,
181    pub fake_reads: Vec<(ExprId, FakeReadCause, HirId)>,
182}
183
184#[derive(Clone, Debug, HashStable)]
185pub struct InlineAsmExpr<'tcx> {
186    pub asm_macro: AsmMacro,
187    pub template: &'tcx [InlineAsmTemplatePiece],
188    pub operands: Box<[InlineAsmOperand<'tcx>]>,
189    pub options: InlineAsmOptions,
190    pub line_spans: &'tcx [Span],
191}
192
193#[derive(Copy, Clone, Debug, HashStable)]
194pub enum BlockSafety {
195    Safe,
196    /// A compiler-generated unsafe block
197    BuiltinUnsafe,
198    /// An `unsafe` block. The `HirId` is the ID of the block.
199    ExplicitUnsafe(HirId),
200}
201
202#[derive(Clone, Debug, HashStable)]
203pub struct Stmt<'tcx> {
204    pub kind: StmtKind<'tcx>,
205}
206
207#[derive(Clone, Debug, HashStable)]
208pub enum StmtKind<'tcx> {
209    /// An expression with a trailing semicolon.
210    Expr {
211        /// The scope for this statement; may be used as lifetime of temporaries.
212        scope: region::Scope,
213
214        /// The expression being evaluated in this statement.
215        expr: ExprId,
216    },
217
218    /// A `let` binding.
219    Let {
220        /// The scope for variables bound in this `let`; it covers this and
221        /// all the remaining statements in the block.
222        remainder_scope: region::Scope,
223
224        /// The scope for the initialization itself; might be used as
225        /// lifetime of temporaries.
226        init_scope: region::Scope,
227
228        /// `let <PAT> = ...`
229        ///
230        /// If a type annotation is included, it is added as an ascription pattern.
231        pattern: Box<Pat<'tcx>>,
232
233        /// `let pat: ty = <INIT>`
234        initializer: Option<ExprId>,
235
236        /// `let pat: ty = <INIT> else { <ELSE> }`
237        else_block: Option<BlockId>,
238
239        /// The lint level for this `let` statement.
240        lint_level: LintLevel,
241
242        /// Span of the `let <PAT> = <INIT>` part.
243        span: Span,
244    },
245}
246
247#[derive(Clone, Debug, Copy, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
248pub struct LocalVarId(pub HirId);
249
250/// A THIR expression.
251#[derive(Clone, Debug, HashStable)]
252pub struct Expr<'tcx> {
253    /// kind of expression
254    pub kind: ExprKind<'tcx>,
255
256    /// The type of this expression
257    pub ty: Ty<'tcx>,
258
259    /// The lifetime of this expression if it should be spilled into a
260    /// temporary
261    pub temp_lifetime: TempLifetime,
262
263    /// span of the expression in the source
264    pub span: Span,
265}
266
267/// Temporary lifetime information for THIR expressions
268#[derive(Clone, Copy, Debug, HashStable)]
269pub struct TempLifetime {
270    /// Lifetime for temporaries as expected.
271    /// This should be `None` in a constant context.
272    pub temp_lifetime: Option<region::Scope>,
273    /// If `Some(lt)`, indicates that the lifetime of this temporary will change to `lt` in a future edition.
274    /// If `None`, then no changes are expected, or lints are disabled.
275    pub backwards_incompatible: Option<region::Scope>,
276}
277
278#[derive(Clone, Debug, HashStable)]
279pub enum ExprKind<'tcx> {
280    /// `Scope`s are used to explicitly mark destruction scopes,
281    /// and to track the `HirId` of the expressions within the scope.
282    Scope {
283        region_scope: region::Scope,
284        lint_level: LintLevel,
285        value: ExprId,
286    },
287    /// A `box <value>` expression.
288    Box {
289        value: ExprId,
290    },
291    /// An `if` expression.
292    If {
293        if_then_scope: region::Scope,
294        cond: ExprId,
295        then: ExprId,
296        else_opt: Option<ExprId>,
297    },
298    /// A function call. Method calls and overloaded operators are converted to plain function calls.
299    Call {
300        /// The type of the function. This is often a [`FnDef`] or a [`FnPtr`].
301        ///
302        /// [`FnDef`]: ty::TyKind::FnDef
303        /// [`FnPtr`]: ty::TyKind::FnPtr
304        ty: Ty<'tcx>,
305        /// The function itself.
