rustc_lint/builtin.rs
1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
6//!
7//! To add a new lint to rustc, declare it here using [`declare_lint!`].
8//! Then add code to emit the new lint in the appropriate circumstances.
9//!
10//! If you define a new [`EarlyLintPass`], you will also need to add it to the
11//! [`crate::early_lint_methods!`] invocation in `lib.rs`.
12//!
13//! If you define a new [`LateLintPass`], you will also need to add it to the
14//! [`crate::late_lint_methods!`] invocation in `lib.rs`.
15
16use std::fmt::Write;
17
18use ast::token::TokenKind;
19use rustc_abi::BackendRepr;
20use rustc_ast::tokenstream::{TokenStream, TokenTree};
21use rustc_ast::visit::{FnCtxt, FnKind};
22use rustc_ast::{self as ast, *};
23use rustc_ast_pretty::pprust::expr_to_string;
24use rustc_errors::{Applicability, LintDiagnostic};
25use rustc_feature::{AttributeGate, BuiltinAttribute, GateIssue, Stability, deprecated_attributes};
26use rustc_hir as hir;
27use rustc_hir::def::{DefKind, Res};
28use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
29use rustc_hir::intravisit::FnKind as HirFnKind;
30use rustc_hir::{Body, FnDecl, GenericParamKind, PatKind, PredicateOrigin};
31use rustc_middle::bug;
32use rustc_middle::ty::layout::LayoutOf;
33use rustc_middle::ty::print::with_no_trimmed_paths;
34use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt, Upcast, VariantDef};
35use rustc_session::lint::FutureIncompatibilityReason;
36// hardwired lints from rustc_lint_defs
37pub use rustc_session::lint::builtin::*;
38use rustc_session::{declare_lint, declare_lint_pass, impl_lint_pass};
39use rustc_span::edition::Edition;
40use rustc_span::source_map::Spanned;
41use rustc_span::{BytePos, Ident, InnerSpan, Span, Symbol, kw, sym};
42use rustc_target::asm::InlineAsmArch;
43use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
44use rustc_trait_selection::traits::misc::type_allowed_to_implement_copy;
45use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
46use rustc_trait_selection::traits::{self};
47
48use crate::errors::BuiltinEllipsisInclusiveRangePatterns;
49use crate::lints::{
50 BuiltinAnonymousParams, BuiltinConstNoMangle, BuiltinDeprecatedAttrLink,
51 BuiltinDeprecatedAttrLinkSuggestion, BuiltinDerefNullptr, BuiltinDoubleNegations,
52 BuiltinDoubleNegationsAddParens, BuiltinEllipsisInclusiveRangePatternsLint,
53 BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinFeatureIssueNote,
54 BuiltinIncompleteFeatures, BuiltinIncompleteFeaturesHelp, BuiltinInternalFeatures,
55 BuiltinKeywordIdents, BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
56 BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
57 BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasBounds,
58 BuiltinUngatedAsyncFnTrackCaller, BuiltinUnpermittedTypeInit, BuiltinUnpermittedTypeInitSub,
59 BuiltinUnreachablePub, BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment,
60 BuiltinUnusedDocCommentSub, BuiltinWhileTrue, InvalidAsmLabel,
61};
62use crate::nonstandard_style::{MethodLateContext, method_context};
63use crate::{
64 EarlyContext, EarlyLintPass, LateContext, LateLintPass, Level, LintContext,
65 fluent_generated as fluent,
66};
67declare_lint! {
68 /// The `while_true` lint detects `while true { }`.
69 ///
70 /// ### Example
71 ///
72 /// ```rust,no_run
73 /// while true {
74 ///
75 /// }
76 /// ```
77 ///
78 /// {{produces}}
79 ///
80 /// ### Explanation
81 ///
82 /// `while true` should be replaced with `loop`. A `loop` expression is
83 /// the preferred way to write an infinite loop because it more directly
84 /// expresses the intent of the loop.
85 WHILE_TRUE,
86 Warn,
87 "suggest using `loop { }` instead of `while true { }`"
88}
89
90declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
91
92impl EarlyLintPass for WhileTrue {
93 #[inline]
94 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
95 if let ast::ExprKind::While(cond, _, label) = &e.kind
96 && let ast::ExprKind::Lit(token_lit) = cond.peel_parens().kind
97 && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
98 && !cond.span.from_expansion()
99 {
100 let condition_span = e.span.with_hi(cond.span.hi());
101 let replace = format!(
102 "{}loop",
103 label.map_or_else(String::new, |label| format!("{}: ", label.ident,))
104 );
105 cx.emit_span_lint(
106 WHILE_TRUE,
107 condition_span,
108 BuiltinWhileTrue { suggestion: condition_span, replace },
109 );
110 }
111 }
112}
113
114declare_lint! {
115 /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
116 /// instead of `Struct { x }` in a pattern.
117 ///
118 /// ### Example
119 ///
120 /// ```rust
121 /// struct Point {
122 /// x: i32,
123 /// y: i32,
124 /// }
125 ///
126 ///
127 /// fn main() {
128 /// let p = Point {
129 /// x: 5,
130 /// y: 5,
131 /// };
132 ///
133 /// match p {
134 /// Point { x: x, y: y } => (),
135 /// }
136 /// }
137 /// ```
138 ///
139 /// {{produces}}
140 ///
141 /// ### Explanation
142 ///
143 /// The preferred style is to avoid the repetition of specifying both the
144 /// field name and the binding name if both identifiers are the same.
145 NON_SHORTHAND_FIELD_PATTERNS,
146 Warn,
147 "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
148}
149
150declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
151
152impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
153 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
154 if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
155 let variant = cx
156 .typeck_results()
157 .pat_ty(pat)
158 .ty_adt_def()
159 .expect("struct pattern type is not an ADT")
160 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
161 for fieldpat in field_pats {
162 if fieldpat.is_shorthand {
163 continue;
164 }
165 if fieldpat.span.from_expansion() {
166 // Don't lint if this is a macro expansion: macro authors
167 // shouldn't have to worry about this kind of style issue
168 // (Issue #49588)
169 continue;
170 }
171 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
172 if cx.tcx.find_field_index(ident, variant)
173 == Some(cx.typeck_results().field_index(fieldpat.hir_id))
174 {
175 cx.emit_span_lint(
176 NON_SHORTHAND_FIELD_PATTERNS,
177 fieldpat.span,
178 BuiltinNonShorthandFieldPatterns {
179 ident,
180 suggestion: fieldpat.span,
181 prefix: binding_annot.prefix_str(),
182 },
183 );
184 }
185 }
186 }
187 }
188 }
189}
190
191declare_lint! {
192 /// The `unsafe_code` lint catches usage of `unsafe` code and other
193 /// potentially unsound constructs like `no_mangle`, `export_name`,
194 /// and `link_section`.
195 ///
196 /// ### Example
197 ///
198 /// ```rust,compile_fail
199 /// #![deny(unsafe_code)]
200 /// fn main() {
201 /// unsafe {
202 ///
203 /// }
204 /// }
205 ///
206 /// #[no_mangle]
207 /// fn func_0() { }
208 ///
209 /// #[export_name = "exported_symbol_name"]
210 /// pub fn name_in_rust() { }
211 ///
212 /// #[no_mangle]
213 /// #[link_section = ".example_section"]
214 /// pub static VAR1: u32 = 1;
215 /// ```
216 ///
217 /// {{produces}}
218 ///
219 /// ### Explanation
220 ///
221 /// This lint is intended to restrict the usage of `unsafe` blocks and other
222 /// constructs (including, but not limited to `no_mangle`, `link_section`
223 /// and `export_name` attributes) wrong usage of which causes undefined
224 /// behavior.
225 UNSAFE_CODE,
226 Allow,
227 "usage of `unsafe` code and other potentially unsound constructs",
228 @eval_always = true
229}
230
231declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
232
233impl UnsafeCode {
234 fn report_unsafe(
235 &self,
236 cx: &EarlyContext<'_>,
237 span: Span,
238 decorate: impl for<'a> LintDiagnostic<'a, ()>,
239 ) {
240 // This comes from a macro that has `#[allow_internal_unsafe]`.
241 if span.allows_unsafe() {
242 return;
243 }
244
245 cx.emit_span_lint(UNSAFE_CODE, span, decorate);
246 }
247}
248
249impl EarlyLintPass for UnsafeCode {
250 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
251 if attr.has_name(sym::allow_internal_unsafe) {
252 self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe);
253 }
254 }
255
256 #[inline]
257 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
258 if let ast::ExprKind::Block(ref blk, _) = e.kind {
259 // Don't warn about generated blocks; that'll just pollute the output.
260 if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
261 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
262 }
263 }
264 }
265
266 fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
267 match it.kind {
268 ast::ItemKind::Trait(box ast::Trait { safety: ast::Safety::Unsafe(_), .. }) => {
269 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
270 }
271
272 ast::ItemKind::Impl(box ast::Impl { safety: ast::Safety::Unsafe(_), .. }) => {
273 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
274 }
275
276 ast::ItemKind::Fn(..) => {
277 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
278 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
279 }
280
281 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
282 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
283 }
284
285 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
286 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
287 }
288 }
289
290 ast::ItemKind::Static(..) => {
291 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
292 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
293 }
294
295 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
296 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
297 }
298
299 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
300 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
301 }
302 }
303
304 ast::ItemKind::GlobalAsm(..) => {
305 self.report_unsafe(cx, it.span, BuiltinUnsafe::GlobalAsm);
306 }
307
308 ast::ItemKind::ForeignMod(ForeignMod { safety, .. }) => {
309 if let Safety::Unsafe(_) = safety {
310 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeExternBlock);
311 }
312 }
313
314 _ => {}
315 }
316 }
317
318 fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
319 if let ast::AssocItemKind::Fn(..) = it.kind {
320 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
321 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
322 }
323 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
324 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
325 }
326 }
327 }
328
329 fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
330 if let FnKind::Fn(
331 ctxt,
332 _,
333 _,
334 ast::Fn {
335 sig: ast::FnSig { header: ast::FnHeader { safety: ast::Safety::Unsafe(_), .. }, .. },
336 body,
337 ..
338 },
339 ) = fk
340 {
341 let decorator = match ctxt {
342 FnCtxt::Foreign => return,
343 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
344 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
345 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
346 };
347 self.report_unsafe(cx, span, decorator);
348 }
349 }
350}
351
352declare_lint! {
353 /// The `missing_docs` lint detects missing documentation for public items.
354 ///
355 /// ### Example
356 ///
357 /// ```rust,compile_fail
358 /// #![deny(missing_docs)]
359 /// pub fn foo() {}
360 /// ```
361 ///
362 /// {{produces}}
363 ///
364 /// ### Explanation
365 ///
366 /// This lint is intended to ensure that a library is well-documented.
367 /// Items without documentation can be difficult for users to understand
368 /// how to use properly.
369 ///
370 /// This lint is "allow" by default because it can be noisy, and not all
371 /// projects may want to enforce everything to be documented.
372 pub MISSING_DOCS,
373 Allow,
374 "detects missing documentation for public members",
375 report_in_external_macro
376}
377
378#[derive(Default)]
379pub struct MissingDoc;
380
381impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
382
383fn has_doc(attr: &hir::Attribute) -> bool {
384 if attr.is_doc_comment() {
385 return true;
386 }
387
388 if !attr.has_name(sym::doc) {
389 return false;
390 }
391
392 if attr.value_str().is_some() {
393 return true;
394 }
395
396 if let Some(list) = attr.meta_item_list() {
397 for meta in list {
398 if meta.has_name(sym::hidden) {
399 return true;
400 }
401 }
402 }
403
404 false
405}
406
407impl MissingDoc {
408 fn check_missing_docs_attrs(
409 &self,
410 cx: &LateContext<'_>,
411 def_id: LocalDefId,
412 article: &'static str,
413 desc: &'static str,
414 ) {
415 // Only check publicly-visible items, using the result from the privacy pass.
416 // It's an option so the crate root can also use this function (it doesn't
417 // have a `NodeId`).
