rustc_middle/ty/
mod.rs

1//! Defines how the compiler represents types internally.
2//!
3//! Two important entities in this module are:
4//!
5//! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
6//! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
7//!
8//! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide.
9//!
10//! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html
11
12#![allow(rustc::usage_of_ty_tykind)]
13
14use std::assert_matches::assert_matches;
15use std::fmt::Debug;
16use std::hash::{Hash, Hasher};
17use std::marker::PhantomData;
18use std::num::NonZero;
19use std::ptr::NonNull;
20use std::{fmt, str};
21
22pub use adt::*;
23pub use assoc::*;
24pub use generic_args::{GenericArgKind, TermKind, *};
25pub use generics::*;
26pub use intrinsic::IntrinsicDef;
27use rustc_abi::{Align, FieldIdx, Integer, IntegerType, ReprFlags, ReprOptions, VariantIdx};
28use rustc_ast::expand::StrippedCfgItem;
29use rustc_ast::node_id::NodeMap;
30pub use rustc_ast_ir::{Movability, Mutability, try_visit};
31use rustc_attr_data_structures::AttributeKind;
32use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
33use rustc_data_structures::intern::Interned;
34use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
35use rustc_data_structures::steal::Steal;
36use rustc_data_structures::unord::UnordMap;
37use rustc_errors::{Diag, ErrorGuaranteed};
38use rustc_hir::LangItem;
39use rustc_hir::def::{CtorKind, CtorOf, DefKind, DocLinkResMap, LifetimeRes, Res};
40use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap};
41use rustc_index::IndexVec;
42use rustc_macros::{
43    Decodable, Encodable, HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable,
44    extension,
45};
46use rustc_query_system::ich::StableHashingContext;
47use rustc_serialize::{Decodable, Encodable};
48use rustc_session::lint::LintBuffer;
49pub use rustc_session::lint::RegisteredTools;
50use rustc_span::hygiene::MacroKind;
51use rustc_span::{ExpnId, ExpnKind, Ident, Span, Symbol, kw, sym};
52pub use rustc_type_ir::relate::VarianceDiagInfo;
53pub use rustc_type_ir::*;
54use tracing::{debug, instrument};
55pub use vtable::*;
56use {rustc_ast as ast, rustc_attr_data_structures as attr, rustc_hir as hir};
57
58pub use self::closure::{
59    BorrowKind, CAPTURE_STRUCT_LOCAL, CaptureInfo, CapturedPlace, ClosureTypeInfo,
60    MinCaptureInformationMap, MinCaptureList, RootVariableMinCaptureList, UpvarCapture, UpvarId,
61    UpvarPath, analyze_coroutine_closure_captures, is_ancestor_or_same_capture,
62    place_to_string_for_capture,
63};
64pub use self::consts::{
65    Const, ConstInt, ConstKind, Expr, ExprKind, ScalarInt, UnevaluatedConst, ValTree, ValTreeKind,
66    Value,
67};
68pub use self::context::{
69    CtxtInterners, CurrentGcx, DeducedParamAttrs, Feed, FreeRegionInfo, GlobalCtxt, Lift, TyCtxt,
70    TyCtxtFeed, tls,
71};
72pub use self::fold::*;
73pub use self::instance::{Instance, InstanceKind, ReifyReason, ShortInstance, UnusedGenericParams};
74pub use self::list::{List, ListWithCachedTypeInfo};
75pub use self::opaque_types::OpaqueTypeKey;
76pub use self::parameterized::ParameterizedOverTcx;
77pub use self::pattern::{Pattern, PatternKind};
78pub use self::predicate::{
79    AliasTerm, Clause, ClauseKind, CoercePredicate, ExistentialPredicate,
80    ExistentialPredicateStableCmpExt, ExistentialProjection, ExistentialTraitRef,
81    HostEffectPredicate, NormalizesTo, OutlivesPredicate, PolyCoercePredicate,
82    PolyExistentialPredicate, PolyExistentialProjection, PolyExistentialTraitRef,
83    PolyProjectionPredicate, PolyRegionOutlivesPredicate, PolySubtypePredicate, PolyTraitPredicate,
84    PolyTraitRef, PolyTypeOutlivesPredicate, Predicate, PredicateKind, ProjectionPredicate,
85    RegionOutlivesPredicate, SubtypePredicate, TraitPredicate, TraitRef, TypeOutlivesPredicate,
86};
87pub use self::region::{
88    BoundRegion, BoundRegionKind, EarlyParamRegion, LateParamRegion, LateParamRegionKind, Region,
89    RegionKind, RegionVid,
90};
91pub use self::rvalue_scopes::RvalueScopes;
92pub use self::sty::{
93    AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig,
94    CoroutineArgsExt, EarlyBinder, FnSig, InlineConstArgs, InlineConstArgsParts, ParamConst,
95    ParamTy, PolyFnSig, TyKind, TypeAndMut, TypingMode, UpvarArgs,
96};
97pub use self::trait_def::TraitDef;
98pub use self::typeck_results::{
99    CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, IsIdentity,
100    Rust2024IncompatiblePatInfo, TypeckResults, UserType, UserTypeAnnotationIndex, UserTypeKind,
101};
102pub use self::visit::*;
103use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason};
104use crate::metadata::ModChild;
105use crate::middle::privacy::EffectiveVisibilities;
106use crate::mir::{Body, CoroutineLayout};
107use crate::query::{IntoQueryParam, Providers};
108use crate::ty;
109use crate::ty::codec::{TyDecoder, TyEncoder};
110pub use crate::ty::diagnostics::*;
111use crate::ty::fast_reject::SimplifiedType;
112use crate::ty::util::Discr;
113
114pub mod abstract_const;
115pub mod adjustment;
116pub mod cast;
117pub mod codec;
118pub mod error;
119pub mod fast_reject;
120pub mod flags;
121pub mod inhabitedness;
122pub mod layout;
123pub mod normalize_erasing_regions;
124pub mod pattern;
125pub mod print;
126pub mod relate;
127pub mod significant_drop_order;
128pub mod trait_def;
129pub mod util;
130pub mod vtable;
131pub mod walk;
132
133mod adt;
134mod assoc;
135mod closure;
136mod consts;
137mod context;
138mod diagnostics;
139mod elaborate_impl;
140mod erase_regions;
141mod fold;
142mod generic_args;
143mod generics;
144mod impls_ty;
145mod instance;
146mod intrinsic;
147mod list;
148mod opaque_types;
149mod parameterized;
150mod predicate;
151mod region;
152mod rvalue_scopes;
153mod structural_impls;
154#[allow(hidden_glob_reexports)]
155mod sty;
156mod typeck_results;
157mod visit;
158
159// Data types
160
161pub struct ResolverOutputs {
162    pub global_ctxt: ResolverGlobalCtxt,
163    pub ast_lowering: ResolverAstLowering,
164}
165
166#[derive(Debug)]
167pub struct ResolverGlobalCtxt {
168    pub visibilities_for_hashing: Vec<(LocalDefId, Visibility)>,
169    /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
170    pub expn_that_defined: FxHashMap<LocalDefId, ExpnId>,
171    pub effective_visibilities: EffectiveVisibilities,
172    pub extern_crate_map: UnordMap<LocalDefId, CrateNum>,
173    pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
174    pub module_children: LocalDefIdMap<Vec<ModChild>>,
175    pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
176    pub main_def: Option<MainDefinition>,
177    pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
178    /// A list of proc macro LocalDefIds, written out in the order in which
179    /// they are declared in the static array generated by proc_macro_harness.
180    pub proc_macros: Vec<LocalDefId>,
181    /// Mapping from ident span to path span for paths that don't exist as written, but that
182    /// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`.
