rustc_type_ir/
infer_ctxt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
use derive_where::derive_where;
#[cfg(feature = "nightly")]
use rustc_macros::{HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{TypeFoldable_Generic, TypeVisitable_Generic};

use crate::fold::TypeFoldable;
use crate::relate::RelateResult;
use crate::relate::combine::PredicateEmittingRelation;
use crate::{self as ty, Interner};

/// The current typing mode of an inference context. We unfortunately have some
/// slightly different typing rules depending on the current context. See the
/// doc comment for each variant for how and why they are used.
///
/// In most cases you can get the correct typing mode automically via:
/// - `mir::Body::typing_mode`
/// - `rustc_lint::LateContext::typing_mode`
///
/// If neither of these functions are available, feel free to reach out to
/// t-types for help.
#[derive_where(Clone, Copy, Hash, PartialEq, Eq, Debug; I: Interner)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
pub enum TypingMode<I: Interner> {
    /// When checking whether impls overlap, we check whether any obligations
    /// are guaranteed to never hold when unifying the impls. This requires us
    /// to be complete: we must never fail to prove something which may actually
    /// hold.
    ///
    /// In this typing mode we bail with ambiguity in case its not knowable
    /// whether a trait goal may hold, e.g. because the trait may get implemented
    /// in a downstream or sibling crate.
    ///
    /// We also have to be careful when generalizing aliases inside of higher-ranked
    /// types to not unnecessarily constrain any inference variables.
    Coherence,
    /// Analysis includes type inference, checking that items are well-formed, and
    /// pretty much everything else which may emit proper type errors to the user.
    ///
    /// We only normalize opaque types which may get defined by the current body,
    /// which are stored in `defining_opaque_types`.
    Analysis { defining_opaque_types: I::DefiningOpaqueTypes },
    /// After analysis, mostly during codegen and MIR optimizations, we're able to
    /// reveal all opaque types.
    PostAnalysis,
}

impl<I: Interner> TypingMode<I> {
    /// Analysis outside of a body does not define any opaque types.
    pub fn non_body_analysis() -> TypingMode<I> {
        TypingMode::Analysis { defining_opaque_types: Default::default() }
    }

    /// While typechecking a body, we need to be able to define the opaque
    /// types defined by that body.
    pub fn analysis_in_body(cx: I, body_def_id: I::LocalDefId) -> TypingMode<I> {
        TypingMode::Analysis { defining_opaque_types: cx.opaque_types_defined_by(body_def_id) }
    }
}

pub trait InferCtxtLike: Sized {
    type Interner: Interner;
    fn cx(&self) -> Self::Interner;

    /// Whether the new trait solver is enabled. This only exists because rustc
    /// shares code between the new and old trait solvers; for all other users,
    /// this should always be true. If this is unknowingly false and you try to
    /// use the new trait solver, things will break badly.
    fn next_trait_solver(&self) -> bool {
        true
    }

    fn typing_mode(
        &self,
        param_env_for_debug_assertion: <Self::Interner as Interner>::ParamEnv,
    ) -> TypingMode<Self::Interner>;

    fn universe(&self) -> ty::UniverseIndex;
    fn create_next_universe(&self) -> ty::UniverseIndex;

    fn universe_of_ty(&self, ty: ty::TyVid) -> Option<ty::UniverseIndex>;
    fn universe_of_lt(&self, lt: ty::RegionVid) -> Option<ty::UniverseIndex>;
    fn universe_of_ct(&self, ct: ty::ConstVid) -> Option<ty::UniverseIndex>;

    fn root_ty_var(&self, var: ty::TyVid) -> ty::TyVid;
    fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid;

    fn opportunistic_resolve_ty_var(&self, vid: ty::TyVid) -> <Self::Interner as Interner>::Ty;
    fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> <Self::Interner as Interner>::Ty;
    fn opportunistic_resolve_float_var(
        &self,
        vid: ty::FloatVid,
    ) -> <Self::Interner as Interner>::Ty;
    fn opportunistic_resolve_ct_var(
        &self,
        vid: ty::ConstVid,
    ) -> <Self::Interner as Interner>::Const;
    fn opportunistic_resolve_lt_var(
        &self,
        vid: ty::RegionVid,
    ) -> <Self::Interner as Interner>::Region;

    fn next_ty_infer(&self) -> <Self::Interner as Interner>::Ty;
    fn next_const_infer(&self) -> <Self::Interner as Interner>::Const;
    fn fresh_args_for_item(
        &self,
        def_id: <Self::Interner as Interner>::DefId,
    ) -> <Self::Interner as Interner>::GenericArgs;

    fn instantiate_binder_with_infer<T: TypeFoldable<Self::Interner> + Copy>(
        &self,
        value: ty::Binder<Self::Interner, T>,
    ) -> T;

    fn enter_forall<T: TypeFoldable<Self::Interner> + Copy, U>(
        &self,
        value: ty::Binder<Self::Interner, T>,
        f: impl FnOnce(T) -> U,
    ) -> U;

    fn equate_ty_vids_raw(&self, a: ty::TyVid, b: ty::TyVid);
    fn equate_int_vids_raw(&self, a: ty::IntVid, b: ty::IntVid);
    fn equate_float_vids_raw(&self, a: ty::FloatVid, b: ty::FloatVid);
    fn equate_const_vids_raw(&self, a: ty::ConstVid, b: ty::ConstVid);

    fn instantiate_ty_var_raw<R: PredicateEmittingRelation<Self>>(
        &self,
        relation: &mut R,
        target_is_expected: bool,
        target_vid: ty::TyVid,
        instantiation_variance: ty::Variance,
        source_ty: <Self::Interner as Interner>::Ty,
    ) -> RelateResult<Self::Interner, ()>;
    fn instantiate_int_var_raw(&self, vid: ty::IntVid, value: ty::IntVarValue);
    fn instantiate_float_var_raw(&self, vid: ty::FloatVid, value: ty::FloatVarValue);
    fn instantiate_const_var_raw<R: PredicateEmittingRelation<Self>>(
        &self,
        relation: &mut R,
        target_is_expected: bool,
        target_vid: ty::ConstVid,
        source_ct: <Self::Interner as Interner>::Const,
    ) -> RelateResult<Self::Interner, ()>;

    fn set_tainted_by_errors(&self, e: <Self::Interner as Interner>::ErrorGuaranteed);

    fn shallow_resolve(
        &self,
        ty: <Self::Interner as Interner>::Ty,
    ) -> <Self::Interner as Interner>::Ty;
    fn shallow_resolve_const(
        &self,
        ty: <Self::Interner as Interner>::Const,
    ) -> <Self::Interner as Interner>::Const;

    fn resolve_vars_if_possible<T>(&self, value: T) -> T
    where
        T: TypeFoldable<Self::Interner>;

    fn probe<T>(&self, probe: impl FnOnce() -> T) -> T;

    fn sub_regions(
        &self,
        sub: <Self::Interner as Interner>::Region,
        sup: <Self::Interner as Interner>::Region,
    );

    fn equate_regions(
        &self,
        a: <Self::Interner as Interner>::Region,
        b: <Self::Interner as Interner>::Region,
    );

    fn register_ty_outlives(
        &self,
        ty: <Self::Interner as Interner>::Ty,
        r: <Self::Interner as Interner>::Region,
    );
}