rustc_hir_typeck/
closure.rs

1//! Code for type-checking closure expressions.
2
3use std::iter;
4use std::ops::ControlFlow;
5
6use rustc_abi::ExternAbi;
7use rustc_errors::ErrorGuaranteed;
8use rustc_hir as hir;
9use rustc_hir::lang_items::LangItem;
10use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
11use rustc_infer::infer::{BoundRegionConversionTime, DefineOpaqueTypes, InferOk, InferResult};
12use rustc_infer::traits::{ObligationCauseCode, PredicateObligations};
13use rustc_macros::{TypeFoldable, TypeVisitable};
14use rustc_middle::span_bug;
15use rustc_middle::ty::{
16    self, ClosureKind, GenericArgs, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable,
17    TypeVisitableExt, TypeVisitor,
18};
19use rustc_span::def_id::LocalDefId;
20use rustc_span::{DUMMY_SP, Span};
21use rustc_trait_selection::error_reporting::traits::ArgKind;
22use rustc_trait_selection::traits;
23use tracing::{debug, instrument, trace};
24
25use super::{CoroutineTypes, Expectation, FnCtxt, check_fn};
26
27/// What signature do we *expect* the closure to have from context?
28#[derive(Debug, Clone, TypeFoldable, TypeVisitable)]
29struct ExpectedSig<'tcx> {
30    /// Span that gave us this expectation, if we know that.
31    cause_span: Option<Span>,
32    sig: ty::PolyFnSig<'tcx>,
33}
34
35#[derive(Debug)]
36struct ClosureSignatures<'tcx> {
37    /// The signature users of the closure see.
38    bound_sig: ty::PolyFnSig<'tcx>,
39    /// The signature within the function body.
40    /// This mostly differs in the sense that lifetimes are now early bound and any
41    /// opaque types from the signature expectation are overridden in case there are
42    /// explicit hidden types written by the user in the closure signature.
43    liberated_sig: ty::FnSig<'tcx>,
44}
45
46impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
47    #[instrument(skip(self, closure), level = "debug")]
48    pub(crate) fn check_expr_closure(
49        &self,
50        closure: &hir::Closure<'tcx>,
51        expr_span: Span,
52        expected: Expectation<'tcx>,
53    ) -> Ty<'tcx> {
54        let tcx = self.tcx;
55        let body = tcx.hir_body(closure.body);
56        let expr_def_id = closure.def_id;
57
58        // It's always helpful for inference if we know the kind of
59        // closure sooner rather than later, so first examine the expected
60        // type, and see if can glean a closure kind from there.
61        let (expected_sig, expected_kind) = match expected.to_option(self) {
62            Some(ty) => self.deduce_closure_signature(
63                self.try_structurally_resolve_type(expr_span, ty),
64                closure.kind,
65            ),
66            None => (None, None),
67        };
68
69        let ClosureSignatures { bound_sig, mut liberated_sig } =
70            self.sig_of_closure(expr_def_id, closure.fn_decl, closure.kind, expected_sig);
71
72        debug!(?bound_sig, ?liberated_sig);
73
74        let parent_args =
75            GenericArgs::identity_for_item(tcx, tcx.typeck_root_def_id(expr_def_id.to_def_id()));
76
77        let tupled_upvars_ty = self.next_ty_var(expr_span);
78
79        // FIXME: We could probably actually just unify this further --
80        // instead of having a `FnSig` and a `Option<CoroutineTypes>`,
81        // we can have a `ClosureSignature { Coroutine { .. }, Closure { .. } }`,
82        // similar to how `ty::GenSig` is a distinct data structure.
83        let (closure_ty, coroutine_types) = match closure.kind {
84            hir::ClosureKind::Closure => {
85                // Tuple up the arguments and insert the resulting function type into
86                // the `closures` table.
87                let sig = bound_sig.map_bound(|sig| {
88                    tcx.mk_fn_sig(
89                        [Ty::new_tup(tcx, sig.inputs())],
90                        sig.output(),
91                        sig.c_variadic,
92                        sig.safety,
93                        sig.abi,
94                    )
95                });
96
97                debug!(?sig, ?expected_kind);
98
99                let closure_kind_ty = match expected_kind {
100                    Some(kind) => Ty::from_closure_kind(tcx, kind),
101
102                    // Create a type variable (for now) to represent the closure kind.
103                    // It will be unified during the upvar inference phase (`upvar.rs`)
104                    None => self.next_ty_var(expr_span),
105                };
106
107                let closure_args = ty::ClosureArgs::new(
108                    tcx,
109                    ty::ClosureArgsParts {
110                        parent_args,
111                        closure_kind_ty,
112                        closure_sig_as_fn_ptr_ty: Ty::new_fn_ptr(tcx, sig),
113                        tupled_upvars_ty,
114                    },
115                );
116
117                (Ty::new_closure(tcx, expr_def_id.to_def_id(), closure_args.args), None)
118            }
119            hir::ClosureKind::Coroutine(kind) => {
120                let yield_ty = match kind {
121                    hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _)
122                    | hir::CoroutineKind::Coroutine(_) => {
123                        let yield_ty = self.next_ty_var(expr_span);
124                        self.require_type_is_sized(
125                            yield_ty,
126                            expr_span,
127                            ObligationCauseCode::SizedYieldType,
128                        );
129                        yield_ty
130                    }
131                    // HACK(-Ztrait-solver=next): In the *old* trait solver, we must eagerly
132                    // guide inference on the yield type so that we can handle `AsyncIterator`
133                    // in this block in projection correctly. In the new trait solver, it is
134                    // not a problem.
