rustc_hir_typeck/closure.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
//! Code for type-checking closure expressions.
use std::iter;
use std::ops::ControlFlow;
use rustc_abi::ExternAbi;
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
use rustc_infer::infer::{BoundRegionConversionTime, DefineOpaqueTypes, InferOk, InferResult};
use rustc_infer::traits::{ObligationCauseCode, PredicateObligations};
use rustc_macros::{TypeFoldable, TypeVisitable};
use rustc_middle::span_bug;
use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::{self, GenericArgs, Ty, TyCtxt, TypeSuperVisitable, TypeVisitor};
use rustc_span::def_id::LocalDefId;
use rustc_span::{DUMMY_SP, Span};
use rustc_trait_selection::error_reporting::traits::ArgKind;
use rustc_trait_selection::traits;
use rustc_type_ir::ClosureKind;
use tracing::{debug, instrument, trace};
use super::{CoroutineTypes, Expectation, FnCtxt, check_fn};
/// What signature do we *expect* the closure to have from context?
#[derive(Debug, Clone, TypeFoldable, TypeVisitable)]
struct ExpectedSig<'tcx> {
/// Span that gave us this expectation, if we know that.
cause_span: Option<Span>,
sig: ty::PolyFnSig<'tcx>,
}
#[derive(Debug)]
struct ClosureSignatures<'tcx> {
/// The signature users of the closure see.
bound_sig: ty::PolyFnSig<'tcx>,
/// The signature within the function body.
/// This mostly differs in the sense that lifetimes are now early bound and any
/// opaque types from the signature expectation are overridden in case there are
/// explicit hidden types written by the user in the closure signature.
liberated_sig: ty::FnSig<'tcx>,
}
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
#[instrument(skip(self, closure), level = "debug")]
pub(crate) fn check_expr_closure(
&self,
closure: &hir::Closure<'tcx>,
expr_span: Span,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let body = tcx.hir().body(closure.body);
let expr_def_id = closure.def_id;
// It's always helpful for inference if we know the kind of
// closure sooner rather than later, so first examine the expected
// type, and see if can glean a closure kind from there.
let (expected_sig, expected_kind) = match expected.to_option(self) {
Some(ty) => self.deduce_closure_signature(
self.try_structurally_resolve_type(expr_span, ty),
closure.kind,
),
None => (None, None),
};
let ClosureSignatures { bound_sig, mut liberated_sig } =
self.sig_of_closure(expr_def_id, closure.fn_decl, closure.kind, expected_sig);
debug!(?bound_sig, ?liberated_sig);
let parent_args =
GenericArgs::identity_for_item(tcx, tcx.typeck_root_def_id(expr_def_id.to_def_id()));
let tupled_upvars_ty = self.next_ty_var(expr_span);
// FIXME: We could probably actually just unify this further --
// instead of having a `FnSig` and a `Option<CoroutineTypes>`,
// we can have a `ClosureSignature { Coroutine { .. }, Closure { .. } }`,
// similar to how `ty::GenSig` is a distinct data structure.
let (closure_ty, coroutine_types) = match closure.kind {
hir::ClosureKind::Closure => {
// Tuple up the arguments and insert the resulting function type into
// the `closures` table.
let sig = bound_sig.map_bound(|sig| {
tcx.mk_fn_sig(
[Ty::new_tup(tcx, sig.inputs())],
sig.output(),
sig.c_variadic,
sig.safety,
sig.abi,
)
});
debug!(?sig, ?expected_kind);
let closure_kind_ty = match expected_kind {
Some(kind) => Ty::from_closure_kind(tcx, kind),
// Create a type variable (for now) to represent the closure kind.
// It will be unified during the upvar inference phase (`upvar.rs`)
None => self.next_ty_var(expr_span),
};
let closure_args = ty::ClosureArgs::new(tcx, ty::ClosureArgsParts {
parent_args,
closure_kind_ty,
closure_sig_as_fn_ptr_ty: Ty::new_fn_ptr(tcx, sig),
tupled_upvars_ty,
});
(Ty::new_closure(tcx, expr_def_id.to_def_id(), closure_args.args), None)
}
hir::ClosureKind::Coroutine(kind) => {
let yield_ty = match kind {
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _)
| hir::CoroutineKind::Coroutine(_) => {
let yield_ty = self.next_ty_var(expr_span);
self.require_type_is_sized(
yield_ty,
expr_span,
ObligationCauseCode::SizedYieldType,
);
yield_ty
}
// HACK(-Ztrait-solver=next): In the *old* trait solver, we must eagerly
// guide inference on the yield type so that we can handle `AsyncIterator`
// in this block in projection correctly. In the new trait solver, it is
// not a problem.