306        fun: ExprId,
307        /// The arguments passed to the function.
308        ///
309        /// Note: in some cases (like calling a closure), the function call `f(...args)` gets
310        /// rewritten as a call to a function trait method (e.g. `FnOnce::call_once(f, (...args))`).
311        args: Box<[ExprId]>,
312        /// Whether this is from an overloaded operator rather than a
313        /// function call from HIR. `true` for overloaded function call.
314        from_hir_call: bool,
315        /// The span of the function, without the dot and receiver
316        /// (e.g. `foo(a, b)` in `x.foo(a, b)`).
317        fn_span: Span,
318    },
319    /// A use expression `x.use`.
320    ByUse {
321        /// The expression on which use is applied.
322        expr: ExprId,
323        /// The span of use, without the dot and receiver
324        /// (e.g. `use` in `x.use`).
325        span: Span,
326    },
327    /// A *non-overloaded* dereference.
328    Deref {
329        arg: ExprId,
330    },
331    /// A *non-overloaded* binary operation.
332    Binary {
333        op: BinOp,
334        lhs: ExprId,
335        rhs: ExprId,
336    },
337    /// A logical operation. This is distinct from `BinaryOp` because
338    /// the operands need to be lazily evaluated.
339    LogicalOp {
340        op: LogicalOp,
341        lhs: ExprId,
342        rhs: ExprId,
343    },
344    /// A *non-overloaded* unary operation. Note that here the deref (`*`)
345    /// operator is represented by `ExprKind::Deref`.
346    Unary {
347        op: UnOp,
348        arg: ExprId,
349    },
350    /// A cast: `<source> as <type>`. The type we cast to is the type of
351    /// the parent expression.
352    Cast {
353        source: ExprId,
354    },
355    /// Forces its contents to be treated as a value expression, not a place
356    /// expression. This is inserted in some places where an operation would
357    /// otherwise be erased completely (e.g. some no-op casts), but we still
358    /// need to ensure that its operand is treated as a value and not a place.
359    Use {
360        source: ExprId,
361    },
362    /// A coercion from `!` to any type.
363    NeverToAny {
364        source: ExprId,
365    },
366    /// A pointer coercion. More information can be found in [`PointerCoercion`].
367    /// Pointer casts that cannot be done by coercions are represented by [`ExprKind::Cast`].
368    PointerCoercion {
369        cast: PointerCoercion,
370        source: ExprId,
371        /// Whether this coercion is written with an `as` cast in the source code.
372        is_from_as_cast: bool,
373    },
374    /// A `loop` expression.
375    Loop {
376        body: ExprId,
377    },
378    /// Special expression representing the `let` part of an `if let` or similar construct
379    /// (including `if let` guards in match arms, and let-chains formed by `&&`).
380    ///
381    /// This isn't considered a real expression in surface Rust syntax, so it can
382    /// only appear in specific situations, such as within the condition of an `if`.
383    ///
384    /// (Not to be confused with [`StmtKind::Let`], which is a normal `let` statement.)
385    Let {
386        expr: ExprId,
387        pat: Box<Pat<'tcx>>,
388    },
389    /// A `match` expression.
390    Match {
391        scrutinee: ExprId,
392        arms: Box<[ArmId]>,
393        match_source: MatchSource,
394    },
395    /// A block.
396    Block {
397        block: BlockId,
398    },
399    /// An assignment: `lhs = rhs`.
400    Assign {
401        lhs: ExprId,
402        rhs: ExprId,
403    },
404    /// A *non-overloaded* operation assignment, e.g. `lhs += rhs`.
405    AssignOp {
406        op: AssignOp,
407        lhs: ExprId,
408        rhs: ExprId,
409    },
410    /// Access to a field of a struct, a tuple, an union, or an enum.
411    Field {
412        lhs: ExprId,
413        /// Variant containing the field.
414        variant_index: VariantIdx,
415        /// This can be a named (`.foo`) or unnamed (`.0`) field.
416        name: FieldIdx,
417    },
418    /// A *non-overloaded* indexing operation.
419    Index {
420        lhs: ExprId,
421        index: ExprId,
422    },
423    /// A local variable.