135                    hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _) => {
136                        let yield_ty = self.next_ty_var(expr_span);
137                        self.require_type_is_sized(
138                            yield_ty,
139                            expr_span,
140                            ObligationCauseCode::SizedYieldType,
141                        );
142
143                        Ty::new_adt(
144                            tcx,
145                            tcx.adt_def(
146                                tcx.require_lang_item(hir::LangItem::Poll, Some(expr_span)),
147                            ),
148                            tcx.mk_args(&[Ty::new_adt(
149                                tcx,
150                                tcx.adt_def(
151                                    tcx.require_lang_item(hir::LangItem::Option, Some(expr_span)),
152                                ),
153                                tcx.mk_args(&[yield_ty.into()]),
154                            )
155                            .into()]),
156                        )
157                    }
158                    hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _) => {
159                        tcx.types.unit
160                    }
161                };
162
163                // Resume type defaults to `()` if the coroutine has no argument.
164                let resume_ty = liberated_sig.inputs().get(0).copied().unwrap_or(tcx.types.unit);
165
166                let interior = self.next_ty_var(expr_span);
167                self.deferred_coroutine_interiors.borrow_mut().push((expr_def_id, interior));
168
169                // Coroutines that come from coroutine closures have not yet determined
170                // their kind ty, so make a fresh infer var which will be constrained
171                // later during upvar analysis. Regular coroutines always have the kind
172                // ty of `().`
173                let kind_ty = match kind {
174                    hir::CoroutineKind::Desugared(_, hir::CoroutineSource::Closure) => {
175                        self.next_ty_var(expr_span)
176                    }
177                    _ => tcx.types.unit,
178                };
179
180                let coroutine_args = ty::CoroutineArgs::new(
181                    tcx,
182                    ty::CoroutineArgsParts {
183                        parent_args,
184                        kind_ty,
185                        resume_ty,
186                        yield_ty,
187                        return_ty: liberated_sig.output(),
188                        witness: interior,
189                        tupled_upvars_ty,
190                    },
191                );
192
193                (
194                    Ty::new_coroutine(tcx, expr_def_id.to_def_id(), coroutine_args.args),
195                    Some(CoroutineTypes { resume_ty, yield_ty }),
196                )
197            }
198            hir::ClosureKind::CoroutineClosure(kind) => {
199                // async closures always return the type ascribed after the `->` (if present),
200                // and yield `()`.
201                let (bound_return_ty, bound_yield_ty) = match kind {
202                    hir::CoroutineDesugaring::Async => {
203                        (bound_sig.skip_binder().output(), tcx.types.unit)
204                    }
205                    hir::CoroutineDesugaring::Gen | hir::CoroutineDesugaring::AsyncGen => {
206                        todo!("`gen` and `async gen` closures not supported yet")
207                    }
208                };
209                // Compute all of the variables that will be used to populate the coroutine.
210                let resume_ty = self.next_ty_var(expr_span);
211                let interior = self.next_ty_var(expr_span);
212
213                let closure_kind_ty = match expected_kind {
214                    Some(kind) => Ty::from_closure_kind(tcx, kind),
215
216                    // Create a type variable (for now) to represent the closure kind.
217                    // It will be unified during the upvar inference phase (`upvar.rs`)
218                    None => self.next_ty_var(expr_span),
219                };
220
221                let coroutine_captures_by_ref_ty = self.next_ty_var(expr_span);
222                let closure_args = ty::CoroutineClosureArgs::new(
223                    tcx,
224                    ty::CoroutineClosureArgsParts {
225                        parent_args,
226                        closure_kind_ty,
227                        signature_parts_ty: Ty::new_fn_ptr(
228                            tcx,
229                            bound_sig.map_bound(|sig| {
230                                tcx.mk_fn_sig(
231                                    [
232                                        resume_ty,
233                                        Ty::new_tup_from_iter(tcx, sig.inputs().iter().copied()),
234                                    ],
235                                    Ty::new_tup(tcx, &[bound_yield_ty, bound_return_ty]),
236                                    sig.c_variadic,
237                                    sig.safety,
238                                    sig.abi,
239                                )
240                            }),
241                        ),
242                        tupled_upvars_ty,
243                        coroutine_captures_by_ref_ty,
244                        coroutine_witness_ty: interior,
245                    },
246                );
247
248                let coroutine_kind_ty = match expected_kind {
249                    Some(kind) => Ty::from_coroutine_closure_kind(tcx, kind),
250
251                    // Create a type variable (for now) to represent the closure kind.
252                    // It will be unified during the upvar inference phase (`upvar.rs`)
253                    None => self.next_ty_var(expr_span),
254                };
255
256                let coroutine_upvars_ty = self.next_ty_var(expr_span);
257
258                // We need to turn the liberated signature that we got from HIR, which
259                // looks something like `|Args...| -> T`, into a signature that is suitable
260                // for type checking the inner body of the closure, which always returns a
261                // coroutine. To do so, we use the `CoroutineClosureSignature` to compute
262                // the coroutine type, filling in the tupled_upvars_ty and kind_ty with infer
263                // vars which will get constrained during upvar analysis.
