rustc_span/source_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
//! Types for tracking pieces of source code within a crate.
//!
//! The [`SourceMap`] tracks all the source code used within a single crate, mapping
//! from integer byte positions to the original source code location. Each bit
//! of source parsed during crate parsing (typically files, in-memory strings,
//! or various bits of macro expansion) cover a continuous range of bytes in the
//! `SourceMap` and are represented by [`SourceFile`]s. Byte positions are stored in
//! [`Span`] and used pervasively in the compiler. They are absolute positions
//! within the `SourceMap`, which upon request can be converted to line and column
//! information, source code snippets, etc.
use std::io::{self, BorrowedBuf, Read};
use std::{fs, path};
use rustc_data_structures::sync::{IntoDynSyncSend, MappedReadGuard, ReadGuard, RwLock};
use rustc_data_structures::unhash::UnhashMap;
use rustc_macros::{Decodable, Encodable};
use tracing::{debug, instrument, trace};
use crate::*;
#[cfg(test)]
mod tests;
/// Returns the span itself if it doesn't come from a macro expansion,
/// otherwise return the call site span up to the `enclosing_sp` by
/// following the `expn_data` chain.
pub fn original_sp(sp: Span, enclosing_sp: Span) -> Span {
let ctxt = sp.ctxt();
if ctxt.is_root() {
return sp;
}
let enclosing_ctxt = enclosing_sp.ctxt();
let expn_data1 = ctxt.outer_expn_data();
if !enclosing_ctxt.is_root()
&& expn_data1.call_site == enclosing_ctxt.outer_expn_data().call_site
{
sp
} else {
original_sp(expn_data1.call_site, enclosing_sp)
}
}
mod monotonic {
use std::ops::{Deref, DerefMut};
/// A `MonotonicVec` is a `Vec` which can only be grown.
/// Once inserted, an element can never be removed or swapped,
/// guaranteeing that any indices into a `MonotonicVec` are stable
// This is declared in its own module to ensure that the private
// field is inaccessible
pub struct MonotonicVec<T>(Vec<T>);
impl<T> MonotonicVec<T> {
pub(super) fn push(&mut self, val: T) {
self.0.push(val);
}
}
impl<T> Default for MonotonicVec<T> {
fn default() -> Self {
MonotonicVec(vec![])
}
}
impl<T> Deref for MonotonicVec<T> {
type Target = Vec<T>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<T> !DerefMut for MonotonicVec<T> {}
}
#[derive(Clone, Encodable, Decodable, Debug, Copy, PartialEq, Hash, HashStable_Generic)]
pub struct Spanned<T> {
pub node: T,
pub span: Span,
}
pub fn respan<T>(sp: Span, t: T) -> Spanned<T> {
Spanned { node: t, span: sp }
}
pub fn dummy_spanned<T>(t: T) -> Spanned<T> {
respan(DUMMY_SP, t)
}
// _____________________________________________________________________________
// SourceFile, MultiByteChar, FileName, FileLines
//
/// An abstraction over the fs operations used by the Parser.
pub trait FileLoader {
/// Query the existence of a file.
fn file_exists(&self, path: &Path) -> bool;
/// Read the contents of a UTF-8 file into memory.
/// This function must return a String because we normalize
/// source files, which may require resizing.
fn read_file(&self, path: &Path) -> io::Result<String>;
/// Read the contents of a potentially non-UTF-8 file into memory.
/// We don't normalize binary files, so we can start in an Lrc.
fn read_binary_file(&self, path: &Path) -> io::Result<Lrc<[u8]>>;
}
/// A FileLoader that uses std::fs to load real files.
pub struct RealFileLoader;
impl FileLoader for RealFileLoader {
fn file_exists(&self, path: &Path) -> bool {
path.exists()
}
fn read_file(&self, path: &Path) -> io::Result<String> {
fs::read_to_string(path)
}
fn read_binary_file(&self, path: &Path) -> io::Result<Lrc<[u8]>> {
let mut file = fs::File::open(path)?;
let len = file.metadata()?.len();
let mut bytes = Lrc::new_uninit_slice(len as usize);
let mut buf = BorrowedBuf::from(Lrc::get_mut(&mut bytes).unwrap());
match file.read_buf_exact(buf.unfilled()) {
Ok(()) => {}
Err(e) if e.kind() == io::ErrorKind::UnexpectedEof => {
drop(bytes);
return fs::read(path).map(Vec::into);
}
Err(e) => return Err(e),
}
// SAFETY: If the read_buf_exact call returns Ok(()), then we have
// read len bytes and initialized the buffer.
let bytes = unsafe { bytes.assume_init() };
// At this point, we've read all the bytes that filesystem metadata reported exist.
// But we are not guaranteed to be at the end of the file, because we did not attempt to do
// a read with a non-zero-sized buffer and get Ok(0).
// So we do small read to a fixed-size buffer. If the read returns no bytes then we're
// already done, and we just return the Lrc we built above.