418 if def_id != CRATE_DEF_ID && !cx.effective_visibilities.is_exported(def_id) {
419 return;
420 }
421
422 let attrs = cx.tcx.hir_attrs(cx.tcx.local_def_id_to_hir_id(def_id));
423 let has_doc = attrs.iter().any(has_doc);
424 if !has_doc {
425 cx.emit_span_lint(
426 MISSING_DOCS,
427 cx.tcx.def_span(def_id),
428 BuiltinMissingDoc { article, desc },
429 );
430 }
431 }
432}
433
434impl<'tcx> LateLintPass<'tcx> for MissingDoc {
435 fn check_crate(&mut self, cx: &LateContext<'_>) {
436 self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
437 }
438
439 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
440 // Previously the Impl and Use types have been excluded from missing docs,
441 // so we will continue to exclude them for compatibility.
442 //
443 // The documentation on `ExternCrate` is not used at the moment so no need to warn for it.
444 if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(_) =
445 it.kind
446 {
447 return;
448 }
449
450 let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
451 self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
452 }
453
454 fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
455 let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
456
457 self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
458 }
459
460 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
461 let context = method_context(cx, impl_item.owner_id.def_id);
462
463 match context {
464 // If the method is an impl for a trait, don't doc.
465 MethodLateContext::TraitImpl => return,
466 MethodLateContext::TraitAutoImpl => {}
467 // If the method is an impl for an item with docs_hidden, don't doc.
468 MethodLateContext::PlainImpl => {
469 let parent = cx.tcx.hir_get_parent_item(impl_item.hir_id());
470 let impl_ty = cx.tcx.type_of(parent).instantiate_identity();
471 let outerdef = match impl_ty.kind() {
472 ty::Adt(def, _) => Some(def.did()),
473 ty::Foreign(def_id) => Some(*def_id),
474 _ => None,
475 };
476 let is_hidden = match outerdef {
477 Some(id) => cx.tcx.is_doc_hidden(id),
478 None => false,
479 };
480 if is_hidden {
481 return;
482 }
483 }
484 }
485
486 let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
487 self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
488 }
489
490 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
491 let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
492 self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
493 }
494
495 fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
496 if !sf.is_positional() {
497 self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
498 }
499 }
500
501 fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
502 self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
503 }
504}
505
506declare_lint! {
507 /// The `missing_copy_implementations` lint detects potentially-forgotten
508 /// implementations of [`Copy`] for public types.
509 ///
510 /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
511 ///
512 /// ### Example
513 ///
514 /// ```rust,compile_fail
515 /// #![deny(missing_copy_implementations)]
516 /// pub struct Foo {
517 /// pub field: i32
518 /// }
519 /// # fn main() {}
520 /// ```
521 ///
522 /// {{produces}}
523 ///
524 /// ### Explanation
525 ///
526 /// Historically (before 1.0), types were automatically marked as `Copy`
527 /// if possible. This was changed so that it required an explicit opt-in
528 /// by implementing the `Copy` trait. As part of this change, a lint was
529 /// added to alert if a copyable type was not marked `Copy`.
530 ///
531 /// This lint is "allow" by default because this code isn't bad; it is
532 /// common to write newtypes like this specifically so that a `Copy` type
533 /// is no longer `Copy`. `Copy` types can result in unintended copies of
534 /// large data which can impact performance.
535 pub MISSING_COPY_IMPLEMENTATIONS,
536 Allow,
537 "detects potentially-forgotten implementations of `Copy`"
538}
539
540declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
541
542impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
543 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
544 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
545 return;
546 }
547 let (def, ty) = match item.kind {
548 hir::ItemKind::Struct(_, ast_generics) => {
549 if !ast_generics.params.is_empty() {
550 return;
551 }
552 let def = cx.tcx.adt_def(item.owner_id);
553 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
554 }
555 hir::ItemKind::Union(_, ast_generics) => {
556 if !ast_generics.params.is_empty() {
557 return;
558 }
559 let def = cx.tcx.adt_def(item.owner_id);
560 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
561 }
562 hir::ItemKind::Enum(_, ast_generics) => {
563 if !ast_generics.params.is_empty() {
564 return;
565 }
566 let def = cx.tcx.adt_def(item.owner_id);
567 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
568 }
569 _ => return,
570 };
571 if def.has_dtor(cx.tcx) {
572 return;
573 }
574
575 // If the type contains a raw pointer, it may represent something like a handle,
576 // and recommending Copy might be a bad idea.
577 for field in def.all_fields() {
578 let did = field.did;
579 if cx.tcx.type_of(did).instantiate_identity().is_raw_ptr() {
580 return;
581 }
582 }
583 if cx.type_is_copy_modulo_regions(ty) {
584 return;
585 }
586 if type_implements_negative_copy_modulo_regions(cx.tcx, ty, cx.typing_env()) {
587 return;
588 }
589 if def.is_variant_list_non_exhaustive()
590 || def.variants().iter().any(|variant| variant.is_field_list_non_exhaustive())
591 {
592 return;
593 }
594
595 // We shouldn't recommend implementing `Copy` on stateful things,
596 // such as iterators.
597 if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
598 && cx
599 .tcx
600 .infer_ctxt()
601 .build(cx.typing_mode())
602 .type_implements_trait(iter_trait, [ty], cx.param_env)
603 .must_apply_modulo_regions()
604 {
605 return;
606 }
607
608 // Default value of clippy::trivially_copy_pass_by_ref
609 const MAX_SIZE: u64 = 256;
610
611 if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
612 if size > MAX_SIZE {
613 return;
614 }
615 }
616
617 if type_allowed_to_implement_copy(
618 cx.tcx,
619 cx.param_env,
620 ty,
621 traits::ObligationCause::misc(item.span, item.owner_id.def_id),
622 hir::Safety::Safe,
623 )
624 .is_ok()
625 {
626 cx.emit_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
627 }
628 }
629}
630
631/// Check whether a `ty` has a negative `Copy` implementation, ignoring outlives constraints.
632fn type_implements_negative_copy_modulo_regions<'tcx>(
633 tcx: TyCtxt<'tcx>,
634 ty: Ty<'tcx>,
635 typing_env: ty::TypingEnv<'tcx>,
636) -> bool {
637 let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
638 let trait_ref = ty::TraitRef::new(tcx, tcx.require_lang_item(hir::LangItem::Copy, None), [ty]);
639 let pred = ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Negative };
640 let obligation = traits::Obligation {
641 cause: traits::ObligationCause::dummy(),
642 param_env,
643 recursion_depth: 0,
644 predicate: pred.upcast(tcx),
645 };
646 infcx.predicate_must_hold_modulo_regions(&obligation)
647}
648
649declare_lint! {
650 /// The `missing_debug_implementations` lint detects missing
651 /// implementations of [`fmt::Debug`] for public types.
652 ///
653 /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
654 ///
655 /// ### Example
656 ///
657 /// ```rust,compile_fail
658 /// #![deny(missing_debug_implementations)]
659 /// pub struct Foo;
660 /// # fn main() {}
661 /// ```
662 ///
663 /// {{produces}}
664 ///
665 /// ### Explanation
666 ///
667 /// Having a `Debug` implementation on all types can assist with
668 /// debugging, as it provides a convenient way to format and display a
669 /// value. Using the `#[derive(Debug)]` attribute will automatically
670 /// generate a typical implementation, or a custom implementation can be
671 /// added by manually implementing the `Debug` trait.
672 ///
673 /// This lint is "allow" by default because adding `Debug` to all types can
674 /// have a negative impact on compile time and code size. It also requires
675 /// boilerplate to be added to every type, which can be an impediment.
676 MISSING_DEBUG_IMPLEMENTATIONS,
677 Allow,
678 "detects missing implementations of Debug"
679}
680
681#[derive(Default)]
682pub(crate) struct MissingDebugImplementations;
683
684impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
685
686impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
687 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
688 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
689 return;
690 }
691
692 match item.kind {
693 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
694 _ => return,
695 }
696
697 // Avoid listing trait impls if the trait is allowed.
698 let (level, _) = cx.tcx.lint_level_at_node(MISSING_DEBUG_IMPLEMENTATIONS, item.hir_id());
699 if level == Level::Allow {
700 return;
701 }
702
703 let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { return };
704
705 let has_impl = cx
706 .tcx
707 .non_blanket_impls_for_ty(debug, cx.tcx.type_of(item.owner_id).instantiate_identity())
708 .next()
709 .is_some();
710 if !has_impl {
711 cx.emit_span_lint(
712 MISSING_DEBUG_IMPLEMENTATIONS,
713 item.span,
714 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
715 );
716 }
717 }
718}
719
720declare_lint! {
721 /// The `anonymous_parameters` lint detects anonymous parameters in trait
722 /// definitions.
723 ///
724 /// ### Example
725 ///
726 /// ```rust,edition2015,compile_fail
727 /// #![deny(anonymous_parameters)]
728 /// // edition 2015
729 /// pub trait Foo {
730 /// fn foo(usize);
731 /// }
732 /// fn main() {}
733 /// ```
734 ///
735 /// {{produces}}
736 ///
737 /// ### Explanation
738 ///
739 /// This syntax is mostly a historical accident, and can be worked around
740 /// quite easily by adding an `_` pattern or a descriptive identifier:
741 ///
742 /// ```rust
743 /// trait Foo {
744 /// fn foo(_: usize);
745 /// }
746 /// ```
747 ///
748 /// This syntax is now a hard error in the 2018 edition. In the 2015
749 /// edition, this lint is "warn" by default. This lint
750 /// enables the [`cargo fix`] tool with the `--edition` flag to
751 /// automatically transition old code from the 2015 edition to 2018. The
752 /// tool will run this lint and automatically apply the
753 /// suggested fix from the compiler (which is to add `_` to each
754 /// parameter). This provides a completely automated way to update old
755 /// code for a new edition. See [issue #41686] for more details.
756 ///
757 /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
758 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
759 pub ANONYMOUS_PARAMETERS,
760 Warn,
761 "detects anonymous parameters",
762 @future_incompatible = FutureIncompatibleInfo {
763 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
764 reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
765 };
766}
767
768declare_lint_pass!(
769 /// Checks for use of anonymous parameters (RFC 1685).
770 AnonymousParameters => [ANONYMOUS_PARAMETERS]
771);
772
773impl EarlyLintPass for AnonymousParameters {
774 fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
775 if cx.sess().edition() != Edition::Edition2015 {
776 // This is a hard error in future editions; avoid linting and erroring
777 return;
778 }
779 if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
780 for arg in sig.decl.inputs.iter() {
781 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
782 if ident.name == kw::Empty {
783 let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
784
785 let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
786 (snip.as_str(), Applicability::MachineApplicable)
787 } else {
788 ("<type>", Applicability::HasPlaceholders)
789 };
790 cx.emit_span_lint(
791 ANONYMOUS_PARAMETERS,
792 arg.pat.span,
793 BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
794 );
795 }
796 }
797 }
798 }
799 }
800}
801
802/// Check for use of attributes which have been deprecated.
803#[derive(Clone)]
804pub struct DeprecatedAttr {
805 // This is not free to compute, so we want to keep it around, rather than
806 // compute it for every attribute.
807 depr_attrs: Vec<&'static BuiltinAttribute>,
808}
809
810impl_lint_pass!(DeprecatedAttr => []);
811
812impl Default for DeprecatedAttr {
813 fn default() -> Self {
814 DeprecatedAttr { depr_attrs: deprecated_attributes() }
815 }
816}
817
818impl EarlyLintPass for DeprecatedAttr {
819 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
820 for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
821 if attr.ident().map(|ident| ident.name) == Some(*name) {
822 if let &AttributeGate::Gated(
823 Stability::Deprecated(link, suggestion),
824 name,
825 reason,
826 _,
827 ) = gate
828 {
829 let suggestion = match suggestion {
830 Some(msg) => {
831 BuiltinDeprecatedAttrLinkSuggestion::Msg { suggestion: attr.span, msg }
832 }
833 None => {
834 BuiltinDeprecatedAttrLinkSuggestion::Default { suggestion: attr.span }
835 }
836 };
837 cx.emit_span_lint(
838 DEPRECATED,
839 attr.span,
840 BuiltinDeprecatedAttrLink { name, reason, link, suggestion },
841 );
842 }
843 return;
844 }
845 }
846 }
847}
848
849fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
850 use rustc_ast::token::CommentKind;
851
852 let mut attrs = attrs.iter().peekable();
853
854 // Accumulate a single span for sugared doc comments.