264                let coroutine_output_ty = tcx.liberate_late_bound_regions(
265                    expr_def_id.to_def_id(),
266                    closure_args.coroutine_closure_sig().map_bound(|sig| {
267                        sig.to_coroutine(
268                            tcx,
269                            parent_args,
270                            coroutine_kind_ty,
271                            tcx.coroutine_for_closure(expr_def_id),
272                            coroutine_upvars_ty,
273                        )
274                    }),
275                );
276                liberated_sig = tcx.mk_fn_sig(
277                    liberated_sig.inputs().iter().copied(),
278                    coroutine_output_ty,
279                    liberated_sig.c_variadic,
280                    liberated_sig.safety,
281                    liberated_sig.abi,
282                );
283
284                (Ty::new_coroutine_closure(tcx, expr_def_id.to_def_id(), closure_args.args), None)
285            }
286        };
287
288        check_fn(
289            &mut FnCtxt::new(self, self.param_env, closure.def_id),
290            liberated_sig,
291            coroutine_types,
292            closure.fn_decl,
293            expr_def_id,
294            body,
295            // Closure "rust-call" ABI doesn't support unsized params
296            false,
297        );
298
299        closure_ty
300    }
301
302    /// Given the expected type, figures out what it can about this closure we
303    /// are about to type check:
304    #[instrument(skip(self), level = "debug", ret)]
305    fn deduce_closure_signature(
306        &self,
307        expected_ty: Ty<'tcx>,
308        closure_kind: hir::ClosureKind,
309    ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
310        match *expected_ty.kind() {
311            ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => self
312                .deduce_closure_signature_from_predicates(
313                    expected_ty,
314                    closure_kind,
315                    self.tcx
316                        .explicit_item_self_bounds(def_id)
317                        .iter_instantiated_copied(self.tcx, args)
318                        .map(|(c, s)| (c.as_predicate(), s)),
319                ),
320            ty::Dynamic(object_type, ..) => {
321                let sig = object_type.projection_bounds().find_map(|pb| {
322                    let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self);
323                    self.deduce_sig_from_projection(None, closure_kind, pb)
324                });
325                let kind = object_type
326                    .principal_def_id()
327                    .and_then(|did| self.tcx.fn_trait_kind_from_def_id(did));
328                (sig, kind)
329            }
330            ty::Infer(ty::TyVar(vid)) => self.deduce_closure_signature_from_predicates(
331                Ty::new_var(self.tcx, self.root_var(vid)),
332                closure_kind,
333                self.obligations_for_self_ty(vid)
334                    .into_iter()
335                    .map(|obl| (obl.predicate, obl.cause.span)),
336            ),
337            ty::FnPtr(sig_tys, hdr) => match closure_kind {
338                hir::ClosureKind::Closure => {
339                    let expected_sig = ExpectedSig { cause_span: None, sig: sig_tys.with(hdr) };
340                    (Some(expected_sig), Some(ty::ClosureKind::Fn))
341                }
342                hir::ClosureKind::Coroutine(_) | hir::ClosureKind::CoroutineClosure(_) => {
343                    (None, None)
344                }
345            },
346            _ => (None, None),
347        }
348    }
349
350    fn deduce_closure_signature_from_predicates(
351        &self,
352        expected_ty: Ty<'tcx>,
353        closure_kind: hir::ClosureKind,
354        predicates: impl DoubleEndedIterator<Item = (ty::Predicate<'tcx>, Span)>,
355    ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
356        let mut expected_sig = None;
357        let mut expected_kind = None;
358
359        for (pred, span) in traits::elaborate(
360            self.tcx,
361            // Reverse the obligations here, since `elaborate_*` uses a stack,
362            // and we want to keep inference generally in the same order of
363            // the registered obligations.
364            predicates.rev(),
365        )
366        // We only care about self bounds
367        .filter_only_self()
368        {
369            debug!(?pred);
370            let bound_predicate = pred.kind();
371
372            // Given a Projection predicate, we can potentially infer
373            // the complete signature.
374            if expected_sig.is_none()
375                && let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj_predicate)) =
376                    bound_predicate.skip_binder()
377            {
378                let inferred_sig = self.normalize(
379                    span,
380                    self.deduce_sig_from_projection(
381                        Some(span),
382                        closure_kind,
383                        bound_predicate.rebind(proj_predicate),
384                    ),
385                );
386
387                // Make sure that we didn't infer a signature that mentions itself.
388                // This can happen when we elaborate certain supertrait bounds that
389                // mention projections containing the `Self` type. See #105401.
390                struct MentionsTy<'tcx> {
391                    expected_ty: Ty<'tcx>,
392                }
393                impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for MentionsTy<'tcx> {
394                    type Result = ControlFlow<()>;
395
396                    fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
397                        if t == self.expected_ty {
398                            ControlFlow::Break(())
399                        } else {
400                            t.super_visit_with(self)
401                        }
402                    }
403                }
404
405                // Don't infer a closure signature from a goal that names the closure type as this will
406                // (almost always) lead to occurs check errors later in type checking.
407                if self.next_trait_solver()
408                    && let Some(inferred_sig) = inferred_sig
409                {
410                    // In the new solver it is difficult to explicitly normalize the inferred signature as we
411                    // would have to manually handle universes and rewriting bound vars and placeholders back
412                    // and forth.
413                    //
414                    // Instead we take advantage of the fact that we relating an inference variable with an alias
415                    // will only instantiate the variable if the alias is rigid(*not quite). Concretely we:
416                    // - Create some new variable `?sig`
417                    // - Equate `?sig` with the unnormalized signature, e.g. `fn(<Foo<?x> as Trait>::Assoc)`
418                    // - Depending on whether `<Foo<?x> as Trait>::Assoc` is rigid, ambiguous or normalizeable,
419                    //   we will either wind up with `?sig=<Foo<?x> as Trait>::Assoc/?y/ConcreteTy` respectively.
420                    //
421                    // *: In cases where there are ambiguous aliases in the signature that make use of bound vars
422                    //    they will wind up present in `?sig` even though they are non-rigid.
423                    //
424                    //    This is a bit weird and means we may wind up discarding the goal due to it naming `expected_ty`
425                    //    even though the normalized form may not name `expected_ty`. However, this matches the existing
426                    //    behaviour of the old solver and would be technically a breaking change to fix.