183    pub confused_type_with_std_module: FxIndexMap<Span, Span>,
184    pub doc_link_resolutions: FxIndexMap<LocalDefId, DocLinkResMap>,
185    pub doc_link_traits_in_scope: FxIndexMap<LocalDefId, Vec<DefId>>,
186    pub all_macro_rules: FxHashSet<Symbol>,
187    pub stripped_cfg_items: Steal<Vec<StrippedCfgItem>>,
188}
189
190/// Resolutions that should only be used for lowering.
191/// This struct is meant to be consumed by lowering.
192#[derive(Debug)]
193pub struct ResolverAstLowering {
194    pub legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,
195
196    /// Resolutions for nodes that have a single resolution.
197    pub partial_res_map: NodeMap<hir::def::PartialRes>,
198    /// Resolutions for import nodes, which have multiple resolutions in different namespaces.
199    pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>,
200    /// Resolutions for labels (node IDs of their corresponding blocks or loops).
201    pub label_res_map: NodeMap<ast::NodeId>,
202    /// Resolutions for lifetimes.
203    pub lifetimes_res_map: NodeMap<LifetimeRes>,
204    /// Lifetime parameters that lowering will have to introduce.
205    pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>,
206
207    pub next_node_id: ast::NodeId,
208
209    pub node_id_to_def_id: NodeMap<LocalDefId>,
210
211    pub trait_map: NodeMap<Vec<hir::TraitCandidate>>,
212    /// List functions and methods for which lifetime elision was successful.
213    pub lifetime_elision_allowed: FxHashSet<ast::NodeId>,
214
215    /// Lints that were emitted by the resolver and early lints.
216    pub lint_buffer: Steal<LintBuffer>,
217
218    /// Information about functions signatures for delegation items expansion
219    pub delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>,
220}
221
222#[derive(Debug)]
223pub struct DelegationFnSig {
224    pub header: ast::FnHeader,
225    pub param_count: usize,
226    pub has_self: bool,
227    pub c_variadic: bool,
228    pub target_feature: bool,
229}
230
231#[derive(Clone, Copy, Debug)]
232pub struct MainDefinition {
233    pub res: Res<ast::NodeId>,
234    pub is_import: bool,
235    pub span: Span,
236}
237
238impl MainDefinition {
239    pub fn opt_fn_def_id(self) -> Option<DefId> {
240        if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
241    }
242}
243
244/// The "header" of an impl is everything outside the body: a Self type, a trait
245/// ref (in the case of a trait impl), and a set of predicates (from the
246/// bounds / where-clauses).
247#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
248pub struct ImplHeader<'tcx> {
249    pub impl_def_id: DefId,
250    pub impl_args: ty::GenericArgsRef<'tcx>,
251    pub self_ty: Ty<'tcx>,
252    pub trait_ref: Option<TraitRef<'tcx>>,
253    pub predicates: Vec<Predicate<'tcx>>,
254}
255
256#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)]
257pub struct ImplTraitHeader<'tcx> {
258    pub trait_ref: ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>,
259    pub polarity: ImplPolarity,
260    pub safety: hir::Safety,
261    pub constness: hir::Constness,
262}
263
264#[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable)]
265pub enum ImplSubject<'tcx> {
266    Trait(TraitRef<'tcx>),
267    Inherent(Ty<'tcx>),
268}
269
270#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)]
271#[derive(TypeFoldable, TypeVisitable)]
272pub enum Asyncness {
273    Yes,
274    No,
275}
276
277impl Asyncness {
278    pub fn is_async(self) -> bool {
279        matches!(self, Asyncness::Yes)
280    }
281}
282
283#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, Decodable, HashStable)]
284pub enum Visibility<Id = LocalDefId> {
285    /// Visible everywhere (including in other crates).
286    Public,
287    /// Visible only in the given crate-local module.
288    Restricted(Id),
289}
290
291impl Visibility {
292    pub fn to_string(self, def_id: LocalDefId, tcx: TyCtxt<'_>) -> String {
293        match self {
294            ty::Visibility::Restricted(restricted_id) => {
295                if restricted_id.is_top_level_module() {
296                    "pub(crate)".to_string()
297                } else if restricted_id == tcx.parent_module_from_def_id(def_id).to_local_def_id() {
298                    "pub(self)".to_string()
299                } else {
300                    format!("pub({})", tcx.item_name(restricted_id.to_def_id()))
301                }
302            }
303            ty::Visibility::Public => "pub".to_string(),
304        }
305    }
306}
307
308#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
309#[derive(TypeFoldable, TypeVisitable)]
310pub struct ClosureSizeProfileData<'tcx> {
311    /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
312    pub before_feature_tys: Ty<'tcx>,
313    /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
314    pub after_feature_tys: Ty<'tcx>,
315}
316
317impl TyCtxt<'_> {
318    #[inline]
319    pub fn opt_parent(self, id: DefId) -> Option<DefId> {
320        self.def_key(id).parent.map(|index| DefId { index, ..id })
321    }
322
323    #[inline]
324    #[track_caller]
325    pub fn parent(self, id: DefId) -> DefId {
326        match self.opt_parent(id) {
327            Some(id) => id,
328            // not `unwrap_or_else` to avoid breaking caller tracking
329            None => bug!("{id:?} doesn't have a parent"),
330        }
331    }
332
333    #[inline]
334    #[track_caller]
335    pub fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> {
336        self.opt_parent(id.to_def_id()).map(DefId::expect_local)
337    }
338
339    #[inline]
340    #[track_caller]
341    pub fn local_parent(self, id: impl Into<LocalDefId>) -> LocalDefId {
342        self.parent(id.into().to_def_id()).expect_local()
343    }
344
345    pub fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
346        if descendant.krate != ancestor.krate {
347            return false;
348        }
349
350        while descendant != ancestor {
351            match self.opt_parent(descendant) {
352                Some(parent) => descendant = parent,
353                None => return false,
354            }
355        }
356        true
357    }
358}
359
360impl<Id> Visibility<Id> {
361    pub fn is_public(self) -> bool {
362        matches!(self, Visibility::Public)
363    }
364
365    pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> {
366        match self {
367            Visibility::Public => Visibility::Public,
368            Visibility::Restricted(id) => Visibility::Restricted(f(id)),
369        }
370    }
371}
372
373impl<Id: Into<DefId>> Visibility<Id> {
374    pub fn to_def_id(self) -> Visibility<DefId> {
375        self.map_id(Into::into)
376    }
377
378    /// Returns `true` if an item with this visibility is accessible from the given module.
379    pub fn is_accessible_from(self, module: impl Into<DefId>, tcx: TyCtxt<'_>) -> bool {
380        match self {
381            // Public items are visible everywhere.
382            Visibility::Public => true,
383            Visibility::Restricted(id) => tcx.is_descendant_of(module.into(), id.into()),
384        }
385    }
386
387    /// Returns `true` if this visibility is at least as accessible as the given visibility
388    pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tcx: TyCtxt<'_>) -> bool {
389        match vis {
390            Visibility::Public => self.is_public(),
391            Visibility::Restricted(id) => self.is_accessible_from(id, tcx),
392        }
393    }
394}
395
396impl Visibility<DefId> {
397    pub fn expect_local(self) -> Visibility {
398        self.map_id(|id| id.expect_local())
399    }
400
401    /// Returns `true` if this item is visible anywhere in the local crate.