855 let mut sugared_span: Option<Span> = None;
856
857 while let Some(attr) = attrs.next() {
858 let is_doc_comment = attr.is_doc_comment();
859 if is_doc_comment {
860 sugared_span =
861 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
862 }
863
864 if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) {
865 continue;
866 }
867
868 let span = sugared_span.take().unwrap_or(attr.span);
869
870 if is_doc_comment || attr.has_name(sym::doc) {
871 let sub = match attr.kind {
872 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
873 BuiltinUnusedDocCommentSub::PlainHelp
874 }
875 AttrKind::DocComment(CommentKind::Block, _) => {
876 BuiltinUnusedDocCommentSub::BlockHelp
877 }
878 };
879 cx.emit_span_lint(
880 UNUSED_DOC_COMMENTS,
881 span,
882 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
883 );
884 }
885 }
886}
887
888impl EarlyLintPass for UnusedDocComment {
889 fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
890 let kind = match stmt.kind {
891 ast::StmtKind::Let(..) => "statements",
892 // Disabled pending discussion in #78306
893 ast::StmtKind::Item(..) => return,
894 // expressions will be reported by `check_expr`.
895 ast::StmtKind::Empty
896 | ast::StmtKind::Semi(_)
897 | ast::StmtKind::Expr(_)
898 | ast::StmtKind::MacCall(_) => return,
899 };
900
901 warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
902 }
903
904 fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
905 if let Some(body) = &arm.body {
906 let arm_span = arm.pat.span.with_hi(body.span.hi());
907 warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
908 }
909 }
910
911 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
912 if let ast::PatKind::Struct(_, _, fields, _) = &pat.kind {
913 for field in fields {
914 warn_if_doc(cx, field.span, "pattern fields", &field.attrs);
915 }
916 }
917 }
918
919 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
920 warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
921
922 if let ExprKind::Struct(s) = &expr.kind {
923 for field in &s.fields {
924 warn_if_doc(cx, field.span, "expression fields", &field.attrs);
925 }
926 }
927 }
928
929 fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
930 warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs);
931 }
932
933 fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
934 warn_if_doc(cx, block.span, "blocks", block.attrs());
935 }
936
937 fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
938 if let ast::ItemKind::ForeignMod(_) = item.kind {
939 warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
940 }
941 }
942}
943
944declare_lint! {
945 /// The `no_mangle_const_items` lint detects any `const` items with the
946 /// [`no_mangle` attribute].
947 ///
948 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
949 ///
950 /// ### Example
951 ///
952 /// ```rust,compile_fail
953 /// #[no_mangle]
954 /// const FOO: i32 = 5;
955 /// ```
956 ///
957 /// {{produces}}
958 ///
959 /// ### Explanation
960 ///
961 /// Constants do not have their symbols exported, and therefore, this
962 /// probably means you meant to use a [`static`], not a [`const`].
963 ///
964 /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
965 /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
966 NO_MANGLE_CONST_ITEMS,
967 Deny,
968 "const items will not have their symbols exported"
969}
970
971declare_lint! {
972 /// The `no_mangle_generic_items` lint detects generic items that must be
973 /// mangled.
974 ///
975 /// ### Example
976 ///
977 /// ```rust
978 /// #[unsafe(no_mangle)]
979 /// fn foo<T>(t: T) {}
980 /// ```
981 ///
982 /// {{produces}}
983 ///
984 /// ### Explanation
985 ///
986 /// A function with generics must have its symbol mangled to accommodate
987 /// the generic parameter. The [`no_mangle` attribute] has no effect in
988 /// this situation, and should be removed.
989 ///
990 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
991 NO_MANGLE_GENERIC_ITEMS,
992 Warn,
993 "generic items must be mangled"
994}
995
996declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
997
998impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
999 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1000 let attrs = cx.tcx.hir_attrs(it.hir_id());
1001 let check_no_mangle_on_generic_fn = |no_mangle_attr: &hir::Attribute,
1002 impl_generics: Option<&hir::Generics<'_>>,
1003 generics: &hir::Generics<'_>,
1004 span| {
1005 for param in
1006 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1007 {
1008 match param.kind {
1009 GenericParamKind::Lifetime { .. } => {}
1010 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1011 cx.emit_span_lint(
1012 NO_MANGLE_GENERIC_ITEMS,
1013 span,
1014 BuiltinNoMangleGeneric { suggestion: no_mangle_attr.span() },
1015 );
1016 break;
1017 }
1018 }
1019 }
1020 };
1021 match it.kind {
1022 hir::ItemKind::Fn { generics, .. } => {
1023 if let Some(no_mangle_attr) = attr::find_by_name(attrs, sym::no_mangle) {
1024 check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1025 }
1026 }
1027 hir::ItemKind::Const(..) => {
1028 if attr::contains_name(attrs, sym::no_mangle) {
1029 // account for "pub const" (#45562)
1030 let start = cx
1031 .tcx
1032 .sess
1033 .source_map()
1034 .span_to_snippet(it.span)
1035 .map(|snippet| snippet.find("const").unwrap_or(0))
1036 .unwrap_or(0) as u32;
1037 // `const` is 5 chars
1038 let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1039
1040 // Const items do not refer to a particular location in memory, and therefore
1041 // don't have anything to attach a symbol to
1042 cx.emit_span_lint(
1043 NO_MANGLE_CONST_ITEMS,
1044 it.span,
1045 BuiltinConstNoMangle { suggestion },
1046 );
1047 }
1048 }
1049 hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1050 for it in *items {
1051 if let hir::AssocItemKind::Fn { .. } = it.kind {
1052 if let Some(no_mangle_attr) =
1053 attr::find_by_name(cx.tcx.hir_attrs(it.id.hir_id()), sym::no_mangle)
1054 {
1055 check_no_mangle_on_generic_fn(
1056 no_mangle_attr,
1057 Some(generics),
1058 cx.tcx.hir_get_generics(it.id.owner_id.def_id).unwrap(),
1059 it.span,
1060 );
1061 }
1062 }
1063 }
1064 }
1065 _ => {}
1066 }
1067 }
1068}
1069
1070declare_lint! {
1071 /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1072 /// T` because it is [undefined behavior].
1073 ///
1074 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1075 ///
1076 /// ### Example
1077 ///
1078 /// ```rust,compile_fail
1079 /// unsafe {
1080 /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
1081 /// }
1082 /// ```
1083 ///
1084 /// {{produces}}
1085 ///
1086 /// ### Explanation
1087 ///
1088 /// Certain assumptions are made about aliasing of data, and this transmute
1089 /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1090 ///
1091 /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1092 MUTABLE_TRANSMUTES,
1093 Deny,
1094 "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1095}
1096
1097declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1098
1099impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1100 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1101 if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1102 get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1103 {
1104 if from_mutbl < to_mutbl {
1105 cx.emit_span_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1106 }
1107 }
1108
1109 fn get_transmute_from_to<'tcx>(
1110 cx: &LateContext<'tcx>,
1111 expr: &hir::Expr<'_>,
1112 ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1113 let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1114 cx.qpath_res(qpath, expr.hir_id)
1115 } else {
1116 return None;
1117 };
1118 if let Res::Def(DefKind::Fn, did) = def {
1119 if !def_id_is_transmute(cx, did) {
1120 return None;
1121 }
1122 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1123 let from = sig.inputs().skip_binder()[0];
1124 let to = sig.output().skip_binder();
1125 return Some((from, to));
1126 }
1127 None
1128 }
1129
1130 fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1131 cx.tcx.is_intrinsic(def_id, sym::transmute)
1132 }
1133 }
1134}
1135
1136declare_lint! {
1137 /// The `unstable_features` lint detects uses of `#![feature]`.
1138 ///
1139 /// ### Example
1140 ///
1141 /// ```rust,compile_fail
1142 /// #![deny(unstable_features)]
1143 /// #![feature(test)]
1144 /// ```
1145 ///
1146 /// {{produces}}
1147 ///
1148 /// ### Explanation
1149 ///
1150 /// In larger nightly-based projects which
1151 ///
1152 /// * consist of a multitude of crates where a subset of crates has to compile on
1153 /// stable either unconditionally or depending on a `cfg` flag to for example
1154 /// allow stable users to depend on them,
1155 /// * don't use nightly for experimental features but for, e.g., unstable options only,
1156 ///
1157 /// this lint may come in handy to enforce policies of these kinds.
1158 UNSTABLE_FEATURES,
1159 Allow,
1160 "enabling unstable features"
1161}
1162
1163declare_lint_pass!(
1164 /// Forbids using the `#[feature(...)]` attribute
1165 UnstableFeatures => [UNSTABLE_FEATURES]
1166);
1167
1168impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1169 fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &hir::Attribute) {
1170 if attr.has_name(sym::feature)
1171 && let Some(items) = attr.meta_item_list()
1172 {
1173 for item in items {
1174 cx.emit_span_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1175 }
1176 }
1177 }
1178}
1179
1180declare_lint! {
1181 /// The `ungated_async_fn_track_caller` lint warns when the
1182 /// `#[track_caller]` attribute is used on an async function
1183 /// without enabling the corresponding unstable feature flag.
1184 ///
1185 /// ### Example
1186 ///
1187 /// ```rust
1188 /// #[track_caller]
1189 /// async fn foo() {}
1190 /// ```
1191 ///
1192 /// {{produces}}
1193 ///
1194 /// ### Explanation
1195 ///
1196 /// The attribute must be used in conjunction with the
1197 /// [`async_fn_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1198 /// annotation will function as a no-op.
1199 ///
1200 /// [`async_fn_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/async-fn-track-caller.html
1201 UNGATED_ASYNC_FN_TRACK_CALLER,
1202 Warn,
1203 "enabling track_caller on an async fn is a no-op unless the async_fn_track_caller feature is enabled"
1204}
1205
1206declare_lint_pass!(
1207 /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to
1208 /// do anything
1209 UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1210);
1211
1212impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1213 fn check_fn(
1214 &mut self,
1215 cx: &LateContext<'_>,
1216 fn_kind: HirFnKind<'_>,
1217 _: &'tcx FnDecl<'_>,
1218 _: &'tcx Body<'_>,
1219 span: Span,
1220 def_id: LocalDefId,
1221 ) {
1222 if fn_kind.asyncness().is_async()
1223 && !cx.tcx.features().async_fn_track_caller()
1224 // Now, check if the function has the `#[track_caller]` attribute
1225 && let Some(attr) = cx.tcx.get_attr(def_id, sym::track_caller)
1226 {
1227 cx.emit_span_lint(
1228 UNGATED_ASYNC_FN_TRACK_CALLER,
1229 attr.span(),
1230 BuiltinUngatedAsyncFnTrackCaller { label: span, session: &cx.tcx.sess },
1231 );
1232 }
1233 }
1234}
1235
1236declare_lint! {
1237 /// The `unreachable_pub` lint triggers for `pub` items not reachable from other crates - that
1238 /// means neither directly accessible, nor reexported (with `pub use`), nor leaked through
1239 /// things like return types (which the [`unnameable_types`] lint can detect if desired).
1240 ///
1241 /// ### Example
1242 ///
1243 /// ```rust,compile_fail
1244 /// #![deny(unreachable_pub)]
1245 /// mod foo {
1246 /// pub mod bar {
1247 ///
1248 /// }
1249 /// }
1250 /// ```
1251 ///
1252 /// {{produces}}
1253 ///
1254 /// ### Explanation
1255 ///
1256 /// The `pub` keyword both expresses an intent for an item to be publicly available, and also
1257 /// signals to the compiler to make the item publicly accessible. The intent can only be
1258 /// satisfied, however, if all items which contain this item are *also* publicly accessible.
1259 /// Thus, this lint serves to identify situations where the intent does not match the reality.
1260 ///
1261 /// If you wish the item to be accessible elsewhere within the crate, but not outside it, the
1262 /// `pub(crate)` visibility is recommended to be used instead. This more clearly expresses the
1263 /// intent that the item is only visible within its own crate.
1264 ///
1265 /// This lint is "allow" by default because it will trigger for a large amount of existing Rust code.
1266 /// Eventually it is desired for this to become warn-by-default.
1267 ///
1268 /// [`unnameable_types`]: #unnameable-types
1269 pub UNREACHABLE_PUB,
1270 Allow,
1271 "`pub` items not reachable from crate root"
1272}
1273
1274declare_lint_pass!(
1275 /// Lint for items marked `pub` that aren't reachable from other crates.