424    VarRef {
425        id: LocalVarId,
426    },
427    /// Used to represent upvars mentioned in a closure/coroutine
428    UpvarRef {
429        /// DefId of the closure/coroutine
430        closure_def_id: DefId,
431
432        /// HirId of the root variable
433        var_hir_id: LocalVarId,
434    },
435    /// A borrow, e.g. `&arg`.
436    Borrow {
437        borrow_kind: BorrowKind,
438        arg: ExprId,
439    },
440    /// A `&raw [const|mut] $place_expr` raw borrow resulting in type `*[const|mut] T`.
441    RawBorrow {
442        mutability: hir::Mutability,
443        arg: ExprId,
444    },
445    /// A `break` expression.
446    Break {
447        label: region::Scope,
448        value: Option<ExprId>,
449    },
450    /// A `continue` expression.
451    Continue {
452        label: region::Scope,
453    },
454    /// A `return` expression.
455    Return {
456        value: Option<ExprId>,
457    },
458    /// A `become` expression.
459    Become {
460        value: ExprId,
461    },
462    /// An inline `const` block, e.g. `const {}`.
463    ConstBlock {
464        did: DefId,
465        args: GenericArgsRef<'tcx>,
466    },
467    /// An array literal constructed from one repeated element, e.g. `[1; 5]`.
468    Repeat {
469        value: ExprId,
470        count: ty::Const<'tcx>,
471    },
472    /// An array, e.g. `[a, b, c, d]`.
473    Array {
474        fields: Box<[ExprId]>,
475    },
476    /// A tuple, e.g. `(a, b, c, d)`.
477    Tuple {
478        fields: Box<[ExprId]>,
479    },
480    /// An ADT constructor, e.g. `Foo {x: 1, y: 2}`.
481    Adt(Box<AdtExpr<'tcx>>),
482    /// A type ascription on a place.
483    PlaceTypeAscription {
484        source: ExprId,
485        /// Type that the user gave to this expression
486        user_ty: UserTy<'tcx>,
487        user_ty_span: Span,
488    },
489    /// A type ascription on a value, e.g. `type_ascribe!(42, i32)` or `42 as i32`.
490    ValueTypeAscription {
491        source: ExprId,
492        /// Type that the user gave to this expression
493        user_ty: UserTy<'tcx>,
494        user_ty_span: Span,
495    },
496    /// An unsafe binder cast on a place, e.g. `unwrap_binder!(*ptr)`.
497    PlaceUnwrapUnsafeBinder {
498        source: ExprId,
499    },
500    /// An unsafe binder cast on a value, e.g. `unwrap_binder!(rvalue())`,
501    /// which makes a temporary.
502    ValueUnwrapUnsafeBinder {
503        source: ExprId,
504    },
505    /// Construct an unsafe binder, e.g. `wrap_binder(&ref)`.
506    WrapUnsafeBinder {
507        source: ExprId,
508    },
509    /// A closure definition.
510    Closure(Box<ClosureExpr<'tcx>>),
511    /// A literal.
512    Literal {
513        lit: &'tcx hir::Lit,
514        neg: bool,
515    },
516    /// For literals that don't correspond to anything in the HIR
517    NonHirLiteral {
518        lit: ty::ScalarInt,
519        user_ty: UserTy<'tcx>,
520    },
521    /// A literal of a ZST type.
522    ZstLiteral {
523        user_ty: UserTy<'tcx>,
524    },
525    /// Associated constants and named constants
526    NamedConst {
527        def_id: DefId,
528        args: GenericArgsRef<'tcx>,
529        user_ty: UserTy<'tcx>,
530    },
531    ConstParam {
532        param: ty::ParamConst,
533        def_id: DefId,
534    },
535    // FIXME improve docs for `StaticRef` by distinguishing it from `NamedConst`
536    /// A literal containing the address of a `static`.
537    ///
538    /// This is only distinguished from `Literal` so that we can register some
539    /// info for diagnostics.
540    StaticRef {
541        alloc_id: AllocId,
542        ty: Ty<'tcx>,
543        def_id: DefId,
544    },
545    /// Inline assembly, i.e. `asm!()`.
546    InlineAsm(Box<InlineAsmExpr<'tcx>>),
547    /// Field offset (`offset_of!`)
548    OffsetOf {
549        container: Ty<'tcx>,
550        fields: &'tcx List<(VariantIdx, FieldIdx)>,
551    },
552    /// An expression taking a reference to a thread local.