// If the read returns bytes however, we just fall back to reading into a Vec then turning
// that into an Lrc, losing our nice peak memory behavior. This fallback code path should
// be rarely exercised.
let mut probe = [0u8; 32];
let n = loop {
match file.read(&mut probe) {
Ok(0) => return Ok(bytes),
Err(e) if e.kind() == io::ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
Ok(n) => break n,
}
};
let mut bytes: Vec<u8> = bytes.iter().copied().chain(probe[..n].iter().copied()).collect();
file.read_to_end(&mut bytes)?;
Ok(bytes.into())
}
}
// _____________________________________________________________________________
// SourceMap
//
#[derive(Default)]
struct SourceMapFiles {
source_files: monotonic::MonotonicVec<Lrc<SourceFile>>,
stable_id_to_source_file: UnhashMap<StableSourceFileId, Lrc<SourceFile>>,
}
/// Used to construct a `SourceMap` with `SourceMap::with_inputs`.
pub struct SourceMapInputs {
pub file_loader: Box<dyn FileLoader + Send + Sync>,
pub path_mapping: FilePathMapping,
pub hash_kind: SourceFileHashAlgorithm,
pub checksum_hash_kind: Option<SourceFileHashAlgorithm>,
}
pub struct SourceMap {
files: RwLock<SourceMapFiles>,
file_loader: IntoDynSyncSend<Box<dyn FileLoader + Sync + Send>>,
// This is used to apply the file path remapping as specified via
// `--remap-path-prefix` to all `SourceFile`s allocated within this `SourceMap`.
path_mapping: FilePathMapping,
/// The algorithm used for hashing the contents of each source file.
hash_kind: SourceFileHashAlgorithm,
/// Similar to `hash_kind`, however this algorithm is used for checksums to determine if a crate is fresh.
/// `cargo` is the primary user of these.
///
/// If this is equal to `hash_kind` then the checksum won't be computed twice.
checksum_hash_kind: Option<SourceFileHashAlgorithm>,
}
impl SourceMap {
pub fn new(path_mapping: FilePathMapping) -> SourceMap {
Self::with_inputs(SourceMapInputs {
file_loader: Box::new(RealFileLoader),
path_mapping,
hash_kind: SourceFileHashAlgorithm::Md5,
checksum_hash_kind: None,
})
}
pub fn with_inputs(
SourceMapInputs { file_loader, path_mapping, hash_kind, checksum_hash_kind }: SourceMapInputs,
) -> SourceMap {
SourceMap {
files: Default::default(),
file_loader: IntoDynSyncSend(file_loader),
path_mapping,
hash_kind,
checksum_hash_kind,
}
}
pub fn path_mapping(&self) -> &FilePathMapping {
&self.path_mapping
}
pub fn file_exists(&self, path: &Path) -> bool {
self.file_loader.file_exists(path)
}
pub fn load_file(&self, path: &Path) -> io::Result<Lrc<SourceFile>> {
let src = self.file_loader.read_file(path)?;
let filename = path.to_owned().into();
Ok(self.new_source_file(filename, src))
}
/// Loads source file as a binary blob.
///
/// Unlike `load_file`, guarantees that no normalization like BOM-removal
/// takes place.
pub fn load_binary_file(&self, path: &Path) -> io::Result<(Lrc<[u8]>, Span)> {
let bytes = self.file_loader.read_binary_file(path)?;
// We need to add file to the `SourceMap`, so that it is present
// in dep-info. There's also an edge case that file might be both
// loaded as a binary via `include_bytes!` and as proper `SourceFile`
// via `mod`, so we try to use real file contents and not just an
// empty string.
let text = std::str::from_utf8(&bytes).unwrap_or("").to_string();
let file = self.new_source_file(path.to_owned().into(), text);
Ok((
bytes,
Span::new(
file.start_pos,
BytePos(file.start_pos.0 + file.source_len.0),
SyntaxContext::root(),
None,
),
))
}
// By returning a `MonotonicVec`, we ensure that consumers cannot invalidate
// any existing indices pointing into `files`.
pub fn files(&self) -> MappedReadGuard<'_, monotonic::MonotonicVec<Lrc<SourceFile>>> {
ReadGuard::map(self.files.borrow(), |files| &files.source_files)
}
pub fn source_file_by_stable_id(
&self,
stable_id: StableSourceFileId,
) -> Option<Lrc<SourceFile>> {
self.files.borrow().stable_id_to_source_file.get(&stable_id).cloned()
}
fn register_source_file(
&self,
file_id: StableSourceFileId,
mut file: SourceFile,
) -> Result<Lrc<SourceFile>, OffsetOverflowError> {
let mut files = self.files.borrow_mut();
file.start_pos = BytePos(if let Some(last_file) = files.source_files.last() {
// Add one so there is some space between files. This lets us distinguish
// positions in the `SourceMap`, even in the presence of zero-length files.
last_file.end_position().0.checked_add(1).ok_or(OffsetOverflowError)?
} else {
0
});
let file = Lrc::new(file);
files.source_files.push(Lrc::clone(&file));
files.stable_id_to_source_file.insert(file_id, Lrc::clone(&file));
Ok(file)
}
/// Creates a new `SourceFile`.
/// If a file already exists in the `SourceMap` with the same ID, that file is returned
/// unmodified.
pub fn new_source_file(&self, filename: FileName, src: String) -> Lrc<SourceFile> {
self.try_new_source_file(filename, src).unwrap_or_else(|OffsetOverflowError| {
eprintln!("fatal error: rustc does not support files larger than 4GB");
crate::fatal_error::FatalError.raise()
})
}
fn try_new_source_file(
&self,
filename: FileName,
src: String,
) -> Result<Lrc<SourceFile>, OffsetOverflowError> {
// Note that filename may not be a valid path, eg it may be `<anon>` etc,
// but this is okay because the directory determined by `path.pop()` will
// be empty, so the working directory will be used.
let (filename, _) = self.path_mapping.map_filename_prefix(&filename);
let stable_id = StableSourceFileId::from_filename_in_current_crate(&filename);
match self.source_file_by_stable_id(stable_id) {
Some(lrc_sf) => Ok(lrc_sf),
None => {
let source_file =
SourceFile::new(filename, src, self.hash_kind, self.checksum_hash_kind)?;
// Let's make sure the file_id we generated above actually matches
// the ID we generate for the SourceFile we just created.