427                    let generalized_fnptr_sig = self.next_ty_var(span);
428                    let inferred_fnptr_sig = Ty::new_fn_ptr(self.tcx, inferred_sig.sig);
429                    self.demand_eqtype(span, inferred_fnptr_sig, generalized_fnptr_sig);
430
431                    let resolved_sig = self.resolve_vars_if_possible(generalized_fnptr_sig);
432
433                    if resolved_sig.visit_with(&mut MentionsTy { expected_ty }).is_continue() {
434                        expected_sig = Some(ExpectedSig {
435                            cause_span: inferred_sig.cause_span,
436                            sig: resolved_sig.fn_sig(self.tcx),
437                        });
438                    }
439                } else {
440                    if inferred_sig.visit_with(&mut MentionsTy { expected_ty }).is_continue() {
441                        expected_sig = inferred_sig;
442                    }
443                }
444            }
445
446            // Even if we can't infer the full signature, we may be able to
447            // infer the kind. This can occur when we elaborate a predicate
448            // like `F : Fn<A>`. Note that due to subtyping we could encounter
449            // many viable options, so pick the most restrictive.
450            let trait_def_id = match bound_predicate.skip_binder() {
451                ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
452                    Some(data.projection_term.trait_def_id(self.tcx))
453                }
454                ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => Some(data.def_id()),
455                _ => None,
456            };
457
458            if let Some(trait_def_id) = trait_def_id {
459                let found_kind = match closure_kind {
460                    hir::ClosureKind::Closure => self.tcx.fn_trait_kind_from_def_id(trait_def_id),
461                    hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async) => self
462                        .tcx
463                        .async_fn_trait_kind_from_def_id(trait_def_id)
464                        .or_else(|| self.tcx.fn_trait_kind_from_def_id(trait_def_id)),
465                    _ => None,
466                };
467
468                if let Some(found_kind) = found_kind {
469                    // always use the closure kind that is more permissive.
470                    match (expected_kind, found_kind) {
471                        (None, _) => expected_kind = Some(found_kind),
472                        (Some(ClosureKind::FnMut), ClosureKind::Fn) => {
473                            expected_kind = Some(ClosureKind::Fn)
474                        }
475                        (Some(ClosureKind::FnOnce), ClosureKind::Fn | ClosureKind::FnMut) => {
476                            expected_kind = Some(found_kind)
477                        }
478                        _ => {}
479                    }
480                }
481            }
482        }
483
484        (expected_sig, expected_kind)
485    }
486
487    /// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
488    /// everything we need to know about a closure or coroutine.
489    ///
490    /// The `cause_span` should be the span that caused us to
491    /// have this expected signature, or `None` if we can't readily
492    /// know that.
493    #[instrument(level = "debug", skip(self, cause_span), ret)]
494    fn deduce_sig_from_projection(
495        &self,
496        cause_span: Option<Span>,
497        closure_kind: hir::ClosureKind,
498        projection: ty::PolyProjectionPredicate<'tcx>,
499    ) -> Option<ExpectedSig<'tcx>> {
500        let def_id = projection.item_def_id();
501
502        // For now, we only do signature deduction based off of the `Fn` and `AsyncFn` traits,
503        // for closures and async closures, respectively.
504        match closure_kind {
505            hir::ClosureKind::Closure if self.tcx.is_lang_item(def_id, LangItem::FnOnceOutput) => {
506                self.extract_sig_from_projection(cause_span, projection)
507            }
508            hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async)
509                if self.tcx.is_lang_item(def_id, LangItem::AsyncFnOnceOutput) =>
510            {
511                self.extract_sig_from_projection(cause_span, projection)
512            }
513            // It's possible we've passed the closure to a (somewhat out-of-fashion)
514            // `F: FnOnce() -> Fut, Fut: Future<Output = T>` style bound. Let's still
515            // guide inference here, since it's beneficial for the user.
516            hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async)
517                if self.tcx.is_lang_item(def_id, LangItem::FnOnceOutput) =>
518            {
519                self.extract_sig_from_projection_and_future_bound(cause_span, projection)
520            }
521            _ => None,
522        }
523    }
524
525    /// Given an `FnOnce::Output` or `AsyncFn::Output` projection, extract the args
526    /// and return type to infer a [`ty::PolyFnSig`] for the closure.
527    fn extract_sig_from_projection(
528        &self,
529        cause_span: Option<Span>,
530        projection: ty::PolyProjectionPredicate<'tcx>,
531    ) -> Option<ExpectedSig<'tcx>> {
532        let projection = self.resolve_vars_if_possible(projection);
533
534        let arg_param_ty = projection.skip_binder().projection_term.args.type_at(1);
535        debug!(?arg_param_ty);
536
537        let ty::Tuple(input_tys) = *arg_param_ty.kind() else {
538            return None;
539        };
540
541        // Since this is a return parameter type it is safe to unwrap.
542        let ret_param_ty = projection.skip_binder().term.expect_type();
543        debug!(?ret_param_ty);
544
545        let sig = projection.rebind(self.tcx.mk_fn_sig(
546            input_tys,
547            ret_param_ty,
548            false,
549            hir::Safety::Safe,
550            ExternAbi::Rust,
551        ));
552
553        Some(ExpectedSig { cause_span, sig })
554    }
555
556    /// When an async closure is passed to a function that has a "two-part" `Fn`
557    /// and `Future` trait bound, like:
558    ///
559    /// ```rust
560    /// use std::future::Future;
561    ///
562    /// fn not_exactly_an_async_closure<F, Fut>(_f: F)
563    /// where
564    ///     F: FnOnce(String, u32) -> Fut,
565    ///     Fut: Future<Output = i32>,
566    /// {}
567    /// ```
568    ///
569    /// The we want to be able to extract the signature to guide inference in the async
570    /// closure. We will have two projection predicates registered in this case. First,
571    /// we identify the `FnOnce<Args, Output = ?Fut>` bound, and if the output type is
572    /// an inference variable `?Fut`, we check if that is bounded by a `Future<Output = Ty>`
573    /// projection.