402    pub fn is_visible_locally(self) -> bool {
403        match self {
404            Visibility::Public => true,
405            Visibility::Restricted(def_id) => def_id.is_local(),
406        }
407    }
408}
409
410/// The crate variances map is computed during typeck and contains the
411/// variance of every item in the local crate. You should not use it
412/// directly, because to do so will make your pass dependent on the
413/// HIR of every item in the local crate. Instead, use
414/// `tcx.variances_of()` to get the variance for a *particular*
415/// item.
416#[derive(HashStable, Debug)]
417pub struct CrateVariancesMap<'tcx> {
418    /// For each item with generics, maps to a vector of the variance
419    /// of its generics. If an item has no generics, it will have no
420    /// entry.
421    pub variances: DefIdMap<&'tcx [ty::Variance]>,
422}
423
424// Contains information needed to resolve types and (in the future) look up
425// the types of AST nodes.
426#[derive(Copy, Clone, PartialEq, Eq, Hash)]
427pub struct CReaderCacheKey {
428    pub cnum: Option<CrateNum>,
429    pub pos: usize,
430}
431
432/// Use this rather than `TyKind`, whenever possible.
433#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable)]
434#[rustc_diagnostic_item = "Ty"]
435#[rustc_pass_by_value]
436pub struct Ty<'tcx>(Interned<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>);
437
438impl<'tcx> rustc_type_ir::inherent::IntoKind for Ty<'tcx> {
439    type Kind = TyKind<'tcx>;
440
441    fn kind(self) -> TyKind<'tcx> {
442        *self.kind()
443    }
444}
445
446impl<'tcx> rustc_type_ir::Flags for Ty<'tcx> {
447    fn flags(&self) -> TypeFlags {
448        self.0.flags
449    }
450
451    fn outer_exclusive_binder(&self) -> DebruijnIndex {
452        self.0.outer_exclusive_binder
453    }
454}
455
456impl EarlyParamRegion {
457    /// Does this early bound region have a name? Early bound regions normally
458    /// always have names except when using anonymous lifetimes (`'_`).
459    pub fn has_name(&self) -> bool {
460        self.name != kw::UnderscoreLifetime
461    }
462}
463
464/// The crate outlives map is computed during typeck and contains the
465/// outlives of every item in the local crate. You should not use it
466/// directly, because to do so will make your pass dependent on the
467/// HIR of every item in the local crate. Instead, use
468/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
469/// item.
470#[derive(HashStable, Debug)]
471pub struct CratePredicatesMap<'tcx> {
472    /// For each struct with outlive bounds, maps to a vector of the
473    /// predicate of its outlive bounds. If an item has no outlives
474    /// bounds, it will have no entry.
475    pub predicates: DefIdMap<&'tcx [(Clause<'tcx>, Span)]>,
476}
477
478#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
479pub struct Term<'tcx> {
480    ptr: NonNull<()>,
481    marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>,
482}
483
484impl<'tcx> rustc_type_ir::inherent::Term<TyCtxt<'tcx>> for Term<'tcx> {}
485
486impl<'tcx> rustc_type_ir::inherent::IntoKind for Term<'tcx> {
487    type Kind = TermKind<'tcx>;
488
489    fn kind(self) -> Self::Kind {
490        self.unpack()
491    }
492}
493
494unsafe impl<'tcx> rustc_data_structures::sync::DynSend for Term<'tcx> where
495    &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSend
496{
497}
498unsafe impl<'tcx> rustc_data_structures::sync::DynSync for Term<'tcx> where
499    &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSync
500{
501}
502unsafe impl<'tcx> Send for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Send {}
503unsafe impl<'tcx> Sync for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Sync {}
504
505impl Debug for Term<'_> {
506    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
507        match self.unpack() {
508            TermKind::Ty(ty) => write!(f, "Term::Ty({ty:?})"),
509            TermKind::Const(ct) => write!(f, "Term::Const({ct:?})"),
510        }
511    }
512}
513
514impl<'tcx> From<Ty<'tcx>> for Term<'tcx> {
515    fn from(ty: Ty<'tcx>) -> Self {
516        TermKind::Ty(ty).pack()
517    }
518}
519
520impl<'tcx> From<Const<'tcx>> for Term<'tcx> {
521    fn from(c: Const<'tcx>) -> Self {
522        TermKind::Const(c).pack()
523    }
524}
525
526impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> {
527    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
528        self.unpack().hash_stable(hcx, hasher);
529    }
530}
531
532impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Term<'tcx> {
533    fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
534        self,
535        folder: &mut F,
536    ) -> Result<Self, F::Error> {
537        match self.unpack() {
538            ty::TermKind::Ty(ty) => ty.try_fold_with(folder).map(Into::into),
539            ty::TermKind::Const(ct) => ct.try_fold_with(folder).map(Into::into),
540        }
541    }
542}
543
544impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Term<'tcx> {
545    fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result {
546        match self.unpack() {
547            ty::TermKind::Ty(ty) => ty.visit_with(visitor),
548            ty::TermKind::Const(ct) => ct.visit_with(visitor),
549        }
550    }
551}
552
553impl<'tcx, E: TyEncoder<'tcx>> Encodable<E> for Term<'tcx> {
554    fn encode(&self, e: &mut E) {
555        self.unpack().encode(e)
556    }
557}
558
559impl<'tcx, D: TyDecoder<'tcx>> Decodable<D> for Term<'tcx> {
560    fn decode(d: &mut D) -> Self {
561        let res: TermKind<'tcx> = Decodable::decode(d);
562        res.pack()
563    }
564}
565
566impl<'tcx> Term<'tcx> {
567    #[inline]
568    pub fn unpack(self) -> TermKind<'tcx> {
569        let ptr =
570            unsafe { self.ptr.map_addr(|addr| NonZero::new_unchecked(addr.get() & !TAG_MASK)) };
571        // SAFETY: use of `Interned::new_unchecked` here is ok because these
572        // pointers were originally created from `Interned` types in `pack()`,
573        // and this is just going in the other direction.
574        unsafe {
575            match self.ptr.addr().get() & TAG_MASK {
576                TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked(
577                    ptr.cast::<WithCachedTypeInfo<ty::TyKind<'tcx>>>().as_ref(),
578                ))),
579                CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked(
580                    ptr.cast::<WithCachedTypeInfo<ty::ConstKind<'tcx>>>().as_ref(),
581                ))),
582                _ => core::intrinsics::unreachable(),
583            }
584        }
585    }
586
587    pub fn as_type(&self) -> Option<Ty<'tcx>> {
588        if let TermKind::Ty(ty) = self.unpack() { Some(ty) } else { None }
589    }
590
591    pub fn expect_type(&self) -> Ty<'tcx> {
592        self.as_type().expect("expected a type, but found a const")
593    }
594
595    pub fn as_const(&self) -> Option<Const<'tcx>> {
596        if let TermKind::Const(c) = self.unpack() { Some(c) } else { None }
597    }
598
599    pub fn expect_const(&self) -> Const<'tcx> {
600        self.as_const().expect("expected a const, but found a type")
601    }
602
603    pub fn into_arg(self) -> GenericArg<'tcx> {
604        match self.unpack() {
605            TermKind::Ty(ty) => ty.into(),
606            TermKind::Const(c) => c.into(),
607        }
608    }
609
610    pub fn to_alias_term(self) -> Option<AliasTerm<'tcx>> {
611        match self.unpack() {
612            TermKind::Ty(ty) => match *ty.kind() {
613                ty::Alias(_kind, alias_ty) => Some(alias_ty.into()),
614                _ => None,
615            },
616            TermKind::Const(ct) => match ct.kind() {
617                ConstKind::Unevaluated(uv) => Some(uv.into()),
618                _ => None,
619            },
620        }
621    }
622
623    pub fn is_infer(&self) -> bool {
624        match self.unpack() {
625            TermKind::Ty(ty) => ty.is_ty_var(),
626            TermKind::Const(ct) => ct.is_ct_infer(),
627        }
628    }
629}
630
631const TAG_MASK: usize = 0b11;
632const TYPE_TAG: usize = 0b00;
633const CONST_TAG: usize = 0b01;
634
635#[extension(pub trait TermKindPackExt<'tcx>)]
636impl<'tcx> TermKind<'tcx> {
637    #[inline]
638    fn pack(self) -> Term<'tcx> {
639        let (tag, ptr) = match self {
640            TermKind::Ty(ty) => {
641                // Ensure we can use the tag bits.