debug_assert_eq!(source_file.stable_id, stable_id);
self.register_source_file(stable_id, source_file)
}
}
}
/// Allocates a new `SourceFile` representing a source file from an external
/// crate. The source code of such an "imported `SourceFile`" is not available,
/// but we still know enough to generate accurate debuginfo location
/// information for things inlined from other crates.
pub fn new_imported_source_file(
&self,
filename: FileName,
src_hash: SourceFileHash,
checksum_hash: Option<SourceFileHash>,
stable_id: StableSourceFileId,
source_len: u32,
cnum: CrateNum,
file_local_lines: FreezeLock<SourceFileLines>,
multibyte_chars: Vec<MultiByteChar>,
normalized_pos: Vec<NormalizedPos>,
metadata_index: u32,
) -> Lrc<SourceFile> {
let source_len = RelativeBytePos::from_u32(source_len);
let source_file = SourceFile {
name: filename,
src: None,
src_hash,
checksum_hash,
external_src: FreezeLock::new(ExternalSource::Foreign {
kind: ExternalSourceKind::AbsentOk,
metadata_index,
}),
start_pos: BytePos(0),
source_len,
lines: file_local_lines,
multibyte_chars,
normalized_pos,
stable_id,
cnum,
};
self.register_source_file(stable_id, source_file)
.expect("not enough address space for imported source file")
}
/// If there is a doctest offset, applies it to the line.
pub fn doctest_offset_line(&self, file: &FileName, orig: usize) -> usize {
match file {
FileName::DocTest(_, offset) => {
if *offset < 0 {
orig - (-(*offset)) as usize
} else {
orig + *offset as usize
}
}
_ => orig,
}
}
/// Return the SourceFile that contains the given `BytePos`
pub fn lookup_source_file(&self, pos: BytePos) -> Lrc<SourceFile> {
let idx = self.lookup_source_file_idx(pos);
Lrc::clone(&(*self.files.borrow().source_files)[idx])
}
/// Looks up source information about a `BytePos`.
pub fn lookup_char_pos(&self, pos: BytePos) -> Loc {
let sf = self.lookup_source_file(pos);
let (line, col, col_display) = sf.lookup_file_pos_with_col_display(pos);
Loc { file: sf, line, col, col_display }
}
/// If the corresponding `SourceFile` is empty, does not return a line number.
pub fn lookup_line(&self, pos: BytePos) -> Result<SourceFileAndLine, Lrc<SourceFile>> {
let f = self.lookup_source_file(pos);
let pos = f.relative_position(pos);
match f.lookup_line(pos) {
Some(line) => Ok(SourceFileAndLine { sf: f, line }),
None => Err(f),
}
}
pub fn span_to_string(
&self,
sp: Span,
filename_display_pref: FileNameDisplayPreference,
) -> String {
let (source_file, lo_line, lo_col, hi_line, hi_col) = self.span_to_location_info(sp);
let file_name = match source_file {
Some(sf) => sf.name.display(filename_display_pref).to_string(),
None => return "no-location".to_string(),
};
format!(
"{file_name}:{lo_line}:{lo_col}{}",
if let FileNameDisplayPreference::Short = filename_display_pref {
String::new()
} else {
format!(": {hi_line}:{hi_col}")
}
)
}
pub fn span_to_location_info(
&self,
sp: Span,
) -> (Option<Lrc<SourceFile>>, usize, usize, usize, usize) {
if self.files.borrow().source_files.is_empty() || sp.is_dummy() {
return (None, 0, 0, 0, 0);
}
let lo = self.lookup_char_pos(sp.lo());
let hi = self.lookup_char_pos(sp.hi());
(Some(lo.file), lo.line, lo.col.to_usize() + 1, hi.line, hi.col.to_usize() + 1)
}
/// Format the span location suitable for embedding in build artifacts
pub fn span_to_embeddable_string(&self, sp: Span) -> String {
self.span_to_string(sp, FileNameDisplayPreference::Remapped)
}
/// Format the span location to be printed in diagnostics. Must not be emitted
/// to build artifacts as this may leak local file paths. Use span_to_embeddable_string
/// for string suitable for embedding.
pub fn span_to_diagnostic_string(&self, sp: Span) -> String {
self.span_to_string(sp, self.path_mapping.filename_display_for_diagnostics)
}
pub fn span_to_filename(&self, sp: Span) -> FileName {
self.lookup_char_pos(sp.lo()).file.name.clone()
}
pub fn filename_for_diagnostics<'a>(&self, filename: &'a FileName) -> FileNameDisplay<'a> {
filename.display(self.path_mapping.filename_display_for_diagnostics)
}
pub fn is_multiline(&self, sp: Span) -> bool {
let lo = self.lookup_source_file_idx(sp.lo());
let hi = self.lookup_source_file_idx(sp.hi());
if lo != hi {
return true;
}
let f = Lrc::clone(&(*self.files.borrow().source_files)[lo]);
let lo = f.relative_position(sp.lo());
let hi = f.relative_position(sp.hi());
f.lookup_line(lo) != f.lookup_line(hi)
}
#[instrument(skip(self), level = "trace")]
pub fn is_valid_span(&self, sp: Span) -> Result<(Loc, Loc), SpanLinesError> {
let lo = self.lookup_char_pos(sp.lo());
trace!(?lo);
let hi = self.lookup_char_pos(sp.hi());
trace!(?hi);
if lo.file.start_pos != hi.file.start_pos {
return Err(SpanLinesError::DistinctSources(Box::new(DistinctSources {
begin: (lo.file.name.clone(), lo.file.start_pos),
end: (hi.file.name.clone(), hi.file.start_pos),
})));
}
Ok((lo, hi))
}
pub fn is_line_before_span_empty(&self, sp: Span) -> bool {
match self.span_to_prev_source(sp) {
Ok(s) => s.rsplit_once('\n').unwrap_or(("", &s)).1.trim_start().is_empty(),
Err(_) => false,
}
}
pub fn span_to_lines(&self, sp: Span) -> FileLinesResult {
debug!("span_to_lines(sp={:?})", sp);
let (lo, hi) = self.is_valid_span(sp)?;
assert!(hi.line >= lo.line);
if sp.is_dummy() {
return Ok(FileLines { file: lo.file, lines: Vec::new() });
}
let mut lines = Vec::with_capacity(hi.line - lo.line + 1);
// The span starts partway through the first line,
// but after that it starts from offset 0.
