rustc_lint/builtin.rs
1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
6//!
7//! To add a new lint to rustc, declare it here using [`declare_lint!`].
8//! Then add code to emit the new lint in the appropriate circumstances.
9//!
10//! If you define a new [`EarlyLintPass`], you will also need to add it to the
11//! [`crate::early_lint_methods!`] invocation in `lib.rs`.
12//!
13//! If you define a new [`LateLintPass`], you will also need to add it to the
14//! [`crate::late_lint_methods!`] invocation in `lib.rs`.
15
16use std::fmt::Write;
17
18use ast::token::TokenKind;
19use rustc_abi::BackendRepr;
20use rustc_ast::tokenstream::{TokenStream, TokenTree};
21use rustc_ast::visit::{FnCtxt, FnKind};
22use rustc_ast::{self as ast, *};
23use rustc_ast_pretty::pprust::expr_to_string;
24use rustc_attr_parsing::AttributeParser;
25use rustc_errors::{Applicability, LintDiagnostic};
26use rustc_feature::GateIssue;
27use rustc_hir as hir;
28use rustc_hir::attrs::AttributeKind;
29use rustc_hir::def::{DefKind, Res};
30use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
31use rustc_hir::intravisit::FnKind as HirFnKind;
32use rustc_hir::{Body, FnDecl, ImplItemImplKind, PatKind, PredicateOrigin, find_attr};
33use rustc_middle::bug;
34use rustc_middle::lint::LevelAndSource;
35use rustc_middle::ty::layout::LayoutOf;
36use rustc_middle::ty::print::with_no_trimmed_paths;
37use rustc_middle::ty::{self, AssocContainer, Ty, TyCtxt, TypeVisitableExt, Upcast, VariantDef};
38use rustc_session::lint::FutureIncompatibilityReason;
39// hardwired lints from rustc_lint_defs
40pub use rustc_session::lint::builtin::*;
41use rustc_session::{declare_lint, declare_lint_pass, impl_lint_pass};
42use rustc_span::edition::Edition;
43use rustc_span::source_map::Spanned;
44use rustc_span::{BytePos, DUMMY_SP, Ident, InnerSpan, Span, Symbol, kw, sym};
45use rustc_target::asm::InlineAsmArch;
46use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
47use rustc_trait_selection::traits::misc::type_allowed_to_implement_copy;
48use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
49use rustc_trait_selection::traits::{self};
50
51use crate::errors::BuiltinEllipsisInclusiveRangePatterns;
52use crate::lints::{
53 BuiltinAnonymousParams, BuiltinConstNoMangle, BuiltinDerefNullptr, BuiltinDoubleNegations,
54 BuiltinDoubleNegationsAddParens, BuiltinEllipsisInclusiveRangePatternsLint,
55 BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinFeatureIssueNote,
56 BuiltinIncompleteFeatures, BuiltinIncompleteFeaturesHelp, BuiltinInternalFeatures,
57 BuiltinKeywordIdents, BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
58 BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
59 BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasBounds,
60 BuiltinUngatedAsyncFnTrackCaller, BuiltinUnpermittedTypeInit, BuiltinUnpermittedTypeInitSub,
61 BuiltinUnreachablePub, BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment,
62 BuiltinUnusedDocCommentSub, BuiltinWhileTrue, InvalidAsmLabel,
63};
64use crate::{
65 EarlyContext, EarlyLintPass, LateContext, LateLintPass, Level, LintContext,
66 fluent_generated as fluent,
67};
68declare_lint! {
69 /// The `while_true` lint detects `while true { }`.
70 ///
71 /// ### Example
72 ///
73 /// ```rust,no_run
74 /// while true {
75 ///
76 /// }
77 /// ```
78 ///
79 /// {{produces}}
80 ///
81 /// ### Explanation
82 ///
83 /// `while true` should be replaced with `loop`. A `loop` expression is
84 /// the preferred way to write an infinite loop because it more directly
85 /// expresses the intent of the loop.
86 WHILE_TRUE,
87 Warn,
88 "suggest using `loop { }` instead of `while true { }`"
89}
90
91declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
92
93impl EarlyLintPass for WhileTrue {
94 #[inline]
95 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
96 if let ast::ExprKind::While(cond, _, label) = &e.kind
97 && let ast::ExprKind::Lit(token_lit) = cond.peel_parens().kind
98 && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
99 && !cond.span.from_expansion()
100 {
101 let condition_span = e.span.with_hi(cond.span.hi());
102 let replace = format!(
103 "{}loop",
104 label.map_or_else(String::new, |label| format!("{}: ", label.ident,))
105 );
106 cx.emit_span_lint(
107 WHILE_TRUE,
108 condition_span,
109 BuiltinWhileTrue { suggestion: condition_span, replace },
110 );
111 }
112 }
113}
114
115declare_lint! {
116 /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
117 /// instead of `Struct { x }` in a pattern.
118 ///
119 /// ### Example
120 ///
121 /// ```rust
122 /// struct Point {
123 /// x: i32,
124 /// y: i32,
125 /// }
126 ///
127 ///
128 /// fn main() {
129 /// let p = Point {
130 /// x: 5,
131 /// y: 5,
132 /// };
133 ///
134 /// match p {
135 /// Point { x: x, y: y } => (),
136 /// }
137 /// }
138 /// ```
139 ///
140 /// {{produces}}
141 ///
142 /// ### Explanation
143 ///
144 /// The preferred style is to avoid the repetition of specifying both the
145 /// field name and the binding name if both identifiers are the same.
146 NON_SHORTHAND_FIELD_PATTERNS,
147 Warn,
148 "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
149}
150
151declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
152
153impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
154 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
155 // The result shouldn't be tainted, otherwise it will cause ICE.
156 if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind
157 && cx.typeck_results().tainted_by_errors.is_none()
158 {
159 let variant = cx
160 .typeck_results()
161 .pat_ty(pat)
162 .ty_adt_def()
163 .expect("struct pattern type is not an ADT")
164 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
165 for fieldpat in field_pats {
166 if fieldpat.is_shorthand {
167 continue;
168 }
169 if fieldpat.span.from_expansion() {
170 // Don't lint if this is a macro expansion: macro authors
171 // shouldn't have to worry about this kind of style issue
172 // (Issue #49588)
173 continue;
174 }
175 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
176 if cx.tcx.find_field_index(ident, variant)
177 == Some(cx.typeck_results().field_index(fieldpat.hir_id))
178 {
179 cx.emit_span_lint(
180 NON_SHORTHAND_FIELD_PATTERNS,
181 fieldpat.span,
182 BuiltinNonShorthandFieldPatterns {
183 ident,
184 suggestion: fieldpat.span,
185 prefix: binding_annot.prefix_str(),
186 },
187 );
188 }
189 }
190 }
191 }
192 }
193}
194
195declare_lint! {
196 /// The `unsafe_code` lint catches usage of `unsafe` code and other
197 /// potentially unsound constructs like `no_mangle`, `export_name`,
198 /// and `link_section`.
199 ///
200 /// ### Example
201 ///
202 /// ```rust,compile_fail
203 /// #![deny(unsafe_code)]
204 /// fn main() {
205 /// unsafe {
206 ///
207 /// }
208 /// }
209 ///
210 /// #[no_mangle]
211 /// fn func_0() { }
212 ///
213 /// #[export_name = "exported_symbol_name"]
214 /// pub fn name_in_rust() { }
215 ///
216 /// #[no_mangle]
217 /// #[link_section = ".example_section"]
218 /// pub static VAR1: u32 = 1;
219 /// ```
220 ///
221 /// {{produces}}
222 ///
223 /// ### Explanation
224 ///
225 /// This lint is intended to restrict the usage of `unsafe` blocks and other
226 /// constructs (including, but not limited to `no_mangle`, `link_section`
227 /// and `export_name` attributes) wrong usage of which causes undefined
228 /// behavior.
229 UNSAFE_CODE,
230 Allow,
231 "usage of `unsafe` code and other potentially unsound constructs",
232 @eval_always = true
233}
234
235declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
236
237impl UnsafeCode {
238 fn report_unsafe(
239 &self,
240 cx: &EarlyContext<'_>,
241 span: Span,
242 decorate: impl for<'a> LintDiagnostic<'a, ()>,
243 ) {
244 // This comes from a macro that has `#[allow_internal_unsafe]`.
245 if span.allows_unsafe() {
246 return;
247 }
248
249 cx.emit_span_lint(UNSAFE_CODE, span, decorate);
250 }
251}
252
253impl EarlyLintPass for UnsafeCode {
254 #[inline]
255 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
256 if let ast::ExprKind::Block(ref blk, _) = e.kind {
257 // Don't warn about generated blocks; that'll just pollute the output.
258 if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
259 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
260 }
261 }
262 }
263
264 fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
265 match it.kind {
266 ast::ItemKind::Trait(box ast::Trait { safety: ast::Safety::Unsafe(_), .. }) => {
267 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
268 }
269
270 ast::ItemKind::Impl(ast::Impl {
271 of_trait: Some(box ast::TraitImplHeader { safety: ast::Safety::Unsafe(_), .. }),
272 ..
273 }) => {
274 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
275 }
276
277 ast::ItemKind::Fn(..) => {
278 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
279 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
280 }
281
282 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
283 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
284 }
285
286 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
287 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
288 }
289 }
290
291 ast::ItemKind::Static(..) => {
292 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
293 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
294 }
295
296 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
297 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
298 }
299
300 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
301 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
302 }
303 }
304
305 ast::ItemKind::GlobalAsm(..) => {
306 self.report_unsafe(cx, it.span, BuiltinUnsafe::GlobalAsm);
307 }
308
309 ast::ItemKind::ForeignMod(ForeignMod { safety, .. }) => {
310 if let Safety::Unsafe(_) = safety {
311 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeExternBlock);
312 }
313 }
314
315 ast::ItemKind::MacroDef(..) => {
316 if let Some(hir::Attribute::Parsed(AttributeKind::AllowInternalUnsafe(span))) =
317 AttributeParser::parse_limited(
318 cx.builder.sess(),
319 &it.attrs,
320 sym::allow_internal_unsafe,
321 it.span,
322 DUMMY_NODE_ID,
323 Some(cx.builder.features()),
324 )
325 {
326 self.report_unsafe(cx, span, BuiltinUnsafe::AllowInternalUnsafe);
327 }
328 }
329
330 _ => {}
331 }
332 }
333
334 fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
335 if let ast::AssocItemKind::Fn(..) = it.kind {
336 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
337 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
338 }
339 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
340 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
341 }
342 }
343 }
344
345 fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
346 if let FnKind::Fn(
347 ctxt,
348 _,
349 ast::Fn {
350 sig: ast::FnSig { header: ast::FnHeader { safety: ast::Safety::Unsafe(_), .. }, .. },
351 body,
352 ..
353 },
354 ) = fk
355 {
356 let decorator = match ctxt {
357 FnCtxt::Foreign => return,
358 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
359 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
360 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
361 };
362 self.report_unsafe(cx, span, decorator);
363 }
364 }
365}
366
367declare_lint! {
368 /// The `missing_docs` lint detects missing documentation for public items.
369 ///
370 /// ### Example
371 ///
372 /// ```rust,compile_fail
373 /// #![deny(missing_docs)]
374 /// pub fn foo() {}
375 /// ```
376 ///
377 /// {{produces}}
378 ///
379 /// ### Explanation
380 ///
381 /// This lint is intended to ensure that a library is well-documented.
382 /// Items without documentation can be difficult for users to understand
383 /// how to use properly.
384 ///
385 /// This lint is "allow" by default because it can be noisy, and not all
386 /// projects may want to enforce everything to be documented.
387 pub MISSING_DOCS,
388 Allow,
389 "detects missing documentation for public members",
390 report_in_external_macro
391}
392
393#[derive(Default)]
394pub struct MissingDoc;
395
396impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
397
398fn has_doc(attr: &hir::Attribute) -> bool {
399 if attr.is_doc_comment().is_some() {
400 return true;
401 }
402
403 if !attr.has_name(sym::doc) {
404 return false;
405 }
406
407 if attr.value_str().is_some() {
408 return true;
409 }
410
411 if let Some(list) = attr.meta_item_list() {
412 for meta in list {
413 if meta.has_name(sym::hidden) {
414 return true;
415 }
416 }
417 }
418
419 false
420}
421
422impl MissingDoc {
423 fn check_missing_docs_attrs(
424 &self,
425 cx: &LateContext<'_>,
426 def_id: LocalDefId,
427 article: &'static str,
428 desc: &'static str,
429 ) {
430 // Only check publicly-visible items, using the result from the privacy pass.