642                assert_eq!(align_of_val(&*ty.0.0) & TAG_MASK, 0);
643                (TYPE_TAG, NonNull::from(ty.0.0).cast())
644            }
645            TermKind::Const(ct) => {
646                // Ensure we can use the tag bits.
647                assert_eq!(align_of_val(&*ct.0.0) & TAG_MASK, 0);
648                (CONST_TAG, NonNull::from(ct.0.0).cast())
649            }
650        };
651
652        Term { ptr: ptr.map_addr(|addr| addr | tag), marker: PhantomData }
653    }
654}
655
656#[derive(Copy, Clone, PartialEq, Eq, Debug)]
657pub enum ParamTerm {
658    Ty(ParamTy),
659    Const(ParamConst),
660}
661
662impl ParamTerm {
663    pub fn index(self) -> usize {
664        match self {
665            ParamTerm::Ty(ty) => ty.index as usize,
666            ParamTerm::Const(ct) => ct.index as usize,
667        }
668    }
669}
670
671#[derive(Copy, Clone, Eq, PartialEq, Debug)]
672pub enum TermVid {
673    Ty(ty::TyVid),
674    Const(ty::ConstVid),
675}
676
677impl From<ty::TyVid> for TermVid {
678    fn from(value: ty::TyVid) -> Self {
679        TermVid::Ty(value)
680    }
681}
682
683impl From<ty::ConstVid> for TermVid {
684    fn from(value: ty::ConstVid) -> Self {
685        TermVid::Const(value)
686    }
687}
688
689/// Represents the bounds declared on a particular set of type
690/// parameters. Should eventually be generalized into a flag list of
691/// where-clauses. You can obtain an `InstantiatedPredicates` list from a
692/// `GenericPredicates` by using the `instantiate` method. Note that this method
693/// reflects an important semantic invariant of `InstantiatedPredicates`: while
694/// the `GenericPredicates` are expressed in terms of the bound type
695/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
696/// represented a set of bounds for some particular instantiation,
697/// meaning that the generic parameters have been instantiated with
698/// their values.
699///
700/// Example:
701/// ```ignore (illustrative)
702/// struct Foo<T, U: Bar<T>> { ... }
703/// ```
704/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
705/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
706/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
707/// [usize:Bar<isize>]]`.
708#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
709pub struct InstantiatedPredicates<'tcx> {
710    pub predicates: Vec<Clause<'tcx>>,
711    pub spans: Vec<Span>,
712}
713
714impl<'tcx> InstantiatedPredicates<'tcx> {
715    pub fn empty() -> InstantiatedPredicates<'tcx> {
716        InstantiatedPredicates { predicates: vec![], spans: vec![] }
717    }
718
719    pub fn is_empty(&self) -> bool {
720        self.predicates.is_empty()
721    }
722
723    pub fn iter(&self) -> <&Self as IntoIterator>::IntoIter {
724        self.into_iter()
725    }
726}
727
728impl<'tcx> IntoIterator for InstantiatedPredicates<'tcx> {
729    type Item = (Clause<'tcx>, Span);
730
731    type IntoIter = std::iter::Zip<std::vec::IntoIter<Clause<'tcx>>, std::vec::IntoIter<Span>>;
732
733    fn into_iter(self) -> Self::IntoIter {
734        debug_assert_eq!(self.predicates.len(), self.spans.len());
735        std::iter::zip(self.predicates, self.spans)
736    }
737}
738
739impl<'a, 'tcx> IntoIterator for &'a InstantiatedPredicates<'tcx> {
740    type Item = (Clause<'tcx>, Span);
741
742    type IntoIter = std::iter::Zip<
743        std::iter::Copied<std::slice::Iter<'a, Clause<'tcx>>>,
744        std::iter::Copied<std::slice::Iter<'a, Span>>,
745    >;
746
747    fn into_iter(self) -> Self::IntoIter {
748        debug_assert_eq!(self.predicates.len(), self.spans.len());
749        std::iter::zip(self.predicates.iter().copied(), self.spans.iter().copied())
750    }
751}
752
753#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)]
754pub struct OpaqueHiddenType<'tcx> {
755    /// The span of this particular definition of the opaque type. So
756    /// for example:
757    ///
758    /// ```ignore (incomplete snippet)
759    /// type Foo = impl Baz;
760    /// fn bar() -> Foo {
761    /// //          ^^^ This is the span we are looking for!
762    /// }
763    /// ```
764    ///
765    /// In cases where the fn returns `(impl Trait, impl Trait)` or
766    /// other such combinations, the result is currently
767    /// over-approximated, but better than nothing.
768    pub span: Span,
769
770    /// The type variable that represents the value of the opaque type
771    /// that we require. In other words, after we compile this function,
772    /// we will be created a constraint like:
773    /// ```ignore (pseudo-rust)
774    /// Foo<'a, T> = ?C
775    /// ```
776    /// where `?C` is the value of this type variable. =) It may
777    /// naturally refer to the type and lifetime parameters in scope
778    /// in this function, though ultimately it should only reference
779    /// those that are arguments to `Foo` in the constraint above. (In
780    /// other words, `?C` should not include `'b`, even though it's a
781    /// lifetime parameter on `foo`.)
782    pub ty: Ty<'tcx>,
783}
784
785impl<'tcx> OpaqueHiddenType<'tcx> {
786    pub fn build_mismatch_error(
787        &self,
788        other: &Self,
789        tcx: TyCtxt<'tcx>,
790    ) -> Result<Diag<'tcx>, ErrorGuaranteed> {
791        (self.ty, other.ty).error_reported()?;
792        // Found different concrete types for the opaque type.
793        let sub_diag = if self.span == other.span {
794            TypeMismatchReason::ConflictType { span: self.span }
795        } else {
796            TypeMismatchReason::PreviousUse { span: self.span }
797        };
798        Ok(tcx.dcx().create_err(OpaqueHiddenTypeMismatch {
799            self_ty: self.ty,
800            other_ty: other.ty,
801            other_span: other.span,
802            sub: sub_diag,
803        }))
804    }
805
806    #[instrument(level = "debug", skip(tcx), ret)]
807    pub fn remap_generic_params_to_declaration_params(
808        self,
809        opaque_type_key: OpaqueTypeKey<'tcx>,
810        tcx: TyCtxt<'tcx>,
811        // typeck errors have subpar spans for opaque types, so delay error reporting until borrowck.
812        ignore_errors: bool,
813    ) -> Self {
814        let OpaqueTypeKey { def_id, args } = opaque_type_key;
815
816        // Use args to build up a reverse map from regions to their
817        // identity mappings. This is necessary because of `impl
818        // Trait` lifetimes are computed by replacing existing
819        // lifetimes with 'static and remapping only those used in the
820        // `impl Trait` return type, resulting in the parameters
821        // shifting.
822        let id_args = GenericArgs::identity_for_item(tcx, def_id);
823        debug!(?id_args);
824
825        // This zip may have several times the same lifetime in `args` paired with a different
826        // lifetime from `id_args`. Simply `collect`ing the iterator is the correct behaviour:
827        // it will pick the last one, which is the one we introduced in the impl-trait desugaring.