574    ///
575    /// This function is actually best-effort with the return type; if we don't find a
576    /// `Future` projection, we still will return arguments that we extracted from the `FnOnce`
577    /// projection, and the output will be an unconstrained type variable instead.
578    fn extract_sig_from_projection_and_future_bound(
579        &self,
580        cause_span: Option<Span>,
581        projection: ty::PolyProjectionPredicate<'tcx>,
582    ) -> Option<ExpectedSig<'tcx>> {
583        let projection = self.resolve_vars_if_possible(projection);
584
585        let arg_param_ty = projection.skip_binder().projection_term.args.type_at(1);
586        debug!(?arg_param_ty);
587
588        let ty::Tuple(input_tys) = *arg_param_ty.kind() else {
589            return None;
590        };
591
592        // If the return type is a type variable, look for bounds on it.
593        // We could theoretically support other kinds of return types here,
594        // but none of them would be useful, since async closures return
595        // concrete anonymous future types, and their futures are not coerced
596        // into any other type within the body of the async closure.
597        let ty::Infer(ty::TyVar(return_vid)) = *projection.skip_binder().term.expect_type().kind()
598        else {
599            return None;
600        };
601
602        // FIXME: We may want to elaborate here, though I assume this will be exceedingly rare.
603        let mut return_ty = None;
604        for bound in self.obligations_for_self_ty(return_vid) {
605            if let Some(ret_projection) = bound.predicate.as_projection_clause()
606                && let Some(ret_projection) = ret_projection.no_bound_vars()
607                && self.tcx.is_lang_item(ret_projection.def_id(), LangItem::FutureOutput)
608            {
609                return_ty = Some(ret_projection.term.expect_type());
610                break;
611            }
612        }
613
614        // SUBTLE: If we didn't find a `Future<Output = ...>` bound for the return
615        // vid, we still want to attempt to provide inference guidance for the async
616        // closure's arguments. Instantiate a new vid to plug into the output type.
617        //
618        // You may be wondering, what if it's higher-ranked? Well, given that we
619        // found a type variable for the `FnOnce::Output` projection above, we know
620        // that the output can't mention any of the vars.
621        //
622        // Also note that we use a fresh var here for the signature since the signature
623        // records the output of the *future*, and `return_vid` above is the type
624        // variable of the future, not its output.
625        //
626        // FIXME: We probably should store this signature inference output in a way
627        // that does not misuse a `FnSig` type, but that can be done separately.
628        let return_ty =
629            return_ty.unwrap_or_else(|| self.next_ty_var(cause_span.unwrap_or(DUMMY_SP)));
630
631        let sig = projection.rebind(self.tcx.mk_fn_sig(
632            input_tys,
633            return_ty,
634            false,
635            hir::Safety::Safe,
636            ExternAbi::Rust,
637        ));
638
639        Some(ExpectedSig { cause_span, sig })
640    }
641
642    fn sig_of_closure(
643        &self,
644        expr_def_id: LocalDefId,
645        decl: &hir::FnDecl<'tcx>,
646        closure_kind: hir::ClosureKind,
647        expected_sig: Option<ExpectedSig<'tcx>>,
648    ) -> ClosureSignatures<'tcx> {
649        if let Some(e) = expected_sig {
650            self.sig_of_closure_with_expectation(expr_def_id, decl, closure_kind, e)
651        } else {
652            self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind)
653        }
654    }
655
656    /// If there is no expected signature, then we will convert the
657    /// types that the user gave into a signature.
658    #[instrument(skip(self, expr_def_id, decl), level = "debug")]
659    fn sig_of_closure_no_expectation(
660        &self,
661        expr_def_id: LocalDefId,
662        decl: &hir::FnDecl<'tcx>,
663        closure_kind: hir::ClosureKind,
664    ) -> ClosureSignatures<'tcx> {
665        let bound_sig = self.supplied_sig_of_closure(expr_def_id, decl, closure_kind);
666
667        self.closure_sigs(expr_def_id, bound_sig)
668    }
669
670    /// Invoked to compute the signature of a closure expression. This
671    /// combines any user-provided type annotations (e.g., `|x: u32|
672    /// -> u32 { .. }`) with the expected signature.
673    ///
674    /// The approach is as follows:
675    ///
676    /// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
677    /// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
678    ///   - If we have no expectation `E`, then the signature of the closure is `S`.
679    ///   - Otherwise, the signature of the closure is E. Moreover:
680    ///     - Skolemize the late-bound regions in `E`, yielding `E'`.
681    ///     - Instantiate all the late-bound regions bound in the closure within `S`
682    ///       with fresh (existential) variables, yielding `S'`
683    ///     - Require that `E' = S'`
684    ///       - We could use some kind of subtyping relationship here,
685    ///         I imagine, but equality is easier and works fine for
686    ///         our purposes.
687    ///
688    /// The key intuition here is that the user's types must be valid
689    /// from "the inside" of the closure, but the expectation
690    /// ultimately drives the overall signature.
691    ///
692    /// # Examples
693    ///
694    /// ```ignore (illustrative)
695    /// fn with_closure<F>(_: F)
696    ///   where F: Fn(&u32) -> &u32 { .. }
697    ///
698    /// with_closure(|x: &u32| { ... })
699    /// ```
700    ///
701    /// Here:
702    /// - E would be `fn(&u32) -> &u32`.