553    ThreadLocalRef(DefId),
554    /// A `yield` expression.
555    Yield {
556        value: ExprId,
557    },
558}
559
560/// Represents the association of a field identifier and an expression.
561///
562/// This is used in struct constructors.
563#[derive(Clone, Debug, HashStable)]
564pub struct FieldExpr {
565    pub name: FieldIdx,
566    pub expr: ExprId,
567}
568
569#[derive(Clone, Debug, HashStable)]
570pub struct FruInfo<'tcx> {
571    pub base: ExprId,
572    pub field_types: Box<[Ty<'tcx>]>,
573}
574
575/// A `match` arm.
576#[derive(Clone, Debug, HashStable)]
577pub struct Arm<'tcx> {
578    pub pattern: Box<Pat<'tcx>>,
579    pub guard: Option<ExprId>,
580    pub body: ExprId,
581    pub lint_level: LintLevel,
582    pub scope: region::Scope,
583    pub span: Span,
584}
585
586#[derive(Copy, Clone, Debug, HashStable)]
587pub enum LogicalOp {
588    /// The `&&` operator.
589    And,
590    /// The `||` operator.
591    Or,
592}
593
594#[derive(Clone, Debug, HashStable)]
595pub enum InlineAsmOperand<'tcx> {
596    In {
597        reg: InlineAsmRegOrRegClass,
598        expr: ExprId,
599    },
600    Out {
601        reg: InlineAsmRegOrRegClass,
602        late: bool,
603        expr: Option<ExprId>,
604    },
605    InOut {
606        reg: InlineAsmRegOrRegClass,
607        late: bool,
608        expr: ExprId,
609    },
610    SplitInOut {
611        reg: InlineAsmRegOrRegClass,
612        late: bool,
613        in_expr: ExprId,
614        out_expr: Option<ExprId>,
615    },
616    Const {
617        value: mir::Const<'tcx>,
618        span: Span,
619    },
620    SymFn {
621        value: ExprId,
622    },
623    SymStatic {
624        def_id: DefId,
625    },
626    Label {
627        block: BlockId,
628    },
629}
630
631#[derive(Clone, Debug, HashStable, TypeVisitable)]
632pub struct FieldPat<'tcx> {
633    pub field: FieldIdx,
634    pub pattern: Pat<'tcx>,
635}
636
637#[derive(Clone, Debug, HashStable, TypeVisitable)]
638pub struct Pat<'tcx> {
639    pub ty: Ty<'tcx>,
640    pub span: Span,
641    pub kind: PatKind<'tcx>,
642}
643
644impl<'tcx> Pat<'tcx> {
645    pub fn simple_ident(&self) -> Option<Symbol> {
646        match self.kind {
647            PatKind::Binding {
648                name, mode: BindingMode(ByRef::No, _), subpattern: None, ..
649            } => Some(name),
650            _ => None,
651        }
652    }
653
654    /// Call `f` on every "binding" in a pattern, e.g., on `a` in
655    /// `match foo() { Some(a) => (), None => () }`
656    pub fn each_binding(&self, mut f: impl FnMut(Symbol, ByRef, Ty<'tcx>, Span)) {
657        self.walk_always(|p| {
658            if let PatKind::Binding { name, mode, ty, .. } = p.kind {
659                f(name, mode.0, ty, p.span);
660            }
661        });
662    }
663
664    /// Walk the pattern in left-to-right order.
665    ///
666    /// If `it(pat)` returns `false`, the children are not visited.
667    pub fn walk(&self, mut it: impl FnMut(&Pat<'tcx>) -> bool) {
668        self.walk_(&mut it)
669    }
670
671    fn walk_(&self, it: &mut impl FnMut(&Pat<'tcx>) -> bool) {
672        if !it(self) {
673            return;
674        }
675
676        for_each_immediate_subpat(self, |p| p.walk_(it));
677    }
678
679    /// Whether the pattern has a `PatKind::Error` nested within.
680    pub fn pat_error_reported(&self) -> Result<(), ErrorGuaranteed> {
681        let mut error = None;
682        self.walk(|pat| {
683            if let PatKind::Error(e) = pat.kind
684                && error.is_none()
685            {
686                error = Some(e);
687            }
688            error.is_none()
689        });
690        match error {
691            None => Ok(()),
692            Some(e) => Err(e),
693        }
694    }
695
696    /// Walk the pattern in left-to-right order.
