rustc_type_ir/
infer_ctxt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use derive_where::derive_where;
#[cfg(feature = "nightly")]
use rustc_macros::{HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{TypeFoldable_Generic, TypeVisitable_Generic};

use crate::fold::TypeFoldable;
use crate::relate::RelateResult;
use crate::relate::combine::PredicateEmittingRelation;
use crate::{self as ty, Interner};

/// The current typing mode of an inference context. We unfortunately have some
/// slightly different typing rules depending on the current context. See the
/// doc comment for each variant for how and why they are used.
///
/// In most cases you can get the correct typing mode automically via:
/// - `mir::Body::typing_mode`
/// - `rustc_lint::LateContext::typing_mode`
///
/// If neither of these functions are available, feel free to reach out to
/// t-types for help.
#[derive_where(Clone, Copy, Hash, PartialEq, Eq, Debug; I: Interner)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
pub enum TypingMode<I: Interner> {
    /// When checking whether impls overlap, we check whether any obligations
    /// are guaranteed to never hold when unifying the impls. This requires us
    /// to be complete: we must never fail to prove something which may actually
    /// hold.
    ///
    /// In this typing mode we bail with ambiguity in case its not knowable
    /// whether a trait goal may hold, e.g. because the trait may get implemented
    /// in a downstream or sibling crate.
    ///
    /// We also have to be careful when generalizing aliases inside of higher-ranked
    /// types to not unnecessarily constrain any inference variables.
    Coherence,
    /// Analysis includes type inference, checking that items are well-formed, and
    /// pretty much everything else which may emit proper type errors to the user.
    ///
    /// We only normalize opaque types which may get defined by the current body,
    /// which are stored in `defining_opaque_types`.
    ///
    /// We also refuse to project any associated type that is marked `default`.
    /// Non-`default` ("final") types are always projected. This is necessary in
    /// general for soundness of specialization. However, we *could* allow projections
    /// in fully-monomorphic cases. We choose not to, because we prefer for `default type`
    /// to force the type definition to be treated abstractly by any consumers of the
    /// impl. Concretely, that means that the following example will
    /// fail to compile:
    ///
    /// ```compile_fail,E0308
    /// #![feature(specialization)]
    /// trait Assoc {
    ///     type Output;
    /// }
    ///
    /// impl<T> Assoc for T {
    ///     default type Output = bool;
    /// }
    ///
    /// fn main() {
    ///     let x: <() as Assoc>::Output = true;
    /// }
    /// ```
    Analysis { defining_opaque_types: I::DefiningOpaqueTypes },
    /// Any analysis after borrowck for a given body should be able to use all the
    /// hidden types defined by borrowck, without being able to define any new ones.
    ///
    /// This is currently only used by the new solver, but should be implemented in
    /// the old solver as well.
    PostBorrowckAnalysis { defined_opaque_types: I::DefiningOpaqueTypes },
    /// After analysis, mostly during codegen and MIR optimizations, we're able to
    /// reveal all opaque types. As the concrete type should *never* be observable
    /// directly by the user, this should not be used by checks which may expose
    /// such details to the user.
    ///
    /// There are some exceptions to this as for example `layout_of` and const-evaluation
    /// always run in `PostAnalysis` mode, even when used during analysis. This exposes
    /// some information about the underlying type to users, but not the type itself.
    PostAnalysis,
}

impl<I: Interner> TypingMode<I> {
    /// Analysis outside of a body does not define any opaque types.
    pub fn non_body_analysis() -> TypingMode<I> {
        TypingMode::Analysis { defining_opaque_types: Default::default() }
    }

    /// While typechecking a body, we need to be able to define the opaque
    /// types defined by that body.
    pub fn analysis_in_body(cx: I, body_def_id: I::LocalDefId) -> TypingMode<I> {
        TypingMode::Analysis { defining_opaque_types: cx.opaque_types_defined_by(body_def_id) }
    }

    pub fn post_borrowck_analysis(cx: I, body_def_id: I::LocalDefId) -> TypingMode<I> {
        TypingMode::PostBorrowckAnalysis {
            defined_opaque_types: cx.opaque_types_defined_by(body_def_id),
        }
    }
}

pub trait InferCtxtLike: Sized {
    type Interner: Interner;
    fn cx(&self) -> Self::Interner;