703    /// - S would be `fn(&u32) -> ?T`
704    /// - E' is `&'!0 u32 -> &'!0 u32`
705    /// - S' is `&'?0 u32 -> ?T`
706    ///
707    /// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
708    ///
709    /// # Arguments
710    ///
711    /// - `expr_def_id`: the `LocalDefId` of the closure expression
712    /// - `decl`: the HIR declaration of the closure
713    /// - `body`: the body of the closure
714    /// - `expected_sig`: the expected signature (if any). Note that
715    ///   this is missing a binder: that is, there may be late-bound
716    ///   regions with depth 1, which are bound then by the closure.
717    #[instrument(skip(self, expr_def_id, decl), level = "debug")]
718    fn sig_of_closure_with_expectation(
719        &self,
720        expr_def_id: LocalDefId,
721        decl: &hir::FnDecl<'tcx>,
722        closure_kind: hir::ClosureKind,
723        expected_sig: ExpectedSig<'tcx>,
724    ) -> ClosureSignatures<'tcx> {
725        // Watch out for some surprises and just ignore the
726        // expectation if things don't see to match up with what we
727        // expect.
728        if expected_sig.sig.c_variadic() != decl.c_variadic {
729            return self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind);
730        } else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 {
731            return self.sig_of_closure_with_mismatched_number_of_arguments(
732                expr_def_id,
733                decl,
734                expected_sig,
735            );
736        }
737
738        // Create a `PolyFnSig`. Note the oddity that late bound
739        // regions appearing free in `expected_sig` are now bound up
740        // in this binder we are creating.
741        assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST));
742        let bound_sig = expected_sig.sig.map_bound(|sig| {
743            self.tcx.mk_fn_sig(
744                sig.inputs().iter().cloned(),
745                sig.output(),
746                sig.c_variadic,
747                hir::Safety::Safe,
748                ExternAbi::RustCall,
749            )
750        });
751
752        // `deduce_expectations_from_expected_type` introduces
753        // late-bound lifetimes defined elsewhere, which we now
754        // anonymize away, so as not to confuse the user.
755        let bound_sig = self.tcx.anonymize_bound_vars(bound_sig);
756
757        let closure_sigs = self.closure_sigs(expr_def_id, bound_sig);
758
759        // Up till this point, we have ignored the annotations that the user
760        // gave. This function will check that they unify successfully.
761        // Along the way, it also writes out entries for types that the user
762        // wrote into our typeck results, which are then later used by the privacy
763        // check.
764        match self.merge_supplied_sig_with_expectation(
765            expr_def_id,
766            decl,
767            closure_kind,
768            closure_sigs,
769        ) {
770            Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
771            Err(_) => self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind),
772        }
773    }
774
775    fn sig_of_closure_with_mismatched_number_of_arguments(
776        &self,
777        expr_def_id: LocalDefId,
778        decl: &hir::FnDecl<'tcx>,
779        expected_sig: ExpectedSig<'tcx>,
780    ) -> ClosureSignatures<'tcx> {
781        let expr_map_node = self.tcx.hir_node_by_def_id(expr_def_id);
782        let expected_args: Vec<_> = expected_sig
783            .sig
784            .skip_binder()
785            .inputs()
786            .iter()
787            .map(|ty| ArgKind::from_expected_ty(*ty, None))
788            .collect();
789        let (closure_span, closure_arg_span, found_args) =
790            match self.err_ctxt().get_fn_like_arguments(expr_map_node) {
791                Some((sp, arg_sp, args)) => (Some(sp), arg_sp, args),
792                None => (None, None, Vec::new()),
793            };
794        let expected_span =
795            expected_sig.cause_span.unwrap_or_else(|| self.tcx.def_span(expr_def_id));
796        let guar = self
797            .err_ctxt()
798            .report_arg_count_mismatch(
799                expected_span,
800                closure_span,
801                expected_args,
802                found_args,
803                true,
804                closure_arg_span,
805            )
806            .emit();
807
808        let error_sig = self.error_sig_of_closure(decl, guar);
809
810        self.closure_sigs(expr_def_id, error_sig)
811    }
812
813    /// Enforce the user's types against the expectation. See
814    /// `sig_of_closure_with_expectation` for details on the overall
815    /// strategy.
816    #[instrument(level = "debug", skip(self, expr_def_id, decl, expected_sigs))]
817    fn merge_supplied_sig_with_expectation(
818        &self,
819        expr_def_id: LocalDefId,
820        decl: &hir::FnDecl<'tcx>,
821        closure_kind: hir::ClosureKind,
822        mut expected_sigs: ClosureSignatures<'tcx>,
823    ) -> InferResult<'tcx, ClosureSignatures<'tcx>> {
824        // Get the signature S that the user gave.
825        //
826        // (See comment on `sig_of_closure_with_expectation` for the
827        // meaning of these letters.)
828        let supplied_sig = self.supplied_sig_of_closure(expr_def_id, decl, closure_kind);
829
830        debug!(?supplied_sig);
831
832        // FIXME(#45727): As discussed in [this comment][c1], naively
833        // forcing equality here actually results in suboptimal error
834        // messages in some cases. For now, if there would have been
835        // an obvious error, we fallback to declaring the type of the
836        // closure to be the one the user gave, which allows other
837        // error message code to trigger.
838        //
839        // However, I think [there is potential to do even better
840        // here][c2], since in *this* code we have the precise span of
841        // the type parameter in question in hand when we report the
842        // error.
843        //
844        // [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
845        // [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
846        self.commit_if_ok(|_| {
847            let mut all_obligations = PredicateObligations::new();
848            let supplied_sig = self.instantiate_binder_with_fresh_vars(
849                self.tcx.def_span(expr_def_id),
850                BoundRegionConversionTime::FnCall,
851                supplied_sig,
852            );
853
854            // The liberated version of this signature should be a subtype
855            // of the liberated form of the expectation.