697    ///
698    /// If you always want to recurse, prefer this method over `walk`.
699    pub fn walk_always(&self, mut it: impl FnMut(&Pat<'tcx>)) {
700        self.walk(|p| {
701            it(p);
702            true
703        })
704    }
705
706    /// Whether this a never pattern.
707    pub fn is_never_pattern(&self) -> bool {
708        let mut is_never_pattern = false;
709        self.walk(|pat| match &pat.kind {
710            PatKind::Never => {
711                is_never_pattern = true;
712                false
713            }
714            PatKind::Or { pats } => {
715                is_never_pattern = pats.iter().all(|p| p.is_never_pattern());
716                false
717            }
718            _ => true,
719        });
720        is_never_pattern
721    }
722}
723
724#[derive(Clone, Debug, HashStable, TypeVisitable)]
725pub struct Ascription<'tcx> {
726    pub annotation: CanonicalUserTypeAnnotation<'tcx>,
727    /// Variance to use when relating the `user_ty` to the **type of the value being
728    /// matched**. Typically, this is `Variance::Covariant`, since the value being matched must
729    /// have a type that is some subtype of the ascribed type.
730    ///
731    /// Note that this variance does not apply for any bindings within subpatterns. The type
732    /// assigned to those bindings must be exactly equal to the `user_ty` given here.
733    ///
734    /// The only place where this field is not `Covariant` is when matching constants, where
735    /// we currently use `Contravariant` -- this is because the constant type just needs to
736    /// be "comparable" to the type of the input value. So, for example:
737    ///
738    /// ```text
739    /// match x { "foo" => .. }
740    /// ```
741    ///
742    /// requires that `&'static str <: T_x`, where `T_x` is the type of `x`. Really, we should
743    /// probably be checking for a `PartialEq` impl instead, but this preserves the behavior
744    /// of the old type-check for now. See #57280 for details.
745    pub variance: ty::Variance,
746}
747
748#[derive(Clone, Debug, HashStable, TypeVisitable)]
749pub enum PatKind<'tcx> {
750    /// A missing pattern, e.g. for an anonymous param in a bare fn like `fn f(u32)`.
751    Missing,
752
753    /// A wildcard pattern: `_`.
754    Wild,
755
756    AscribeUserType {
757        ascription: Ascription<'tcx>,
758        subpattern: Box<Pat<'tcx>>,
759    },
760
761    /// `x`, `ref x`, `x @ P`, etc.
762    Binding {
763        name: Symbol,
764        #[type_visitable(ignore)]
765        mode: BindingMode,
766        #[type_visitable(ignore)]
767        var: LocalVarId,
768        ty: Ty<'tcx>,
769        subpattern: Option<Box<Pat<'tcx>>>,
770
771        /// Is this the leftmost occurrence of the binding, i.e., is `var` the
772        /// `HirId` of this pattern?
773        ///
774        /// (The same binding can occur multiple times in different branches of
775        /// an or-pattern, but only one of them will be primary.)
776        is_primary: bool,
777    },
778
779    /// `Foo(...)` or `Foo{...}` or `Foo`, where `Foo` is a variant name from an ADT with
780    /// multiple variants.
781    Variant {
782        adt_def: AdtDef<'tcx>,
783        args: GenericArgsRef<'tcx>,
784        variant_index: VariantIdx,
785        subpatterns: Vec<FieldPat<'tcx>>,
786    },
787
788    /// `(...)`, `Foo(...)`, `Foo{...}`, or `Foo`, where `Foo` is a variant name from an ADT with
789    /// a single variant.
790    Leaf {
791        subpatterns: Vec<FieldPat<'tcx>>,
792    },
793
794    /// `box P`, `&P`, `&mut P`, etc.
795    Deref {
796        subpattern: Box<Pat<'tcx>>,
797    },
798
799    /// Deref pattern, written `box P` for now.
800    DerefPattern {
801        subpattern: Box<Pat<'tcx>>,
802        mutability: hir::Mutability,
803    },
804
805    /// One of the following:
806    /// * `&str` (represented as a valtree), which will be handled as a string pattern and thus
807    ///   exhaustiveness checking will detect if you use the same string twice in different
808    ///   patterns.