1276 UnreachablePub => [UNREACHABLE_PUB]
1277);
1278
1279impl UnreachablePub {
1280 fn perform_lint(
1281 &self,
1282 cx: &LateContext<'_>,
1283 what: &str,
1284 def_id: LocalDefId,
1285 vis_span: Span,
1286 exportable: bool,
1287 ) {
1288 let mut applicability = Applicability::MachineApplicable;
1289 if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1290 {
1291 // prefer suggesting `pub(super)` instead of `pub(crate)` when possible,
1292 // except when `pub(super) == pub(crate)`
1293 let new_vis = if let Some(ty::Visibility::Restricted(restricted_did)) =
1294 cx.effective_visibilities.effective_vis(def_id).map(|effective_vis| {
1295 effective_vis.at_level(rustc_middle::middle::privacy::Level::Reachable)
1296 })
1297 && let parent_parent = cx
1298 .tcx
1299 .parent_module_from_def_id(cx.tcx.parent_module_from_def_id(def_id).into())
1300 && *restricted_did == parent_parent.to_local_def_id()
1301 && !restricted_did.to_def_id().is_crate_root()
1302 {
1303 "pub(super)"
1304 } else {
1305 "pub(crate)"
1306 };
1307
1308 if vis_span.from_expansion() {
1309 applicability = Applicability::MaybeIncorrect;
1310 }
1311 let def_span = cx.tcx.def_span(def_id);
1312 cx.emit_span_lint(
1313 UNREACHABLE_PUB,
1314 def_span,
1315 BuiltinUnreachablePub {
1316 what,
1317 new_vis,
1318 suggestion: (vis_span, applicability),
1319 help: exportable,
1320 },
1321 );
1322 }
1323 }
1324}
1325
1326impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1327 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1328 // Do not warn for fake `use` statements.
1329 if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1330 return;
1331 }
1332 self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1333 }
1334
1335 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1336 self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1337 }
1338
1339 fn check_field_def(&mut self, _cx: &LateContext<'_>, _field: &hir::FieldDef<'_>) {
1340 // - If an ADT definition is reported then we don't need to check fields
1341 // (as it would add unnecessary complexity to the source code, the struct
1342 // definition is in the immediate proximity to give the "real" visibility).
1343 // - If an ADT is not reported because it's not `pub` - we don't need to
1344 // check fields.
1345 // - If an ADT is not reported because it's reachable - we also don't need
1346 // to check fields because then they are reachable by construction if they
1347 // are pub.
1348 //
1349 // Therefore in no case we check the fields.
1350 //
1351 // cf. https://github.com/rust-lang/rust/pull/126013#issuecomment-2152839205
1352 // cf. https://github.com/rust-lang/rust/pull/126040#issuecomment-2152944506
1353 }
1354
1355 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1356 // Only lint inherent impl items.
1357 if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() {
1358 self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false);
1359 }
1360 }
1361}
1362
1363declare_lint! {
1364 /// The `type_alias_bounds` lint detects bounds in type aliases.
1365 ///
1366 /// ### Example
1367 ///
1368 /// ```rust
1369 /// type SendVec<T: Send> = Vec<T>;
1370 /// ```
1371 ///
1372 /// {{produces}}
1373 ///
1374 /// ### Explanation
1375 ///
1376 /// Trait and lifetime bounds on generic parameters and in where clauses of
1377 /// type aliases are not checked at usage sites of the type alias. Moreover,
1378 /// they are not thoroughly checked for correctness at their definition site
1379 /// either similar to the aliased type.
1380 ///
1381 /// This is a known limitation of the type checker that may be lifted in a
1382 /// future edition. Permitting such bounds in light of this was unintentional.
1383 ///
1384 /// While these bounds may have secondary effects such as enabling the use of
1385 /// "shorthand" associated type paths[^1] and affecting the default trait
1386 /// object lifetime[^2] of trait object types passed to the type alias, this
1387 /// should not have been allowed until the aforementioned restrictions of the
1388 /// type checker have been lifted.
1389 ///
1390 /// Using such bounds is highly discouraged as they are actively misleading.
1391 ///
1392 /// [^1]: I.e., paths of the form `T::Assoc` where `T` is a type parameter
1393 /// bounded by trait `Trait` which defines an associated type called `Assoc`
1394 /// as opposed to a fully qualified path of the form `<T as Trait>::Assoc`.
1395 /// [^2]: <https://doc.rust-lang.org/reference/lifetime-elision.html#default-trait-object-lifetimes>
1396 TYPE_ALIAS_BOUNDS,
1397 Warn,
1398 "bounds in type aliases are not enforced"
1399}
1400
1401declare_lint_pass!(TypeAliasBounds => [TYPE_ALIAS_BOUNDS]);
1402
1403impl TypeAliasBounds {
1404 pub(crate) fn affects_object_lifetime_defaults(pred: &hir::WherePredicate<'_>) -> bool {
1405 // Bounds of the form `T: 'a` with `T` type param affect object lifetime defaults.
1406 if let hir::WherePredicateKind::BoundPredicate(pred) = pred.kind
1407 && pred.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Outlives(_)))
1408 && pred.bound_generic_params.is_empty() // indeed, even if absent from the RHS
1409 && pred.bounded_ty.as_generic_param().is_some()
1410 {
1411 return true;
1412 }
1413 false
1414 }
1415}
1416
1417impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1418 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1419 let hir::ItemKind::TyAlias(hir_ty, generics) = item.kind else { return };
1420
1421 // There must not be a where clause.
1422 if generics.predicates.is_empty() {
1423 return;
1424 }
1425
1426 // Bounds of lazy type aliases and TAITs are respected.
1427 if cx.tcx.type_alias_is_lazy(item.owner_id) {
1428 return;
1429 }
1430
1431 // FIXME(generic_const_exprs): Revisit this before stabilization.
1432 // See also `tests/ui/const-generics/generic_const_exprs/type-alias-bounds.rs`.
1433 let ty = cx.tcx.type_of(item.owner_id).instantiate_identity();
1434 if ty.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION)
1435 && cx.tcx.features().generic_const_exprs()
1436 {
1437 return;
1438 }
1439
1440 // NOTE(inherent_associated_types): While we currently do take some bounds in type
1441 // aliases into consideration during IAT *selection*, we don't perform full use+def
1442 // site wfchecking for such type aliases. Therefore TAB should still trigger.
1443 // See also `tests/ui/associated-inherent-types/type-alias-bounds.rs`.
1444
1445 let mut where_spans = Vec::new();
1446 let mut inline_spans = Vec::new();
1447 let mut inline_sugg = Vec::new();
1448
1449 for p in generics.predicates {
1450 let span = p.span;
1451 if p.kind.in_where_clause() {
1452 where_spans.push(span);
1453 } else {
1454 for b in p.kind.bounds() {
1455 inline_spans.push(b.span());
1456 }
1457 inline_sugg.push((span, String::new()));
1458 }
1459 }
1460
1461 let mut ty = Some(hir_ty);
1462 let enable_feat_help = cx.tcx.sess.is_nightly_build();
1463
1464 if let [.., label_sp] = *where_spans {
1465 cx.emit_span_lint(
1466 TYPE_ALIAS_BOUNDS,
1467 where_spans,
1468 BuiltinTypeAliasBounds {
1469 in_where_clause: true,
1470 label: label_sp,
1471 enable_feat_help,
1472 suggestions: vec![(generics.where_clause_span, String::new())],
1473 preds: generics.predicates,
1474 ty: ty.take(),
1475 },
1476 );
1477 }
1478 if let [.., label_sp] = *inline_spans {
1479 cx.emit_span_lint(
1480 TYPE_ALIAS_BOUNDS,
1481 inline_spans,
1482 BuiltinTypeAliasBounds {
1483 in_where_clause: false,
1484 label: label_sp,
1485 enable_feat_help,
1486 suggestions: inline_sugg,
1487 preds: generics.predicates,
1488 ty,
1489 },
1490 );
1491 }
1492 }
1493}
1494
1495pub(crate) struct ShorthandAssocTyCollector {
1496 pub(crate) qselves: Vec<Span>,
1497}
1498
1499impl hir::intravisit::Visitor<'_> for ShorthandAssocTyCollector {
1500 fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, _: Span) {
1501 // Look for "type-parameter shorthand-associated-types". I.e., paths of the
1502 // form `T::Assoc` with `T` type param. These are reliant on trait bounds.
1503 if let hir::QPath::TypeRelative(qself, _) = qpath
1504 && qself.as_generic_param().is_some()
1505 {
1506 self.qselves.push(qself.span);
1507 }
1508 hir::intravisit::walk_qpath(self, qpath, id)
1509 }
1510}
1511
1512declare_lint! {
1513 /// The `trivial_bounds` lint detects trait bounds that don't depend on
1514 /// any type parameters.
1515 ///
1516 /// ### Example
1517 ///
1518 /// ```rust
1519 /// #![feature(trivial_bounds)]
1520 /// pub struct A where i32: Copy;
1521 /// ```
1522 ///
1523 /// {{produces}}
1524 ///
1525 /// ### Explanation
1526 ///
1527 /// Usually you would not write a trait bound that you know is always
1528 /// true, or never true. However, when using macros, the macro may not
1529 /// know whether or not the constraint would hold or not at the time when
1530 /// generating the code. Currently, the compiler does not alert you if the
1531 /// constraint is always true, and generates an error if it is never true.
1532 /// The `trivial_bounds` feature changes this to be a warning in both
1533 /// cases, giving macros more freedom and flexibility to generate code,
1534 /// while still providing a signal when writing non-macro code that
1535 /// something is amiss.
1536 ///
1537 /// See [RFC 2056] for more details. This feature is currently only
1538 /// available on the nightly channel, see [tracking issue #48214].
1539 ///
1540 /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1541 /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1542 TRIVIAL_BOUNDS,
1543 Warn,
1544 "these bounds don't depend on an type parameters"
1545}
1546
1547declare_lint_pass!(
1548 /// Lint for trait and lifetime bounds that don't depend on type parameters
1549 /// which either do nothing, or stop the item from being used.
1550 TrivialConstraints => [TRIVIAL_BOUNDS]
1551);
1552
1553impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1554 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1555 use rustc_middle::ty::ClauseKind;
1556
1557 if cx.tcx.features().trivial_bounds() {
1558 let predicates = cx.tcx.predicates_of(item.owner_id);
1559 for &(predicate, span) in predicates.predicates {
1560 let predicate_kind_name = match predicate.kind().skip_binder() {
1561 ClauseKind::Trait(..) => "trait",
1562 ClauseKind::TypeOutlives(..) |
1563 ClauseKind::RegionOutlives(..) => "lifetime",
1564
1565 // `ConstArgHasType` is never global as `ct` is always a param
1566 ClauseKind::ConstArgHasType(..)
1567 // Ignore projections, as they can only be global
1568 // if the trait bound is global
1569 | ClauseKind::Projection(..)
1570 // Ignore bounds that a user can't type
1571 | ClauseKind::WellFormed(..)
1572 // FIXME(generic_const_exprs): `ConstEvaluatable` can be written
1573 | ClauseKind::ConstEvaluatable(..)
1574 // Users don't write this directly, only via another trait ref.
1575 | ty::ClauseKind::HostEffect(..) => continue,
1576 };
1577 if predicate.is_global() {
1578 cx.emit_span_lint(
1579 TRIVIAL_BOUNDS,
1580 span,
1581 BuiltinTrivialBounds { predicate_kind_name, predicate },
1582 );
1583 }
1584 }
1585 }
1586 }
1587}
1588
1589declare_lint! {
1590 /// The `double_negations` lint detects expressions of the form `--x`.
1591 ///
1592 /// ### Example
1593 ///
1594 /// ```rust
1595 /// fn main() {
1596 /// let x = 1;
1597 /// let _b = --x;
1598 /// }
1599 /// ```
1600 ///
1601 /// {{produces}}
1602 ///
1603 /// ### Explanation
1604 ///
1605 /// Negating something twice is usually the same as not negating it at all.
1606 /// However, a double negation in Rust can easily be confused with the
1607 /// prefix decrement operator that exists in many languages derived from C.
1608 /// Use `-(-x)` if you really wanted to negate the value twice.
1609 ///
1610 /// To decrement a value, use `x -= 1` instead.
1611 pub DOUBLE_NEGATIONS,
1612 Warn,
1613 "detects expressions of the form `--x`"
1614}
1615
1616declare_lint_pass!(
1617 /// Lint for expressions of the form `--x` that can be confused with C's
1618 /// prefix decrement operator.