let mut start_col = lo.col;
// For every line but the last, it extends from `start_col`
// and to the end of the line. Be careful because the line
// numbers in Loc are 1-based, so we subtract 1 to get 0-based
// lines.
//
// FIXME: now that we handle DUMMY_SP up above, we should consider
// asserting that the line numbers here are all indeed 1-based.
let hi_line = hi.line.saturating_sub(1);
for line_index in lo.line.saturating_sub(1)..hi_line {
let line_len = lo.file.get_line(line_index).map_or(0, |s| s.chars().count());
lines.push(LineInfo { line_index, start_col, end_col: CharPos::from_usize(line_len) });
start_col = CharPos::from_usize(0);
}
// For the last line, it extends from `start_col` to `hi.col`:
lines.push(LineInfo { line_index: hi_line, start_col, end_col: hi.col });
Ok(FileLines { file: lo.file, lines })
}
/// Extracts the source surrounding the given `Span` using the `extract_source` function. The
/// extract function takes three arguments: a string slice containing the source, an index in
/// the slice for the beginning of the span and an index in the slice for the end of the span.
pub fn span_to_source<F, T>(&self, sp: Span, extract_source: F) -> Result<T, SpanSnippetError>
where
F: Fn(&str, usize, usize) -> Result<T, SpanSnippetError>,
{
let local_begin = self.lookup_byte_offset(sp.lo());
let local_end = self.lookup_byte_offset(sp.hi());
if local_begin.sf.start_pos != local_end.sf.start_pos {
Err(SpanSnippetError::DistinctSources(Box::new(DistinctSources {
begin: (local_begin.sf.name.clone(), local_begin.sf.start_pos),
end: (local_end.sf.name.clone(), local_end.sf.start_pos),
})))
} else {
self.ensure_source_file_source_present(&local_begin.sf);
let start_index = local_begin.pos.to_usize();
let end_index = local_end.pos.to_usize();
let source_len = local_begin.sf.source_len.to_usize();
if start_index > end_index || end_index > source_len {
return Err(SpanSnippetError::MalformedForSourcemap(MalformedSourceMapPositions {
name: local_begin.sf.name.clone(),
source_len,
begin_pos: local_begin.pos,
end_pos: local_end.pos,
}));
}
if let Some(ref src) = local_begin.sf.src {
extract_source(src, start_index, end_index)
} else if let Some(src) = local_begin.sf.external_src.read().get_source() {
extract_source(src, start_index, end_index)
} else {
Err(SpanSnippetError::SourceNotAvailable { filename: local_begin.sf.name.clone() })
}
}
}
pub fn is_span_accessible(&self, sp: Span) -> bool {
self.span_to_source(sp, |src, start_index, end_index| {
Ok(src.get(start_index..end_index).is_some())
})
.is_ok_and(|is_accessible| is_accessible)
}
/// Returns the source snippet as `String` corresponding to the given `Span`.
pub fn span_to_snippet(&self, sp: Span) -> Result<String, SpanSnippetError> {
self.span_to_source(sp, |src, start_index, end_index| {
src.get(start_index..end_index)
.map(|s| s.to_string())
.ok_or(SpanSnippetError::IllFormedSpan(sp))
})
}
pub fn span_to_margin(&self, sp: Span) -> Option<usize> {
Some(self.indentation_before(sp)?.len())
}
pub fn indentation_before(&self, sp: Span) -> Option<String> {
self.span_to_source(sp, |src, start_index, _| {
let before = &src[..start_index];
let last_line = before.rsplit_once('\n').map_or(before, |(_, last)| last);
Ok(last_line
.split_once(|c: char| !c.is_whitespace())
.map_or(last_line, |(indent, _)| indent)
.to_string())
})
.ok()
}
/// Returns the source snippet as `String` before the given `Span`.
pub fn span_to_prev_source(&self, sp: Span) -> Result<String, SpanSnippetError> {
self.span_to_source(sp, |src, start_index, _| {
src.get(..start_index).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp))
})
}
/// Extends the given `Span` to just after the previous occurrence of `c`. Return the same span
/// if no character could be found or if an error occurred while retrieving the code snippet.
pub fn span_extend_to_prev_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span {
if let Ok(prev_source) = self.span_to_prev_source(sp) {
let prev_source = prev_source.rsplit(c).next().unwrap_or("");
if !prev_source.is_empty() && (accept_newlines || !prev_source.contains('\n')) {
return sp.with_lo(BytePos(sp.lo().0 - prev_source.len() as u32));
}
}
sp
}
/// Extends the given `Span` to just after the previous occurrence of `pat` when surrounded by
/// whitespace. Returns None if the pattern could not be found or if an error occurred while
/// retrieving the code snippet.
pub fn span_extend_to_prev_str(
&self,
sp: Span,
pat: &str,
accept_newlines: bool,
include_whitespace: bool,
) -> Option<Span> {
// assure that the pattern is delimited, to avoid the following
// fn my_fn()
// ^^^^ returned span without the check
// ---------- correct span
let prev_source = self.span_to_prev_source(sp).ok()?;
for ws in &[" ", "\t", "\n"] {
let pat = pat.to_owned() + ws;
if let Some(pat_pos) = prev_source.rfind(&pat) {
let just_after_pat_pos = pat_pos + pat.len() - 1;
let just_after_pat_plus_ws = if include_whitespace {
just_after_pat_pos
+ prev_source[just_after_pat_pos..]