809    /// * integer, bool, char or float (represented as a valtree), which will be handled by
810    ///   exhaustiveness to cover exactly its own value, similar to `&str`, but these values are
811    ///   much simpler.
812    /// * `String`, if `string_deref_patterns` is enabled.
813    Constant {
814        value: mir::Const<'tcx>,
815    },
816
817    /// Pattern obtained by converting a constant (inline or named) to its pattern
818    /// representation using `const_to_pat`. This is used for unsafety checking.
819    ExpandedConstant {
820        /// [DefId] of the constant item.
821        def_id: DefId,
822        /// The pattern that the constant lowered to.
823        ///
824        /// HACK: we need to keep the `DefId` of inline constants around for unsafety checking;
825        /// therefore when a range pattern contains inline constants, we re-wrap the range pattern
826        /// with the `ExpandedConstant` nodes that correspond to the range endpoints. Hence
827        /// `subpattern` may actually be a range pattern, and `def_id` be the constant for one of
828        /// its endpoints.
829        subpattern: Box<Pat<'tcx>>,
830    },
831
832    Range(Arc<PatRange<'tcx>>),
833
834    /// Matches against a slice, checking the length and extracting elements.
835    /// irrefutable when there is a slice pattern and both `prefix` and `suffix` are empty.
836    /// e.g., `&[ref xs @ ..]`.
837    Slice {
838        prefix: Box<[Pat<'tcx>]>,
839        slice: Option<Box<Pat<'tcx>>>,
840        suffix: Box<[Pat<'tcx>]>,
841    },
842
843    /// Fixed match against an array; irrefutable.
844    Array {
845        prefix: Box<[Pat<'tcx>]>,
846        slice: Option<Box<Pat<'tcx>>>,
847        suffix: Box<[Pat<'tcx>]>,
848    },
849
850    /// An or-pattern, e.g. `p | q`.
851    /// Invariant: `pats.len() >= 2`.
852    Or {
853        pats: Box<[Pat<'tcx>]>,
854    },
855
856    /// A never pattern `!`.
857    Never,
858
859    /// An error has been encountered during lowering. We probably shouldn't report more lints
860    /// related to this pattern.
861    Error(ErrorGuaranteed),
862}
863
864/// A range pattern.
865/// The boundaries must be of the same type and that type must be numeric.
866#[derive(Clone, Debug, PartialEq, HashStable, TypeVisitable)]
867pub struct PatRange<'tcx> {
868    /// Must not be `PosInfinity`.
869    pub lo: PatRangeBoundary<'tcx>,
870    /// Must not be `NegInfinity`.
871    pub hi: PatRangeBoundary<'tcx>,
872    #[type_visitable(ignore)]
873    pub end: RangeEnd,
874    pub ty: Ty<'tcx>,
875}
876
877impl<'tcx> PatRange<'tcx> {
878    /// Whether this range covers the full extent of possible values (best-effort, we ignore floats).
879    #[inline]
880    pub fn is_full_range(&self, tcx: TyCtxt<'tcx>) -> Option<bool> {
881        let (min, max, size, bias) = match *self.ty.kind() {
882            ty::Char => (0, std::char::MAX as u128, Size::from_bits(32), 0),
883            ty::Int(ity) => {
884                let size = Integer::from_int_ty(&tcx, ity).size();
885                let max = size.truncate(u128::MAX);
886                let bias = 1u128 << (size.bits() - 1);
887                (0, max, size, bias)
888            }
889            ty::Uint(uty) => {
890                let size = Integer::from_uint_ty(&tcx, uty).size();
891                let max = size.unsigned_int_max();
892                (0, max, size, 0)
893            }
894            _ => return None,
895        };
896
897        // We want to compare ranges numerically, but the order of the bitwise representation of
898        // signed integers does not match their numeric order. Thus, to correct the ordering, we
899        // need to shift the range of signed integers to correct the comparison. This is achieved by
900        // XORing with a bias (see pattern/deconstruct_pat.rs for another pertinent example of this
901        // pattern).
902        //
903        // Also, for performance, it's important to only do the second `try_to_bits` if necessary.