828        let map = args.iter().zip(id_args).collect();
829        debug!("map = {:#?}", map);
830
831        // Convert the type from the function into a type valid outside
832        // the function, by replacing invalid regions with 'static,
833        // after producing an error for each of them.
834        self.fold_with(&mut opaque_types::ReverseMapper::new(tcx, map, self.span, ignore_errors))
835    }
836}
837
838/// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
839/// identified by both a universe, as well as a name residing within that universe. Distinct bound
840/// regions/types/consts within the same universe simply have an unknown relationship to one
841/// another.
842#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
843#[derive(HashStable, TyEncodable, TyDecodable)]
844pub struct Placeholder<T> {
845    pub universe: UniverseIndex,
846    pub bound: T,
847}
848impl Placeholder<BoundVar> {
849    pub fn find_const_ty_from_env<'tcx>(self, env: ParamEnv<'tcx>) -> Ty<'tcx> {
850        let mut candidates = env.caller_bounds().iter().filter_map(|clause| {
851            // `ConstArgHasType` are never desugared to be higher ranked.
852            match clause.kind().skip_binder() {
853                ty::ClauseKind::ConstArgHasType(placeholder_ct, ty) => {
854                    assert!(!(placeholder_ct, ty).has_escaping_bound_vars());
855
856                    match placeholder_ct.kind() {
857                        ty::ConstKind::Placeholder(placeholder_ct) if placeholder_ct == self => {
858                            Some(ty)
859                        }
860                        _ => None,
861                    }
862                }
863                _ => None,
864            }
865        });
866
867        let ty = candidates.next().unwrap();
868        assert!(candidates.next().is_none());
869        ty
870    }
871}
872
873pub type PlaceholderRegion = Placeholder<BoundRegion>;
874
875impl rustc_type_ir::inherent::PlaceholderLike for PlaceholderRegion {
876    fn universe(self) -> UniverseIndex {
877        self.universe
878    }
879
880    fn var(self) -> BoundVar {
881        self.bound.var
882    }
883
884    fn with_updated_universe(self, ui: UniverseIndex) -> Self {
885        Placeholder { universe: ui, ..self }
886    }
887
888    fn new(ui: UniverseIndex, var: BoundVar) -> Self {
889        Placeholder { universe: ui, bound: BoundRegion { var, kind: BoundRegionKind::Anon } }
890    }
891}
892
893pub type PlaceholderType = Placeholder<BoundTy>;
894
895impl rustc_type_ir::inherent::PlaceholderLike for PlaceholderType {
896    fn universe(self) -> UniverseIndex {
897        self.universe
898    }
899
900    fn var(self) -> BoundVar {
901        self.bound.var
902    }
903
904    fn with_updated_universe(self, ui: UniverseIndex) -> Self {
905        Placeholder { universe: ui, ..self }
906    }
907
908    fn new(ui: UniverseIndex, var: BoundVar) -> Self {
909        Placeholder { universe: ui, bound: BoundTy { var, kind: BoundTyKind::Anon } }
910    }
911}
912
913#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
914#[derive(TyEncodable, TyDecodable)]
915pub struct BoundConst<'tcx> {
916    pub var: BoundVar,
917    pub ty: Ty<'tcx>,
918}
919
920pub type PlaceholderConst = Placeholder<BoundVar>;
921
922impl rustc_type_ir::inherent::PlaceholderLike for PlaceholderConst {
923    fn universe(self) -> UniverseIndex {
924        self.universe
925    }
926
927    fn var(self) -> BoundVar {
928        self.bound
929    }
930
931    fn with_updated_universe(self, ui: UniverseIndex) -> Self {
932        Placeholder { universe: ui, ..self }
933    }
934
935    fn new(ui: UniverseIndex, var: BoundVar) -> Self {
936        Placeholder { universe: ui, bound: var }
937    }
938}
939
940pub type Clauses<'tcx> = &'tcx ListWithCachedTypeInfo<Clause<'tcx>>;
941
942impl<'tcx> rustc_type_ir::Flags for Clauses<'tcx> {
943    fn flags(&self) -> TypeFlags {
944        (**self).flags()
945    }
946
947    fn outer_exclusive_binder(&self) -> DebruijnIndex {
948        (**self).outer_exclusive_binder()
949    }
950}
951
952/// When interacting with the type system we must provide information about the
953/// environment. `ParamEnv` is the type that represents this information. See the
954/// [dev guide chapter][param_env_guide] for more information.
955///
956/// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/param_env/param_env_summary.html
957#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
958#[derive(HashStable, TypeVisitable, TypeFoldable)]
959pub struct ParamEnv<'tcx> {
960    /// Caller bounds are `Obligation`s that the caller must satisfy. This is
961    /// basically the set of bounds on the in-scope type parameters, translated
962    /// into `Obligation`s, and elaborated and normalized.
963    ///
964    /// Use the `caller_bounds()` method to access.
965    caller_bounds: Clauses<'tcx>,
966}
967
968impl<'tcx> rustc_type_ir::inherent::ParamEnv<TyCtxt<'tcx>> for ParamEnv<'tcx> {
969    fn caller_bounds(self) -> impl inherent::SliceLike<Item = ty::Clause<'tcx>> {
970        self.caller_bounds()
971    }
972}
973
974impl<'tcx> ParamEnv<'tcx> {
975    /// Construct a trait environment suitable for contexts where there are
976    /// no where-clauses in scope. In the majority of cases it is incorrect
977    /// to use an empty environment. See the [dev guide section][param_env_guide]
978    /// for information on what a `ParamEnv` is and how to acquire one.
979    ///
980    /// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/param_env/param_env_summary.html
981    #[inline]
982    pub fn empty() -> Self {
983        Self::new(ListWithCachedTypeInfo::empty())
984    }
985
986    #[inline]
987    pub fn caller_bounds(self) -> Clauses<'tcx> {
988        self.caller_bounds
989    }
990
991    /// Construct a trait environment with the given set of predicates.
992    #[inline]
993    pub fn new(caller_bounds: Clauses<'tcx>) -> Self {
994        ParamEnv { caller_bounds }
995    }
996
997    /// Creates a pair of param-env and value for use in queries.
998    pub fn and<T: TypeVisitable<TyCtxt<'tcx>>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
999        ParamEnvAnd { param_env: self, value }
1000    }
1001}
1002
1003#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
1004#[derive(HashStable)]
1005pub struct ParamEnvAnd<'tcx, T> {
1006    pub param_env: ParamEnv<'tcx>,
1007    pub value: T,
1008}
1009
1010impl<'tcx, T> ParamEnvAnd<'tcx, T> {
1011    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1012        (self.param_env, self.value)
1013    }
1014}
1015
1016/// The environment in which to do trait solving.
1017///
1018/// Most of the time you only need to care about the `ParamEnv`
1019/// as the `TypingMode` is simply stored in the `InferCtxt`.
1020///
1021/// However, there are some places which rely on trait solving
1022/// without using an `InferCtxt` themselves. For these to be
1023/// able to use the trait system they have to be able to initialize
1024/// such an `InferCtxt` with the right `typing_mode`, so they need
1025/// to track both.
1026#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
1027#[derive(TypeVisitable, TypeFoldable)]
1028pub struct TypingEnv<'tcx> {
1029    pub typing_mode: TypingMode<'tcx>,
1030    pub param_env: ParamEnv<'tcx>,
1031}
1032
1033impl<'tcx> TypingEnv<'tcx> {
1034    /// Create a typing environment with no where-clauses in scope
1035    /// where all opaque types and default associated items are revealed.