.find(|c: char| !c.is_whitespace())
.unwrap_or(0)
} else {
just_after_pat_pos
};
let len = prev_source.len() - just_after_pat_plus_ws;
let prev_source = &prev_source[just_after_pat_plus_ws..];
if accept_newlines || !prev_source.trim_start().contains('\n') {
return Some(sp.with_lo(BytePos(sp.lo().0 - len as u32)));
}
}
}
None
}
/// Returns the source snippet as `String` after the given `Span`.
pub fn span_to_next_source(&self, sp: Span) -> Result<String, SpanSnippetError> {
self.span_to_source(sp, |src, _, end_index| {
src.get(end_index..).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp))
})
}
/// Extends the given `Span` while the next character matches the predicate
pub fn span_extend_while(
&self,
span: Span,
f: impl Fn(char) -> bool,
) -> Result<Span, SpanSnippetError> {
self.span_to_source(span, |s, _start, end| {
let n = s[end..].char_indices().find(|&(_, c)| !f(c)).map_or(s.len() - end, |(i, _)| i);
Ok(span.with_hi(span.hi() + BytePos(n as u32)))
})
}
/// Extends the span to include any trailing whitespace, or returns the original
/// span if a `SpanSnippetError` was encountered.
pub fn span_extend_while_whitespace(&self, span: Span) -> Span {
self.span_extend_while(span, char::is_whitespace).unwrap_or(span)
}
/// Extends the given `Span` to previous character while the previous character matches the predicate
pub fn span_extend_prev_while(
&self,
span: Span,
f: impl Fn(char) -> bool,
) -> Result<Span, SpanSnippetError> {
self.span_to_source(span, |s, start, _end| {
let n = s[..start]
.char_indices()
.rfind(|&(_, c)| !f(c))
.map_or(start, |(i, _)| start - i - 1);
Ok(span.with_lo(span.lo() - BytePos(n as u32)))
})
}
/// Extends the given `Span` to just before the next occurrence of `c`.
pub fn span_extend_to_next_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span {
if let Ok(next_source) = self.span_to_next_source(sp) {
let next_source = next_source.split(c).next().unwrap_or("");
if !next_source.is_empty() && (accept_newlines || !next_source.contains('\n')) {
return sp.with_hi(BytePos(sp.hi().0 + next_source.len() as u32));
}
}
sp
}
/// Extends the given `Span` to contain the entire line it is on.
pub fn span_extend_to_line(&self, sp: Span) -> Span {
self.span_extend_to_prev_char(self.span_extend_to_next_char(sp, '\n', true), '\n', true)
}
/// Given a `Span`, tries to get a shorter span ending before the first occurrence of `char`
/// `c`.
pub fn span_until_char(&self, sp: Span, c: char) -> Span {
match self.span_to_snippet(sp) {
Ok(snippet) => {
let snippet = snippet.split(c).next().unwrap_or("").trim_end();
if !snippet.is_empty() && !snippet.contains('\n') {
sp.with_hi(BytePos(sp.lo().0 + snippet.len() as u32))
} else {
sp
}
}
_ => sp,
}
}
/// Given a 'Span', tries to tell if it's wrapped by "<>" or "()"
/// the algorithm searches if the next character is '>' or ')' after skipping white space
/// then searches the previous character to match '<' or '(' after skipping white space
/// return true if wrapped by '<>' or '()'
pub fn span_wrapped_by_angle_or_parentheses(&self, span: Span) -> bool {
self.span_to_source(span, |src, start_index, end_index| {
if src.get(start_index..end_index).is_none() {
return Ok(false);
}
// test the right side to match '>' after skipping white space
let end_src = &src[end_index..];
let mut i = 0;
let mut found_right_parentheses = false;
let mut found_right_angle = false;
while let Some(cc) = end_src.chars().nth(i) {
if cc == ' ' {
i = i + 1;
} else if cc == '>' {
// found > in the right;
found_right_angle = true;
break;
} else if cc == ')' {
found_right_parentheses = true;
break;
} else {
// failed to find '>' return false immediately
return Ok(false);
}
}
// test the left side to match '<' after skipping white space
i = start_index;
let start_src = &src[0..start_index];
while let Some(cc) = start_src.chars().nth(i) {
if cc == ' ' {
if i == 0 {
return Ok(false);
}
i = i - 1;
} else if cc == '<' {
// found < in the left
if !found_right_angle {
// skip something like "(< )>"
return Ok(false);
}
break;
} else if cc == '(' {
if !found_right_parentheses {
// skip something like "<(>)"
return Ok(false);
}
break;
} else {
// failed to find '<' return false immediately
return Ok(false);
}
}
Ok(true)
})
.is_ok_and(|is_accessible| is_accessible)
}
/// Given a `Span`, tries to get a shorter span ending just after the first occurrence of `char`
/// `c`.
pub fn span_through_char(&self, sp: Span, c: char) -> Span {
if let Ok(snippet) = self.span_to_snippet(sp) {
if let Some(offset) = snippet.find(c) {
return sp.with_hi(BytePos(sp.lo().0 + (offset + c.len_utf8()) as u32));
}
}
sp
}
/// Given a `Span`, gets a new `Span` covering the first token and all its trailing whitespace
/// or the original `Span`.