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _) => {
let yield_ty = self.next_ty_var(expr_span);
self.require_type_is_sized(
yield_ty,
expr_span,
ObligationCauseCode::SizedYieldType,
);
Ty::new_adt(
tcx,
tcx.adt_def(
tcx.require_lang_item(hir::LangItem::Poll, Some(expr_span)),
),
tcx.mk_args(&[Ty::new_adt(
tcx,
tcx.adt_def(
tcx.require_lang_item(hir::LangItem::Option, Some(expr_span)),
),
tcx.mk_args(&[yield_ty.into()]),
)
.into()]),
)
}
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _) => {
tcx.types.unit
}
};
// Resume type defaults to `()` if the coroutine has no argument.
let resume_ty = liberated_sig.inputs().get(0).copied().unwrap_or(tcx.types.unit);
let interior = self.next_ty_var(expr_span);
self.deferred_coroutine_interiors.borrow_mut().push((
expr_def_id,
body.id(),
interior,
));
// Coroutines that come from coroutine closures have not yet determined
// their kind ty, so make a fresh infer var which will be constrained
// later during upvar analysis. Regular coroutines always have the kind
// ty of `().`
let kind_ty = match kind {
hir::CoroutineKind::Desugared(_, hir::CoroutineSource::Closure) => {
self.next_ty_var(expr_span)
}
_ => tcx.types.unit,
};
let coroutine_args = ty::CoroutineArgs::new(tcx, ty::CoroutineArgsParts {
parent_args,
kind_ty,
resume_ty,
yield_ty,
return_ty: liberated_sig.output(),
witness: interior,
tupled_upvars_ty,
});
(
Ty::new_coroutine(tcx, expr_def_id.to_def_id(), coroutine_args.args),
Some(CoroutineTypes { resume_ty, yield_ty }),
)
}
hir::ClosureKind::CoroutineClosure(kind) => {
// async closures always return the type ascribed after the `->` (if present),
// and yield `()`.
let (bound_return_ty, bound_yield_ty) = match kind {
hir::CoroutineDesugaring::Async => {
(bound_sig.skip_binder().output(), tcx.types.unit)
}
hir::CoroutineDesugaring::Gen | hir::CoroutineDesugaring::AsyncGen => {
todo!("`gen` and `async gen` closures not supported yet")
}
};
// Compute all of the variables that will be used to populate the coroutine.
let resume_ty = self.next_ty_var(expr_span);
let interior = self.next_ty_var(expr_span);
let closure_kind_ty = match expected_kind {
Some(kind) => Ty::from_closure_kind(tcx, kind),
// Create a type variable (for now) to represent the closure kind.
// It will be unified during the upvar inference phase (`upvar.rs`)
None => self.next_ty_var(expr_span),
};
let coroutine_captures_by_ref_ty = self.next_ty_var(expr_span);
let closure_args =
ty::CoroutineClosureArgs::new(tcx, ty::CoroutineClosureArgsParts {
parent_args,
closure_kind_ty,
signature_parts_ty: Ty::new_fn_ptr(
tcx,
bound_sig.map_bound(|sig| {
tcx.mk_fn_sig(
[
resume_ty,
Ty::new_tup_from_iter(tcx, sig.inputs().iter().copied()),
],
Ty::new_tup(tcx, &[bound_yield_ty, bound_return_ty]),
sig.c_variadic,
sig.safety,
sig.abi,
)
}),
),
tupled_upvars_ty,
coroutine_captures_by_ref_ty,
coroutine_witness_ty: interior,
});
let coroutine_kind_ty = match expected_kind {
Some(kind) => Ty::from_coroutine_closure_kind(tcx, kind),
// Create a type variable (for now) to represent the closure kind.