1619 DoubleNegations => [DOUBLE_NEGATIONS]
1620);
1621
1622impl EarlyLintPass for DoubleNegations {
1623 #[inline]
1624 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1625 // only lint on the innermost `--` in a chain of `-` operators,
1626 // even if there are 3 or more negations
1627 if let ExprKind::Unary(UnOp::Neg, ref inner) = expr.kind
1628 && let ExprKind::Unary(UnOp::Neg, ref inner2) = inner.kind
1629 && !matches!(inner2.kind, ExprKind::Unary(UnOp::Neg, _))
1630 {
1631 cx.emit_span_lint(
1632 DOUBLE_NEGATIONS,
1633 expr.span,
1634 BuiltinDoubleNegations {
1635 add_parens: BuiltinDoubleNegationsAddParens {
1636 start_span: inner.span.shrink_to_lo(),
1637 end_span: inner.span.shrink_to_hi(),
1638 },
1639 },
1640 );
1641 }
1642 }
1643}
1644
1645declare_lint_pass!(
1646 /// Does nothing as a lint pass, but registers some `Lint`s
1647 /// which are used by other parts of the compiler.
1648 SoftLints => [
1649 WHILE_TRUE,
1650 NON_SHORTHAND_FIELD_PATTERNS,
1651 UNSAFE_CODE,
1652 MISSING_DOCS,
1653 MISSING_COPY_IMPLEMENTATIONS,
1654 MISSING_DEBUG_IMPLEMENTATIONS,
1655 ANONYMOUS_PARAMETERS,
1656 UNUSED_DOC_COMMENTS,
1657 NO_MANGLE_CONST_ITEMS,
1658 NO_MANGLE_GENERIC_ITEMS,
1659 MUTABLE_TRANSMUTES,
1660 UNSTABLE_FEATURES,
1661 UNREACHABLE_PUB,
1662 TYPE_ALIAS_BOUNDS,
1663 TRIVIAL_BOUNDS,
1664 DOUBLE_NEGATIONS
1665 ]
1666);
1667
1668declare_lint! {
1669 /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1670 /// pattern], which is deprecated.
1671 ///
1672 /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1673 ///
1674 /// ### Example
1675 ///
1676 /// ```rust,edition2018
1677 /// let x = 123;
1678 /// match x {
1679 /// 0...100 => {}
1680 /// _ => {}
1681 /// }
1682 /// ```
1683 ///
1684 /// {{produces}}
1685 ///
1686 /// ### Explanation
1687 ///
1688 /// The `...` range pattern syntax was changed to `..=` to avoid potential
1689 /// confusion with the [`..` range expression]. Use the new form instead.
1690 ///
1691 /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1692 pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1693 Warn,
1694 "`...` range patterns are deprecated",
1695 @future_incompatible = FutureIncompatibleInfo {
1696 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1697 reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1698 };
1699}
1700
1701#[derive(Default)]
1702pub struct EllipsisInclusiveRangePatterns {
1703 /// If `Some(_)`, suppress all subsequent pattern
1704 /// warnings for better diagnostics.
1705 node_id: Option<ast::NodeId>,
1706}
1707
1708impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1709
1710impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1711 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1712 if self.node_id.is_some() {
1713 // Don't recursively warn about patterns inside range endpoints.
1714 return;
1715 }
1716
1717 use self::ast::PatKind;
1718 use self::ast::RangeSyntax::DotDotDot;
1719
1720 /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1721 /// corresponding to the ellipsis.
1722 fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1723 match &pat.kind {
1724 PatKind::Range(
1725 a,
1726 Some(b),
1727 Spanned { span, node: RangeEnd::Included(DotDotDot) },
1728 ) => Some((a.as_deref(), b, *span)),
1729 _ => None,
1730 }
1731 }
1732
1733 let (parentheses, endpoints) = match &pat.kind {
1734 PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(subpat)),
1735 _ => (false, matches_ellipsis_pat(pat)),
1736 };
1737
1738 if let Some((start, end, join)) = endpoints {
1739 if parentheses {
1740 self.node_id = Some(pat.id);
1741 let end = expr_to_string(end);
1742 let replace = match start {
1743 Some(start) => format!("&({}..={})", expr_to_string(start), end),
1744 None => format!("&(..={end})"),
1745 };
1746 if join.edition() >= Edition::Edition2021 {
1747 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1748 span: pat.span,
1749 suggestion: pat.span,
1750 replace,
1751 });
1752 } else {
1753 cx.emit_span_lint(
1754 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1755 pat.span,
1756 BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1757 suggestion: pat.span,
1758 replace,
1759 },
1760 );
1761 }
1762 } else {
1763 let replace = "..=";
1764 if join.edition() >= Edition::Edition2021 {
1765 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1766 span: pat.span,
1767 suggestion: join,
1768 replace: replace.to_string(),
1769 });
1770 } else {
1771 cx.emit_span_lint(
1772 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1773 join,
1774 BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1775 suggestion: join,
1776 },
1777 );
1778 }
1779 };
1780 }
1781 }
1782
1783 fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1784 if let Some(node_id) = self.node_id {
1785 if pat.id == node_id {
1786 self.node_id = None
1787 }
1788 }
1789 }
1790}
1791
1792declare_lint! {
1793 /// The `keyword_idents_2018` lint detects edition keywords being used as an
1794 /// identifier.
1795 ///
1796 /// ### Example
1797 ///
1798 /// ```rust,edition2015,compile_fail
1799 /// #![deny(keyword_idents_2018)]
1800 /// // edition 2015
1801 /// fn dyn() {}
1802 /// ```
1803 ///
1804 /// {{produces}}
1805 ///
1806 /// ### Explanation
1807 ///
1808 /// Rust [editions] allow the language to evolve without breaking
1809 /// backwards compatibility. This lint catches code that uses new keywords
1810 /// that are added to the language that are used as identifiers (such as a
1811 /// variable name, function name, etc.). If you switch the compiler to a
1812 /// new edition without updating the code, then it will fail to compile if
1813 /// you are using a new keyword as an identifier.
1814 ///
1815 /// You can manually change the identifiers to a non-keyword, or use a
1816 /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1817 ///
1818 /// This lint solves the problem automatically. It is "allow" by default
1819 /// because the code is perfectly valid in older editions. The [`cargo
1820 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1821 /// and automatically apply the suggested fix from the compiler (which is
1822 /// to use a raw identifier). This provides a completely automated way to
1823 /// update old code for a new edition.
1824 ///
1825 /// [editions]: https://doc.rust-lang.org/edition-guide/
1826 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1827 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1828 pub KEYWORD_IDENTS_2018,
1829 Allow,
1830 "detects edition keywords being used as an identifier",
1831 @future_incompatible = FutureIncompatibleInfo {
1832 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1833 reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1834 };
1835}
1836
1837declare_lint! {
1838 /// The `keyword_idents_2024` lint detects edition keywords being used as an
1839 /// identifier.
1840 ///
1841 /// ### Example
1842 ///
1843 /// ```rust,edition2015,compile_fail
1844 /// #![deny(keyword_idents_2024)]
1845 /// // edition 2015
1846 /// fn gen() {}
1847 /// ```
1848 ///
1849 /// {{produces}}
1850 ///
1851 /// ### Explanation
1852 ///
1853 /// Rust [editions] allow the language to evolve without breaking
1854 /// backwards compatibility. This lint catches code that uses new keywords
1855 /// that are added to the language that are used as identifiers (such as a
1856 /// variable name, function name, etc.). If you switch the compiler to a
1857 /// new edition without updating the code, then it will fail to compile if
1858 /// you are using a new keyword as an identifier.
1859 ///
1860 /// You can manually change the identifiers to a non-keyword, or use a
1861 /// [raw identifier], for example `r#gen`, to transition to a new edition.
1862 ///
1863 /// This lint solves the problem automatically. It is "allow" by default
1864 /// because the code is perfectly valid in older editions. The [`cargo
1865 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1866 /// and automatically apply the suggested fix from the compiler (which is
1867 /// to use a raw identifier). This provides a completely automated way to
1868 /// update old code for a new edition.
1869 ///
1870 /// [editions]: https://doc.rust-lang.org/edition-guide/
1871 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1872 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1873 pub KEYWORD_IDENTS_2024,
1874 Allow,
1875 "detects edition keywords being used as an identifier",
1876 @future_incompatible = FutureIncompatibleInfo {
1877 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
1878 reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/gen-keyword.html>",
1879 };
1880}
1881
1882declare_lint_pass!(
1883 /// Check for uses of edition keywords used as an identifier.
1884 KeywordIdents => [KEYWORD_IDENTS_2018, KEYWORD_IDENTS_2024]
1885);
1886
1887struct UnderMacro(bool);
1888
1889impl KeywordIdents {
1890 fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) {
1891 // Check if the preceding token is `$`, because we want to allow `$async`, etc.
1892 let mut prev_dollar = false;
1893 for tt in tokens.iter() {
1894 match tt {
1895 // Only report non-raw idents.
1896 TokenTree::Token(token, _) => {
1897 if let Some((ident, token::IdentIsRaw::No)) = token.ident() {
1898 if !prev_dollar {
1899 self.check_ident_token(cx, UnderMacro(true), ident, "");
1900 }
1901 } else if let Some((ident, token::IdentIsRaw::No)) = token.lifetime() {
1902 self.check_ident_token(
1903 cx,
1904 UnderMacro(true),
1905 ident.without_first_quote(),
1906 "'",
1907 );
1908 } else if token.kind == TokenKind::Dollar {
1909 prev_dollar = true;
1910 continue;
1911 }
1912 }
1913 TokenTree::Delimited(.., tts) => self.check_tokens(cx, tts),
1914 }
1915 prev_dollar = false;
1916 }
1917 }
1918
1919 fn check_ident_token(
1920 &mut self,
1921 cx: &EarlyContext<'_>,
1922 UnderMacro(under_macro): UnderMacro,
1923 ident: Ident,
1924 prefix: &'static str,
1925 ) {
1926 let (lint, edition) = match ident.name {
1927 kw::Async | kw::Await | kw::Try => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1928
1929 // rust-lang/rust#56327: Conservatively do not
1930 // attempt to report occurrences of `dyn` within
1931 // macro definitions or invocations, because `dyn`
1932 // can legitimately occur as a contextual keyword
1933 // in 2015 code denoting its 2018 meaning, and we
1934 // do not want rustfix to inject bugs into working
1935 // code by rewriting such occurrences.
1936 //
1937 // But if we see `dyn` outside of a macro, we know
1938 // its precise role in the parsed AST and thus are
1939 // assured this is truly an attempt to use it as
1940 // an identifier.
1941 kw::Dyn if !under_macro => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1942
1943 kw::Gen => (KEYWORD_IDENTS_2024, Edition::Edition2024),
1944
1945 _ => return,
1946 };
1947
1948 // Don't lint `r#foo`.