///
/// If `sp` points to `"let mut x"`, then a span pointing at `"let "` will be returned.
pub fn span_until_non_whitespace(&self, sp: Span) -> Span {
let mut whitespace_found = false;
self.span_take_while(sp, |c| {
if !whitespace_found && c.is_whitespace() {
whitespace_found = true;
}
!whitespace_found || c.is_whitespace()
})
}
/// Given a `Span`, gets a new `Span` covering the first token without its trailing whitespace
/// or the original `Span` in case of error.
///
/// If `sp` points to `"let mut x"`, then a span pointing at `"let"` will be returned.
pub fn span_until_whitespace(&self, sp: Span) -> Span {
self.span_take_while(sp, |c| !c.is_whitespace())
}
/// Given a `Span`, gets a shorter one until `predicate` yields `false`.
pub fn span_take_while<P>(&self, sp: Span, predicate: P) -> Span
where
P: for<'r> FnMut(&'r char) -> bool,
{
if let Ok(snippet) = self.span_to_snippet(sp) {
let offset = snippet.chars().take_while(predicate).map(|c| c.len_utf8()).sum::<usize>();
sp.with_hi(BytePos(sp.lo().0 + (offset as u32)))
} else {
sp
}
}
/// Given a `Span`, return a span ending in the closest `{`. This is useful when you have a
/// `Span` enclosing a whole item but we need to point at only the head (usually the first
/// line) of that item.
///
/// *Only suitable for diagnostics.*
pub fn guess_head_span(&self, sp: Span) -> Span {
// FIXME: extend the AST items to have a head span, or replace callers with pointing at
// the item's ident when appropriate.
self.span_until_char(sp, '{')
}
/// Returns a new span representing just the first character of the given span.
pub fn start_point(&self, sp: Span) -> Span {
let width = {
let sp = sp.data();
let local_begin = self.lookup_byte_offset(sp.lo);
let start_index = local_begin.pos.to_usize();
let src = local_begin.sf.external_src.read();
let snippet = if let Some(ref src) = local_begin.sf.src {
Some(&src[start_index..])
} else {
src.get_source().map(|src| &src[start_index..])
};
match snippet {
None => 1,
Some(snippet) => match snippet.chars().next() {
None => 1,
Some(c) => c.len_utf8(),
},
}
};
sp.with_hi(BytePos(sp.lo().0 + width as u32))
}
/// Returns a new span representing just the last character of this span.
pub fn end_point(&self, sp: Span) -> Span {
let pos = sp.hi().0;
let width = self.find_width_of_character_at_span(sp, false);
let corrected_end_position = pos.checked_sub(width).unwrap_or(pos);
let end_point = BytePos(cmp::max(corrected_end_position, sp.lo().0));
sp.with_lo(end_point)
}
/// Returns a new span representing the next character after the end-point of this span.
/// Special cases:
/// - if span is a dummy one, returns the same span
/// - if next_point reached the end of source, return a span exceeding the end of source,
/// which means sm.span_to_snippet(next_point) will get `Err`
/// - respect multi-byte characters
pub fn next_point(&self, sp: Span) -> Span {
if sp.is_dummy() {
return sp;
}
let start_of_next_point = sp.hi().0;
let width = self.find_width_of_character_at_span(sp, true);
// If the width is 1, then the next span should only contain the next char besides current ending.
// However, in the case of a multibyte character, where the width != 1, the next span should
// span multiple bytes to include the whole character.
let end_of_next_point =
start_of_next_point.checked_add(width).unwrap_or(start_of_next_point);
let end_of_next_point = BytePos(cmp::max(start_of_next_point + 1, end_of_next_point));
Span::new(BytePos(start_of_next_point), end_of_next_point, sp.ctxt(), None)
}
/// Check whether span is followed by some specified expected string in limit scope
pub fn span_look_ahead(&self, span: Span, expect: &str, limit: Option<usize>) -> Option<Span> {
let mut sp = span;
for _ in 0..limit.unwrap_or(100_usize) {
sp = self.next_point(sp);
if let Ok(ref snippet) = self.span_to_snippet(sp) {
if snippet == expect {
return Some(sp);
}
if snippet.chars().any(|c| !c.is_whitespace()) {
break;
}
}
}
None
}
/// Finds the width of the character, either before or after the end of provided span,
/// depending on the `forwards` parameter.
#[instrument(skip(self, sp))]
fn find_width_of_character_at_span(&self, sp: Span, forwards: bool) -> u32 {
let sp = sp.data();
if sp.lo == sp.hi && !forwards {
debug!("early return empty span");
return 1;
}
let local_begin = self.lookup_byte_offset(sp.lo);
let local_end = self.lookup_byte_offset(sp.hi);
debug!("local_begin=`{:?}`, local_end=`{:?}`", local_begin, local_end);
if local_begin.sf.start_pos != local_end.sf.start_pos {
debug!("begin and end are in different files");
return 1;
}
let start_index = local_begin.pos.to_usize();
let end_index = local_end.pos.to_usize();
debug!("start_index=`{:?}`, end_index=`{:?}`", start_index, end_index);
// Disregard indexes that are at the start or end of their spans, they can't fit bigger
// characters.
if (!forwards && end_index == usize::MIN) || (forwards && start_index == usize::MAX) {
debug!("start or end of span, cannot be multibyte");
return 1;
}
let source_len = local_begin.sf.source_len.to_usize();
debug!("source_len=`{:?}`", source_len);
// Ensure indexes are also not malformed.