431 // It's an option so the crate root can also use this function (it doesn't
432 // have a `NodeId`).
433 if def_id != CRATE_DEF_ID && !cx.effective_visibilities.is_exported(def_id) {
434 return;
435 }
436
437 let attrs = cx.tcx.hir_attrs(cx.tcx.local_def_id_to_hir_id(def_id));
438 let has_doc = attrs.iter().any(has_doc);
439 if !has_doc {
440 cx.emit_span_lint(
441 MISSING_DOCS,
442 cx.tcx.def_span(def_id),
443 BuiltinMissingDoc { article, desc },
444 );
445 }
446 }
447}
448
449impl<'tcx> LateLintPass<'tcx> for MissingDoc {
450 fn check_crate(&mut self, cx: &LateContext<'_>) {
451 self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
452 }
453
454 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
455 // Previously the Impl and Use types have been excluded from missing docs,
456 // so we will continue to exclude them for compatibility.
457 //
458 // The documentation on `ExternCrate` is not used at the moment so no need to warn for it.
459 if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(..) =
460 it.kind
461 {
462 return;
463 }
464
465 let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
466 self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
467 }
468
469 fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
470 let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
471
472 self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
473 }
474
475 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
476 let container = cx.tcx.associated_item(impl_item.owner_id.def_id).container;
477
478 match container {
479 // If the method is an impl for a trait, don't doc.
480 AssocContainer::TraitImpl(_) => return,
481 AssocContainer::Trait => {}
482 // If the method is an impl for an item with docs_hidden, don't doc.
483 AssocContainer::InherentImpl => {
484 let parent = cx.tcx.hir_get_parent_item(impl_item.hir_id());
485 let impl_ty = cx.tcx.type_of(parent).instantiate_identity();
486 let outerdef = match impl_ty.kind() {
487 ty::Adt(def, _) => Some(def.did()),
488 ty::Foreign(def_id) => Some(*def_id),
489 _ => None,
490 };
491 let is_hidden = match outerdef {
492 Some(id) => cx.tcx.is_doc_hidden(id),
493 None => false,
494 };
495 if is_hidden {
496 return;
497 }
498 }
499 }
500
501 let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
502 self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
503 }
504
505 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
506 let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
507 self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
508 }
509
510 fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
511 if !sf.is_positional() {
512 self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
513 }
514 }
515
516 fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
517 self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
518 }
519}
520
521declare_lint! {
522 /// The `missing_copy_implementations` lint detects potentially-forgotten
523 /// implementations of [`Copy`] for public types.
524 ///
525 /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
526 ///
527 /// ### Example
528 ///
529 /// ```rust,compile_fail
530 /// #![deny(missing_copy_implementations)]
531 /// pub struct Foo {
532 /// pub field: i32
533 /// }
534 /// # fn main() {}
535 /// ```
536 ///
537 /// {{produces}}
538 ///
539 /// ### Explanation
540 ///
541 /// Historically (before 1.0), types were automatically marked as `Copy`
542 /// if possible. This was changed so that it required an explicit opt-in
543 /// by implementing the `Copy` trait. As part of this change, a lint was
544 /// added to alert if a copyable type was not marked `Copy`.
545 ///
546 /// This lint is "allow" by default because this code isn't bad; it is
547 /// common to write newtypes like this specifically so that a `Copy` type
548 /// is no longer `Copy`. `Copy` types can result in unintended copies of
549 /// large data which can impact performance.
550 pub MISSING_COPY_IMPLEMENTATIONS,
551 Allow,
552 "detects potentially-forgotten implementations of `Copy`"
553}
554
555declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
556
557impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
558 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
559 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
560 return;
561 }
562 let (def, ty) = match item.kind {
563 hir::ItemKind::Struct(_, generics, _) => {
564 if !generics.params.is_empty() {
565 return;
566 }
567 let def = cx.tcx.adt_def(item.owner_id);
568 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
569 }
570 hir::ItemKind::Union(_, generics, _) => {
571 if !generics.params.is_empty() {
572 return;
573 }
574 let def = cx.tcx.adt_def(item.owner_id);
575 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
576 }
577 hir::ItemKind::Enum(_, generics, _) => {
578 if !generics.params.is_empty() {
579 return;
580 }
581 let def = cx.tcx.adt_def(item.owner_id);
582 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
583 }
584 _ => return,
585 };
586 if def.has_dtor(cx.tcx) {
587 return;
588 }
589
590 // If the type contains a raw pointer, it may represent something like a handle,
591 // and recommending Copy might be a bad idea.
592 for field in def.all_fields() {
593 let did = field.did;
594 if cx.tcx.type_of(did).instantiate_identity().is_raw_ptr() {
595 return;
596 }
597 }
598 if cx.type_is_copy_modulo_regions(ty) {
599 return;
600 }
601 if type_implements_negative_copy_modulo_regions(cx.tcx, ty, cx.typing_env()) {
602 return;
603 }
604 if def.is_variant_list_non_exhaustive()
605 || def.variants().iter().any(|variant| variant.is_field_list_non_exhaustive())
606 {
607 return;
608 }
609
610 // We shouldn't recommend implementing `Copy` on stateful things,
611 // such as iterators.
612 if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
613 && cx
614 .tcx
615 .infer_ctxt()
616 .build(cx.typing_mode())
617 .type_implements_trait(iter_trait, [ty], cx.param_env)
618 .must_apply_modulo_regions()
619 {
620 return;
621 }
622
623 // Default value of clippy::trivially_copy_pass_by_ref
624 const MAX_SIZE: u64 = 256;
625
626 if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
627 if size > MAX_SIZE {
628 return;
629 }
630 }
631
632 if type_allowed_to_implement_copy(
633 cx.tcx,
634 cx.param_env,
635 ty,
636 traits::ObligationCause::misc(item.span, item.owner_id.def_id),
637 hir::Safety::Safe,
638 )
639 .is_ok()
640 {
641 cx.emit_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
642 }
643 }
644}
645
646/// Check whether a `ty` has a negative `Copy` implementation, ignoring outlives constraints.
647fn type_implements_negative_copy_modulo_regions<'tcx>(
648 tcx: TyCtxt<'tcx>,
649 ty: Ty<'tcx>,
650 typing_env: ty::TypingEnv<'tcx>,
651) -> bool {
652 let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
653 let trait_ref =
654 ty::TraitRef::new(tcx, tcx.require_lang_item(hir::LangItem::Copy, DUMMY_SP), [ty]);
655 let pred = ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Negative };
656 let obligation = traits::Obligation {
657 cause: traits::ObligationCause::dummy(),
658 param_env,
659 recursion_depth: 0,
660 predicate: pred.upcast(tcx),
661 };
662 infcx.predicate_must_hold_modulo_regions(&obligation)
663}
664
665declare_lint! {
666 /// The `missing_debug_implementations` lint detects missing
667 /// implementations of [`fmt::Debug`] for public types.
668 ///
669 /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
670 ///
671 /// ### Example
672 ///
673 /// ```rust,compile_fail
674 /// #![deny(missing_debug_implementations)]
675 /// pub struct Foo;
676 /// # fn main() {}
677 /// ```
678 ///
679 /// {{produces}}
680 ///
681 /// ### Explanation
682 ///
683 /// Having a `Debug` implementation on all types can assist with
684 /// debugging, as it provides a convenient way to format and display a
685 /// value. Using the `#[derive(Debug)]` attribute will automatically
686 /// generate a typical implementation, or a custom implementation can be
687 /// added by manually implementing the `Debug` trait.
688 ///
689 /// This lint is "allow" by default because adding `Debug` to all types can
690 /// have a negative impact on compile time and code size. It also requires
691 /// boilerplate to be added to every type, which can be an impediment.
692 MISSING_DEBUG_IMPLEMENTATIONS,
693 Allow,
694 "detects missing implementations of Debug"
695}
696
697#[derive(Default)]
698pub(crate) struct MissingDebugImplementations;
699
700impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
701
702impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
703 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
704 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
705 return;
706 }
707
708 match item.kind {
709 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
710 _ => return,
711 }
712
713 // Avoid listing trait impls if the trait is allowed.
714 let LevelAndSource { level, .. } =
715 cx.tcx.lint_level_at_node(MISSING_DEBUG_IMPLEMENTATIONS, item.hir_id());
716 if level == Level::Allow {
717 return;
718 }
719
720 let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { return };
721
722 let has_impl = cx
723 .tcx
724 .non_blanket_impls_for_ty(debug, cx.tcx.type_of(item.owner_id).instantiate_identity())
725 .next()
726 .is_some();
727 if !has_impl {
728 cx.emit_span_lint(
729 MISSING_DEBUG_IMPLEMENTATIONS,
730 item.span,
731 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
732 );
733 }
734 }
735}
736
737declare_lint! {
738 /// The `anonymous_parameters` lint detects anonymous parameters in trait
739 /// definitions.
740 ///
741 /// ### Example
742 ///
743 /// ```rust,edition2015,compile_fail
744 /// #![deny(anonymous_parameters)]
745 /// // edition 2015
746 /// pub trait Foo {
747 /// fn foo(usize);
748 /// }
749 /// fn main() {}
750 /// ```
751 ///
752 /// {{produces}}
753 ///
754 /// ### Explanation
755 ///
756 /// This syntax is mostly a historical accident, and can be worked around
757 /// quite easily by adding an `_` pattern or a descriptive identifier:
758 ///
759 /// ```rust
760 /// trait Foo {
761 /// fn foo(_: usize);
762 /// }
763 /// ```
764 ///
765 /// This syntax is now a hard error in the 2018 edition. In the 2015
766 /// edition, this lint is "warn" by default. This lint
767 /// enables the [`cargo fix`] tool with the `--edition` flag to
768 /// automatically transition old code from the 2015 edition to 2018. The
769 /// tool will run this lint and automatically apply the
770 /// suggested fix from the compiler (which is to add `_` to each
771 /// parameter). This provides a completely automated way to update old
772 /// code for a new edition. See [issue #41686] for more details.
773 ///
774 /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
775 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
776 pub ANONYMOUS_PARAMETERS,
777 Warn,
778 "detects anonymous parameters",
779 @future_incompatible = FutureIncompatibleInfo {
780 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
781 reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
782 };
783}
784
785declare_lint_pass!(
786 /// Checks for use of anonymous parameters (RFC 1685).
787 AnonymousParameters => [ANONYMOUS_PARAMETERS]
788);
789
790impl EarlyLintPass for AnonymousParameters {
791 fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
792 if cx.sess().edition() != Edition::Edition2015 {
793 // This is a hard error in future editions; avoid linting and erroring
794 return;
795 }
796 if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
797 for arg in sig.decl.inputs.iter() {
798 if let ast::PatKind::Missing = arg.pat.kind {
799 let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
800
801 let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
802 (snip.as_str(), Applicability::MachineApplicable)
803 } else {
804 ("<type>", Applicability::HasPlaceholders)
805 };
806 cx.emit_span_lint(
807 ANONYMOUS_PARAMETERS,
808 arg.pat.span,
809 BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
810 );
811 }
812 }
813 }
814 }
815}
816
817fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
818 use rustc_ast::token::CommentKind;
819
820 let mut attrs = attrs.iter().peekable();
821
822 // Accumulate a single span for sugared doc comments.
823 let mut sugared_span: Option<Span> = None;
824
825 while let Some(attr) = attrs.next() {
826 let is_doc_comment = attr.is_doc_comment();
827 if is_doc_comment {
828 sugared_span =
829 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
830 }
831
832 if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) {
833 continue;
834 }
835
836 let span = sugared_span.take().unwrap_or(attr.span);
837
838 if is_doc_comment || attr.has_name(sym::doc) {
839 let sub = match attr.kind {
840 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
841 BuiltinUnusedDocCommentSub::PlainHelp
842 }
843 AttrKind::DocComment(CommentKind::Block, _) => {
844 BuiltinUnusedDocCommentSub::BlockHelp
845 }
846 };
847 cx.emit_span_lint(
848 UNUSED_DOC_COMMENTS,
849 span,
850 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
851 );
852 }
853 }
854}
855
856impl EarlyLintPass for UnusedDocComment {
857 fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
858 let kind = match stmt.kind {
859 ast::StmtKind::Let(..) => "statements",
860 // Disabled pending discussion in #78306
861 ast::StmtKind::Item(..) => return,
862 // expressions will be reported by `check_expr`.