1949 if ident.span.edition() >= edition
1950 || cx.sess().psess.raw_identifier_spans.contains(ident.span)
1951 {
1952 return;
1953 }
1954
1955 cx.emit_span_lint(
1956 lint,
1957 ident.span,
1958 BuiltinKeywordIdents { kw: ident, next: edition, suggestion: ident.span, prefix },
1959 );
1960 }
1961}
1962
1963impl EarlyLintPass for KeywordIdents {
1964 fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1965 self.check_tokens(cx, &mac_def.body.tokens);
1966 }
1967 fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1968 self.check_tokens(cx, &mac.args.tokens);
1969 }
1970 fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: &Ident) {
1971 if ident.name.as_str().starts_with('\'') {
1972 self.check_ident_token(cx, UnderMacro(false), ident.without_first_quote(), "'");
1973 } else {
1974 self.check_ident_token(cx, UnderMacro(false), *ident, "");
1975 }
1976 }
1977}
1978
1979declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1980
1981impl ExplicitOutlivesRequirements {
1982 fn lifetimes_outliving_lifetime<'tcx>(
1983 tcx: TyCtxt<'tcx>,
1984 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1985 item: LocalDefId,
1986 lifetime: LocalDefId,
1987 ) -> Vec<ty::Region<'tcx>> {
1988 let item_generics = tcx.generics_of(item);
1989
1990 inferred_outlives
1991 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1992 ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
1993 ty::ReEarlyParam(ebr)
1994 if item_generics.region_param(ebr, tcx).def_id == lifetime.to_def_id() =>
1995 {
1996 Some(b)
1997 }
1998 _ => None,
1999 },
2000 _ => None,
2001 })
2002 .collect()
2003 }
2004
2005 fn lifetimes_outliving_type<'tcx>(
2006 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
2007 index: u32,
2008 ) -> Vec<ty::Region<'tcx>> {
2009 inferred_outlives
2010 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
2011 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
2012 a.is_param(index).then_some(b)
2013 }
2014 _ => None,
2015 })
2016 .collect()
2017 }
2018
2019 fn collect_outlives_bound_spans<'tcx>(
2020 &self,
2021 tcx: TyCtxt<'tcx>,
2022 bounds: &hir::GenericBounds<'_>,
2023 inferred_outlives: &[ty::Region<'tcx>],
2024 predicate_span: Span,
2025 item: DefId,
2026 ) -> Vec<(usize, Span)> {
2027 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2028
2029 let item_generics = tcx.generics_of(item);
2030
2031 bounds
2032 .iter()
2033 .enumerate()
2034 .filter_map(|(i, bound)| {
2035 let hir::GenericBound::Outlives(lifetime) = bound else {
2036 return None;
2037 };
2038
2039 let is_inferred = match tcx.named_bound_var(lifetime.hir_id) {
2040 Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives
2041 .iter()
2042 .any(|r| matches!(**r, ty::ReEarlyParam(ebr) if { item_generics.region_param(ebr, tcx).def_id == def_id.to_def_id() })),
2043 _ => false,
2044 };
2045
2046 if !is_inferred {
2047 return None;
2048 }
2049
2050 let span = bound.span().find_ancestor_inside(predicate_span)?;
2051 if span.in_external_macro(tcx.sess.source_map()) {
2052 return None;
2053 }
2054
2055 Some((i, span))
2056 })
2057 .collect()
2058 }
2059
2060 fn consolidate_outlives_bound_spans(
2061 &self,
2062 lo: Span,
2063 bounds: &hir::GenericBounds<'_>,
2064 bound_spans: Vec<(usize, Span)>,
2065 ) -> Vec<Span> {
2066 if bounds.is_empty() {
2067 return Vec::new();
2068 }
2069 if bound_spans.len() == bounds.len() {
2070 let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2071 // If all bounds are inferable, we want to delete the colon, so
2072 // start from just after the parameter (span passed as argument)
2073 vec![lo.to(last_bound_span)]
2074 } else {
2075 let mut merged = Vec::new();
2076 let mut last_merged_i = None;
2077
2078 let mut from_start = true;
2079 for (i, bound_span) in bound_spans {
2080 match last_merged_i {
2081 // If the first bound is inferable, our span should also eat the leading `+`.
2082 None if i == 0 => {
2083 merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2084 last_merged_i = Some(0);
2085 }
2086 // If consecutive bounds are inferable, merge their spans
2087 Some(h) if i == h + 1 => {
2088 if let Some(tail) = merged.last_mut() {
2089 // Also eat the trailing `+` if the first
2090 // more-than-one bound is inferable
2091 let to_span = if from_start && i < bounds.len() {
2092 bounds[i + 1].span().shrink_to_lo()
2093 } else {
2094 bound_span
2095 };
2096 *tail = tail.to(to_span);
2097 last_merged_i = Some(i);
2098 } else {
2099 bug!("another bound-span visited earlier");
2100 }
2101 }
2102 _ => {
2103 // When we find a non-inferable bound, subsequent inferable bounds
2104 // won't be consecutive from the start (and we'll eat the leading
2105 // `+` rather than the trailing one)
2106 from_start = false;
2107 merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2108 last_merged_i = Some(i);
2109 }
2110 }
2111 }
2112 merged
2113 }
2114 }
2115}
2116
2117impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2118 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2119 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2120
2121 let def_id = item.owner_id.def_id;
2122 if let hir::ItemKind::Struct(_, hir_generics)
2123 | hir::ItemKind::Enum(_, hir_generics)
2124 | hir::ItemKind::Union(_, hir_generics) = item.kind
2125 {
2126 let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2127 if inferred_outlives.is_empty() {
2128 return;
2129 }
2130
2131 let ty_generics = cx.tcx.generics_of(def_id);
2132 let num_where_predicates = hir_generics
2133 .predicates
2134 .iter()
2135 .filter(|predicate| predicate.kind.in_where_clause())
2136 .count();
2137
2138 let mut bound_count = 0;
2139 let mut lint_spans = Vec::new();
2140 let mut where_lint_spans = Vec::new();
2141 let mut dropped_where_predicate_count = 0;
2142 for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
2143 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2144 match where_predicate.kind {
2145 hir::WherePredicateKind::RegionPredicate(predicate) => {
2146 if let Some(ResolvedArg::EarlyBound(region_def_id)) =
2147 cx.tcx.named_bound_var(predicate.lifetime.hir_id)
2148 {
2149 (
2150 Self::lifetimes_outliving_lifetime(
2151 cx.tcx,
2152 // don't warn if the inferred span actually came from the predicate we're looking at
2153 // this happens if the type is recursively defined
2154 inferred_outlives.iter().filter(|(_, span)| {
2155 !where_predicate.span.contains(*span)
2156 }),
2157 item.owner_id.def_id,
2158 region_def_id,
2159 ),
2160 &predicate.bounds,
2161 where_predicate.span,
2162 predicate.in_where_clause,
2163 )
2164 } else {
2165 continue;
2166 }
2167 }
2168 hir::WherePredicateKind::BoundPredicate(predicate) => {
2169 // FIXME we can also infer bounds on associated types,
2170 // and should check for them here.
2171 match predicate.bounded_ty.kind {
2172 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2173 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2174 continue;
2175 };
2176 let index = ty_generics.param_def_id_to_index[&def_id];
2177 (
2178 Self::lifetimes_outliving_type(
2179 // don't warn if the inferred span actually came from the predicate we're looking at
2180 // this happens if the type is recursively defined
2181 inferred_outlives.iter().filter(|(_, span)| {
2182 !where_predicate.span.contains(*span)
2183 }),
2184 index,
2185 ),
2186 &predicate.bounds,
2187 where_predicate.span,
2188 predicate.origin == PredicateOrigin::WhereClause,
2189 )
2190 }
2191 _ => {
2192 continue;
2193 }
2194 }
2195 }
2196 _ => continue,
2197 };
2198 if relevant_lifetimes.is_empty() {
2199 continue;
2200 }
2201
2202 let bound_spans = self.collect_outlives_bound_spans(
2203 cx.tcx,
2204 bounds,
2205 &relevant_lifetimes,
2206 predicate_span,
2207 item.owner_id.to_def_id(),
2208 );
2209 bound_count += bound_spans.len();
2210
2211 let drop_predicate = bound_spans.len() == bounds.len();
2212 if drop_predicate && in_where_clause {
2213 dropped_where_predicate_count += 1;
2214 }
2215
2216 if drop_predicate {
2217 if !in_where_clause {
2218 lint_spans.push(predicate_span);
2219 } else if predicate_span.from_expansion() {
2220 // Don't try to extend the span if it comes from a macro expansion.
2221 where_lint_spans.push(predicate_span);
2222 } else if i + 1 < num_where_predicates {
2223 // If all the bounds on a predicate were inferable and there are
2224 // further predicates, we want to eat the trailing comma.
2225 let next_predicate_span = hir_generics.predicates[i + 1].span;
2226 if next_predicate_span.from_expansion() {
2227 where_lint_spans.push(predicate_span);
2228 } else {
2229 where_lint_spans
2230 .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2231 }
2232 } else {
2233 // Eat the optional trailing comma after the last predicate.
2234 let where_span = hir_generics.where_clause_span;
2235 if where_span.from_expansion() {
2236 where_lint_spans.push(predicate_span);
2237 } else {
2238 where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2239 }
2240 }
2241 } else {
2242 where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2243 predicate_span.shrink_to_lo(),
2244 bounds,
2245 bound_spans,
2246 ));
2247 }
2248 }
2249
2250 // If all predicates in where clause are inferable, drop the entire clause
2251 // (including the `where`)
2252 if hir_generics.has_where_clause_predicates
2253 && dropped_where_predicate_count == num_where_predicates
2254 {
2255 let where_span = hir_generics.where_clause_span;
2256 // Extend the where clause back to the closing `>` of the
2257 // generics, except for tuple struct, which have the `where`
2258 // after the fields of the struct.
2259 let full_where_span =
2260 if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2261 where_span
2262 } else {
2263 hir_generics.span.shrink_to_hi().to(where_span)
2264 };
2265
2266 // Due to macro expansions, the `full_where_span` might not actually contain all
2267 // predicates.
2268 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2269 lint_spans.push(full_where_span);
2270 } else {
2271 lint_spans.extend(where_lint_spans);
2272 }
2273 } else {
2274 lint_spans.extend(where_lint_spans);
2275 }
2276
2277 if !lint_spans.is_empty() {
2278 // Do not automatically delete outlives requirements from macros.
2279 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2280 {
2281 Applicability::MachineApplicable
2282 } else {
2283 Applicability::MaybeIncorrect
2284 };
2285
2286 // Due to macros, there might be several predicates with the same span
2287 // and we only want to suggest removing them once.
2288 lint_spans.sort_unstable();
2289 lint_spans.dedup();
2290
2291 cx.emit_span_lint(
2292 EXPLICIT_OUTLIVES_REQUIREMENTS,
2293 lint_spans.clone(),
2294 BuiltinExplicitOutlives {
2295 count: bound_count,
2296 suggestion: BuiltinExplicitOutlivesSuggestion {
2297 spans: lint_spans,
2298 applicability,
2299 },
2300 },
2301 );
2302 }
2303 }
2304 }
2305}
2306
2307declare_lint! {
2308 /// The `incomplete_features` lint detects unstable features enabled with
2309 /// the [`feature` attribute] that may function improperly in some or all
2310 /// cases.
2311 ///
2312 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2313 ///
2314 /// ### Example
2315 ///
2316 /// ```rust
2317 /// #![feature(generic_const_exprs)]
2318 /// ```
2319 ///
2320 /// {{produces}}
2321 ///
2322 /// ### Explanation
2323 ///
2324 /// Although it is encouraged for people to experiment with unstable
2325 /// features, some of them are known to be incomplete or faulty. This lint
2326 /// is a signal that the feature has not yet been finished, and you may
2327 /// experience problems with it.
2328 pub INCOMPLETE_FEATURES,
2329 Warn,
2330 "incomplete features that may function improperly in some or all cases"
2331}
2332
2333declare_lint! {
2334 /// The `internal_features` lint detects unstable features enabled with
2335 /// the [`feature` attribute] that are internal to the compiler or standard
2336 /// library.
2337 ///
2338 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2339 ///
2340 /// ### Example
2341 ///
2342 /// ```rust
2343 /// #![feature(rustc_attrs)]
2344 /// ```
2345 ///
2346 /// {{produces}}
2347 ///
2348 /// ### Explanation
2349 ///
2350 /// These features are an implementation detail of the compiler and standard
2351 /// library and are not supposed to be used in user code.
2352 pub INTERNAL_FEATURES,
2353 Warn,
2354 "internal features are not supposed to be used"
2355}
2356
2357declare_lint_pass!(
2358 /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/unstable.rs`.
2359 IncompleteInternalFeatures => [INCOMPLETE_FEATURES, INTERNAL_FEATURES]
2360);
2361
2362impl EarlyLintPass for IncompleteInternalFeatures {
2363 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2364 let features = cx.builder.features();
2365 let lang_features =
2366 features.enabled_lang_features().iter().map(|feat| (feat.gate_name, feat.attr_sp));
2367 let lib_features =
2368 features.enabled_lib_features().iter().map(|feat| (feat.gate_name, feat.attr_sp));
2369
2370 lang_features
2371 .chain(lib_features)
2372 .filter(|(name, _)| features.incomplete(*name) || features.internal(*name))
2373 .for_each(|(name, span)| {
2374 if features.incomplete(name) {
2375 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2376 .map(|n| BuiltinFeatureIssueNote { n });
2377 let help =
2378 HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp);
2379
2380 cx.emit_span_lint(
2381 INCOMPLETE_FEATURES,
2382 span,
2383 BuiltinIncompleteFeatures { name, note, help },
2384 );
2385 } else {
2386 cx.emit_span_lint(INTERNAL_FEATURES, span, BuiltinInternalFeatures { name });
2387 }
2388 });
2389 }
2390}
2391
2392const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2393
2394declare_lint! {
2395 /// The `invalid_value` lint detects creating a value that is not valid,
2396 /// such as a null reference.