1036    ///
1037    /// This is only suitable for monomorphized, post-typeck environments.
1038    /// Do not use this for MIR optimizations, as even though they also
1039    /// use `TypingMode::PostAnalysis`, they may still have where-clauses
1040    /// in scope.
1041    pub fn fully_monomorphized() -> TypingEnv<'tcx> {
1042        TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env: ParamEnv::empty() }
1043    }
1044
1045    /// Create a typing environment for use during analysis outside of a body.
1046    ///
1047    /// Using a typing environment inside of bodies is not supported as the body
1048    /// may define opaque types. In this case the used functions have to be
1049    /// converted to use proper canonical inputs instead.
1050    pub fn non_body_analysis(
1051        tcx: TyCtxt<'tcx>,
1052        def_id: impl IntoQueryParam<DefId>,
1053    ) -> TypingEnv<'tcx> {
1054        TypingEnv { typing_mode: TypingMode::non_body_analysis(), param_env: tcx.param_env(def_id) }
1055    }
1056
1057    pub fn post_analysis(tcx: TyCtxt<'tcx>, def_id: impl IntoQueryParam<DefId>) -> TypingEnv<'tcx> {
1058        TypingEnv {
1059            typing_mode: TypingMode::PostAnalysis,
1060            param_env: tcx.param_env_normalized_for_post_analysis(def_id),
1061        }
1062    }
1063
1064    /// Modify the `typing_mode` to `PostAnalysis` and eagerly reveal all
1065    /// opaque types in the `param_env`.
1066    pub fn with_post_analysis_normalized(self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
1067        let TypingEnv { typing_mode, param_env } = self;
1068        if let TypingMode::PostAnalysis = typing_mode {
1069            return self;
1070        }
1071
1072        // No need to reveal opaques with the new solver enabled,
1073        // since we have lazy norm.
1074        let param_env = if tcx.next_trait_solver_globally() {
1075            ParamEnv::new(param_env.caller_bounds())
1076        } else {
1077            ParamEnv::new(tcx.reveal_opaque_types_in_bounds(param_env.caller_bounds()))
1078        };
1079        TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env }
1080    }
1081
1082    /// Combine this typing environment with the given `value` to be used by
1083    /// not (yet) canonicalized queries. This only works if the value does not
1084    /// contain anything local to some `InferCtxt`, i.e. inference variables or
1085    /// placeholders.
1086    pub fn as_query_input<T>(self, value: T) -> PseudoCanonicalInput<'tcx, T>
1087    where
1088        T: TypeVisitable<TyCtxt<'tcx>>,
1089    {
1090        // FIXME(#132279): We should assert that the value does not contain any placeholders
1091        // as these placeholders are also local to the current inference context. However, we
1092        // currently use pseudo-canonical queries in the trait solver which replaces params with
1093        // placeholders. We should also simply not use pseudo-canonical queries in the trait
1094        // solver, at which point we can readd this assert. As of writing this comment, this is
1095        // only used by `fn layout_is_pointer_like` when calling `layout_of`.
1096        //
1097        // debug_assert!(!value.has_placeholders());
1098        PseudoCanonicalInput { typing_env: self, value }
1099    }
1100}
1101
1102/// Similar to `CanonicalInput`, this carries the `typing_mode` and the environment
1103/// necessary to do any kind of trait solving inside of nested queries.
1104///
1105/// Unlike proper canonicalization, this requires the `param_env` and the `value` to not
1106/// contain anything local to the `infcx` of the caller, so we don't actually canonicalize
1107/// anything.
1108///
1109/// This should be created by using `infcx.pseudo_canonicalize_query(param_env, value)`
1110/// or by using `typing_env.as_query_input(value)`.
1111#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1112#[derive(HashStable, TypeVisitable, TypeFoldable)]
1113pub struct PseudoCanonicalInput<'tcx, T> {
1114    pub typing_env: TypingEnv<'tcx>,
1115    pub value: T,
1116}
1117
1118#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
1119pub struct Destructor {
1120    /// The `DefId` of the destructor method
1121    pub did: DefId,
1122    /// The constness of the destructor method
1123    pub constness: hir::Constness,
1124}
1125
1126// FIXME: consider combining this definition with regular `Destructor`
1127#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
1128pub struct AsyncDestructor {
1129    /// The `DefId` of the async destructor future constructor
1130    pub ctor: DefId,
1131    /// The `DefId` of the async destructor future type
1132    pub future: DefId,
1133}
1134
1135#[derive(Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
1136pub struct VariantFlags(u8);
1137bitflags::bitflags! {
1138    impl VariantFlags: u8 {
1139        const NO_VARIANT_FLAGS        = 0;
1140        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
1141        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1142    }
1143}
1144rustc_data_structures::external_bitflags_debug! { VariantFlags }
1145
1146/// Definition of a variant -- a struct's fields or an enum variant.
1147#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
1148pub struct VariantDef {
1149    /// `DefId` that identifies the variant itself.
1150    /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
1151    pub def_id: DefId,
1152    /// `DefId` that identifies the variant's constructor.
1153    /// If this variant is a struct variant, then this is `None`.
1154    pub ctor: Option<(CtorKind, DefId)>,
1155    /// Variant or struct name.
1156    pub name: Symbol,
1157    /// Discriminant of this variant.
1158    pub discr: VariantDiscr,
1159    /// Fields of this variant.
1160    pub fields: IndexVec<FieldIdx, FieldDef>,
1161    /// The error guarantees from parser, if any.
1162    tainted: Option<ErrorGuaranteed>,
1163    /// Flags of the variant (e.g. is field list non-exhaustive)?
1164    flags: VariantFlags,
1165}
1166
1167impl VariantDef {
1168    /// Creates a new `VariantDef`.
1169    ///
1170    /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
1171    /// represents an enum variant).
1172    ///
1173    /// `ctor_did` is the `DefId` that identifies the constructor of unit or
1174    /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
1175    ///
1176    /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
1177    /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
1178    /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
1179    /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
1180    /// built-in trait), and we do not want to load attributes twice.
1181    ///
1182    /// If someone speeds up attribute loading to not be a performance concern, they can
1183    /// remove this hack and use the constructor `DefId` everywhere.
1184    #[instrument(level = "debug")]
1185    pub fn new(
1186        name: Symbol,
1187        variant_did: Option<DefId>,
1188        ctor: Option<(CtorKind, DefId)>,
1189        discr: VariantDiscr,
1190        fields: IndexVec<FieldIdx, FieldDef>,
1191        parent_did: DefId,
1192        recover_tainted: Option<ErrorGuaranteed>,
1193        is_field_list_non_exhaustive: bool,
1194    ) -> Self {
1195        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1196        if is_field_list_non_exhaustive {
1197            flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
1198        }
1199
1200        VariantDef {
1201            def_id: variant_did.unwrap_or(parent_did),
1202            ctor,
1203            name,
1204            discr,
1205            fields,
1206            flags,
1207            tainted: recover_tainted,
1208        }
1209    }
1210
1211    /// Returns `true` if the field list of this variant is `#[non_exhaustive]`.
1212    ///
1213    /// Note that this function will return `true` even if the type has been
1214    /// defined in the crate currently being compiled. If that's not what you
1215    /// want, see [`Self::field_list_has_applicable_non_exhaustive`].
1216    #[inline]
1217    pub fn is_field_list_non_exhaustive(&self) -> bool {
1218        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
1219    }
1220
1221    /// Returns `true` if the field list of this variant is `#[non_exhaustive]`
1222    /// and the type has been defined in another crate.