863 ast::StmtKind::Empty
864 | ast::StmtKind::Semi(_)
865 | ast::StmtKind::Expr(_)
866 | ast::StmtKind::MacCall(_) => return,
867 };
868
869 warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
870 }
871
872 fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
873 if let Some(body) = &arm.body {
874 let arm_span = arm.pat.span.with_hi(body.span.hi());
875 warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
876 }
877 }
878
879 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
880 if let ast::PatKind::Struct(_, _, fields, _) = &pat.kind {
881 for field in fields {
882 warn_if_doc(cx, field.span, "pattern fields", &field.attrs);
883 }
884 }
885 }
886
887 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
888 warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
889
890 if let ExprKind::Struct(s) = &expr.kind {
891 for field in &s.fields {
892 warn_if_doc(cx, field.span, "expression fields", &field.attrs);
893 }
894 }
895 }
896
897 fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
898 warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs);
899 }
900
901 fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
902 warn_if_doc(cx, block.span, "blocks", block.attrs());
903 }
904
905 fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
906 if let ast::ItemKind::ForeignMod(_) = item.kind {
907 warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
908 }
909 }
910}
911
912declare_lint! {
913 /// The `no_mangle_const_items` lint detects any `const` items with the
914 /// [`no_mangle` attribute].
915 ///
916 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
917 ///
918 /// ### Example
919 ///
920 /// ```rust,compile_fail,edition2021
921 /// #[no_mangle]
922 /// const FOO: i32 = 5;
923 /// ```
924 ///
925 /// {{produces}}
926 ///
927 /// ### Explanation
928 ///
929 /// Constants do not have their symbols exported, and therefore, this
930 /// probably means you meant to use a [`static`], not a [`const`].
931 ///
932 /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
933 /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
934 NO_MANGLE_CONST_ITEMS,
935 Deny,
936 "const items will not have their symbols exported"
937}
938
939declare_lint! {
940 /// The `no_mangle_generic_items` lint detects generic items that must be
941 /// mangled.
942 ///
943 /// ### Example
944 ///
945 /// ```rust
946 /// #[unsafe(no_mangle)]
947 /// fn foo<T>(t: T) {}
948 ///
949 /// #[unsafe(export_name = "bar")]
950 /// fn bar<T>(t: T) {}
951 /// ```
952 ///
953 /// {{produces}}
954 ///
955 /// ### Explanation
956 ///
957 /// A function with generics must have its symbol mangled to accommodate
958 /// the generic parameter. The [`no_mangle`] and [`export_name`] attributes
959 /// have no effect in this situation, and should be removed.
960 ///
961 /// [`no_mangle`]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
962 /// [`export_name`]: https://doc.rust-lang.org/reference/abi.html#the-export_name-attribute
963 NO_MANGLE_GENERIC_ITEMS,
964 Warn,
965 "generic items must be mangled"
966}
967
968declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
969
970impl InvalidNoMangleItems {
971 fn check_no_mangle_on_generic_fn(
972 &self,
973 cx: &LateContext<'_>,
974 attr_span: Span,
975 def_id: LocalDefId,
976 ) {
977 let generics = cx.tcx.generics_of(def_id);
978 if generics.requires_monomorphization(cx.tcx) {
979 cx.emit_span_lint(
980 NO_MANGLE_GENERIC_ITEMS,
981 cx.tcx.def_span(def_id),
982 BuiltinNoMangleGeneric { suggestion: attr_span },
983 );
984 }
985 }
986}
987
988impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
989 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
990 let attrs = cx.tcx.hir_attrs(it.hir_id());
991 match it.kind {
992 hir::ItemKind::Fn { .. } => {
993 if let Some(attr_span) =
994 find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span)
995 .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span))
996 {
997 self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id);
998 }
999 }
1000 hir::ItemKind::Const(..) => {
1001 if find_attr!(attrs, AttributeKind::NoMangle(..)) {
1002 // account for "pub const" (#45562)
1003 let start = cx
1004 .tcx
1005 .sess
1006 .source_map()
1007 .span_to_snippet(it.span)
1008 .map(|snippet| snippet.find("const").unwrap_or(0))
1009 .unwrap_or(0) as u32;
1010 // `const` is 5 chars
1011 let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1012
1013 // Const items do not refer to a particular location in memory, and therefore
1014 // don't have anything to attach a symbol to
1015 cx.emit_span_lint(
1016 NO_MANGLE_CONST_ITEMS,
1017 it.span,
1018 BuiltinConstNoMangle { suggestion },
1019 );
1020 }
1021 }
1022 _ => {}
1023 }
1024 }
1025
1026 fn check_impl_item(&mut self, cx: &LateContext<'_>, it: &hir::ImplItem<'_>) {
1027 let attrs = cx.tcx.hir_attrs(it.hir_id());
1028 match it.kind {
1029 hir::ImplItemKind::Fn { .. } => {
1030 if let Some(attr_span) =
1031 find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span)
1032 .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span))
1033 {
1034 self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id);
1035 }
1036 }
1037 _ => {}
1038 }
1039 }
1040}
1041
1042declare_lint! {
1043 /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1044 /// T` because it is [undefined behavior].
1045 ///
1046 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1047 ///
1048 /// ### Example
1049 ///
1050 /// ```rust,compile_fail
1051 /// unsafe {
1052 /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
1053 /// }
1054 /// ```
1055 ///
1056 /// {{produces}}
1057 ///
1058 /// ### Explanation
1059 ///
1060 /// Certain assumptions are made about aliasing of data, and this transmute
1061 /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1062 ///
1063 /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1064 MUTABLE_TRANSMUTES,
1065 Deny,
1066 "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1067}
1068
1069declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1070
1071impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1072 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1073 if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1074 get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1075 {
1076 if from_mutbl < to_mutbl {
1077 cx.emit_span_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1078 }
1079 }
1080
1081 fn get_transmute_from_to<'tcx>(
1082 cx: &LateContext<'tcx>,
1083 expr: &hir::Expr<'_>,
1084 ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1085 let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1086 cx.qpath_res(qpath, expr.hir_id)
1087 } else {
1088 return None;
1089 };
1090 if let Res::Def(DefKind::Fn, did) = def {
1091 if !def_id_is_transmute(cx, did) {
1092 return None;
1093 }
1094 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1095 let from = sig.inputs().skip_binder()[0];
1096 let to = sig.output().skip_binder();
1097 return Some((from, to));
1098 }
1099 None
1100 }
1101
1102 fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1103 cx.tcx.is_intrinsic(def_id, sym::transmute)
1104 }
1105 }
1106}
1107
1108declare_lint! {
1109 /// The `unstable_features` lint detects uses of `#![feature]`.
1110 ///
1111 /// ### Example
1112 ///
1113 /// ```rust,compile_fail
1114 /// #![deny(unstable_features)]
1115 /// #![feature(test)]
1116 /// ```
1117 ///
1118 /// {{produces}}
1119 ///
1120 /// ### Explanation
1121 ///
1122 /// In larger nightly-based projects which
1123 ///
1124 /// * consist of a multitude of crates where a subset of crates has to compile on
1125 /// stable either unconditionally or depending on a `cfg` flag to for example
1126 /// allow stable users to depend on them,
1127 /// * don't use nightly for experimental features but for, e.g., unstable options only,
1128 ///
1129 /// this lint may come in handy to enforce policies of these kinds.
1130 UNSTABLE_FEATURES,
1131 Allow,
1132 "enabling unstable features"
1133}
1134
1135declare_lint_pass!(
1136 /// Forbids using the `#[feature(...)]` attribute
1137 UnstableFeatures => [UNSTABLE_FEATURES]
1138);
1139
1140impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1141 fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &hir::Attribute) {
1142 if attr.has_name(sym::feature)
1143 && let Some(items) = attr.meta_item_list()
1144 {
1145 for item in items {
1146 cx.emit_span_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1147 }
1148 }
1149 }
1150}
1151
1152declare_lint! {
1153 /// The `ungated_async_fn_track_caller` lint warns when the
1154 /// `#[track_caller]` attribute is used on an async function
1155 /// without enabling the corresponding unstable feature flag.
1156 ///
1157 /// ### Example
1158 ///
1159 /// ```rust
1160 /// #[track_caller]
1161 /// async fn foo() {}
1162 /// ```
1163 ///
1164 /// {{produces}}
1165 ///
1166 /// ### Explanation
1167 ///
1168 /// The attribute must be used in conjunction with the
1169 /// [`async_fn_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1170 /// annotation will function as a no-op.
1171 ///
1172 /// [`async_fn_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/async-fn-track-caller.html
1173 UNGATED_ASYNC_FN_TRACK_CALLER,
1174 Warn,
1175 "enabling track_caller on an async fn is a no-op unless the async_fn_track_caller feature is enabled"
1176}
1177
1178declare_lint_pass!(
1179 /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to
1180 /// do anything
1181 UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1182);
1183
1184impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1185 fn check_fn(
1186 &mut self,
1187 cx: &LateContext<'_>,
1188 fn_kind: HirFnKind<'_>,
1189 _: &'tcx FnDecl<'_>,
1190 _: &'tcx Body<'_>,
1191 span: Span,
1192 def_id: LocalDefId,
1193 ) {
1194 if fn_kind.asyncness().is_async()
1195 && !cx.tcx.features().async_fn_track_caller()
1196 // Now, check if the function has the `#[track_caller]` attribute
1197 && let Some(attr_span) = find_attr!(cx.tcx.get_all_attrs(def_id), AttributeKind::TrackCaller(span) => *span)
1198 {
1199 cx.emit_span_lint(
1200 UNGATED_ASYNC_FN_TRACK_CALLER,
1201 attr_span,
1202 BuiltinUngatedAsyncFnTrackCaller { label: span, session: &cx.tcx.sess },
1203 );
1204 }
1205 }
1206}
1207
1208declare_lint! {
1209 /// The `unreachable_pub` lint triggers for `pub` items not reachable from other crates - that
1210 /// means neither directly accessible, nor reexported (with `pub use`), nor leaked through
1211 /// things like return types (which the [`unnameable_types`] lint can detect if desired).
1212 ///
1213 /// ### Example
1214 ///
1215 /// ```rust,compile_fail
1216 /// #![deny(unreachable_pub)]
1217 /// mod foo {
1218 /// pub mod bar {
1219 ///
1220 /// }
1221 /// }
1222 /// ```
1223 ///
1224 /// {{produces}}
1225 ///
1226 /// ### Explanation
1227 ///
1228 /// The `pub` keyword both expresses an intent for an item to be publicly available, and also
1229 /// signals to the compiler to make the item publicly accessible. The intent can only be
1230 /// satisfied, however, if all items which contain this item are *also* publicly accessible.
1231 /// Thus, this lint serves to identify situations where the intent does not match the reality.
1232 ///
1233 /// If you wish the item to be accessible elsewhere within the crate, but not outside it, the
1234 /// `pub(crate)` visibility is recommended to be used instead. This more clearly expresses the
1235 /// intent that the item is only visible within its own crate.
1236 ///
1237 /// This lint is "allow" by default because it will trigger for a large amount of existing Rust code.
1238 /// Eventually it is desired for this to become warn-by-default.
1239 ///
1240 /// [`unnameable_types`]: #unnameable-types
1241 pub UNREACHABLE_PUB,
1242 Allow,
1243 "`pub` items not reachable from crate root"
1244}
1245
1246declare_lint_pass!(
1247 /// Lint for items marked `pub` that aren't reachable from other crates.