// It will be unified during the upvar inference phase (`upvar.rs`)
None => self.next_ty_var(expr_span),
};
let coroutine_upvars_ty = self.next_ty_var(expr_span);
// We need to turn the liberated signature that we got from HIR, which
// looks something like `|Args...| -> T`, into a signature that is suitable
// for type checking the inner body of the closure, which always returns a
// coroutine. To do so, we use the `CoroutineClosureSignature` to compute
// the coroutine type, filling in the tupled_upvars_ty and kind_ty with infer
// vars which will get constrained during upvar analysis.
let coroutine_output_ty = tcx.liberate_late_bound_regions(
expr_def_id.to_def_id(),
closure_args.coroutine_closure_sig().map_bound(|sig| {
sig.to_coroutine(
tcx,
parent_args,
coroutine_kind_ty,
tcx.coroutine_for_closure(expr_def_id),
coroutine_upvars_ty,
)
}),
);
liberated_sig = tcx.mk_fn_sig(
liberated_sig.inputs().iter().copied(),
coroutine_output_ty,
liberated_sig.c_variadic,
liberated_sig.safety,
liberated_sig.abi,
);
(Ty::new_coroutine_closure(tcx, expr_def_id.to_def_id(), closure_args.args), None)
}
};
check_fn(
&mut FnCtxt::new(self, self.param_env, closure.def_id),
liberated_sig,
coroutine_types,
closure.fn_decl,
expr_def_id,
body,
// Closure "rust-call" ABI doesn't support unsized params
false,
);
closure_ty
}
/// Given the expected type, figures out what it can about this closure we
/// are about to type check:
#[instrument(skip(self), level = "debug")]
fn deduce_closure_signature(
&self,
expected_ty: Ty<'tcx>,
closure_kind: hir::ClosureKind,
) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
match *expected_ty.kind() {
ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => self
.deduce_closure_signature_from_predicates(
expected_ty,
closure_kind,
self.tcx
.explicit_item_super_predicates(def_id)
.iter_instantiated_copied(self.tcx, args)
.map(|(c, s)| (c.as_predicate(), s)),
),
ty::Dynamic(object_type, ..) => {
let sig = object_type.projection_bounds().find_map(|pb| {
let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self);
self.deduce_sig_from_projection(None, closure_kind, pb)
});
let kind = object_type
.principal_def_id()
.and_then(|did| self.tcx.fn_trait_kind_from_def_id(did));
(sig, kind)
}
ty::Infer(ty::TyVar(vid)) => self.deduce_closure_signature_from_predicates(
Ty::new_var(self.tcx, self.root_var(vid)),
closure_kind,
self.obligations_for_self_ty(vid)
.into_iter()
.map(|obl| (obl.predicate, obl.cause.span)),
),
ty::FnPtr(sig_tys, hdr) => match closure_kind {
hir::ClosureKind::Closure => {
let expected_sig = ExpectedSig { cause_span: None, sig: sig_tys.with(hdr) };
(Some(expected_sig), Some(ty::ClosureKind::Fn))
}
hir::ClosureKind::Coroutine(_) | hir::ClosureKind::CoroutineClosure(_) => {
(None, None)
}
},
_ => (None, None),
}
}
fn deduce_closure_signature_from_predicates(
&self,
expected_ty: Ty<'tcx>,
closure_kind: hir::ClosureKind,
predicates: impl DoubleEndedIterator<Item = (ty::Predicate<'tcx>, Span)>,
) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
let mut expected_sig = None;
let mut expected_kind = None;
for (pred, span) in traits::elaborate(
self.tcx,
// Reverse the obligations here, since `elaborate_*` uses a stack,
// and we want to keep inference generally in the same order of
// the registered obligations.
predicates.rev(),
)
// We only care about self bounds
.filter_only_self()
{
debug!(?pred);
let bound_predicate = pred.kind();
// Given a Projection predicate, we can potentially infer
// the complete signature.
if expected_sig.is_none()
&& let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj_predicate)) =
bound_predicate.skip_binder()
{
let inferred_sig = self.normalize(
span,
self.deduce_sig_from_projection(
Some(span),
closure_kind,
bound_predicate.rebind(proj_predicate),
),
);
// Make sure that we didn't infer a signature that mentions itself.
// This can happen when we elaborate certain supertrait bounds that
// mention projections containing the `Self` type. See #105401.
struct MentionsTy<'tcx> {
expected_ty: Ty<'tcx>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for MentionsTy<'tcx> {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
if t == self.expected_ty {
ControlFlow::Break(())
} else {
t.super_visit_with(self)
}
}
}
if inferred_sig.visit_with(&mut MentionsTy { expected_ty }).is_continue() {
expected_sig = inferred_sig;
}
}
// Even if we can't infer the full signature, we may be able to
// infer the kind. This can occur when we elaborate a predicate
// like `F : Fn<A>`. Note that due to subtyping we could encounter
// many viable options, so pick the most restrictive.