if start_index > end_index || end_index > source_len - 1 {
debug!("source indexes are malformed");
return 1;
}
let src = local_begin.sf.external_src.read();
let snippet = if let Some(src) = &local_begin.sf.src {
src
} else if let Some(src) = src.get_source() {
src
} else {
return 1;
};
if forwards {
(snippet.ceil_char_boundary(end_index + 1) - end_index) as u32
} else {
(end_index - snippet.floor_char_boundary(end_index - 1)) as u32
}
}
pub fn get_source_file(&self, filename: &FileName) -> Option<Lrc<SourceFile>> {
// Remap filename before lookup
let filename = self.path_mapping().map_filename_prefix(filename).0;
for sf in self.files.borrow().source_files.iter() {
if filename == sf.name {
return Some(Lrc::clone(&sf));
}
}
None
}
/// For a global `BytePos`, computes the local offset within the containing `SourceFile`.
pub fn lookup_byte_offset(&self, bpos: BytePos) -> SourceFileAndBytePos {
let idx = self.lookup_source_file_idx(bpos);
let sf = Lrc::clone(&(*self.files.borrow().source_files)[idx]);
let offset = bpos - sf.start_pos;
SourceFileAndBytePos { sf, pos: offset }
}
/// Returns the index of the [`SourceFile`] (in `self.files`) that contains `pos`.
/// This index is guaranteed to be valid for the lifetime of this `SourceMap`,
/// since `source_files` is a `MonotonicVec`
pub fn lookup_source_file_idx(&self, pos: BytePos) -> usize {
self.files.borrow().source_files.partition_point(|x| x.start_pos <= pos) - 1
}
pub fn count_lines(&self) -> usize {
self.files().iter().fold(0, |a, f| a + f.count_lines())
}
pub fn ensure_source_file_source_present(&self, source_file: &SourceFile) -> bool {
source_file.add_external_src(|| {
let FileName::Real(ref name) = source_file.name else {
return None;
};
let local_path: Cow<'_, Path> = match name {
RealFileName::LocalPath(local_path) => local_path.into(),
RealFileName::Remapped { local_path: Some(local_path), .. } => local_path.into(),
RealFileName::Remapped { local_path: None, virtual_name } => {
// The compiler produces better error messages if the sources of dependencies
// are available. Attempt to undo any path mapping so we can find remapped
// dependencies.
// We can only use the heuristic because `add_external_src` checks the file
// content hash.
self.path_mapping.reverse_map_prefix_heuristically(virtual_name)?.into()
}
};
self.file_loader.read_file(&local_path).ok()
})
}
pub fn is_imported(&self, sp: Span) -> bool {
let source_file_index = self.lookup_source_file_idx(sp.lo());
let source_file = &self.files()[source_file_index];
source_file.is_imported()
}
/// Gets the span of a statement. If the statement is a macro expansion, the
/// span in the context of the block span is found. The trailing semicolon is included
/// on a best-effort basis.
pub fn stmt_span(&self, stmt_span: Span, block_span: Span) -> Span {
if !stmt_span.from_expansion() {
return stmt_span;
}
let mac_call = original_sp(stmt_span, block_span);
self.mac_call_stmt_semi_span(mac_call).map_or(mac_call, |s| mac_call.with_hi(s.hi()))
}
/// Tries to find the span of the semicolon of a macro call statement.
/// The input must be the *call site* span of a statement from macro expansion.
/// ```ignore (illustrative)
/// // v output
/// mac!();
/// // ^^^^^^ input
/// ```
pub fn mac_call_stmt_semi_span(&self, mac_call: Span) -> Option<Span> {
let span = self.span_extend_while_whitespace(mac_call);
let span = self.next_point(span);
if self.span_to_snippet(span).as_deref() == Ok(";") { Some(span) } else { None }
}
}
pub fn get_source_map() -> Option<Lrc<SourceMap>> {
with_session_globals(|session_globals| session_globals.source_map.clone())
}
#[derive(Clone)]
pub struct FilePathMapping {
mapping: Vec<(PathBuf, PathBuf)>,
filename_display_for_diagnostics: FileNameDisplayPreference,
}
impl FilePathMapping {
pub fn empty() -> FilePathMapping {
FilePathMapping::new(Vec::new(), FileNameDisplayPreference::Local)
}
pub fn new(
mapping: Vec<(PathBuf, PathBuf)>,
filename_display_for_diagnostics: FileNameDisplayPreference,
) -> FilePathMapping {
FilePathMapping { mapping, filename_display_for_diagnostics }
}
/// Applies any path prefix substitution as defined by the mapping.
/// The return value is the remapped path and a boolean indicating whether
/// the path was affected by the mapping.
pub fn map_prefix<'a>(&'a self, path: impl Into<Cow<'a, Path>>) -> (Cow<'a, Path>, bool) {
let path = path.into();
if path.as_os_str().is_empty() {
// Exit early if the path is empty and therefore there's nothing to remap.
// This is mostly to reduce spam for `RUSTC_LOG=[remap_path_prefix]`.
return (path, false);
}
return remap_path_prefix(&self.mapping, path);
#[instrument(level = "debug", skip(mapping), ret)]
fn remap_path_prefix<'a>(
mapping: &'a [(PathBuf, PathBuf)],
path: Cow<'a, Path>,
) -> (Cow<'a, Path>, bool) {
// NOTE: We are iterating over the mapping entries from last to first
// because entries specified later on the command line should
// take precedence.
for (from, to) in mapping.iter().rev() {
debug!("Trying to apply {from:?} => {to:?}");
if let Ok(rest) = path.strip_prefix(from) {
let remapped = if rest.as_os_str().is_empty() {
// This is subtle, joining an empty path onto e.g. `foo/bar` will
// result in `foo/bar/`, that is, there'll be an additional directory
// separator at the end. This can lead to duplicated directory separators
// in remapped paths down the line.