1248 UnreachablePub => [UNREACHABLE_PUB]
1249);
1250
1251impl UnreachablePub {
1252 fn perform_lint(
1253 &self,
1254 cx: &LateContext<'_>,
1255 what: &str,
1256 def_id: LocalDefId,
1257 vis_span: Span,
1258 exportable: bool,
1259 ) {
1260 let mut applicability = Applicability::MachineApplicable;
1261 if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1262 {
1263 // prefer suggesting `pub(super)` instead of `pub(crate)` when possible,
1264 // except when `pub(super) == pub(crate)`
1265 let new_vis = if let Some(ty::Visibility::Restricted(restricted_did)) =
1266 cx.effective_visibilities.effective_vis(def_id).map(|effective_vis| {
1267 effective_vis.at_level(rustc_middle::middle::privacy::Level::Reachable)
1268 })
1269 && let parent_parent = cx
1270 .tcx
1271 .parent_module_from_def_id(cx.tcx.parent_module_from_def_id(def_id).into())
1272 && *restricted_did == parent_parent.to_local_def_id()
1273 && !restricted_did.to_def_id().is_crate_root()
1274 {
1275 "pub(super)"
1276 } else {
1277 "pub(crate)"
1278 };
1279
1280 if vis_span.from_expansion() {
1281 applicability = Applicability::MaybeIncorrect;
1282 }
1283 let def_span = cx.tcx.def_span(def_id);
1284 cx.emit_span_lint(
1285 UNREACHABLE_PUB,
1286 def_span,
1287 BuiltinUnreachablePub {
1288 what,
1289 new_vis,
1290 suggestion: (vis_span, applicability),
1291 help: exportable,
1292 },
1293 );
1294 }
1295 }
1296}
1297
1298impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1299 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1300 // Do not warn for fake `use` statements.
1301 if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1302 return;
1303 }
1304 self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1305 }
1306
1307 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1308 self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1309 }
1310
1311 fn check_field_def(&mut self, _cx: &LateContext<'_>, _field: &hir::FieldDef<'_>) {
1312 // - If an ADT definition is reported then we don't need to check fields
1313 // (as it would add unnecessary complexity to the source code, the struct
1314 // definition is in the immediate proximity to give the "real" visibility).
1315 // - If an ADT is not reported because it's not `pub` - we don't need to
1316 // check fields.
1317 // - If an ADT is not reported because it's reachable - we also don't need
1318 // to check fields because then they are reachable by construction if they
1319 // are pub.
1320 //
1321 // Therefore in no case we check the fields.
1322 //
1323 // cf. https://github.com/rust-lang/rust/pull/126013#issuecomment-2152839205
1324 // cf. https://github.com/rust-lang/rust/pull/126040#issuecomment-2152944506
1325 }
1326
1327 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1328 if let ImplItemImplKind::Inherent { vis_span } = impl_item.impl_kind {
1329 self.perform_lint(cx, "item", impl_item.owner_id.def_id, vis_span, false);
1330 }
1331 }
1332}
1333
1334declare_lint! {
1335 /// The `type_alias_bounds` lint detects bounds in type aliases.
1336 ///
1337 /// ### Example
1338 ///
1339 /// ```rust
1340 /// type SendVec<T: Send> = Vec<T>;
1341 /// ```
1342 ///
1343 /// {{produces}}
1344 ///
1345 /// ### Explanation
1346 ///
1347 /// Trait and lifetime bounds on generic parameters and in where clauses of
1348 /// type aliases are not checked at usage sites of the type alias. Moreover,
1349 /// they are not thoroughly checked for correctness at their definition site
1350 /// either similar to the aliased type.
1351 ///
1352 /// This is a known limitation of the type checker that may be lifted in a
1353 /// future edition. Permitting such bounds in light of this was unintentional.
1354 ///
1355 /// While these bounds may have secondary effects such as enabling the use of
1356 /// "shorthand" associated type paths[^1] and affecting the default trait
1357 /// object lifetime[^2] of trait object types passed to the type alias, this
1358 /// should not have been allowed until the aforementioned restrictions of the
1359 /// type checker have been lifted.
1360 ///
1361 /// Using such bounds is highly discouraged as they are actively misleading.
1362 ///
1363 /// [^1]: I.e., paths of the form `T::Assoc` where `T` is a type parameter
1364 /// bounded by trait `Trait` which defines an associated type called `Assoc`
1365 /// as opposed to a fully qualified path of the form `<T as Trait>::Assoc`.
1366 /// [^2]: <https://doc.rust-lang.org/reference/lifetime-elision.html#default-trait-object-lifetimes>
1367 TYPE_ALIAS_BOUNDS,
1368 Warn,
1369 "bounds in type aliases are not enforced"
1370}
1371
1372declare_lint_pass!(TypeAliasBounds => [TYPE_ALIAS_BOUNDS]);
1373
1374impl TypeAliasBounds {
1375 pub(crate) fn affects_object_lifetime_defaults(pred: &hir::WherePredicate<'_>) -> bool {
1376 // Bounds of the form `T: 'a` with `T` type param affect object lifetime defaults.
1377 if let hir::WherePredicateKind::BoundPredicate(pred) = pred.kind
1378 && pred.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Outlives(_)))
1379 && pred.bound_generic_params.is_empty() // indeed, even if absent from the RHS
1380 && pred.bounded_ty.as_generic_param().is_some()
1381 {
1382 return true;
1383 }
1384 false
1385 }
1386}
1387
1388impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1389 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1390 let hir::ItemKind::TyAlias(_, generics, hir_ty) = item.kind else { return };
1391
1392 // There must not be a where clause.
1393 if generics.predicates.is_empty() {
1394 return;
1395 }
1396
1397 // Bounds of lazy type aliases and TAITs are respected.
1398 if cx.tcx.type_alias_is_lazy(item.owner_id) {
1399 return;
1400 }
1401
1402 // FIXME(generic_const_exprs): Revisit this before stabilization.
1403 // See also `tests/ui/const-generics/generic_const_exprs/type-alias-bounds.rs`.
1404 let ty = cx.tcx.type_of(item.owner_id).instantiate_identity();
1405 if ty.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION)
1406 && cx.tcx.features().generic_const_exprs()
1407 {
1408 return;
1409 }
1410
1411 // NOTE(inherent_associated_types): While we currently do take some bounds in type
1412 // aliases into consideration during IAT *selection*, we don't perform full use+def
1413 // site wfchecking for such type aliases. Therefore TAB should still trigger.
1414 // See also `tests/ui/associated-inherent-types/type-alias-bounds.rs`.
1415
1416 let mut where_spans = Vec::new();
1417 let mut inline_spans = Vec::new();
1418 let mut inline_sugg = Vec::new();
1419
1420 for p in generics.predicates {
1421 let span = p.span;
1422 if p.kind.in_where_clause() {
1423 where_spans.push(span);
1424 } else {
1425 for b in p.kind.bounds() {
1426 inline_spans.push(b.span());
1427 }
1428 inline_sugg.push((span, String::new()));
1429 }
1430 }
1431
1432 let mut ty = Some(hir_ty);
1433 let enable_feat_help = cx.tcx.sess.is_nightly_build();
1434
1435 if let [.., label_sp] = *where_spans {
1436 cx.emit_span_lint(
1437 TYPE_ALIAS_BOUNDS,
1438 where_spans,
1439 BuiltinTypeAliasBounds {
1440 in_where_clause: true,
1441 label: label_sp,
1442 enable_feat_help,
1443 suggestions: vec![(generics.where_clause_span, String::new())],
1444 preds: generics.predicates,
1445 ty: ty.take(),
1446 },
1447 );
1448 }
1449 if let [.., label_sp] = *inline_spans {
1450 cx.emit_span_lint(
1451 TYPE_ALIAS_BOUNDS,
1452 inline_spans,
1453 BuiltinTypeAliasBounds {
1454 in_where_clause: false,
1455 label: label_sp,
1456 enable_feat_help,
1457 suggestions: inline_sugg,
1458 preds: generics.predicates,
1459 ty,
1460 },
1461 );
1462 }
1463 }
1464}
1465
1466pub(crate) struct ShorthandAssocTyCollector {
1467 pub(crate) qselves: Vec<Span>,
1468}
1469
1470impl hir::intravisit::Visitor<'_> for ShorthandAssocTyCollector {
1471 fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, _: Span) {
1472 // Look for "type-parameter shorthand-associated-types". I.e., paths of the
1473 // form `T::Assoc` with `T` type param. These are reliant on trait bounds.
1474 if let hir::QPath::TypeRelative(qself, _) = qpath
1475 && qself.as_generic_param().is_some()
1476 {
1477 self.qselves.push(qself.span);
1478 }
1479 hir::intravisit::walk_qpath(self, qpath, id)
1480 }
1481}
1482
1483declare_lint! {
1484 /// The `trivial_bounds` lint detects trait bounds that don't depend on
1485 /// any type parameters.
1486 ///
1487 /// ### Example
1488 ///
1489 /// ```rust
1490 /// #![feature(trivial_bounds)]
1491 /// pub struct A where i32: Copy;
1492 /// ```
1493 ///
1494 /// {{produces}}
1495 ///
1496 /// ### Explanation
1497 ///
1498 /// Usually you would not write a trait bound that you know is always
1499 /// true, or never true. However, when using macros, the macro may not
1500 /// know whether or not the constraint would hold or not at the time when
1501 /// generating the code. Currently, the compiler does not alert you if the
1502 /// constraint is always true, and generates an error if it is never true.
1503 /// The `trivial_bounds` feature changes this to be a warning in both
1504 /// cases, giving macros more freedom and flexibility to generate code,
1505 /// while still providing a signal when writing non-macro code that
1506 /// something is amiss.
1507 ///
1508 /// See [RFC 2056] for more details. This feature is currently only
1509 /// available on the nightly channel, see [tracking issue #48214].
1510 ///
1511 /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1512 /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1513 TRIVIAL_BOUNDS,
1514 Warn,
1515 "these bounds don't depend on an type parameters"
1516}
1517
1518declare_lint_pass!(
1519 /// Lint for trait and lifetime bounds that don't depend on type parameters
1520 /// which either do nothing, or stop the item from being used.
1521 TrivialConstraints => [TRIVIAL_BOUNDS]
1522);
1523
1524impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1525 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1526 use rustc_middle::ty::ClauseKind;
1527
1528 if cx.tcx.features().trivial_bounds() {
1529 let predicates = cx.tcx.predicates_of(item.owner_id);
1530 for &(predicate, span) in predicates.predicates {
1531 let predicate_kind_name = match predicate.kind().skip_binder() {
1532 ClauseKind::Trait(..) => "trait",
1533 ClauseKind::TypeOutlives(..) |
1534 ClauseKind::RegionOutlives(..) => "lifetime",
1535
1536 ClauseKind::UnstableFeature(_)
1537 // `ConstArgHasType` is never global as `ct` is always a param
1538 | ClauseKind::ConstArgHasType(..)
1539 // Ignore projections, as they can only be global
1540 // if the trait bound is global
1541 | ClauseKind::Projection(..)
1542 // Ignore bounds that a user can't type
1543 | ClauseKind::WellFormed(..)
1544 // FIXME(generic_const_exprs): `ConstEvaluatable` can be written
1545 | ClauseKind::ConstEvaluatable(..)
1546 // Users don't write this directly, only via another trait ref.
1547 | ty::ClauseKind::HostEffect(..) => continue,
1548 };
1549 if predicate.is_global() {
1550 cx.emit_span_lint(
1551 TRIVIAL_BOUNDS,
1552 span,
1553 BuiltinTrivialBounds { predicate_kind_name, predicate },
1554 );
1555 }
1556 }
1557 }
1558 }
1559}
1560
1561declare_lint! {
1562 /// The `double_negations` lint detects expressions of the form `--x`.
1563 ///
1564 /// ### Example
1565 ///
1566 /// ```rust
1567 /// fn main() {
1568 /// let x = 1;
1569 /// let _b = --x;
1570 /// }
1571 /// ```
1572 ///
1573 /// {{produces}}
1574 ///
1575 /// ### Explanation
1576 ///
1577 /// Negating something twice is usually the same as not negating it at all.
1578 /// However, a double negation in Rust can easily be confused with the
1579 /// prefix decrement operator that exists in many languages derived from C.
1580 /// Use `-(-x)` if you really wanted to negate the value twice.
1581 ///
1582 /// To decrement a value, use `x -= 1` instead.
1583 pub DOUBLE_NEGATIONS,
1584 Warn,
1585 "detects expressions of the form `--x`"
1586}
1587
1588declare_lint_pass!(
1589 /// Lint for expressions of the form `--x` that can be confused with C's
1590 /// prefix decrement operator.