904        let lo_is_min = match self.lo {
905            PatRangeBoundary::NegInfinity => true,
906            PatRangeBoundary::Finite(value) => {
907                let lo = value.try_to_bits(size).unwrap() ^ bias;
908                lo <= min
909            }
910            PatRangeBoundary::PosInfinity => false,
911        };
912        if lo_is_min {
913            let hi_is_max = match self.hi {
914                PatRangeBoundary::NegInfinity => false,
915                PatRangeBoundary::Finite(value) => {
916                    let hi = value.try_to_bits(size).unwrap() ^ bias;
917                    hi > max || hi == max && self.end == RangeEnd::Included
918                }
919                PatRangeBoundary::PosInfinity => true,
920            };
921            if hi_is_max {
922                return Some(true);
923            }
924        }
925        Some(false)
926    }
927
928    #[inline]
929    pub fn contains(
930        &self,
931        value: mir::Const<'tcx>,
932        tcx: TyCtxt<'tcx>,
933        typing_env: ty::TypingEnv<'tcx>,
934    ) -> Option<bool> {
935        use Ordering::*;
936        debug_assert_eq!(self.ty, value.ty());
937        let ty = self.ty;
938        let value = PatRangeBoundary::Finite(value);
939        // For performance, it's important to only do the second comparison if necessary.
940        Some(
941            match self.lo.compare_with(value, ty, tcx, typing_env)? {
942                Less | Equal => true,
943                Greater => false,
944            } && match value.compare_with(self.hi, ty, tcx, typing_env)? {
945                Less => true,
946                Equal => self.end == RangeEnd::Included,
947                Greater => false,
948            },
949        )
950    }
951
952    #[inline]
953    pub fn overlaps(
954        &self,
955        other: &Self,
956        tcx: TyCtxt<'tcx>,
957        typing_env: ty::TypingEnv<'tcx>,
958    ) -> Option<bool> {
959        use Ordering::*;
960        debug_assert_eq!(self.ty, other.ty);
961        // For performance, it's important to only do the second comparison if necessary.
962        Some(
963            match other.lo.compare_with(self.hi, self.ty, tcx, typing_env)? {
964                Less => true,
965                Equal => self.end == RangeEnd::Included,
966                Greater => false,
967            } && match self.lo.compare_with(other.hi, self.ty, tcx, typing_env)? {
968                Less => true,
969                Equal => other.end == RangeEnd::Included,
970                Greater => false,
971            },
972        )
973    }
974}
975
976impl<'tcx> fmt::Display for PatRange<'tcx> {
977    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
978        if let PatRangeBoundary::Finite(value) = &self.lo {
979            write!(f, "{value}")?;
980        }
981        if let PatRangeBoundary::Finite(value) = &self.hi {
982            write!(f, "{}", self.end)?;
983            write!(f, "{value}")?;
984        } else {
985            // `0..` is parsed as an inclusive range, we must display it correctly.
986            write!(f, "..")?;
987        }
988        Ok(())
989    }
990}
991
992/// A (possibly open) boundary of a range pattern.
993/// If present, the const must be of a numeric type.
994#[derive(Copy, Clone, Debug, PartialEq, HashStable, TypeVisitable)]
995pub enum PatRangeBoundary<'tcx> {
996    Finite(mir::Const<'tcx>),
997    NegInfinity,
998    PosInfinity,
999}
1000
1001impl<'tcx> PatRangeBoundary<'tcx> {
1002    #[inline]
1003    pub fn is_finite(self) -> bool {
1004        matches!(self, Self::Finite(..))
1005    }
1006    #[inline]
1007    pub fn as_finite(self) -> Option<mir::Const<'tcx>> {
1008        match self {
1009            Self::Finite(value) => Some(value),
1010            Self::NegInfinity | Self::PosInfinity => None,
1011        }
1012    }
1013    pub fn eval_bits(
1014        self,
1015        ty: Ty<'tcx>,
1016        tcx: TyCtxt<'tcx>,
1017        typing_env: ty::TypingEnv<'tcx>,
1018    ) -> u128 {
1019        match self {
1020            Self::Finite(value) => value.eval_bits(tcx, typing_env),
1021            Self::NegInfinity => {
1022                // Unwrap is ok because the type is known to be numeric.
1023                ty.numeric_min_and_max_as_bits(tcx).unwrap().0
1024            }
1025            Self::PosInfinity => {
1026                // Unwrap is ok because the type is known to be numeric.