2397 ///
2398 /// ### Example
2399 ///
2400 /// ```rust,no_run
2401 /// # #![allow(unused)]
2402 /// unsafe {
2403 /// let x: &'static i32 = std::mem::zeroed();
2404 /// }
2405 /// ```
2406 ///
2407 /// {{produces}}
2408 ///
2409 /// ### Explanation
2410 ///
2411 /// In some situations the compiler can detect that the code is creating
2412 /// an invalid value, which should be avoided.
2413 ///
2414 /// In particular, this lint will check for improper use of
2415 /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2416 /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2417 /// lint should provide extra information to indicate what the problem is
2418 /// and a possible solution.
2419 ///
2420 /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2421 /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2422 /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2423 /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2424 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2425 pub INVALID_VALUE,
2426 Warn,
2427 "an invalid value is being created (such as a null reference)"
2428}
2429
2430declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2431
2432/// Information about why a type cannot be initialized this way.
2433pub struct InitError {
2434 pub(crate) message: String,
2435 /// Spans from struct fields and similar that can be obtained from just the type.
2436 pub(crate) span: Option<Span>,
2437 /// Used to report a trace through adts.
2438 pub(crate) nested: Option<Box<InitError>>,
2439}
2440impl InitError {
2441 fn spanned(self, span: Span) -> InitError {
2442 Self { span: Some(span), ..self }
2443 }
2444
2445 fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2446 assert!(self.nested.is_none());
2447 Self { nested: nested.into().map(Box::new), ..self }
2448 }
2449}
2450
2451impl<'a> From<&'a str> for InitError {
2452 fn from(s: &'a str) -> Self {
2453 s.to_owned().into()
2454 }
2455}
2456impl From<String> for InitError {
2457 fn from(message: String) -> Self {
2458 Self { message, span: None, nested: None }
2459 }
2460}
2461
2462impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2463 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2464 #[derive(Debug, Copy, Clone, PartialEq)]
2465 enum InitKind {
2466 Zeroed,
2467 Uninit,
2468 }
2469
2470 /// Test if this constant is all-0.
2471 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2472 use hir::ExprKind::*;
2473 use rustc_ast::LitKind::*;
2474 match &expr.kind {
2475 Lit(lit) => {
2476 if let Int(i, _) = lit.node {
2477 i == 0
2478 } else {
2479 false
2480 }
2481 }
2482 Tup(tup) => tup.iter().all(is_zero),
2483 _ => false,
2484 }
2485 }
2486
2487 /// Determine if this expression is a "dangerous initialization".
2488 fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2489 if let hir::ExprKind::Call(path_expr, args) = expr.kind {
2490 // Find calls to `mem::{uninitialized,zeroed}` methods.
2491 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2492 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2493 match cx.tcx.get_diagnostic_name(def_id) {
2494 Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2495 Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2496 Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2497 _ => {}
2498 }
2499 }
2500 } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2501 // Find problematic calls to `MaybeUninit::assume_init`.
2502 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2503 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2504 // This is a call to *some* method named `assume_init`.
2505 // See if the `self` parameter is one of the dangerous constructors.
2506 if let hir::ExprKind::Call(path_expr, _) = receiver.kind {
2507 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2508 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2509 match cx.tcx.get_diagnostic_name(def_id) {
2510 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2511 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2512 _ => {}
2513 }
2514 }
2515 }
2516 }
2517 }
2518
2519 None
2520 }
2521
2522 fn variant_find_init_error<'tcx>(
2523 cx: &LateContext<'tcx>,
2524 ty: Ty<'tcx>,
2525 variant: &VariantDef,
2526 args: ty::GenericArgsRef<'tcx>,
2527 descr: &str,
2528 init: InitKind,
2529 ) -> Option<InitError> {
2530 let mut field_err = variant.fields.iter().find_map(|field| {
2531 ty_find_init_error(cx, field.ty(cx.tcx, args), init).map(|mut err| {
2532 if !field.did.is_local() {
2533 err
2534 } else if err.span.is_none() {
2535 err.span = Some(cx.tcx.def_span(field.did));
2536 write!(&mut err.message, " (in this {descr})").unwrap();
2537 err
2538 } else {
2539 InitError::from(format!("in this {descr}"))
2540 .spanned(cx.tcx.def_span(field.did))
2541 .nested(err)
2542 }
2543 })
2544 });
2545
2546 // Check if this ADT has a constrained layout (like `NonNull` and friends).
2547 if let Ok(layout) = cx.tcx.layout_of(cx.typing_env().as_query_input(ty)) {
2548 if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) =
2549 &layout.backend_repr
2550 {
2551 let range = scalar.valid_range(cx);
2552 let msg = if !range.contains(0) {
2553 "must be non-null"
2554 } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2555 // Prefer reporting on the fields over the entire struct for uninit,
2556 // as the information bubbles out and it may be unclear why the type can't
2557 // be null from just its outside signature.
2558
2559 "must be initialized inside its custom valid range"
2560 } else {
2561 return field_err;
2562 };
2563 if let Some(field_err) = &mut field_err {
2564 // Most of the time, if the field error is the same as the struct error,
2565 // the struct error only happens because of the field error.
2566 if field_err.message.contains(msg) {
2567 field_err.message = format!("because {}", field_err.message);
2568 }
2569 }
2570 return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2571 }
2572 }
2573 field_err
2574 }
2575
2576 /// Return `Some` only if we are sure this type does *not*
2577 /// allow zero initialization.
2578 fn ty_find_init_error<'tcx>(
2579 cx: &LateContext<'tcx>,
2580 ty: Ty<'tcx>,
2581 init: InitKind,
2582 ) -> Option<InitError> {
2583 let ty = cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty).unwrap_or(ty);
2584
2585 match ty.kind() {
2586 // Primitive types that don't like 0 as a value.
2587 ty::Ref(..) => Some("references must be non-null".into()),
2588 ty::Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2589 ty::FnPtr(..) => Some("function pointers must be non-null".into()),
2590 ty::Never => Some("the `!` type has no valid value".into()),
2591 ty::RawPtr(ty, _) if matches!(ty.kind(), ty::Dynamic(..)) =>
2592 // raw ptr to dyn Trait
2593 {
2594 Some("the vtable of a wide raw pointer must be non-null".into())
2595 }
2596 // Primitive types with other constraints.
2597 ty::Bool if init == InitKind::Uninit => {
2598 Some("booleans must be either `true` or `false`".into())
2599 }
2600 ty::Char if init == InitKind::Uninit => {
2601 Some("characters must be a valid Unicode codepoint".into())
2602 }
2603 ty::Int(_) | ty::Uint(_) if init == InitKind::Uninit => {
2604 Some("integers must be initialized".into())
2605 }
2606 ty::Float(_) if init == InitKind::Uninit => {
2607 Some("floats must be initialized".into())
2608 }
2609 ty::RawPtr(_, _) if init == InitKind::Uninit => {
2610 Some("raw pointers must be initialized".into())
2611 }
2612 // Recurse and checks for some compound types. (but not unions)
2613 ty::Adt(adt_def, args) if !adt_def.is_union() => {
2614 // Handle structs.
2615 if adt_def.is_struct() {
2616 return variant_find_init_error(
2617 cx,
2618 ty,
2619 adt_def.non_enum_variant(),
2620 args,
2621 "struct field",
2622 init,
2623 );
2624 }
2625 // And now, enums.
2626 let span = cx.tcx.def_span(adt_def.did());
2627 let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2628 let definitely_inhabited = match variant
2629 .inhabited_predicate(cx.tcx, *adt_def)
2630 .instantiate(cx.tcx, args)
2631 .apply_any_module(cx.tcx, cx.typing_env())
2632 {
2633 // Entirely skip uninhabited variants.
2634 Some(false) => return None,
2635 // Forward the others, but remember which ones are definitely inhabited.
2636 Some(true) => true,
2637 None => false,
2638 };
2639 Some((variant, definitely_inhabited))
2640 });
2641 let Some(first_variant) = potential_variants.next() else {
2642 return Some(
2643 InitError::from("enums with no inhabited variants have no valid value")
2644 .spanned(span),
2645 );
2646 };
2647 // So we have at least one potentially inhabited variant. Might we have two?
2648 let Some(second_variant) = potential_variants.next() else {
2649 // There is only one potentially inhabited variant. So we can recursively
2650 // check that variant!
2651 return variant_find_init_error(
2652 cx,
2653 ty,
2654 first_variant.0,
2655 args,
2656 "field of the only potentially inhabited enum variant",
2657 init,
2658 );
2659 };
2660 // So we have at least two potentially inhabited variants. If we can prove that
2661 // we have at least two *definitely* inhabited variants, then we have a tag and
2662 // hence leaving this uninit is definitely disallowed. (Leaving it zeroed could
2663 // be okay, depending on which variant is encoded as zero tag.)
2664 if init == InitKind::Uninit {
2665 let definitely_inhabited = (first_variant.1 as usize)
2666 + (second_variant.1 as usize)
2667 + potential_variants
2668 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2669 .count();
2670 if definitely_inhabited > 1 {
2671 return Some(InitError::from(
2672 "enums with multiple inhabited variants have to be initialized to a variant",
2673 ).spanned(span));
2674 }
2675 }
2676 // We couldn't find anything wrong here.
2677 None
2678 }
2679 ty::Tuple(..) => {
2680 // Proceed recursively, check all fields.
2681 ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2682 }
2683 ty::Array(ty, len) => {
2684 if matches!(len.try_to_target_usize(cx.tcx), Some(v) if v > 0) {
2685 // Array length known at array non-empty -- recurse.
2686 ty_find_init_error(cx, *ty, init)
2687 } else {
2688 // Empty array or size unknown.
2689 None
2690 }
2691 }
2692 // Conservative fallback.
2693 _ => None,
2694 }
2695 }
2696
2697 if let Some(init) = is_dangerous_init(cx, expr) {
2698 // This conjures an instance of a type out of nothing,
2699 // using zeroed or uninitialized memory.
2700 // We are extremely conservative with what we warn about.
2701 let conjured_ty = cx.typeck_results().expr_ty(expr);
2702 if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2703 let msg = match init {
2704 InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
2705 InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit,
2706 };
2707 let sub = BuiltinUnpermittedTypeInitSub { err };
2708 cx.emit_span_lint(
2709 INVALID_VALUE,
2710 expr.span,
2711 BuiltinUnpermittedTypeInit {
2712 msg,
2713 ty: conjured_ty,
2714 label: expr.span,
2715 sub,
2716 tcx: cx.tcx,
2717 },
2718 );
2719 }
2720 }
2721 }
2722}
2723
2724declare_lint! {
2725 /// The `deref_nullptr` lint detects when a null pointer is dereferenced,
2726 /// which causes [undefined behavior].
2727 ///
2728 /// ### Example
2729 ///
2730 /// ```rust,no_run
2731 /// # #![allow(unused)]
2732 /// use std::ptr;
2733 /// unsafe {
2734 /// let x = &*ptr::null::<i32>();
2735 /// let x = ptr::addr_of!(*ptr::null::<i32>());
2736 /// let x = *(0 as *const i32);
2737 /// }
2738 /// ```
2739 ///
2740 /// {{produces}}
2741 ///
2742 /// ### Explanation
2743 ///
2744 /// Dereferencing a null pointer causes [undefined behavior] if it is accessed
2745 /// (loaded from or stored to).