1591 DoubleNegations => [DOUBLE_NEGATIONS]
1592);
1593
1594impl EarlyLintPass for DoubleNegations {
1595 #[inline]
1596 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1597 // only lint on the innermost `--` in a chain of `-` operators,
1598 // even if there are 3 or more negations
1599 if let ExprKind::Unary(UnOp::Neg, ref inner) = expr.kind
1600 && let ExprKind::Unary(UnOp::Neg, ref inner2) = inner.kind
1601 && !matches!(inner2.kind, ExprKind::Unary(UnOp::Neg, _))
1602 // Don't lint if this jumps macro expansion boundary (Issue #143980)
1603 && expr.span.eq_ctxt(inner.span)
1604 {
1605 cx.emit_span_lint(
1606 DOUBLE_NEGATIONS,
1607 expr.span,
1608 BuiltinDoubleNegations {
1609 add_parens: BuiltinDoubleNegationsAddParens {
1610 start_span: inner.span.shrink_to_lo(),
1611 end_span: inner.span.shrink_to_hi(),
1612 },
1613 },
1614 );
1615 }
1616 }
1617}
1618
1619declare_lint_pass!(
1620 /// Does nothing as a lint pass, but registers some `Lint`s
1621 /// which are used by other parts of the compiler.
1622 SoftLints => [
1623 WHILE_TRUE,
1624 NON_SHORTHAND_FIELD_PATTERNS,
1625 UNSAFE_CODE,
1626 MISSING_DOCS,
1627 MISSING_COPY_IMPLEMENTATIONS,
1628 MISSING_DEBUG_IMPLEMENTATIONS,
1629 ANONYMOUS_PARAMETERS,
1630 UNUSED_DOC_COMMENTS,
1631 NO_MANGLE_CONST_ITEMS,
1632 NO_MANGLE_GENERIC_ITEMS,
1633 MUTABLE_TRANSMUTES,
1634 UNSTABLE_FEATURES,
1635 UNREACHABLE_PUB,
1636 TYPE_ALIAS_BOUNDS,
1637 TRIVIAL_BOUNDS,
1638 DOUBLE_NEGATIONS
1639 ]
1640);
1641
1642declare_lint! {
1643 /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1644 /// pattern], which is deprecated.
1645 ///
1646 /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1647 ///
1648 /// ### Example
1649 ///
1650 /// ```rust,edition2018
1651 /// let x = 123;
1652 /// match x {
1653 /// 0...100 => {}
1654 /// _ => {}
1655 /// }
1656 /// ```
1657 ///
1658 /// {{produces}}
1659 ///
1660 /// ### Explanation
1661 ///
1662 /// The `...` range pattern syntax was changed to `..=` to avoid potential
1663 /// confusion with the [`..` range expression]. Use the new form instead.
1664 ///
1665 /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1666 pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1667 Warn,
1668 "`...` range patterns are deprecated",
1669 @future_incompatible = FutureIncompatibleInfo {
1670 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1671 reference: "<https://doc.rust-lang.org/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1672 };
1673}
1674
1675#[derive(Default)]
1676pub struct EllipsisInclusiveRangePatterns {
1677 /// If `Some(_)`, suppress all subsequent pattern
1678 /// warnings for better diagnostics.
1679 node_id: Option<ast::NodeId>,
1680}
1681
1682impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1683
1684impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1685 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1686 if self.node_id.is_some() {
1687 // Don't recursively warn about patterns inside range endpoints.
1688 return;
1689 }
1690
1691 use self::ast::PatKind;
1692 use self::ast::RangeSyntax::DotDotDot;
1693
1694 /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1695 /// corresponding to the ellipsis.
1696 fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1697 match &pat.kind {
1698 PatKind::Range(
1699 a,
1700 Some(b),
1701 Spanned { span, node: RangeEnd::Included(DotDotDot) },
1702 ) => Some((a.as_deref(), b, *span)),
1703 _ => None,
1704 }
1705 }
1706
1707 let (parentheses, endpoints) = match &pat.kind {
1708 PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(subpat)),
1709 _ => (false, matches_ellipsis_pat(pat)),
1710 };
1711
1712 if let Some((start, end, join)) = endpoints {
1713 if parentheses {
1714 self.node_id = Some(pat.id);
1715 let end = expr_to_string(end);
1716 let replace = match start {
1717 Some(start) => format!("&({}..={})", expr_to_string(start), end),
1718 None => format!("&(..={end})"),
1719 };
1720 if join.edition() >= Edition::Edition2021 {
1721 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1722 span: pat.span,
1723 suggestion: pat.span,
1724 replace,
1725 });
1726 } else {
1727 cx.emit_span_lint(
1728 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1729 pat.span,
1730 BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1731 suggestion: pat.span,
1732 replace,
1733 },
1734 );
1735 }
1736 } else {
1737 let replace = "..=";
1738 if join.edition() >= Edition::Edition2021 {
1739 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1740 span: pat.span,
1741 suggestion: join,
1742 replace: replace.to_string(),
1743 });
1744 } else {
1745 cx.emit_span_lint(
1746 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1747 join,
1748 BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1749 suggestion: join,
1750 },
1751 );
1752 }
1753 };
1754 }
1755 }
1756
1757 fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1758 if let Some(node_id) = self.node_id {
1759 if pat.id == node_id {
1760 self.node_id = None
1761 }
1762 }
1763 }
1764}
1765
1766declare_lint! {
1767 /// The `keyword_idents_2018` lint detects edition keywords being used as an
1768 /// identifier.
1769 ///
1770 /// ### Example
1771 ///
1772 /// ```rust,edition2015,compile_fail
1773 /// #![deny(keyword_idents_2018)]
1774 /// // edition 2015
1775 /// fn dyn() {}
1776 /// ```
1777 ///
1778 /// {{produces}}
1779 ///
1780 /// ### Explanation
1781 ///
1782 /// Rust [editions] allow the language to evolve without breaking
1783 /// backwards compatibility. This lint catches code that uses new keywords
1784 /// that are added to the language that are used as identifiers (such as a
1785 /// variable name, function name, etc.). If you switch the compiler to a
1786 /// new edition without updating the code, then it will fail to compile if
1787 /// you are using a new keyword as an identifier.
1788 ///
1789 /// You can manually change the identifiers to a non-keyword, or use a
1790 /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1791 ///
1792 /// This lint solves the problem automatically. It is "allow" by default
1793 /// because the code is perfectly valid in older editions. The [`cargo
1794 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1795 /// and automatically apply the suggested fix from the compiler (which is
1796 /// to use a raw identifier). This provides a completely automated way to
1797 /// update old code for a new edition.
1798 ///
1799 /// [editions]: https://doc.rust-lang.org/edition-guide/
1800 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1801 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1802 pub KEYWORD_IDENTS_2018,
1803 Allow,
1804 "detects edition keywords being used as an identifier",
1805 @future_incompatible = FutureIncompatibleInfo {
1806 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1807 reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1808 };
1809}
1810
1811declare_lint! {
1812 /// The `keyword_idents_2024` lint detects edition keywords being used as an
1813 /// identifier.
1814 ///
1815 /// ### Example
1816 ///
1817 /// ```rust,edition2015,compile_fail
1818 /// #![deny(keyword_idents_2024)]
1819 /// // edition 2015
1820 /// fn gen() {}
1821 /// ```
1822 ///
1823 /// {{produces}}
1824 ///
1825 /// ### Explanation
1826 ///
1827 /// Rust [editions] allow the language to evolve without breaking
1828 /// backwards compatibility. This lint catches code that uses new keywords
1829 /// that are added to the language that are used as identifiers (such as a
1830 /// variable name, function name, etc.). If you switch the compiler to a
1831 /// new edition without updating the code, then it will fail to compile if
1832 /// you are using a new keyword as an identifier.
1833 ///
1834 /// You can manually change the identifiers to a non-keyword, or use a
1835 /// [raw identifier], for example `r#gen`, to transition to a new edition.
1836 ///
1837 /// This lint solves the problem automatically. It is "allow" by default
1838 /// because the code is perfectly valid in older editions. The [`cargo
1839 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1840 /// and automatically apply the suggested fix from the compiler (which is
1841 /// to use a raw identifier). This provides a completely automated way to
1842 /// update old code for a new edition.
1843 ///
1844 /// [editions]: https://doc.rust-lang.org/edition-guide/
1845 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1846 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1847 pub KEYWORD_IDENTS_2024,
1848 Allow,
1849 "detects edition keywords being used as an identifier",
1850 @future_incompatible = FutureIncompatibleInfo {
1851 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
1852 reference: "<https://doc.rust-lang.org/edition-guide/rust-2024/gen-keyword.html>",
1853 };
1854}
1855
1856declare_lint_pass!(
1857 /// Check for uses of edition keywords used as an identifier.
1858 KeywordIdents => [KEYWORD_IDENTS_2018, KEYWORD_IDENTS_2024]
1859);
1860
1861struct UnderMacro(bool);
1862
1863impl KeywordIdents {
1864 fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) {
1865 // Check if the preceding token is `$`, because we want to allow `$async`, etc.
1866 let mut prev_dollar = false;
1867 for tt in tokens.iter() {
1868 match tt {
1869 // Only report non-raw idents.
1870 TokenTree::Token(token, _) => {
1871 if let Some((ident, token::IdentIsRaw::No)) = token.ident() {
1872 if !prev_dollar {
1873 self.check_ident_token(cx, UnderMacro(true), ident, "");
1874 }
1875 } else if let Some((ident, token::IdentIsRaw::No)) = token.lifetime() {
1876 self.check_ident_token(
1877 cx,
1878 UnderMacro(true),
1879 ident.without_first_quote(),
1880 "'",
1881 );
1882 } else if token.kind == TokenKind::Dollar {
1883 prev_dollar = true;
1884 continue;
1885 }
1886 }
1887 TokenTree::Delimited(.., tts) => self.check_tokens(cx, tts),
1888 }
1889 prev_dollar = false;
1890 }
1891 }
1892
1893 fn check_ident_token(
1894 &mut self,
1895 cx: &EarlyContext<'_>,
1896 UnderMacro(under_macro): UnderMacro,
1897 ident: Ident,
1898 prefix: &'static str,
1899 ) {
1900 let (lint, edition) = match ident.name {
1901 kw::Async | kw::Await | kw::Try => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1902
1903 // rust-lang/rust#56327: Conservatively do not
1904 // attempt to report occurrences of `dyn` within
1905 // macro definitions or invocations, because `dyn`
1906 // can legitimately occur as a contextual keyword
1907 // in 2015 code denoting its 2018 meaning, and we
1908 // do not want rustfix to inject bugs into working
1909 // code by rewriting such occurrences.
1910 //
1911 // But if we see `dyn` outside of a macro, we know
1912 // its precise role in the parsed AST and thus are
1913 // assured this is truly an attempt to use it as
1914 // an identifier.
1915 kw::Dyn if !under_macro => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1916
1917 kw::Gen => (KEYWORD_IDENTS_2024, Edition::Edition2024),
1918
1919 _ => return,
1920 };
1921
1922 // Don't lint `r#foo`.