1223    #[inline]
1224    pub fn field_list_has_applicable_non_exhaustive(&self) -> bool {
1225        self.is_field_list_non_exhaustive() && !self.def_id.is_local()
1226    }
1227
1228    /// Computes the `Ident` of this variant by looking up the `Span`
1229    pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
1230        Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap())
1231    }
1232
1233    /// Was this variant obtained as part of recovering from a syntactic error?
1234    #[inline]
1235    pub fn has_errors(&self) -> Result<(), ErrorGuaranteed> {
1236        self.tainted.map_or(Ok(()), Err)
1237    }
1238
1239    #[inline]
1240    pub fn ctor_kind(&self) -> Option<CtorKind> {
1241        self.ctor.map(|(kind, _)| kind)
1242    }
1243
1244    #[inline]
1245    pub fn ctor_def_id(&self) -> Option<DefId> {
1246        self.ctor.map(|(_, def_id)| def_id)
1247    }
1248
1249    /// Returns the one field in this variant.
1250    ///
1251    /// `panic!`s if there are no fields or multiple fields.
1252    #[inline]
1253    pub fn single_field(&self) -> &FieldDef {
1254        assert!(self.fields.len() == 1);
1255
1256        &self.fields[FieldIdx::ZERO]
1257    }
1258
1259    /// Returns the last field in this variant, if present.
1260    #[inline]
1261    pub fn tail_opt(&self) -> Option<&FieldDef> {
1262        self.fields.raw.last()
1263    }
1264
1265    /// Returns the last field in this variant.
1266    ///
1267    /// # Panics
1268    ///
1269    /// Panics, if the variant has no fields.
1270    #[inline]
1271    pub fn tail(&self) -> &FieldDef {
1272        self.tail_opt().expect("expected unsized ADT to have a tail field")
1273    }
1274
1275    /// Returns whether this variant has unsafe fields.
1276    pub fn has_unsafe_fields(&self) -> bool {
1277        self.fields.iter().any(|x| x.safety.is_unsafe())
1278    }
1279}
1280
1281impl PartialEq for VariantDef {
1282    #[inline]
1283    fn eq(&self, other: &Self) -> bool {
1284        // There should be only one `VariantDef` for each `def_id`, therefore
1285        // it is fine to implement `PartialEq` only based on `def_id`.
1286        //
1287        // Below, we exhaustively destructure `self` and `other` so that if the
1288        // definition of `VariantDef` changes, a compile-error will be produced,
1289        // reminding us to revisit this assumption.
1290
1291        let Self {
1292            def_id: lhs_def_id,
1293            ctor: _,
1294            name: _,
1295            discr: _,
1296            fields: _,
1297            flags: _,
1298            tainted: _,
1299        } = &self;
1300        let Self {
1301            def_id: rhs_def_id,
1302            ctor: _,
1303            name: _,
1304            discr: _,
1305            fields: _,
1306            flags: _,
1307            tainted: _,
1308        } = other;
1309
1310        let res = lhs_def_id == rhs_def_id;
1311
1312        // Double check that implicit assumption detailed above.
1313        if cfg!(debug_assertions) && res {
1314            let deep = self.ctor == other.ctor
1315                && self.name == other.name
1316                && self.discr == other.discr
1317                && self.fields == other.fields
1318                && self.flags == other.flags;
1319            assert!(deep, "VariantDef for the same def-id has differing data");
1320        }
1321
1322        res
1323    }
1324}
1325
1326impl Eq for VariantDef {}
1327
1328impl Hash for VariantDef {
1329    #[inline]
1330    fn hash<H: Hasher>(&self, s: &mut H) {
1331        // There should be only one `VariantDef` for each `def_id`, therefore
1332        // it is fine to implement `Hash` only based on `def_id`.
1333        //
1334        // Below, we exhaustively destructure `self` so that if the definition
1335        // of `VariantDef` changes, a compile-error will be produced, reminding
1336        // us to revisit this assumption.
1337
1338        let Self { def_id, ctor: _, name: _, discr: _, fields: _, flags: _, tainted: _ } = &self;
1339        def_id.hash(s)
1340    }
1341}
1342
1343#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
1344pub enum VariantDiscr {
1345    /// Explicit value for this variant, i.e., `X = 123`.
1346    /// The `DefId` corresponds to the embedded constant.
1347    Explicit(DefId),
1348
1349    /// The previous variant's discriminant plus one.
1350    /// For efficiency reasons, the distance from the
1351    /// last `Explicit` discriminant is being stored,
1352    /// or `0` for the first variant, if it has none.
1353    Relative(u32),
1354}
1355
1356#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
1357pub struct FieldDef {
1358    pub did: DefId,
1359    pub name: Symbol,
1360    pub vis: Visibility<DefId>,
1361    pub safety: hir::Safety,
1362    pub value: Option<DefId>,
1363}
1364
1365impl PartialEq for FieldDef {
1366    #[inline]
1367    fn eq(&self, other: &Self) -> bool {
1368        // There should be only one `FieldDef` for each `did`, therefore it is
1369        // fine to implement `PartialEq` only based on `did`.
1370        //
1371        // Below, we exhaustively destructure `self` so that if the definition
1372        // of `FieldDef` changes, a compile-error will be produced, reminding
1373        // us to revisit this assumption.
1374
1375        let Self { did: lhs_did, name: _, vis: _, safety: _, value: _ } = &self;
1376
1377        let Self { did: rhs_did, name: _, vis: _, safety: _, value: _ } = other;
1378
1379        let res = lhs_did == rhs_did;
1380
1381        // Double check that implicit assumption detailed above.
1382        if cfg!(debug_assertions) && res {
1383            let deep =
1384                self.name == other.name && self.vis == other.vis && self.safety == other.safety;
1385            assert!(deep, "FieldDef for the same def-id has differing data");
1386        }
1387
1388        res
1389    }
1390}
1391
1392impl Eq for FieldDef {}
1393
1394impl Hash for FieldDef {
1395    #[inline]
1396    fn hash<H: Hasher>(&self, s: &mut H) {
1397        // There should be only one `FieldDef` for each `did`, therefore it is
1398        // fine to implement `Hash` only based on `did`.
1399        //
1400        // Below, we exhaustively destructure `self` so that if the definition
1401        // of `FieldDef` changes, a compile-error will be produced, reminding
1402        // us to revisit this assumption.
1403
1404        let Self { did, name: _, vis: _, safety: _, value: _ } = &self;
1405
1406        did.hash(s)
1407    }
1408}
1409
1410impl<'tcx> FieldDef {
1411    /// Returns the type of this field. The resulting type is not normalized. The `arg` is
1412    /// typically obtained via the second field of [`TyKind::Adt`].
1413    pub fn ty(&self, tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
1414        tcx.type_of(self.did).instantiate(tcx, args)
1415    }
1416
1417    /// Computes the `Ident` of this variant by looking up the `Span`
1418    pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
1419        Ident::new(self.name, tcx.def_ident_span(self.did).unwrap())
1420    }
1421}
1422
1423#[derive(Debug, PartialEq, Eq)]
1424pub enum ImplOverlapKind {
1425    /// These impls are always allowed to overlap.
1426    Permitted {
1427        /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
1428        marker: bool,
1429    },
1430}
1431
1432/// Useful source information about where a desugared associated type for an
1433/// RPITIT originated from.