// So, if we have an exact match, we just return that without a call
// to `Path::join()`.
to.into()
} else {
to.join(rest).into()
};
debug!("Match - remapped");
return (remapped, true);
} else {
debug!("No match - prefix {from:?} does not match");
}
}
debug!("not remapped");
(path, false)
}
}
fn map_filename_prefix(&self, file: &FileName) -> (FileName, bool) {
match file {
FileName::Real(realfile) if let RealFileName::LocalPath(local_path) = realfile => {
let (mapped_path, mapped) = self.map_prefix(local_path);
let realfile = if mapped {
RealFileName::Remapped {
local_path: Some(local_path.clone()),
virtual_name: mapped_path.into_owned(),
}
} else {
realfile.clone()
};
(FileName::Real(realfile), mapped)
}
FileName::Real(_) => unreachable!("attempted to remap an already remapped filename"),
other => (other.clone(), false),
}
}
/// Applies any path prefix substitution as defined by the mapping.
/// The return value is the local path with a "virtual path" representing the remapped
/// part if any remapping was performed.
pub fn to_real_filename<'a>(&self, local_path: impl Into<Cow<'a, Path>>) -> RealFileName {
let local_path = local_path.into();
if let (remapped_path, true) = self.map_prefix(&*local_path) {
RealFileName::Remapped {
virtual_name: remapped_path.into_owned(),
local_path: Some(local_path.into_owned()),
}
} else {
RealFileName::LocalPath(local_path.into_owned())
}
}
/// Expand a relative path to an absolute path with remapping taken into account.
/// Use this when absolute paths are required (e.g. debuginfo or crate metadata).
///
/// The resulting `RealFileName` will have its `local_path` portion erased if
/// possible (i.e. if there's also a remapped path).
pub fn to_embeddable_absolute_path(
&self,
file_path: RealFileName,
working_directory: &RealFileName,
) -> RealFileName {
match file_path {
// Anything that's already remapped we don't modify, except for erasing
// the `local_path` portion.
RealFileName::Remapped { local_path: _, virtual_name } => {
RealFileName::Remapped {
// We do not want any local path to be exported into metadata
local_path: None,
// We use the remapped name verbatim, even if it looks like a relative
// path. The assumption is that the user doesn't want us to further
// process paths that have gone through remapping.
virtual_name,
}
}
RealFileName::LocalPath(unmapped_file_path) => {
// If no remapping has been applied yet, try to do so
let (new_path, was_remapped) = self.map_prefix(unmapped_file_path);
if was_remapped {
// It was remapped, so don't modify further
return RealFileName::Remapped {
local_path: None,
virtual_name: new_path.into_owned(),
};
}
if new_path.is_absolute() {
// No remapping has applied to this path and it is absolute,
// so the working directory cannot influence it either, so
// we are done.
return RealFileName::LocalPath(new_path.into_owned());
}
debug_assert!(new_path.is_relative());
let unmapped_file_path_rel = new_path;
match working_directory {
RealFileName::LocalPath(unmapped_working_dir_abs) => {
let file_path_abs = unmapped_working_dir_abs.join(unmapped_file_path_rel);
// Although neither `working_directory` nor the file name were subject
// to path remapping, the concatenation between the two may be. Hence
// we need to do a remapping here.
let (file_path_abs, was_remapped) = self.map_prefix(file_path_abs);
if was_remapped {
RealFileName::Remapped {
// Erase the actual path
local_path: None,
virtual_name: file_path_abs.into_owned(),
}
} else {
// No kind of remapping applied to this path, so
// we leave it as it is.
RealFileName::LocalPath(file_path_abs.into_owned())
}
}
RealFileName::Remapped {
local_path: _,
virtual_name: remapped_working_dir_abs,
} => {
// If working_directory has been remapped, then we emit
// Remapped variant as the expanded path won't be valid
RealFileName::Remapped {
local_path: None,
virtual_name: Path::new(remapped_working_dir_abs)
.join(unmapped_file_path_rel),
}
}
}
}
}
}
/// Expand a relative path to an absolute path **without** remapping taken into account.
///
/// The resulting `RealFileName` will have its `virtual_path` portion erased if
/// possible (i.e. if there's also a remapped path).
pub fn to_local_embeddable_absolute_path(
&self,
file_path: RealFileName,
working_directory: &RealFileName,
) -> RealFileName {
let file_path = file_path.local_path_if_available();
if file_path.is_absolute() {
// No remapping has applied to this path and it is absolute,
// so the working directory cannot influence it either, so
// we are done.
return RealFileName::LocalPath(file_path.to_path_buf());
}
debug_assert!(file_path.is_relative());
let working_directory = working_directory.local_path_if_available();
RealFileName::LocalPath(Path::new(working_directory).join(file_path))
}
/// Attempts to (heuristically) reverse a prefix mapping.
///
/// Returns [`Some`] if there is exactly one mapping where the "to" part is
/// a prefix of `path` and has at least one non-empty
/// [`Normal`](path::Component::Normal) component. The component
/// restriction exists to avoid reverse mapping overly generic paths like
/// `/` or `.`).
///
/// This is a heuristic and not guaranteed to return the actual original
/// path! Do not rely on the result unless you have other means to verify
/// that the mapping is correct (e.g. by checking the file content hash).
#[instrument(level = "debug", skip(self), ret)]
fn reverse_map_prefix_heuristically(&self, path: &Path) -> Option<PathBuf> {
let mut found = None;
for (from, to) in self.mapping.iter() {
let has_normal_component = to.components().any(|c| match c {
path::Component::Normal(s) => !s.is_empty(),
_ => false,
});
if !has_normal_component {
continue;
}
let Ok(rest) = path.strip_prefix(to) else {
continue;
};
if found.is_some() {
return None;
}
found = Some(from.join(rest));
}
found
}
}