let trait_def_id = match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
Some(data.projection_term.trait_def_id(self.tcx))
}
ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => Some(data.def_id()),
_ => None,
};
if let Some(trait_def_id) = trait_def_id {
let found_kind = match closure_kind {
hir::ClosureKind::Closure => self.tcx.fn_trait_kind_from_def_id(trait_def_id),
hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async) => self
.tcx
.async_fn_trait_kind_from_def_id(trait_def_id)
.or_else(|| self.tcx.fn_trait_kind_from_def_id(trait_def_id)),
_ => None,
};
if let Some(found_kind) = found_kind {
// always use the closure kind that is more permissive.
match (expected_kind, found_kind) {
(None, _) => expected_kind = Some(found_kind),
(Some(ClosureKind::FnMut), ClosureKind::Fn) => {
expected_kind = Some(ClosureKind::Fn)
}
(Some(ClosureKind::FnOnce), ClosureKind::Fn | ClosureKind::FnMut) => {
expected_kind = Some(found_kind)
}
_ => {}
}
}
}
}
(expected_sig, expected_kind)
}
/// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
/// everything we need to know about a closure or coroutine.
///
/// The `cause_span` should be the span that caused us to
/// have this expected signature, or `None` if we can't readily
/// know that.
#[instrument(level = "debug", skip(self, cause_span), ret)]
fn deduce_sig_from_projection(
&self,
cause_span: Option<Span>,
closure_kind: hir::ClosureKind,
projection: ty::PolyProjectionPredicate<'tcx>,
) -> Option<ExpectedSig<'tcx>> {
let tcx = self.tcx;
let trait_def_id = projection.trait_def_id(tcx);
// For now, we only do signature deduction based off of the `Fn` and `AsyncFn` traits,
// for closures and async closures, respectively.
match closure_kind {
hir::ClosureKind::Closure
if self.tcx.fn_trait_kind_from_def_id(trait_def_id).is_some() =>
{
self.extract_sig_from_projection(cause_span, projection)
}
hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async)
if self.tcx.async_fn_trait_kind_from_def_id(trait_def_id).is_some() =>
{
self.extract_sig_from_projection(cause_span, projection)
}
// It's possible we've passed the closure to a (somewhat out-of-fashion)
// `F: FnOnce() -> Fut, Fut: Future<Output = T>` style bound. Let's still
// guide inference here, since it's beneficial for the user.
hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async)
if self.tcx.fn_trait_kind_from_def_id(trait_def_id).is_some() =>
{
self.extract_sig_from_projection_and_future_bound(cause_span, projection)
}
_ => None,
}
}
/// Given an `FnOnce::Output` or `AsyncFn::Output` projection, extract the args
/// and return type to infer a [`ty::PolyFnSig`] for the closure.
fn extract_sig_from_projection(
&self,
cause_span: Option<Span>,
projection: ty::PolyProjectionPredicate<'tcx>,
) -> Option<ExpectedSig<'tcx>> {
let projection = self.resolve_vars_if_possible(projection);
let arg_param_ty = projection.skip_binder().projection_term.args.type_at(1);
debug!(?arg_param_ty);
let ty::Tuple(input_tys) = *arg_param_ty.kind() else {
return None;
};
// Since this is a return parameter type it is safe to unwrap.
let ret_param_ty = projection.skip_binder().term.expect_type();
debug!(?ret_param_ty);
let sig = projection.rebind(self.tcx.mk_fn_sig(
input_tys,
ret_param_ty,
false,
hir::Safety::Safe,
ExternAbi::Rust,
));
Some(ExpectedSig { cause_span, sig })
}
/// When an async closure is passed to a function that has a "two-part" `Fn`
/// and `Future` trait bound, like:
///
/// ```rust
/// use std::future::Future;
///
/// fn not_exactly_an_async_closure<F, Fut>(_f: F)
/// where
/// F: FnOnce(String, u32) -> Fut,
/// Fut: Future<Output = i32>,
/// {}
/// ```
///
/// The we want to be able to extract the signature to guide inference in the async
/// closure. We will have two projection predicates registered in this case. First,
/// we identify the `FnOnce<Args, Output = ?Fut>` bound, and if the output type is
/// an inference variable `?Fut`, we check if that is bounded by a `Future<Output = Ty>`
/// projection.
///
/// This function is actually best-effort with the return type; if we don't find a
/// `Future` projection, we still will return arguments that we extracted from the `FnOnce`
/// projection, and the output will be an unconstrained type variable instead.
fn extract_sig_from_projection_and_future_bound(
&self,
cause_span: Option<Span>,
projection: ty::PolyProjectionPredicate<'tcx>,
) -> Option<ExpectedSig<'tcx>> {
let projection = self.resolve_vars_if_possible(projection);
let arg_param_ty = projection.skip_binder().projection_term.args.type_at(1);
debug!(?arg_param_ty);
let ty::Tuple(input_tys) = *arg_param_ty.kind() else {
return None;
};
// If the return type is a type variable, look for bounds on it.