1923 if ident.span.edition() >= edition
1924 || cx.sess().psess.raw_identifier_spans.contains(ident.span)
1925 {
1926 return;
1927 }
1928
1929 cx.emit_span_lint(
1930 lint,
1931 ident.span,
1932 BuiltinKeywordIdents { kw: ident, next: edition, suggestion: ident.span, prefix },
1933 );
1934 }
1935}
1936
1937impl EarlyLintPass for KeywordIdents {
1938 fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1939 self.check_tokens(cx, &mac_def.body.tokens);
1940 }
1941 fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1942 self.check_tokens(cx, &mac.args.tokens);
1943 }
1944 fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: &Ident) {
1945 if ident.name.as_str().starts_with('\'') {
1946 self.check_ident_token(cx, UnderMacro(false), ident.without_first_quote(), "'");
1947 } else {
1948 self.check_ident_token(cx, UnderMacro(false), *ident, "");
1949 }
1950 }
1951}
1952
1953declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1954
1955impl ExplicitOutlivesRequirements {
1956 fn lifetimes_outliving_lifetime<'tcx>(
1957 tcx: TyCtxt<'tcx>,
1958 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1959 item: LocalDefId,
1960 lifetime: LocalDefId,
1961 ) -> Vec<ty::Region<'tcx>> {
1962 let item_generics = tcx.generics_of(item);
1963
1964 inferred_outlives
1965 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1966 ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a.kind() {
1967 ty::ReEarlyParam(ebr)
1968 if item_generics.region_param(ebr, tcx).def_id == lifetime.to_def_id() =>
1969 {
1970 Some(b)
1971 }
1972 _ => None,
1973 },
1974 _ => None,
1975 })
1976 .collect()
1977 }
1978
1979 fn lifetimes_outliving_type<'tcx>(
1980 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1981 index: u32,
1982 ) -> Vec<ty::Region<'tcx>> {
1983 inferred_outlives
1984 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1985 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
1986 a.is_param(index).then_some(b)
1987 }
1988 _ => None,
1989 })
1990 .collect()
1991 }
1992
1993 fn collect_outlives_bound_spans<'tcx>(
1994 &self,
1995 tcx: TyCtxt<'tcx>,
1996 bounds: &hir::GenericBounds<'_>,
1997 inferred_outlives: &[ty::Region<'tcx>],
1998 predicate_span: Span,
1999 item: DefId,
2000 ) -> Vec<(usize, Span)> {
2001 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2002
2003 let item_generics = tcx.generics_of(item);
2004
2005 bounds
2006 .iter()
2007 .enumerate()
2008 .filter_map(|(i, bound)| {
2009 let hir::GenericBound::Outlives(lifetime) = bound else {
2010 return None;
2011 };
2012
2013 let is_inferred = match tcx.named_bound_var(lifetime.hir_id) {
2014 Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives
2015 .iter()
2016 .any(|r| matches!(r.kind(), ty::ReEarlyParam(ebr) if { item_generics.region_param(ebr, tcx).def_id == def_id.to_def_id() })),
2017 _ => false,
2018 };
2019
2020 if !is_inferred {
2021 return None;
2022 }
2023
2024 let span = bound.span().find_ancestor_inside(predicate_span)?;
2025 if span.in_external_macro(tcx.sess.source_map()) {
2026 return None;
2027 }
2028
2029 Some((i, span))
2030 })
2031 .collect()
2032 }
2033
2034 fn consolidate_outlives_bound_spans(
2035 &self,
2036 lo: Span,
2037 bounds: &hir::GenericBounds<'_>,
2038 bound_spans: Vec<(usize, Span)>,
2039 ) -> Vec<Span> {
2040 if bounds.is_empty() {
2041 return Vec::new();
2042 }
2043 if bound_spans.len() == bounds.len() {
2044 let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2045 // If all bounds are inferable, we want to delete the colon, so
2046 // start from just after the parameter (span passed as argument)
2047 vec![lo.to(last_bound_span)]
2048 } else {
2049 let mut merged = Vec::new();
2050 let mut last_merged_i = None;
2051
2052 let mut from_start = true;
2053 for (i, bound_span) in bound_spans {
2054 match last_merged_i {
2055 // If the first bound is inferable, our span should also eat the leading `+`.
2056 None if i == 0 => {
2057 merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2058 last_merged_i = Some(0);
2059 }
2060 // If consecutive bounds are inferable, merge their spans
2061 Some(h) if i == h + 1 => {
2062 if let Some(tail) = merged.last_mut() {
2063 // Also eat the trailing `+` if the first
2064 // more-than-one bound is inferable
2065 let to_span = if from_start && i < bounds.len() {
2066 bounds[i + 1].span().shrink_to_lo()
2067 } else {
2068 bound_span
2069 };
2070 *tail = tail.to(to_span);
2071 last_merged_i = Some(i);
2072 } else {
2073 bug!("another bound-span visited earlier");
2074 }
2075 }
2076 _ => {
2077 // When we find a non-inferable bound, subsequent inferable bounds
2078 // won't be consecutive from the start (and we'll eat the leading
2079 // `+` rather than the trailing one)
2080 from_start = false;
2081 merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2082 last_merged_i = Some(i);
2083 }
2084 }
2085 }
2086 merged
2087 }
2088 }
2089}
2090
2091impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2092 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2093 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2094
2095 let def_id = item.owner_id.def_id;
2096 if let hir::ItemKind::Struct(_, generics, _)
2097 | hir::ItemKind::Enum(_, generics, _)
2098 | hir::ItemKind::Union(_, generics, _) = item.kind
2099 {
2100 let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2101 if inferred_outlives.is_empty() {
2102 return;
2103 }
2104
2105 let ty_generics = cx.tcx.generics_of(def_id);
2106 let num_where_predicates = generics
2107 .predicates
2108 .iter()
2109 .filter(|predicate| predicate.kind.in_where_clause())
2110 .count();
2111
2112 let mut bound_count = 0;
2113 let mut lint_spans = Vec::new();
2114 let mut where_lint_spans = Vec::new();
2115 let mut dropped_where_predicate_count = 0;
2116 for (i, where_predicate) in generics.predicates.iter().enumerate() {
2117 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2118 match where_predicate.kind {
2119 hir::WherePredicateKind::RegionPredicate(predicate) => {
2120 if let Some(ResolvedArg::EarlyBound(region_def_id)) =
2121 cx.tcx.named_bound_var(predicate.lifetime.hir_id)
2122 {
2123 (
2124 Self::lifetimes_outliving_lifetime(
2125 cx.tcx,
2126 // don't warn if the inferred span actually came from the predicate we're looking at
2127 // this happens if the type is recursively defined
2128 inferred_outlives.iter().filter(|(_, span)| {
2129 !where_predicate.span.contains(*span)
2130 }),
2131 item.owner_id.def_id,
2132 region_def_id,
2133 ),
2134 &predicate.bounds,
2135 where_predicate.span,
2136 predicate.in_where_clause,
2137 )
2138 } else {
2139 continue;
2140 }
2141 }
2142 hir::WherePredicateKind::BoundPredicate(predicate) => {
2143 // FIXME we can also infer bounds on associated types,
2144 // and should check for them here.
2145 match predicate.bounded_ty.kind {
2146 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2147 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2148 continue;
2149 };
2150 let index = ty_generics.param_def_id_to_index[&def_id];
2151 (
2152 Self::lifetimes_outliving_type(
2153 // don't warn if the inferred span actually came from the predicate we're looking at
2154 // this happens if the type is recursively defined
2155 inferred_outlives.iter().filter(|(_, span)| {
2156 !where_predicate.span.contains(*span)
2157 }),
2158 index,
2159 ),
2160 &predicate.bounds,
2161 where_predicate.span,
2162 predicate.origin == PredicateOrigin::WhereClause,
2163 )
2164 }
2165 _ => {
2166 continue;
2167 }
2168 }
2169 }
2170 _ => continue,
2171 };
2172 if relevant_lifetimes.is_empty() {
2173 continue;
2174 }
2175
2176 let bound_spans = self.collect_outlives_bound_spans(
2177 cx.tcx,
2178 bounds,
2179 &relevant_lifetimes,
2180 predicate_span,
2181 item.owner_id.to_def_id(),
2182 );
2183 bound_count += bound_spans.len();
2184
2185 let drop_predicate = bound_spans.len() == bounds.len();
2186 if drop_predicate && in_where_clause {
2187 dropped_where_predicate_count += 1;
2188 }
2189
2190 if drop_predicate {
2191 if !in_where_clause {
2192 lint_spans.push(predicate_span);
2193 } else if predicate_span.from_expansion() {
2194 // Don't try to extend the span if it comes from a macro expansion.
2195 where_lint_spans.push(predicate_span);
2196 } else if i + 1 < num_where_predicates {
2197 // If all the bounds on a predicate were inferable and there are
2198 // further predicates, we want to eat the trailing comma.
2199 let next_predicate_span = generics.predicates[i + 1].span;
2200 if next_predicate_span.from_expansion() {
2201 where_lint_spans.push(predicate_span);
2202 } else {
2203 where_lint_spans
2204 .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2205 }
2206 } else {
2207 // Eat the optional trailing comma after the last predicate.
2208 let where_span = generics.where_clause_span;
2209 if where_span.from_expansion() {
2210 where_lint_spans.push(predicate_span);
2211 } else {
2212 where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2213 }
2214 }
2215 } else {
2216 where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2217 predicate_span.shrink_to_lo(),
2218 bounds,
2219 bound_spans,
2220 ));
2221 }
2222 }
2223
2224 // If all predicates in where clause are inferable, drop the entire clause
2225 // (including the `where`)
2226 if generics.has_where_clause_predicates
2227 && dropped_where_predicate_count == num_where_predicates
2228 {
2229 let where_span = generics.where_clause_span;
2230 // Extend the where clause back to the closing `>` of the
2231 // generics, except for tuple struct, which have the `where`
2232 // after the fields of the struct.
2233 let full_where_span =
2234 if let hir::ItemKind::Struct(_, _, hir::VariantData::Tuple(..)) = item.kind {
2235 where_span
2236 } else {
2237 generics.span.shrink_to_hi().to(where_span)
2238 };
2239
2240 // Due to macro expansions, the `full_where_span` might not actually contain all
2241 // predicates.
2242 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2243 lint_spans.push(full_where_span);
2244 } else {
2245 lint_spans.extend(where_lint_spans);
2246 }
2247 } else {
2248 lint_spans.extend(where_lint_spans);
2249 }
2250
2251 if !lint_spans.is_empty() {
2252 // Do not automatically delete outlives requirements from macros.
2253 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2254 {
2255 Applicability::MachineApplicable
2256 } else {
2257 Applicability::MaybeIncorrect
2258 };
2259
2260 // Due to macros, there might be several predicates with the same span
2261 // and we only want to suggest removing them once.
2262 lint_spans.sort_unstable();
2263 lint_spans.dedup();
2264
2265 cx.emit_span_lint(
2266 EXPLICIT_OUTLIVES_REQUIREMENTS,
2267 lint_spans.clone(),
2268 BuiltinExplicitOutlives {
2269 count: bound_count,
2270 suggestion: BuiltinExplicitOutlivesSuggestion {
2271 spans: lint_spans,
2272 applicability,
2273 },
2274 },
2275 );
2276 }
2277 }
2278 }
2279}
2280
2281declare_lint! {
2282 /// The `incomplete_features` lint detects unstable features enabled with
2283 /// the [`feature` attribute] that may function improperly in some or all
2284 /// cases.
2285 ///
2286 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2287 ///
2288 /// ### Example
2289 ///
2290 /// ```rust
2291 /// #![feature(generic_const_exprs)]
2292 /// ```
2293 ///
2294 /// {{produces}}
2295 ///
2296 /// ### Explanation
2297 ///
2298 /// Although it is encouraged for people to experiment with unstable
2299 /// features, some of them are known to be incomplete or faulty. This lint
2300 /// is a signal that the feature has not yet been finished, and you may
2301 /// experience problems with it.
2302 pub INCOMPLETE_FEATURES,
2303 Warn,
2304 "incomplete features that may function improperly in some or all cases"
2305}
2306
2307declare_lint! {
2308 /// The `internal_features` lint detects unstable features enabled with
2309 /// the [`feature` attribute] that are internal to the compiler or standard
2310 /// library.
2311 ///
2312 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2313 ///
2314 /// ### Example
2315 ///
2316 /// ```rust
2317 /// #![feature(rustc_attrs)]
2318 /// ```
2319 ///
2320 /// {{produces}}
2321 ///
2322 /// ### Explanation
2323 ///
2324 /// These features are an implementation detail of the compiler and standard
2325 /// library and are not supposed to be used in user code.
2326 pub INTERNAL_FEATURES,
2327 Warn,
2328 "internal features are not supposed to be used"
2329}
2330
2331declare_lint_pass!(
2332 /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/unstable.rs`.
2333 IncompleteInternalFeatures => [INCOMPLETE_FEATURES, INTERNAL_FEATURES]
2334);
2335
2336impl EarlyLintPass for IncompleteInternalFeatures {
2337 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2338 let features = cx.builder.features();
2339
2340 features
2341 .enabled_features_iter_stable_order()
2342 .filter(|(name, _)| features.incomplete(*name) || features.internal(*name))
2343 .for_each(|(name, span)| {
2344 if features.incomplete(name) {
2345 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2346 .map(|n| BuiltinFeatureIssueNote { n });
2347 let help =
2348 HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp);
2349
2350 cx.emit_span_lint(
2351 INCOMPLETE_FEATURES,
2352 span,
2353 BuiltinIncompleteFeatures { name, note, help },
2354 );
2355 } else {
2356 cx.emit_span_lint(INTERNAL_FEATURES, span, BuiltinInternalFeatures { name });
2357 }
2358 });
2359 }
2360}
2361
2362const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2363
2364declare_lint! {
2365 /// The `invalid_value` lint detects creating a value that is not valid,
2366 /// such as a null reference.