    /// Whether the new trait solver is enabled. This only exists because rustc
    /// shares code between the new and old trait solvers; for all other users,
    /// this should always be true. If this is unknowingly false and you try to
    /// use the new trait solver, things will break badly.
    fn next_trait_solver(&self) -> bool {
        true
    }

    fn typing_mode(&self) -> TypingMode<Self::Interner>;

    fn universe(&self) -> ty::UniverseIndex;
    fn create_next_universe(&self) -> ty::UniverseIndex;

    fn universe_of_ty(&self, ty: ty::TyVid) -> Option<ty::UniverseIndex>;
    fn universe_of_lt(&self, lt: ty::RegionVid) -> Option<ty::UniverseIndex>;
    fn universe_of_ct(&self, ct: ty::ConstVid) -> Option<ty::UniverseIndex>;

    fn root_ty_var(&self, var: ty::TyVid) -> ty::TyVid;
    fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid;

    fn opportunistic_resolve_ty_var(&self, vid: ty::TyVid) -> <Self::Interner as Interner>::Ty;
    fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> <Self::Interner as Interner>::Ty;
    fn opportunistic_resolve_float_var(
        &self,
        vid: ty::FloatVid,
    ) -> <Self::Interner as Interner>::Ty;
    fn opportunistic_resolve_ct_var(
        &self,
        vid: ty::ConstVid,
    ) -> <Self::Interner as Interner>::Const;
    fn opportunistic_resolve_lt_var(
        &self,
        vid: ty::RegionVid,
    ) -> <Self::Interner as Interner>::Region;

    fn next_region_infer(&self) -> <Self::Interner as Interner>::Region;
    fn next_ty_infer(&self) -> <Self::Interner as Interner>::Ty;
    fn next_const_infer(&self) -> <Self::Interner as Interner>::Const;
    fn fresh_args_for_item(
        &self,
        def_id: <Self::Interner as Interner>::DefId,
    ) -> <Self::Interner as Interner>::GenericArgs;

    fn instantiate_binder_with_infer<T: TypeFoldable<Self::Interner> + Copy>(
        &self,
        value: ty::Binder<Self::Interner, T>,
    ) -> T;

    fn enter_forall<T: TypeFoldable<Self::Interner> + Copy, U>(
        &self,
        value: ty::Binder<Self::Interner, T>,
        f: impl FnOnce(T) -> U,
    ) -> U;

    fn equate_ty_vids_raw(&self, a: ty::TyVid, b: ty::TyVid);
    fn equate_int_vids_raw(&self, a: ty::IntVid, b: ty::IntVid);
    fn equate_float_vids_raw(&self, a: ty::FloatVid, b: ty::FloatVid);
    fn equate_const_vids_raw(&self, a: ty::ConstVid, b: ty::ConstVid);

    fn instantiate_ty_var_raw<R: PredicateEmittingRelation<Self>>(
        &self,
        relation: &mut R,
        target_is_expected: bool,
        target_vid: ty::TyVid,
        instantiation_variance: ty::Variance,
        source_ty: <Self::Interner as Interner>::Ty,
    ) -> RelateResult<Self::Interner, ()>;
    fn instantiate_int_var_raw(&self, vid: ty::IntVid, value: ty::IntVarValue);
    fn instantiate_float_var_raw(&self, vid: ty::FloatVid, value: ty::FloatVarValue);
    fn instantiate_const_var_raw<R: PredicateEmittingRelation<Self>>(
        &self,
        relation: &mut R,
        target_is_expected: bool,
        target_vid: ty::ConstVid,
        source_ct: <Self::Interner as Interner>::Const,
    ) -> RelateResult<Self::Interner, ()>;

    fn set_tainted_by_errors(&self, e: <Self::Interner as Interner>::ErrorGuaranteed);

    fn shallow_resolve(
        &self,
        ty: <Self::Interner as Interner>::Ty,
    ) -> <Self::Interner as Interner>::Ty;
    fn shallow_resolve_const(
        &self,
        ty: <Self::Interner as Interner>::Const,
    ) -> <Self::Interner as Interner>::Const;

    fn resolve_vars_if_possible<T>(&self, value: T) -> T
    where
        T: TypeFoldable<Self::Interner>;

    fn probe<T>(&self, probe: impl FnOnce() -> T) -> T;

    fn sub_regions(
        &self,
        sub: <Self::Interner as Interner>::Region,
        sup: <Self::Interner as Interner>::Region,
    );

    fn equate_regions(
        &self,
        a: <Self::Interner as Interner>::Region,
        b: <Self::Interner as Interner>::Region,
    );

    fn register_ty_outlives(
        &self,
        ty: <Self::Interner as Interner>::Ty,
        r: <Self::Interner as Interner>::Region,
    );
}