// We could theoretically support other kinds of return types here,
// but none of them would be useful, since async closures return
// concrete anonymous future types, and their futures are not coerced
// into any other type within the body of the async closure.
let ty::Infer(ty::TyVar(return_vid)) = *projection.skip_binder().term.expect_type().kind()
else {
return None;
};
// FIXME: We may want to elaborate here, though I assume this will be exceedingly rare.
let mut return_ty = None;
for bound in self.obligations_for_self_ty(return_vid) {
if let Some(ret_projection) = bound.predicate.as_projection_clause()
&& let Some(ret_projection) = ret_projection.no_bound_vars()
&& self.tcx.is_lang_item(ret_projection.def_id(), LangItem::FutureOutput)
{
return_ty = Some(ret_projection.term.expect_type());
break;
}
}
// SUBTLE: If we didn't find a `Future<Output = ...>` bound for the return
// vid, we still want to attempt to provide inference guidance for the async
// closure's arguments. Instantiate a new vid to plug into the output type.
//
// You may be wondering, what if it's higher-ranked? Well, given that we
// found a type variable for the `FnOnce::Output` projection above, we know
// that the output can't mention any of the vars.
//
// Also note that we use a fresh var here for the signature since the signature
// records the output of the *future*, and `return_vid` above is the type
// variable of the future, not its output.
//
// FIXME: We probably should store this signature inference output in a way
// that does not misuse a `FnSig` type, but that can be done separately.
let return_ty =
return_ty.unwrap_or_else(|| self.next_ty_var(cause_span.unwrap_or(DUMMY_SP)));
let sig = projection.rebind(self.tcx.mk_fn_sig(
input_tys,
return_ty,
false,
hir::Safety::Safe,
ExternAbi::Rust,
));
Some(ExpectedSig { cause_span, sig })
}
fn sig_of_closure(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
expected_sig: Option<ExpectedSig<'tcx>>,
) -> ClosureSignatures<'tcx> {
if let Some(e) = expected_sig {
self.sig_of_closure_with_expectation(expr_def_id, decl, closure_kind, e)
} else {
self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind)
}
}
/// If there is no expected signature, then we will convert the
/// types that the user gave into a signature.
#[instrument(skip(self, expr_def_id, decl), level = "debug")]
fn sig_of_closure_no_expectation(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
) -> ClosureSignatures<'tcx> {
let bound_sig = self.supplied_sig_of_closure(expr_def_id, decl, closure_kind);
self.closure_sigs(expr_def_id, bound_sig)
}
/// Invoked to compute the signature of a closure expression. This
/// combines any user-provided type annotations (e.g., `|x: u32|
/// -> u32 { .. }`) with the expected signature.
///
/// The approach is as follows:
///
/// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
/// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
/// - If we have no expectation `E`, then the signature of the closure is `S`.
/// - Otherwise, the signature of the closure is E. Moreover:
/// - Skolemize the late-bound regions in `E`, yielding `E'`.
/// - Instantiate all the late-bound regions bound in the closure within `S`
/// with fresh (existential) variables, yielding `S'`
/// - Require that `E' = S'`
/// - We could use some kind of subtyping relationship here,
/// I imagine, but equality is easier and works fine for
/// our purposes.
///
/// The key intuition here is that the user's types must be valid
/// from "the inside" of the closure, but the expectation
/// ultimately drives the overall signature.
///
/// # Examples
///
/// ```ignore (illustrative)
/// fn with_closure<F>(_: F)
/// where F: Fn(&u32) -> &u32 { .. }
///
/// with_closure(|x: &u32| { ... })
/// ```
///
/// Here:
/// - E would be `fn(&u32) -> &u32`.
/// - S would be `fn(&u32) -> ?T`
/// - E' is `&'!0 u32 -> &'!0 u32`
/// - S' is `&'?0 u32 -> ?T`
///
/// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
///
/// # Arguments
///
/// - `expr_def_id`: the `LocalDefId` of the closure expression
/// - `decl`: the HIR declaration of the closure
/// - `body`: the body of the closure
/// - `expected_sig`: the expected signature (if any). Note that
/// this is missing a binder: that is, there may be late-bound
/// regions with depth 1, which are bound then by the closure.