856            for ((hir_ty, &supplied_ty), expected_ty) in iter::zip(
857                iter::zip(decl.inputs, supplied_sig.inputs()),
858                expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'.
859            ) {
860                // Check that E' = S'.
861                let cause = self.misc(hir_ty.span);
862                let InferOk { value: (), obligations } = self.at(&cause, self.param_env).eq(
863                    DefineOpaqueTypes::Yes,
864                    *expected_ty,
865                    supplied_ty,
866                )?;
867                all_obligations.extend(obligations);
868            }
869
870            let supplied_output_ty = supplied_sig.output();
871            let cause = &self.misc(decl.output.span());
872            let InferOk { value: (), obligations } = self.at(cause, self.param_env).eq(
873                DefineOpaqueTypes::Yes,
874                expected_sigs.liberated_sig.output(),
875                supplied_output_ty,
876            )?;
877            all_obligations.extend(obligations);
878
879            let inputs =
880                supplied_sig.inputs().into_iter().map(|&ty| self.resolve_vars_if_possible(ty));
881
882            expected_sigs.liberated_sig = self.tcx.mk_fn_sig(
883                inputs,
884                supplied_output_ty,
885                expected_sigs.liberated_sig.c_variadic,
886                hir::Safety::Safe,
887                ExternAbi::RustCall,
888            );
889
890            Ok(InferOk { value: expected_sigs, obligations: all_obligations })
891        })
892    }
893
894    /// If there is no expected signature, then we will convert the
895    /// types that the user gave into a signature.
896    ///
897    /// Also, record this closure signature for later.
898    #[instrument(skip(self, decl), level = "debug", ret)]
899    fn supplied_sig_of_closure(
900        &self,
901        expr_def_id: LocalDefId,
902        decl: &hir::FnDecl<'tcx>,
903        closure_kind: hir::ClosureKind,
904    ) -> ty::PolyFnSig<'tcx> {
905        let lowerer = self.lowerer();
906
907        trace!("decl = {:#?}", decl);
908        debug!(?closure_kind);
909
910        let hir_id = self.tcx.local_def_id_to_hir_id(expr_def_id);
911        let bound_vars = self.tcx.late_bound_vars(hir_id);
912
913        // First, convert the types that the user supplied (if any).
914        let supplied_arguments = decl.inputs.iter().map(|a| lowerer.lower_ty(a));
915        let supplied_return = match decl.output {
916            hir::FnRetTy::Return(ref output) => lowerer.lower_ty(output),
917            hir::FnRetTy::DefaultReturn(_) => match closure_kind {
918                // In the case of the async block that we create for a function body,
919                // we expect the return type of the block to match that of the enclosing
920                // function.
921                hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
922                    hir::CoroutineDesugaring::Async,
923                    hir::CoroutineSource::Fn,
924                )) => {
925                    debug!("closure is async fn body");
926                    self.deduce_future_output_from_obligations(expr_def_id).unwrap_or_else(|| {
927                        // AFAIK, deducing the future output
928                        // always succeeds *except* in error cases
929                        // like #65159. I'd like to return Error
930                        // here, but I can't because I can't
931                        // easily (and locally) prove that we
932                        // *have* reported an
933                        // error. --nikomatsakis
934                        lowerer.ty_infer(None, decl.output.span())
935                    })
936                }
937                // All `gen {}` and `async gen {}` must return unit.
938                hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
939                    hir::CoroutineDesugaring::Gen | hir::CoroutineDesugaring::AsyncGen,
940                    _,
941                )) => self.tcx.types.unit,
942
943                // For async blocks, we just fall back to `_` here.
944                // For closures/coroutines, we know nothing about the return
945                // type unless it was supplied.
946                hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
947                    hir::CoroutineDesugaring::Async,
948                    _,
949                ))
950                | hir::ClosureKind::Coroutine(hir::CoroutineKind::Coroutine(_))
951                | hir::ClosureKind::Closure
952                | hir::ClosureKind::CoroutineClosure(_) => {
953                    lowerer.ty_infer(None, decl.output.span())
954                }
955            },
956        };
957
958        let result = ty::Binder::bind_with_vars(
959            self.tcx.mk_fn_sig(
960                supplied_arguments,
961                supplied_return,
962                decl.c_variadic,
963                hir::Safety::Safe,
964                ExternAbi::RustCall,
965            ),
966            bound_vars,
967        );
968
969        let c_result = self.infcx.canonicalize_response(result);
970        self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result);
971
972        // Normalize only after registering in `user_provided_sigs`.
973        self.normalize(self.tcx.hir().span(hir_id), result)
974    }
975
976    /// Invoked when we are translating the coroutine that results
977    /// from desugaring an `async fn`. Returns the "sugared" return
978    /// type of the `async fn` -- that is, the return type that the
979    /// user specified. The "desugared" return type is an `impl
980    /// Future<Output = T>`, so we do this by searching through the
981    /// obligations to extract the `T`.
982    #[instrument(skip(self), level = "debug", ret)]
983    fn deduce_future_output_from_obligations(&self, body_def_id: LocalDefId) -> Option<Ty<'tcx>> {
984        let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
985            span_bug!(self.tcx.def_span(body_def_id), "async fn coroutine outside of a fn")
986        });
987
988        let closure_span = self.tcx.def_span(body_def_id);
989        let ret_ty = ret_coercion.borrow().expected_ty();
990        let ret_ty = self.try_structurally_resolve_type(closure_span, ret_ty);
991
992        let get_future_output = |predicate: ty::Predicate<'tcx>, span| {
993            // Search for a pending obligation like
994            //
995            // `<R as Future>::Output = T`
996            //
997            // where R is the return type we are expecting. This type `T`
998            // will be our output.