2746 ///
2747 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2748 pub DEREF_NULLPTR,
2749 Warn,
2750 "detects when an null pointer is dereferenced"
2751}
2752
2753declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
2754
2755impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
2756 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2757 /// test if expression is a null ptr
2758 fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
2759 match &expr.kind {
2760 hir::ExprKind::Cast(expr, ty) => {
2761 if let hir::TyKind::Ptr(_) = ty.kind {
2762 return is_zero(expr) || is_null_ptr(cx, expr);
2763 }
2764 }
2765 // check for call to `core::ptr::null` or `core::ptr::null_mut`
2766 hir::ExprKind::Call(path, _) => {
2767 if let hir::ExprKind::Path(ref qpath) = path.kind {
2768 if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
2769 return matches!(
2770 cx.tcx.get_diagnostic_name(def_id),
2771 Some(sym::ptr_null | sym::ptr_null_mut)
2772 );
2773 }
2774 }
2775 }
2776 _ => {}
2777 }
2778 false
2779 }
2780
2781 /// test if expression is the literal `0`
2782 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2783 match &expr.kind {
2784 hir::ExprKind::Lit(lit) => {
2785 if let LitKind::Int(a, _) = lit.node {
2786 return a == 0;
2787 }
2788 }
2789 _ => {}
2790 }
2791 false
2792 }
2793
2794 if let hir::ExprKind::Unary(hir::UnOp::Deref, expr_deref) = expr.kind
2795 && is_null_ptr(cx, expr_deref)
2796 {
2797 if let hir::Node::Expr(hir::Expr {
2798 kind: hir::ExprKind::AddrOf(hir::BorrowKind::Raw, ..),
2799 ..
2800 }) = cx.tcx.parent_hir_node(expr.hir_id)
2801 {
2802 // `&raw *NULL` is ok.
2803 } else {
2804 cx.emit_span_lint(
2805 DEREF_NULLPTR,
2806 expr.span,
2807 BuiltinDerefNullptr { label: expr.span },
2808 );
2809 }
2810 }
2811 }
2812}
2813
2814declare_lint! {
2815 /// The `named_asm_labels` lint detects the use of named labels in the
2816 /// inline `asm!` macro.
2817 ///
2818 /// ### Example
2819 ///
2820 /// ```rust,compile_fail
2821 /// # #![feature(asm_experimental_arch)]
2822 /// use std::arch::asm;
2823 ///
2824 /// fn main() {
2825 /// unsafe {
2826 /// asm!("foo: bar");
2827 /// }
2828 /// }
2829 /// ```
2830 ///
2831 /// {{produces}}
2832 ///
2833 /// ### Explanation
2834 ///
2835 /// LLVM is allowed to duplicate inline assembly blocks for any
2836 /// reason, for example when it is in a function that gets inlined. Because
2837 /// of this, GNU assembler [local labels] *must* be used instead of labels
2838 /// with a name. Using named labels might cause assembler or linker errors.
2839 ///
2840 /// See the explanation in [Rust By Example] for more details.
2841 ///
2842 /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
2843 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2844 pub NAMED_ASM_LABELS,
2845 Deny,
2846 "named labels in inline assembly",
2847}
2848
2849declare_lint! {
2850 /// The `binary_asm_labels` lint detects the use of numeric labels containing only binary
2851 /// digits in the inline `asm!` macro.
2852 ///
2853 /// ### Example
2854 ///
2855 /// ```rust,ignore (fails on non-x86_64)
2856 /// #![cfg(target_arch = "x86_64")]
2857 ///
2858 /// use std::arch::asm;
2859 ///
2860 /// fn main() {
2861 /// unsafe {
2862 /// asm!("0: jmp 0b");
2863 /// }
2864 /// }
2865 /// ```
2866 ///
2867 /// This will produce:
2868 ///
2869 /// ```text
2870 /// error: avoid using labels containing only the digits `0` and `1` in inline assembly
2871 /// --> <source>:7:15
2872 /// |
2873 /// 7 | asm!("0: jmp 0b");
2874 /// | ^ use a different label that doesn't start with `0` or `1`
2875 /// |
2876 /// = help: start numbering with `2` instead
2877 /// = note: an LLVM bug makes these labels ambiguous with a binary literal number on x86
2878 /// = note: see <https://github.com/llvm/llvm-project/issues/99547> for more information
2879 /// = note: `#[deny(binary_asm_labels)]` on by default
2880 /// ```
2881 ///
2882 /// ### Explanation
2883 ///
2884 /// An [LLVM bug] causes this code to fail to compile because it interprets the `0b` as a binary
2885 /// literal instead of a reference to the previous local label `0`. To work around this bug,
2886 /// don't use labels that could be confused with a binary literal.
2887 ///
2888 /// This behavior is platform-specific to x86 and x86-64.
2889 ///
2890 /// See the explanation in [Rust By Example] for more details.
2891 ///
2892 /// [LLVM bug]: https://github.com/llvm/llvm-project/issues/99547
2893 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2894 pub BINARY_ASM_LABELS,
2895 Deny,
2896 "labels in inline assembly containing only 0 or 1 digits",
2897}
2898
2899declare_lint_pass!(AsmLabels => [NAMED_ASM_LABELS, BINARY_ASM_LABELS]);
2900
2901#[derive(Debug, Clone, Copy, PartialEq, Eq)]
2902enum AsmLabelKind {
2903 Named,
2904 FormatArg,
2905 Binary,
2906}
2907
2908impl<'tcx> LateLintPass<'tcx> for AsmLabels {
2909 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
2910 if let hir::Expr {
2911 kind:
2912 hir::ExprKind::InlineAsm(hir::InlineAsm {
2913 asm_macro: AsmMacro::Asm | AsmMacro::NakedAsm,
2914 template_strs,
2915 options,
2916 ..
2917 }),
2918 ..
2919 } = expr
2920 {
2921 // asm with `options(raw)` does not do replacement with `{` and `}`.
2922 let raw = options.contains(InlineAsmOptions::RAW);
2923
2924 for (template_sym, template_snippet, template_span) in template_strs.iter() {
2925 let template_str = template_sym.as_str();
2926 let find_label_span = |needle: &str| -> Option<Span> {
2927 if let Some(template_snippet) = template_snippet {
2928 let snippet = template_snippet.as_str();
2929 if let Some(pos) = snippet.find(needle) {
2930 let end = pos
2931 + snippet[pos..]
2932 .find(|c| c == ':')
2933 .unwrap_or(snippet[pos..].len() - 1);
2934 let inner = InnerSpan::new(pos, end);
2935 return Some(template_span.from_inner(inner));
2936 }
2937 }
2938
2939 None
2940 };
2941
2942 // diagnostics are emitted per-template, so this is created here as opposed to the outer loop
2943 let mut spans = Vec::new();
2944
2945 // A semicolon might not actually be specified as a separator for all targets, but
2946 // it seems like LLVM accepts it always.
2947 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
2948 for statement in statements {
2949 // If there's a comment, trim it from the statement
2950 let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
2951
2952 // In this loop, if there is ever a non-label, no labels can come after it.
2953 let mut start_idx = 0;
2954 'label_loop: for (idx, _) in statement.match_indices(':') {
2955 let possible_label = statement[start_idx..idx].trim();
2956 let mut chars = possible_label.chars();
2957
2958 let Some(start) = chars.next() else {
2959 // Empty string means a leading ':' in this section, which is not a
2960 // label.
2961 break 'label_loop;
2962 };
2963
2964 // Whether a { bracket has been seen and its } hasn't been found yet.
2965 let mut in_bracket = false;
2966 let mut label_kind = AsmLabelKind::Named;
2967
2968 // A label can also start with a format arg, if it's not a raw asm block.
2969 if !raw && start == '{' {
2970 in_bracket = true;
2971 label_kind = AsmLabelKind::FormatArg;
2972 } else if matches!(start, '0' | '1') {
2973 // Binary labels have only the characters `0` or `1`.
2974 label_kind = AsmLabelKind::Binary;
2975 } else if !(start.is_ascii_alphabetic() || matches!(start, '.' | '_')) {
2976 // Named labels start with ASCII letters, `.` or `_`.
2977 // anything else is not a label
2978 break 'label_loop;
2979 }
2980
2981 for c in chars {
2982 // Inside a template format arg, any character is permitted for the
2983 // puproses of label detection because we assume that it can be
2984 // replaced with some other valid label string later. `options(raw)`
2985 // asm blocks cannot have format args, so they are excluded from this
2986 // special case.
2987 if !raw && in_bracket {
2988 if c == '{' {
2989 // Nested brackets are not allowed in format args, this cannot
2990 // be a label.
2991 break 'label_loop;
2992 }
2993
2994 if c == '}' {
2995 // The end of the format arg.
2996 in_bracket = false;
2997 }
2998 } else if !raw && c == '{' {
2999 // Start of a format arg.
3000 in_bracket = true;
3001 label_kind = AsmLabelKind::FormatArg;
3002 } else {
3003 let can_continue = match label_kind {
3004 // Format arg labels are considered to be named labels for the purposes
3005 // of continuing outside of their {} pair.
3006 AsmLabelKind::Named | AsmLabelKind::FormatArg => {
3007 c.is_ascii_alphanumeric() || matches!(c, '_' | '$')
3008 }
3009 AsmLabelKind::Binary => matches!(c, '0' | '1'),
3010 };
3011
3012 if !can_continue {
3013 // The potential label had an invalid character inside it, it
3014 // cannot be a label.
3015 break 'label_loop;
3016 }
3017 }
3018 }
3019
3020 // If all characters passed the label checks, this is a label.
3021 spans.push((find_label_span(possible_label), label_kind));
3022 start_idx = idx + 1;
3023 }
3024 }
3025
3026 for (span, label_kind) in spans {
3027 let missing_precise_span = span.is_none();
3028 let span = span.unwrap_or(*template_span);
3029 match label_kind {
3030 AsmLabelKind::Named => {
3031 cx.emit_span_lint(
3032 NAMED_ASM_LABELS,
3033 span,
3034 InvalidAsmLabel::Named { missing_precise_span },
3035 );
3036 }
3037 AsmLabelKind::FormatArg => {
3038 cx.emit_span_lint(
3039 NAMED_ASM_LABELS,
3040 span,
3041 InvalidAsmLabel::FormatArg { missing_precise_span },
3042 );
3043 }
3044 // the binary asm issue only occurs when using intel syntax on x86 targets
3045 AsmLabelKind::Binary
3046 if !options.contains(InlineAsmOptions::ATT_SYNTAX)
3047 && matches!(
3048 cx.tcx.sess.asm_arch,
3049 Some(InlineAsmArch::X86 | InlineAsmArch::X86_64) | None
3050 ) =>
3051 {
3052 cx.emit_span_lint(
3053 BINARY_ASM_LABELS,
3054 span,
3055 InvalidAsmLabel::Binary { missing_precise_span, span },
3056 )
3057 }
3058 // No lint on anything other than x86
3059 AsmLabelKind::Binary => (),
3060 };
3061 }
3062 }
3063 }
3064 }
3065}
3066
3067declare_lint! {
3068 /// The `special_module_name` lint detects module
3069 /// declarations for files that have a special meaning.
3070 ///
3071 /// ### Example
3072 ///
3073 /// ```rust,compile_fail
3074 /// mod lib;
3075 ///
3076 /// fn main() {
3077 /// lib::run();
3078 /// }
3079 /// ```
3080 ///
3081 /// {{produces}}
3082 ///
3083 /// ### Explanation
3084 ///
3085 /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3086 /// library or binary crate, so declaring them as modules
3087 /// will lead to miscompilation of the crate unless configured
3088 /// explicitly.
3089 ///
3090 /// To access a library from a binary target within the same crate,
3091 /// use `your_crate_name::` as the path instead of `lib::`:
3092 ///
3093 /// ```rust,compile_fail
3094 /// // bar/src/lib.rs
3095 /// fn run() {
3096 /// // ...
3097 /// }
3098 ///
3099 /// // bar/src/main.rs
3100 /// fn main() {
3101 /// bar::run();
3102 /// }
3103 /// ```
3104 ///
3105 /// Binary targets cannot be used as libraries and so declaring
3106 /// one as a module is not allowed.
3107 pub SPECIAL_MODULE_NAME,
3108 Warn,
3109 "module declarations for files with a special meaning",
3110}
3111
3112declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3113
3114impl EarlyLintPass for SpecialModuleName {
3115 fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3116 for item in &krate.items {
3117 if let ast::ItemKind::Mod(
3118 _,
3119 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _, _),
3120 ) = item.kind
3121 {
3122 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3123 continue;
3124 }
3125
3126 match item.ident.name.as_str() {
3127 "lib" => cx.emit_span_lint(
3128 SPECIAL_MODULE_NAME,
3129 item.span,
3130 BuiltinSpecialModuleNameUsed::Lib,
3131 ),
3132 "main" => cx.emit_span_lint(
3133 SPECIAL_MODULE_NAME,
3134 item.span,
3135 BuiltinSpecialModuleNameUsed::Main,
3136 ),
3137 _ => continue,
3138 }
3139 }
3140 }
3141 }
3142}