#[instrument(skip(self, expr_def_id, decl), level = "debug")]
fn sig_of_closure_with_expectation(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
expected_sig: ExpectedSig<'tcx>,
) -> ClosureSignatures<'tcx> {
// Watch out for some surprises and just ignore the
// expectation if things don't see to match up with what we
// expect.
if expected_sig.sig.c_variadic() != decl.c_variadic {
return self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind);
} else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 {
return self.sig_of_closure_with_mismatched_number_of_arguments(
expr_def_id,
decl,
expected_sig,
);
}
// Create a `PolyFnSig`. Note the oddity that late bound
// regions appearing free in `expected_sig` are now bound up
// in this binder we are creating.
assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST));
let bound_sig = expected_sig.sig.map_bound(|sig| {
self.tcx.mk_fn_sig(
sig.inputs().iter().cloned(),
sig.output(),
sig.c_variadic,
hir::Safety::Safe,
ExternAbi::RustCall,
)
});
// `deduce_expectations_from_expected_type` introduces
// late-bound lifetimes defined elsewhere, which we now
// anonymize away, so as not to confuse the user.
let bound_sig = self.tcx.anonymize_bound_vars(bound_sig);
let closure_sigs = self.closure_sigs(expr_def_id, bound_sig);
// Up till this point, we have ignored the annotations that the user
// gave. This function will check that they unify successfully.
// Along the way, it also writes out entries for types that the user
// wrote into our typeck results, which are then later used by the privacy
// check.
match self.merge_supplied_sig_with_expectation(
expr_def_id,
decl,
closure_kind,
closure_sigs,
) {
Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
Err(_) => self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind),
}
}
fn sig_of_closure_with_mismatched_number_of_arguments(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
expected_sig: ExpectedSig<'tcx>,
) -> ClosureSignatures<'tcx> {
let expr_map_node = self.tcx.hir_node_by_def_id(expr_def_id);
let expected_args: Vec<_> = expected_sig
.sig
.skip_binder()
.inputs()
.iter()
.map(|ty| ArgKind::from_expected_ty(*ty, None))
.collect();
let (closure_span, closure_arg_span, found_args) =
match self.err_ctxt().get_fn_like_arguments(expr_map_node) {
Some((sp, arg_sp, args)) => (Some(sp), arg_sp, args),
None => (None, None, Vec::new()),
};
let expected_span =
expected_sig.cause_span.unwrap_or_else(|| self.tcx.def_span(expr_def_id));
let guar = self
.err_ctxt()
.report_arg_count_mismatch(
expected_span,
closure_span,
expected_args,
found_args,
true,
closure_arg_span,
)
.emit();
let error_sig = self.error_sig_of_closure(decl, guar);
self.closure_sigs(expr_def_id, error_sig)
}
/// Enforce the user's types against the expectation. See
/// `sig_of_closure_with_expectation` for details on the overall
/// strategy.
#[instrument(level = "debug", skip(self, expr_def_id, decl, expected_sigs))]
fn merge_supplied_sig_with_expectation(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
mut expected_sigs: ClosureSignatures<'tcx>,
) -> InferResult<'tcx, ClosureSignatures<'tcx>> {
// Get the signature S that the user gave.
//
// (See comment on `sig_of_closure_with_expectation` for the
// meaning of these letters.)
let supplied_sig = self.supplied_sig_of_closure(expr_def_id, decl, closure_kind);
debug!(?supplied_sig);
// FIXME(#45727): As discussed in [this comment][c1], naively
// forcing equality here actually results in suboptimal error
// messages in some cases. For now, if there would have been
// an obvious error, we fallback to declaring the type of the
// closure to be the one the user gave, which allows other
// error message code to trigger.
//
// However, I think [there is potential to do even better
// here][c2], since in *this* code we have the precise span of
// the type parameter in question in hand when we report the
// error.
//
// [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
// [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
self.commit_if_ok(|_| {
let mut all_obligations = PredicateObligations::new();
let supplied_sig = self.instantiate_binder_with_fresh_vars(
self.tcx.def_span(expr_def_id),
BoundRegionConversionTime::FnCall,
supplied_sig,
);
// The liberated version of this signature should be a subtype
// of the liberated form of the expectation.
for ((hir_ty, &supplied_ty), expected_ty) in iter::zip(
iter::zip(decl.inputs, supplied_sig.inputs()),
expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'.