2367 ///
2368 /// ### Example
2369 ///
2370 /// ```rust,no_run
2371 /// # #![allow(unused)]
2372 /// unsafe {
2373 /// let x: &'static i32 = std::mem::zeroed();
2374 /// }
2375 /// ```
2376 ///
2377 /// {{produces}}
2378 ///
2379 /// ### Explanation
2380 ///
2381 /// In some situations the compiler can detect that the code is creating
2382 /// an invalid value, which should be avoided.
2383 ///
2384 /// In particular, this lint will check for improper use of
2385 /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2386 /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2387 /// lint should provide extra information to indicate what the problem is
2388 /// and a possible solution.
2389 ///
2390 /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2391 /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2392 /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2393 /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2394 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2395 pub INVALID_VALUE,
2396 Warn,
2397 "an invalid value is being created (such as a null reference)"
2398}
2399
2400declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2401
2402/// Information about why a type cannot be initialized this way.
2403pub struct InitError {
2404 pub(crate) message: String,
2405 /// Spans from struct fields and similar that can be obtained from just the type.
2406 pub(crate) span: Option<Span>,
2407 /// Used to report a trace through adts.
2408 pub(crate) nested: Option<Box<InitError>>,
2409}
2410impl InitError {
2411 fn spanned(self, span: Span) -> InitError {
2412 Self { span: Some(span), ..self }
2413 }
2414
2415 fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2416 assert!(self.nested.is_none());
2417 Self { nested: nested.into().map(Box::new), ..self }
2418 }
2419}
2420
2421impl<'a> From<&'a str> for InitError {
2422 fn from(s: &'a str) -> Self {
2423 s.to_owned().into()
2424 }
2425}
2426impl From<String> for InitError {
2427 fn from(message: String) -> Self {
2428 Self { message, span: None, nested: None }
2429 }
2430}
2431
2432impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2433 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2434 #[derive(Debug, Copy, Clone, PartialEq)]
2435 enum InitKind {
2436 Zeroed,
2437 Uninit,
2438 }
2439
2440 /// Test if this constant is all-0.
2441 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2442 use hir::ExprKind::*;
2443 use rustc_ast::LitKind::*;
2444 match &expr.kind {
2445 Lit(lit) => {
2446 if let Int(i, _) = lit.node {
2447 i == 0
2448 } else {
2449 false
2450 }
2451 }
2452 Tup(tup) => tup.iter().all(is_zero),
2453 _ => false,
2454 }
2455 }
2456
2457 /// Determine if this expression is a "dangerous initialization".
2458 fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2459 if let hir::ExprKind::Call(path_expr, args) = expr.kind
2460 // Find calls to `mem::{uninitialized,zeroed}` methods.
2461 && let hir::ExprKind::Path(ref qpath) = path_expr.kind
2462 {
2463 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2464 match cx.tcx.get_diagnostic_name(def_id) {
2465 Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2466 Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2467 Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2468 _ => {}
2469 }
2470 } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2471 // Find problematic calls to `MaybeUninit::assume_init`.
2472 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2473 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2474 // This is a call to *some* method named `assume_init`.
2475 // See if the `self` parameter is one of the dangerous constructors.
2476 if let hir::ExprKind::Call(path_expr, _) = receiver.kind
2477 && let hir::ExprKind::Path(ref qpath) = path_expr.kind
2478 {
2479 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2480 match cx.tcx.get_diagnostic_name(def_id) {
2481 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2482 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2483 _ => {}
2484 }
2485 }
2486 }
2487 }
2488
2489 None
2490 }
2491
2492 fn variant_find_init_error<'tcx>(
2493 cx: &LateContext<'tcx>,
2494 ty: Ty<'tcx>,
2495 variant: &VariantDef,
2496 args: ty::GenericArgsRef<'tcx>,
2497 descr: &str,
2498 init: InitKind,
2499 ) -> Option<InitError> {
2500 let mut field_err = variant.fields.iter().find_map(|field| {
2501 ty_find_init_error(cx, field.ty(cx.tcx, args), init).map(|mut err| {
2502 if !field.did.is_local() {
2503 err
2504 } else if err.span.is_none() {
2505 err.span = Some(cx.tcx.def_span(field.did));
2506 write!(&mut err.message, " (in this {descr})").unwrap();
2507 err
2508 } else {
2509 InitError::from(format!("in this {descr}"))
2510 .spanned(cx.tcx.def_span(field.did))
2511 .nested(err)
2512 }
2513 })
2514 });
2515
2516 // Check if this ADT has a constrained layout (like `NonNull` and friends).
2517 if let Ok(layout) = cx.tcx.layout_of(cx.typing_env().as_query_input(ty)) {
2518 if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) =
2519 &layout.backend_repr
2520 {
2521 let range = scalar.valid_range(cx);
2522 let msg = if !range.contains(0) {
2523 "must be non-null"
2524 } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2525 // Prefer reporting on the fields over the entire struct for uninit,
2526 // as the information bubbles out and it may be unclear why the type can't
2527 // be null from just its outside signature.
2528
2529 "must be initialized inside its custom valid range"
2530 } else {
2531 return field_err;
2532 };
2533 if let Some(field_err) = &mut field_err {
2534 // Most of the time, if the field error is the same as the struct error,
2535 // the struct error only happens because of the field error.
2536 if field_err.message.contains(msg) {
2537 field_err.message = format!("because {}", field_err.message);
2538 }
2539 }
2540 return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2541 }
2542 }
2543 field_err
2544 }
2545
2546 /// Return `Some` only if we are sure this type does *not*
2547 /// allow zero initialization.
2548 fn ty_find_init_error<'tcx>(
2549 cx: &LateContext<'tcx>,
2550 ty: Ty<'tcx>,
2551 init: InitKind,
2552 ) -> Option<InitError> {
2553 let ty = cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty).unwrap_or(ty);
2554
2555 match ty.kind() {
2556 // Primitive types that don't like 0 as a value.
2557 ty::Ref(..) => Some("references must be non-null".into()),
2558 ty::Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2559 ty::FnPtr(..) => Some("function pointers must be non-null".into()),
2560 ty::Never => Some("the `!` type has no valid value".into()),
2561 ty::RawPtr(ty, _) if matches!(ty.kind(), ty::Dynamic(..)) =>
2562 // raw ptr to dyn Trait
2563 {
2564 Some("the vtable of a wide raw pointer must be non-null".into())
2565 }
2566 // Primitive types with other constraints.
2567 ty::Bool if init == InitKind::Uninit => {
2568 Some("booleans must be either `true` or `false`".into())
2569 }
2570 ty::Char if init == InitKind::Uninit => {
2571 Some("characters must be a valid Unicode codepoint".into())
2572 }
2573 ty::Int(_) | ty::Uint(_) if init == InitKind::Uninit => {
2574 Some("integers must be initialized".into())
2575 }
2576 ty::Float(_) if init == InitKind::Uninit => {
2577 Some("floats must be initialized".into())
2578 }
2579 ty::RawPtr(_, _) if init == InitKind::Uninit => {
2580 Some("raw pointers must be initialized".into())
2581 }
2582 // Recurse and checks for some compound types. (but not unions)
2583 ty::Adt(adt_def, args) if !adt_def.is_union() => {
2584 // Handle structs.
2585 if adt_def.is_struct() {
2586 return variant_find_init_error(
2587 cx,
2588 ty,
2589 adt_def.non_enum_variant(),
2590 args,
2591 "struct field",
2592 init,
2593 );
2594 }
2595 // And now, enums.
2596 let span = cx.tcx.def_span(adt_def.did());
2597 let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2598 let definitely_inhabited = match variant
2599 .inhabited_predicate(cx.tcx, *adt_def)
2600 .instantiate(cx.tcx, args)
2601 .apply_any_module(cx.tcx, cx.typing_env())
2602 {
2603 // Entirely skip uninhabited variants.
2604 Some(false) => return None,
2605 // Forward the others, but remember which ones are definitely inhabited.
2606 Some(true) => true,
2607 None => false,
2608 };
2609 Some((variant, definitely_inhabited))
2610 });
2611 let Some(first_variant) = potential_variants.next() else {
2612 return Some(
2613 InitError::from("enums with no inhabited variants have no valid value")
2614 .spanned(span),
2615 );
2616 };
2617 // So we have at least one potentially inhabited variant. Might we have two?
2618 let Some(second_variant) = potential_variants.next() else {
2619 // There is only one potentially inhabited variant. So we can recursively
2620 // check that variant!
2621 return variant_find_init_error(
2622 cx,
2623 ty,
2624 first_variant.0,
2625 args,
2626 "field of the only potentially inhabited enum variant",
2627 init,
2628 );
2629 };
2630 // So we have at least two potentially inhabited variants. If we can prove that
2631 // we have at least two *definitely* inhabited variants, then we have a tag and
2632 // hence leaving this uninit is definitely disallowed. (Leaving it zeroed could
2633 // be okay, depending on which variant is encoded as zero tag.)
2634 if init == InitKind::Uninit {
2635 let definitely_inhabited = (first_variant.1 as usize)
2636 + (second_variant.1 as usize)
2637 + potential_variants
2638 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2639 .count();
2640 if definitely_inhabited > 1 {
2641 return Some(InitError::from(
2642 "enums with multiple inhabited variants have to be initialized to a variant",
2643 ).spanned(span));
2644 }
2645 }
2646 // We couldn't find anything wrong here.
2647 None
2648 }
2649 ty::Tuple(..) => {
2650 // Proceed recursively, check all fields.
2651 ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2652 }
2653 ty::Array(ty, len) => {
2654 if matches!(len.try_to_target_usize(cx.tcx), Some(v) if v > 0) {
2655 // Array length known at array non-empty -- recurse.
2656 ty_find_init_error(cx, *ty, init)
2657 } else {
2658 // Empty array or size unknown.
2659 None
2660 }
2661 }
2662 // Conservative fallback.
2663 _ => None,
2664 }
2665 }
2666
2667 if let Some(init) = is_dangerous_init(cx, expr) {
2668 // This conjures an instance of a type out of nothing,
2669 // using zeroed or uninitialized memory.
2670 // We are extremely conservative with what we warn about.
2671 let conjured_ty = cx.typeck_results().expr_ty(expr);
2672 if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2673 let msg = match init {
2674 InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
2675 InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit,
2676 };
2677 let sub = BuiltinUnpermittedTypeInitSub { err };
2678 cx.emit_span_lint(
2679 INVALID_VALUE,
2680 expr.span,
2681 BuiltinUnpermittedTypeInit {
2682 msg,
2683 ty: conjured_ty,
2684 label: expr.span,
2685 sub,
2686 tcx: cx.tcx,
2687 },
2688 );
2689 }
2690 }
2691 }
2692}
2693
2694declare_lint! {
2695 /// The `deref_nullptr` lint detects when a null pointer is dereferenced,
2696 /// which causes [undefined behavior].
2697 ///
2698 /// ### Example
2699 ///
2700 /// ```rust,no_run
2701 /// # #![allow(unused)]
2702 /// use std::ptr;
2703 /// unsafe {
2704 /// let x = &*ptr::null::<i32>();
2705 /// let x = ptr::addr_of!(*ptr::null::<i32>());
2706 /// let x = *(0 as *const i32);
2707 /// }
2708 /// ```
2709 ///
2710 /// {{produces}}
2711 ///
2712 /// ### Explanation
2713 ///
2714 /// Dereferencing a null pointer causes [undefined behavior] if it is accessed
2715 /// (loaded from or stored to).
2716 ///
2717 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2718 pub DEREF_NULLPTR,
2719 Warn,
2720 "detects when an null pointer is dereferenced"
2721}
2722
2723declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
2724
2725impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
2726 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2727 /// test if expression is a null ptr
2728 fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
2729 match &expr.kind {
2730 hir::ExprKind::Cast(expr, ty) => {
2731 if let hir::TyKind::Ptr(_) = ty.kind {
2732 return is_zero(expr) || is_null_ptr(cx, expr);
2733 }
2734 }
2735 // check for call to `core::ptr::null` or `core::ptr::null_mut`
2736 hir::ExprKind::Call(path, _) => {
2737 if let hir::ExprKind::Path(ref qpath) = path.kind
2738 && let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
2739 {
2740 return matches!(
2741 cx.tcx.get_diagnostic_name(def_id),
2742 Some(sym::ptr_null | sym::ptr_null_mut)
2743 );
2744 }
2745 }
2746 _ => {}
2747 }
2748 false
2749 }
2750
2751 /// test if expression is the literal `0`
2752 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2753 match &expr.kind {
2754 hir::ExprKind::Lit(lit) => {
2755 if let LitKind::Int(a, _) = lit.node {
2756 return a == 0;
2757 }
2758 }
2759 _ => {}
2760 }
2761 false
2762 }
2763
2764 if let hir::ExprKind::Unary(hir::UnOp::Deref, expr_deref) = expr.kind
2765 && is_null_ptr(cx, expr_deref)
2766 {
2767 if let hir::Node::Expr(hir::Expr {
2768 kind: hir::ExprKind::AddrOf(hir::BorrowKind::Raw, ..),
2769 ..