999            let bound_predicate = predicate.kind();
1000            if let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj_predicate)) =
1001                bound_predicate.skip_binder()
1002            {
1003                self.deduce_future_output_from_projection(
1004                    span,
1005                    bound_predicate.rebind(proj_predicate),
1006                )
1007            } else {
1008                None
1009            }
1010        };
1011
1012        let output_ty = match *ret_ty.kind() {
1013            ty::Infer(ty::TyVar(ret_vid)) => {
1014                self.obligations_for_self_ty(ret_vid).into_iter().find_map(|obligation| {
1015                    get_future_output(obligation.predicate, obligation.cause.span)
1016                })?
1017            }
1018            ty::Alias(ty::Projection, _) => {
1019                return Some(Ty::new_error_with_message(
1020                    self.tcx,
1021                    closure_span,
1022                    "this projection should have been projected to an opaque type",
1023                ));
1024            }
1025            ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => self
1026                .tcx
1027                .explicit_item_self_bounds(def_id)
1028                .iter_instantiated_copied(self.tcx, args)
1029                .find_map(|(p, s)| get_future_output(p.as_predicate(), s))?,
1030            ty::Error(_) => return Some(ret_ty),
1031            _ => {
1032                span_bug!(closure_span, "invalid async fn coroutine return type: {ret_ty:?}")
1033            }
1034        };
1035
1036        let output_ty = self.normalize(closure_span, output_ty);
1037
1038        // async fn that have opaque types in their return type need to redo the conversion to inference variables
1039        // as they fetch the still opaque version from the signature.
1040        let InferOk { value: output_ty, obligations } = self
1041            .replace_opaque_types_with_inference_vars(
1042                output_ty,
1043                body_def_id,
1044                closure_span,
1045                self.param_env,
1046            );
1047        self.register_predicates(obligations);
1048
1049        Some(output_ty)
1050    }
1051
1052    /// Given a projection like
1053    ///
1054    /// `<X as Future>::Output = T`
1055    ///
1056    /// where `X` is some type that has no late-bound regions, returns
1057    /// `Some(T)`. If the projection is for some other trait, returns
1058    /// `None`.
1059    fn deduce_future_output_from_projection(
1060        &self,
1061        cause_span: Span,
1062        predicate: ty::PolyProjectionPredicate<'tcx>,
1063    ) -> Option<Ty<'tcx>> {
1064        debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
1065
1066        // We do not expect any bound regions in our predicate, so
1067        // skip past the bound vars.
1068        let Some(predicate) = predicate.no_bound_vars() else {
1069            debug!("deduce_future_output_from_projection: has late-bound regions");
1070            return None;
1071        };
1072
1073        // Check that this is a projection from the `Future` trait.
1074        let trait_def_id = predicate.projection_term.trait_def_id(self.tcx);
1075        let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span));
1076        if trait_def_id != future_trait {
1077            debug!("deduce_future_output_from_projection: not a future");
1078            return None;
1079        }
1080
1081        // The `Future` trait has only one associated item, `Output`,
1082        // so check that this is what we see.
1083        let output_assoc_item = self.tcx.associated_item_def_ids(future_trait)[0];
1084        if output_assoc_item != predicate.projection_term.def_id {
1085            span_bug!(
1086                cause_span,
1087                "projecting associated item `{:?}` from future, which is not Output `{:?}`",
1088                predicate.projection_term.def_id,
1089                output_assoc_item,
1090            );
1091        }
1092
1093        // Extract the type from the projection. Note that there can
1094        // be no bound variables in this type because the "self type"
1095        // does not have any regions in it.
1096        let output_ty = self.resolve_vars_if_possible(predicate.term);
1097        debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
1098        // This is a projection on a Fn trait so will always be a type.
1099        Some(output_ty.expect_type())
1100    }
1101
1102    /// Converts the types that the user supplied, in case that doing
1103    /// so should yield an error, but returns back a signature where
1104    /// all parameters are of type `ty::Error`.
1105    fn error_sig_of_closure(
1106        &self,
1107        decl: &hir::FnDecl<'tcx>,
1108        guar: ErrorGuaranteed,
1109    ) -> ty::PolyFnSig<'tcx> {
1110        let lowerer = self.lowerer();
1111        let err_ty = Ty::new_error(self.tcx, guar);
1112
1113        let supplied_arguments = decl.inputs.iter().map(|a| {
1114            // Convert the types that the user supplied (if any), but ignore them.
1115            lowerer.lower_ty(a);
1116            err_ty
1117        });
1118
1119        if let hir::FnRetTy::Return(ref output) = decl.output {
1120            lowerer.lower_ty(output);
1121        }
1122
1123        let result = ty::Binder::dummy(self.tcx.mk_fn_sig(
1124            supplied_arguments,
1125            err_ty,
1126            decl.c_variadic,
1127            hir::Safety::Safe,
1128            ExternAbi::RustCall,
1129        ));
1130
1131        debug!("supplied_sig_of_closure: result={:?}", result);
1132
1133        result
1134    }
1135
1136    #[instrument(level = "debug", skip(self), ret)]
1137    fn closure_sigs(
1138        &self,
1139        expr_def_id: LocalDefId,
1140        bound_sig: ty::PolyFnSig<'tcx>,
1141    ) -> ClosureSignatures<'tcx> {
1142        let liberated_sig =
1143            self.tcx().liberate_late_bound_regions(expr_def_id.to_def_id(), bound_sig);
1144        let liberated_sig = self.normalize(self.tcx.def_span(expr_def_id), liberated_sig);
1145        ClosureSignatures { bound_sig, liberated_sig }
1146    }
1147}