) {
// Check that E' = S'.
let cause = self.misc(hir_ty.span);
let InferOk { value: (), obligations } = self.at(&cause, self.param_env).eq(
DefineOpaqueTypes::Yes,
*expected_ty,
supplied_ty,
)?;
all_obligations.extend(obligations);
}
let supplied_output_ty = supplied_sig.output();
let cause = &self.misc(decl.output.span());
let InferOk { value: (), obligations } = self.at(cause, self.param_env).eq(
DefineOpaqueTypes::Yes,
expected_sigs.liberated_sig.output(),
supplied_output_ty,
)?;
all_obligations.extend(obligations);
let inputs =
supplied_sig.inputs().into_iter().map(|&ty| self.resolve_vars_if_possible(ty));
expected_sigs.liberated_sig = self.tcx.mk_fn_sig(
inputs,
supplied_output_ty,
expected_sigs.liberated_sig.c_variadic,
hir::Safety::Safe,
ExternAbi::RustCall,
);
Ok(InferOk { value: expected_sigs, obligations: all_obligations })
})
}
/// If there is no expected signature, then we will convert the
/// types that the user gave into a signature.
///
/// Also, record this closure signature for later.
#[instrument(skip(self, decl), level = "debug", ret)]
fn supplied_sig_of_closure(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
) -> ty::PolyFnSig<'tcx> {
let lowerer = self.lowerer();
trace!("decl = {:#?}", decl);
debug!(?closure_kind);
let hir_id = self.tcx.local_def_id_to_hir_id(expr_def_id);
let bound_vars = self.tcx.late_bound_vars(hir_id);
// First, convert the types that the user supplied (if any).
let supplied_arguments = decl.inputs.iter().map(|a| lowerer.lower_ty(a));
let supplied_return = match decl.output {
hir::FnRetTy::Return(ref output) => lowerer.lower_ty(output),
hir::FnRetTy::DefaultReturn(_) => match closure_kind {
// In the case of the async block that we create for a function body,
// we expect the return type of the block to match that of the enclosing
// function.
hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
hir::CoroutineDesugaring::Async,
hir::CoroutineSource::Fn,
)) => {
debug!("closure is async fn body");
self.deduce_future_output_from_obligations(expr_def_id).unwrap_or_else(|| {
// AFAIK, deducing the future output
// always succeeds *except* in error cases
// like #65159. I'd like to return Error
// here, but I can't because I can't
// easily (and locally) prove that we
// *have* reported an
// error. --nikomatsakis
lowerer.ty_infer(None, decl.output.span())
})
}
// All `gen {}` and `async gen {}` must return unit.
hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
hir::CoroutineDesugaring::Gen | hir::CoroutineDesugaring::AsyncGen,
_,
)) => self.tcx.types.unit,
// For async blocks, we just fall back to `_` here.
// For closures/coroutines, we know nothing about the return
// type unless it was supplied.
hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
hir::CoroutineDesugaring::Async,
_,
))
| hir::ClosureKind::Coroutine(hir::CoroutineKind::Coroutine(_))
| hir::ClosureKind::Closure
| hir::ClosureKind::CoroutineClosure(_) => {
lowerer.ty_infer(None, decl.output.span())
}
},
};
let result = ty::Binder::bind_with_vars(
self.tcx.mk_fn_sig(
supplied_arguments,
supplied_return,
decl.c_variadic,
hir::Safety::Safe,
ExternAbi::RustCall,
),
bound_vars,
);
let c_result = self.infcx.canonicalize_response(result);
self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result);
// Normalize only after registering in `user_provided_sigs`.
self.normalize(self.tcx.hir().span(hir_id), result)
}
/// Invoked when we are translating the coroutine that results
/// from desugaring an `async fn`. Returns the "sugared" return
/// type of the `async fn` -- that is, the return type that the
/// user specified. The "desugared" return type is an `impl
/// Future<Output = T>`, so we do this by searching through the
/// obligations to extract the `T`.
#[instrument(skip(self), level = "debug", ret)]
fn deduce_future_output_from_obligations(&self, body_def_id: LocalDefId) -> Option<Ty<'tcx>> {
let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
span_bug!(self.tcx.def_span(body_def_id), "async fn coroutine outside of a fn")
});
let closure_span = self.tcx.def_span(body_def_id);
let ret_ty = ret_coercion.borrow().expected_ty();
let ret_ty = self.try_structurally_resolve_type(closure_span, ret_ty);
let get_future_output = |predicate: ty::Predicate<'tcx>, span| {
// Search for a pending obligation like
//
// `<R as Future>::Output = T`
//
// where R is the return type we are expecting. This type `T`
// will be our output.
let bound_predicate = predicate.kind();
if let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj_predicate)) =
bound_predicate.skip_binder()
{
self.deduce_future_output_from_projection(
span,
bound_predicate.rebind(proj_predicate),
)
} else {
None
}
};
let output_ty = match *ret_ty.kind() {
ty::Infer(ty::TyVar(ret_vid)) => {
self.obligations_for_self_ty(ret_vid).into_iter().find_map(|obligation| {
get_future_output(obligation.predicate, obligation.cause.span)
})?