1027                ty.numeric_min_and_max_as_bits(tcx).unwrap().1
1028            }
1029        }
1030    }
1031
1032    #[instrument(skip(tcx, typing_env), level = "debug", ret)]
1033    pub fn compare_with(
1034        self,
1035        other: Self,
1036        ty: Ty<'tcx>,
1037        tcx: TyCtxt<'tcx>,
1038        typing_env: ty::TypingEnv<'tcx>,
1039    ) -> Option<Ordering> {
1040        use PatRangeBoundary::*;
1041        match (self, other) {
1042            // When comparing with infinities, we must remember that `0u8..` and `0u8..=255`
1043            // describe the same range. These two shortcuts are ok, but for the rest we must check
1044            // bit values.
1045            (PosInfinity, PosInfinity) => return Some(Ordering::Equal),
1046            (NegInfinity, NegInfinity) => return Some(Ordering::Equal),
1047
1048            // This code is hot when compiling matches with many ranges. So we
1049            // special-case extraction of evaluated scalars for speed, for types where
1050            // we can do scalar comparisons. E.g. `unicode-normalization` has
1051            // many ranges such as '\u{037A}'..='\u{037F}', and chars can be compared
1052            // in this way.
1053            (Finite(a), Finite(b)) if matches!(ty.kind(), ty::Int(_) | ty::Uint(_) | ty::Char) => {
1054                if let (Some(a), Some(b)) = (a.try_to_scalar_int(), b.try_to_scalar_int()) {
1055                    let sz = ty.primitive_size(tcx);
1056                    let cmp = match ty.kind() {
1057                        ty::Uint(_) | ty::Char => a.to_uint(sz).cmp(&b.to_uint(sz)),
1058                        ty::Int(_) => a.to_int(sz).cmp(&b.to_int(sz)),
1059                        _ => unreachable!(),
1060                    };
1061                    return Some(cmp);
1062                }
1063            }
1064            _ => {}
1065        }
1066
1067        let a = self.eval_bits(ty, tcx, typing_env);
1068        let b = other.eval_bits(ty, tcx, typing_env);
1069
1070        match ty.kind() {
1071            ty::Float(ty::FloatTy::F16) => {
1072                use rustc_apfloat::Float;
1073                let a = rustc_apfloat::ieee::Half::from_bits(a);
1074                let b = rustc_apfloat::ieee::Half::from_bits(b);
1075                a.partial_cmp(&b)
1076            }
1077            ty::Float(ty::FloatTy::F32) => {
1078                use rustc_apfloat::Float;
1079                let a = rustc_apfloat::ieee::Single::from_bits(a);
1080                let b = rustc_apfloat::ieee::Single::from_bits(b);
1081                a.partial_cmp(&b)
1082            }
1083            ty::Float(ty::FloatTy::F64) => {
1084                use rustc_apfloat::Float;
1085                let a = rustc_apfloat::ieee::Double::from_bits(a);
1086                let b = rustc_apfloat::ieee::Double::from_bits(b);
1087                a.partial_cmp(&b)
1088            }
1089            ty::Float(ty::FloatTy::F128) => {
1090                use rustc_apfloat::Float;
1091                let a = rustc_apfloat::ieee::Quad::from_bits(a);
1092                let b = rustc_apfloat::ieee::Quad::from_bits(b);
1093                a.partial_cmp(&b)
1094            }
1095            ty::Int(ity) => {
1096                let size = rustc_abi::Integer::from_int_ty(&tcx, *ity).size();
1097                let a = size.sign_extend(a) as i128;
1098                let b = size.sign_extend(b) as i128;
1099                Some(a.cmp(&b))
1100            }
1101            ty::Uint(_) | ty::Char => Some(a.cmp(&b)),
1102            _ => bug!(),
1103        }
1104    }
1105}
1106
1107// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
1108#[cfg(target_pointer_width = "64")]
1109mod size_asserts {
1110    use rustc_data_structures::static_assert_size;
1111
1112    use super::*;
1113    // tidy-alphabetical-start
1114    static_assert_size!(Block, 48);
1115    static_assert_size!(Expr<'_>, 72);
1116    static_assert_size!(ExprKind<'_>, 40);
1117    static_assert_size!(Pat<'_>, 64);
1118    static_assert_size!(PatKind<'_>, 48);
1119    static_assert_size!(Stmt<'_>, 48);
1120    static_assert_size!(StmtKind<'_>, 48);
1121    // tidy-alphabetical-end
1122}