2770 }) = cx.tcx.parent_hir_node(expr.hir_id)
2771 {
2772 // `&raw *NULL` is ok.
2773 } else {
2774 cx.emit_span_lint(
2775 DEREF_NULLPTR,
2776 expr.span,
2777 BuiltinDerefNullptr { label: expr.span },
2778 );
2779 }
2780 }
2781 }
2782}
2783
2784declare_lint! {
2785 /// The `named_asm_labels` lint detects the use of named labels in the
2786 /// inline `asm!` macro.
2787 ///
2788 /// ### Example
2789 ///
2790 /// ```rust,compile_fail
2791 /// # #![feature(asm_experimental_arch)]
2792 /// use std::arch::asm;
2793 ///
2794 /// fn main() {
2795 /// unsafe {
2796 /// asm!("foo: bar");
2797 /// }
2798 /// }
2799 /// ```
2800 ///
2801 /// {{produces}}
2802 ///
2803 /// ### Explanation
2804 ///
2805 /// LLVM is allowed to duplicate inline assembly blocks for any
2806 /// reason, for example when it is in a function that gets inlined. Because
2807 /// of this, GNU assembler [local labels] *must* be used instead of labels
2808 /// with a name. Using named labels might cause assembler or linker errors.
2809 ///
2810 /// See the explanation in [Rust By Example] for more details.
2811 ///
2812 /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
2813 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2814 pub NAMED_ASM_LABELS,
2815 Deny,
2816 "named labels in inline assembly",
2817}
2818
2819declare_lint! {
2820 /// The `binary_asm_labels` lint detects the use of numeric labels containing only binary
2821 /// digits in the inline `asm!` macro.
2822 ///
2823 /// ### Example
2824 ///
2825 /// ```rust,ignore (fails on non-x86_64)
2826 /// #![cfg(target_arch = "x86_64")]
2827 ///
2828 /// use std::arch::asm;
2829 ///
2830 /// fn main() {
2831 /// unsafe {
2832 /// asm!("0: jmp 0b");
2833 /// }
2834 /// }
2835 /// ```
2836 ///
2837 /// This will produce:
2838 ///
2839 /// ```text
2840 /// error: avoid using labels containing only the digits `0` and `1` in inline assembly
2841 /// --> <source>:7:15
2842 /// |
2843 /// 7 | asm!("0: jmp 0b");
2844 /// | ^ use a different label that doesn't start with `0` or `1`
2845 /// |
2846 /// = help: start numbering with `2` instead
2847 /// = note: an LLVM bug makes these labels ambiguous with a binary literal number on x86
2848 /// = note: see <https://github.com/llvm/llvm-project/issues/99547> for more information
2849 /// = note: `#[deny(binary_asm_labels)]` on by default
2850 /// ```
2851 ///
2852 /// ### Explanation
2853 ///
2854 /// An [LLVM bug] causes this code to fail to compile because it interprets the `0b` as a binary
2855 /// literal instead of a reference to the previous local label `0`. To work around this bug,
2856 /// don't use labels that could be confused with a binary literal.
2857 ///
2858 /// This behavior is platform-specific to x86 and x86-64.
2859 ///
2860 /// See the explanation in [Rust By Example] for more details.
2861 ///
2862 /// [LLVM bug]: https://github.com/llvm/llvm-project/issues/99547
2863 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2864 pub BINARY_ASM_LABELS,
2865 Deny,
2866 "labels in inline assembly containing only 0 or 1 digits",
2867}
2868
2869declare_lint_pass!(AsmLabels => [NAMED_ASM_LABELS, BINARY_ASM_LABELS]);
2870
2871#[derive(Debug, Clone, Copy, PartialEq, Eq)]
2872enum AsmLabelKind {
2873 Named,
2874 FormatArg,
2875 Binary,
2876}
2877
2878impl<'tcx> LateLintPass<'tcx> for AsmLabels {
2879 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
2880 if let hir::Expr {
2881 kind:
2882 hir::ExprKind::InlineAsm(hir::InlineAsm {
2883 asm_macro: asm_macro @ (AsmMacro::Asm | AsmMacro::NakedAsm),
2884 template_strs,
2885 options,
2886 ..
2887 }),
2888 ..
2889 } = expr
2890 {
2891 // Non-generic naked functions are allowed to define arbitrary
2892 // labels.
2893 if *asm_macro == AsmMacro::NakedAsm {
2894 let def_id = expr.hir_id.owner.def_id;
2895 if !cx.tcx.generics_of(def_id).requires_monomorphization(cx.tcx) {
2896 return;
2897 }
2898 }
2899
2900 // asm with `options(raw)` does not do replacement with `{` and `}`.
2901 let raw = options.contains(InlineAsmOptions::RAW);
2902
2903 for (template_sym, template_snippet, template_span) in template_strs.iter() {
2904 let template_str = template_sym.as_str();
2905 let find_label_span = |needle: &str| -> Option<Span> {
2906 if let Some(template_snippet) = template_snippet {
2907 let snippet = template_snippet.as_str();
2908 if let Some(pos) = snippet.find(needle) {
2909 let end = pos
2910 + snippet[pos..]
2911 .find(|c| c == ':')
2912 .unwrap_or(snippet[pos..].len() - 1);
2913 let inner = InnerSpan::new(pos, end);
2914 return Some(template_span.from_inner(inner));
2915 }
2916 }
2917
2918 None
2919 };
2920
2921 // diagnostics are emitted per-template, so this is created here as opposed to the outer loop
2922 let mut spans = Vec::new();
2923
2924 // A semicolon might not actually be specified as a separator for all targets, but
2925 // it seems like LLVM accepts it always.
2926 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
2927 for statement in statements {
2928 // If there's a comment, trim it from the statement
2929 let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
2930
2931 // In this loop, if there is ever a non-label, no labels can come after it.
2932 let mut start_idx = 0;
2933 'label_loop: for (idx, _) in statement.match_indices(':') {
2934 let possible_label = statement[start_idx..idx].trim();
2935 let mut chars = possible_label.chars();
2936
2937 let Some(start) = chars.next() else {
2938 // Empty string means a leading ':' in this section, which is not a
2939 // label.
2940 break 'label_loop;
2941 };
2942
2943 // Whether a { bracket has been seen and its } hasn't been found yet.
2944 let mut in_bracket = false;
2945 let mut label_kind = AsmLabelKind::Named;
2946
2947 // A label can also start with a format arg, if it's not a raw asm block.
2948 if !raw && start == '{' {
2949 in_bracket = true;
2950 label_kind = AsmLabelKind::FormatArg;
2951 } else if matches!(start, '0' | '1') {
2952 // Binary labels have only the characters `0` or `1`.
2953 label_kind = AsmLabelKind::Binary;
2954 } else if !(start.is_ascii_alphabetic() || matches!(start, '.' | '_')) {
2955 // Named labels start with ASCII letters, `.` or `_`.
2956 // anything else is not a label
2957 break 'label_loop;
2958 }
2959
2960 for c in chars {
2961 // Inside a template format arg, any character is permitted for the
2962 // purposes of label detection because we assume that it can be
2963 // replaced with some other valid label string later. `options(raw)`
2964 // asm blocks cannot have format args, so they are excluded from this
2965 // special case.
2966 if !raw && in_bracket {
2967 if c == '{' {
2968 // Nested brackets are not allowed in format args, this cannot
2969 // be a label.
2970 break 'label_loop;
2971 }
2972
2973 if c == '}' {
2974 // The end of the format arg.
2975 in_bracket = false;
2976 }
2977 } else if !raw && c == '{' {
2978 // Start of a format arg.
2979 in_bracket = true;
2980 label_kind = AsmLabelKind::FormatArg;
2981 } else {
2982 let can_continue = match label_kind {
2983 // Format arg labels are considered to be named labels for the purposes
2984 // of continuing outside of their {} pair.
2985 AsmLabelKind::Named | AsmLabelKind::FormatArg => {
2986 c.is_ascii_alphanumeric() || matches!(c, '_' | '$')
2987 }
2988 AsmLabelKind::Binary => matches!(c, '0' | '1'),
2989 };
2990
2991 if !can_continue {
2992 // The potential label had an invalid character inside it, it
2993 // cannot be a label.
2994 break 'label_loop;
2995 }
2996 }
2997 }
2998
2999 // If all characters passed the label checks, this is a label.
3000 spans.push((find_label_span(possible_label), label_kind));
3001 start_idx = idx + 1;
3002 }
3003 }
3004
3005 for (span, label_kind) in spans {
3006 let missing_precise_span = span.is_none();
3007 let span = span.unwrap_or(*template_span);
3008 match label_kind {
3009 AsmLabelKind::Named => {
3010 cx.emit_span_lint(
3011 NAMED_ASM_LABELS,
3012 span,
3013 InvalidAsmLabel::Named { missing_precise_span },
3014 );
3015 }
3016 AsmLabelKind::FormatArg => {
3017 cx.emit_span_lint(
3018 NAMED_ASM_LABELS,
3019 span,
3020 InvalidAsmLabel::FormatArg { missing_precise_span },
3021 );
3022 }
3023 // the binary asm issue only occurs when using intel syntax on x86 targets
3024 AsmLabelKind::Binary
3025 if !options.contains(InlineAsmOptions::ATT_SYNTAX)
3026 && matches!(
3027 cx.tcx.sess.asm_arch,
3028 Some(InlineAsmArch::X86 | InlineAsmArch::X86_64) | None
3029 ) =>
3030 {
3031 cx.emit_span_lint(
3032 BINARY_ASM_LABELS,
3033 span,
3034 InvalidAsmLabel::Binary { missing_precise_span, span },
3035 )
3036 }
3037 // No lint on anything other than x86
3038 AsmLabelKind::Binary => (),
3039 };
3040 }
3041 }
3042 }
3043 }
3044}
3045
3046declare_lint! {
3047 /// The `special_module_name` lint detects module
3048 /// declarations for files that have a special meaning.
3049 ///
3050 /// ### Example
3051 ///
3052 /// ```rust,compile_fail
3053 /// mod lib;
3054 ///
3055 /// fn main() {
3056 /// lib::run();
3057 /// }
3058 /// ```
3059 ///
3060 /// {{produces}}
3061 ///
3062 /// ### Explanation
3063 ///
3064 /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3065 /// library or binary crate, so declaring them as modules
3066 /// will lead to miscompilation of the crate unless configured
3067 /// explicitly.
3068 ///
3069 /// To access a library from a binary target within the same crate,
3070 /// use `your_crate_name::` as the path instead of `lib::`:
3071 ///
3072 /// ```rust,compile_fail
3073 /// // bar/src/lib.rs
3074 /// fn run() {
3075 /// // ...
3076 /// }
3077 ///
3078 /// // bar/src/main.rs
3079 /// fn main() {
3080 /// bar::run();
3081 /// }
3082 /// ```
3083 ///
3084 /// Binary targets cannot be used as libraries and so declaring
3085 /// one as a module is not allowed.
3086 pub SPECIAL_MODULE_NAME,
3087 Warn,
3088 "module declarations for files with a special meaning",
3089}
3090
3091declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3092
3093impl EarlyLintPass for SpecialModuleName {
3094 fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3095 for item in &krate.items {
3096 if let ast::ItemKind::Mod(
3097 _,
3098 ident,
3099 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No { .. }, _),
3100 ) = item.kind
3101 {
3102 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3103 continue;
3104 }
3105
3106 match ident.name.as_str() {
3107 "lib" => cx.emit_span_lint(
3108 SPECIAL_MODULE_NAME,
3109 item.span,
3110 BuiltinSpecialModuleNameUsed::Lib,
3111 ),
3112 "main" => cx.emit_span_lint(
3113 SPECIAL_MODULE_NAME,
3114 item.span,
3115 BuiltinSpecialModuleNameUsed::Main,
3116 ),
3117 _ => continue,
3118 }
3119 }
3120 }
3121 }
3122}