}
ty::Alias(ty::Projection, _) => {
return Some(Ty::new_error_with_message(
self.tcx,
closure_span,
"this projection should have been projected to an opaque type",
));
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => self
.tcx
.explicit_item_super_predicates(def_id)
.iter_instantiated_copied(self.tcx, args)
.find_map(|(p, s)| get_future_output(p.as_predicate(), s))?,
ty::Error(_) => return Some(ret_ty),
_ => {
span_bug!(closure_span, "invalid async fn coroutine return type: {ret_ty:?}")
}
};
let output_ty = self.normalize(closure_span, output_ty);
// async fn that have opaque types in their return type need to redo the conversion to inference variables
// as they fetch the still opaque version from the signature.
let InferOk { value: output_ty, obligations } = self
.replace_opaque_types_with_inference_vars(
output_ty,
body_def_id,
closure_span,
self.param_env,
);
self.register_predicates(obligations);
Some(output_ty)
}
/// Given a projection like
///
/// `<X as Future>::Output = T`
///
/// where `X` is some type that has no late-bound regions, returns
/// `Some(T)`. If the projection is for some other trait, returns
/// `None`.
fn deduce_future_output_from_projection(
&self,
cause_span: Span,
predicate: ty::PolyProjectionPredicate<'tcx>,
) -> Option<Ty<'tcx>> {
debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
// We do not expect any bound regions in our predicate, so
// skip past the bound vars.
let Some(predicate) = predicate.no_bound_vars() else {
debug!("deduce_future_output_from_projection: has late-bound regions");
return None;
};
// Check that this is a projection from the `Future` trait.
let trait_def_id = predicate.projection_term.trait_def_id(self.tcx);
let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span));
if trait_def_id != future_trait {
debug!("deduce_future_output_from_projection: not a future");
return None;
}
// The `Future` trait has only one associated item, `Output`,
// so check that this is what we see.
let output_assoc_item = self.tcx.associated_item_def_ids(future_trait)[0];
if output_assoc_item != predicate.projection_term.def_id {
span_bug!(
cause_span,
"projecting associated item `{:?}` from future, which is not Output `{:?}`",
predicate.projection_term.def_id,
output_assoc_item,
);
}
// Extract the type from the projection. Note that there can
// be no bound variables in this type because the "self type"
// does not have any regions in it.
let output_ty = self.resolve_vars_if_possible(predicate.term);
debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
// This is a projection on a Fn trait so will always be a type.
Some(output_ty.expect_type())
}
/// Converts the types that the user supplied, in case that doing
/// so should yield an error, but returns back a signature where
/// all parameters are of type `ty::Error`.
fn error_sig_of_closure(
&self,
decl: &hir::FnDecl<'tcx>,
guar: ErrorGuaranteed,
) -> ty::PolyFnSig<'tcx> {
let lowerer = self.lowerer();
let err_ty = Ty::new_error(self.tcx, guar);
let supplied_arguments = decl.inputs.iter().map(|a| {
// Convert the types that the user supplied (if any), but ignore them.
lowerer.lower_ty(a);
err_ty
});
if let hir::FnRetTy::Return(ref output) = decl.output {
lowerer.lower_ty(output);
}
let result = ty::Binder::dummy(self.tcx.mk_fn_sig(
supplied_arguments,
err_ty,
decl.c_variadic,
hir::Safety::Safe,
ExternAbi::RustCall,
));
debug!("supplied_sig_of_closure: result={:?}", result);
result
}
#[instrument(level = "debug", skip(self), ret)]
fn closure_sigs(
&self,
expr_def_id: LocalDefId,
bound_sig: ty::PolyFnSig<'tcx>,
) -> ClosureSignatures<'tcx> {
let liberated_sig =
self.tcx().liberate_late_bound_regions(expr_def_id.to_def_id(), bound_sig);
let liberated_sig = self.normalize(self.tcx.def_span(expr_def_id), liberated_sig);
ClosureSignatures { bound_sig, liberated_sig }
}
}