1434#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable, HashStable)]
1435pub enum ImplTraitInTraitData {
1436    Trait { fn_def_id: DefId, opaque_def_id: DefId },
1437    Impl { fn_def_id: DefId },
1438}
1439
1440impl<'tcx> TyCtxt<'tcx> {
1441    pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
1442        self.typeck(self.hir_body_owner_def_id(body))
1443    }
1444
1445    pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
1446        self.associated_items(id)
1447            .in_definition_order()
1448            .filter(move |item| item.kind == AssocKind::Fn && item.defaultness(self).has_value())
1449    }
1450
1451    pub fn repr_options_of_def(self, did: LocalDefId) -> ReprOptions {
1452        let mut flags = ReprFlags::empty();
1453        let mut size = None;
1454        let mut max_align: Option<Align> = None;
1455        let mut min_pack: Option<Align> = None;
1456
1457        // Generate a deterministically-derived seed from the item's path hash
1458        // to allow for cross-crate compilation to actually work
1459        let mut field_shuffle_seed = self.def_path_hash(did.to_def_id()).0.to_smaller_hash();
1460
1461        // If the user defined a custom seed for layout randomization, xor the item's
1462        // path hash with the user defined seed, this will allowing determinism while
1463        // still allowing users to further randomize layout generation for e.g. fuzzing
1464        if let Some(user_seed) = self.sess.opts.unstable_opts.layout_seed {
1465            field_shuffle_seed ^= user_seed;
1466        }
1467
1468        if let Some(reprs) = attr::find_attr!(self.get_all_attrs(did), AttributeKind::Repr(r) => r)
1469        {
1470            for (r, _) in reprs {
1471                flags.insert(match *r {
1472                    attr::ReprRust => ReprFlags::empty(),
1473                    attr::ReprC => ReprFlags::IS_C,
1474                    attr::ReprPacked(pack) => {
1475                        min_pack = Some(if let Some(min_pack) = min_pack {
1476                            min_pack.min(pack)
1477                        } else {
1478                            pack
1479                        });
1480                        ReprFlags::empty()
1481                    }
1482                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1483                    attr::ReprSimd => ReprFlags::IS_SIMD,
1484                    attr::ReprInt(i) => {
1485                        size = Some(match i {
1486                            attr::IntType::SignedInt(x) => match x {
1487                                ast::IntTy::Isize => IntegerType::Pointer(true),
1488                                ast::IntTy::I8 => IntegerType::Fixed(Integer::I8, true),
1489                                ast::IntTy::I16 => IntegerType::Fixed(Integer::I16, true),
1490                                ast::IntTy::I32 => IntegerType::Fixed(Integer::I32, true),
1491                                ast::IntTy::I64 => IntegerType::Fixed(Integer::I64, true),
1492                                ast::IntTy::I128 => IntegerType::Fixed(Integer::I128, true),
1493                            },
1494                            attr::IntType::UnsignedInt(x) => match x {
1495                                ast::UintTy::Usize => IntegerType::Pointer(false),
1496                                ast::UintTy::U8 => IntegerType::Fixed(Integer::I8, false),
1497                                ast::UintTy::U16 => IntegerType::Fixed(Integer::I16, false),
1498                                ast::UintTy::U32 => IntegerType::Fixed(Integer::I32, false),
1499                                ast::UintTy::U64 => IntegerType::Fixed(Integer::I64, false),
1500                                ast::UintTy::U128 => IntegerType::Fixed(Integer::I128, false),
1501                            },
1502                        });
1503                        ReprFlags::empty()
1504                    }
1505                    attr::ReprAlign(align) => {
1506                        max_align = max_align.max(Some(align));
1507                        ReprFlags::empty()
1508                    }
1509                    attr::ReprEmpty => {
1510                        /* skip these, they're just for diagnostics */
1511                        ReprFlags::empty()
1512                    }
1513                });
1514            }
1515        }
1516
1517        // If `-Z randomize-layout` was enabled for the type definition then we can
1518        // consider performing layout randomization
1519        if self.sess.opts.unstable_opts.randomize_layout {
1520            flags.insert(ReprFlags::RANDOMIZE_LAYOUT);
1521        }
1522
1523        // box is special, on the one hand the compiler assumes an ordered layout, with the pointer
1524        // always at offset zero. On the other hand we want scalar abi optimizations.
1525        let is_box = self.is_lang_item(did.to_def_id(), LangItem::OwnedBox);
1526
1527        // This is here instead of layout because the choice must make it into metadata.
1528        if is_box {
1529            flags.insert(ReprFlags::IS_LINEAR);
1530        }
1531
1532        ReprOptions { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed }
1533    }
1534
1535    /// Look up the name of a definition across crates. This does not look at HIR.
1536    pub fn opt_item_name(self, def_id: DefId) -> Option<Symbol> {
1537        if let Some(cnum) = def_id.as_crate_root() {
1538            Some(self.crate_name(cnum))
1539        } else {
1540            let def_key = self.def_key(def_id);
1541            match def_key.disambiguated_data.data {
1542                // The name of a constructor is that of its parent.
1543                rustc_hir::definitions::DefPathData::Ctor => self
1544                    .opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }),
1545                _ => def_key.get_opt_name(),
1546            }
1547        }
1548    }
1549
1550    /// Look up the name of a definition across crates. This does not look at HIR.
1551    ///
1552    /// This method will ICE if the corresponding item does not have a name. In these cases, use
1553    /// [`opt_item_name`] instead.
1554    ///
1555    /// [`opt_item_name`]: Self::opt_item_name
1556    pub fn item_name(self, id: DefId) -> Symbol {
1557        self.opt_item_name(id).unwrap_or_else(|| {
1558            bug!("item_name: no name for {:?}", self.def_path(id));
1559        })
1560    }
1561
1562    /// Look up the name and span of a definition.
1563    ///
1564    /// See [`item_name`][Self::item_name] for more information.
1565    pub fn opt_item_ident(self, def_id: DefId) -> Option<Ident> {
1566        let def = self.opt_item_name(def_id)?;
1567        let span = self
1568            .def_ident_span(def_id)
1569            .unwrap_or_else(|| bug!("missing ident span for {def_id:?}"));
1570        Some(Ident::new(def, span))
1571    }
1572
1573    /// Look up the name and span of a definition.
1574    ///
1575    /// See [`item_name`][Self::item_name] for more information.
1576    pub fn item_ident(self, def_id: DefId) -> Ident {
1577        self.opt_item_ident(def_id).unwrap_or_else(|| {
1578            bug!("item_ident: no name for {:?}", self.def_path(def_id));
1579        })
1580    }
1581
1582    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> {
1583        if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1584            Some(self.associated_item(def_id))
1585        } else {
1586            None
1587        }
1588    }
1589
1590    /// If the `def_id` is an associated type that was desugared from a
1591    /// return-position `impl Trait` from a trait, then provide the source info
1592    /// about where that RPITIT came from.
1593    pub fn opt_rpitit_info(self, def_id: DefId) -> Option<ImplTraitInTraitData> {
1594        if let DefKind::AssocTy = self.def_kind(def_id) {
1595            self.associated_item(def_id).opt_rpitit_info
1596        } else {
1597            None
1598        }
1599    }
1600
1601    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<FieldIdx> {
1602        variant.fields.iter_enumerated().find_map(|(i, field)| {
1603            self.hygienic_eq(ident, field.ident(self), variant.def_id).then_some(i)
1604        })
1605    }
1606
1607    /// Returns `Some` if the impls are the same polarity and the trait either
1608    /// has no items or is annotated `#[marker]` and prevents item overrides.
1609    #[instrument(level = "debug", skip(self), ret)]
1610    pub fn impls_are_allowed_to_overlap(
1611        self,
1612        def_id1: DefId,
1613        def_id2: DefId,
1614    ) -> Option<ImplOverlapKind> {
1615        let impl1 = self.impl_trait_header(def_id1).unwrap();
1616        let impl2 = self.impl_trait_header(def_id2).unwrap();
1617
1618        let trait_ref1 = impl1.trait_ref.skip_binder();
1619        let trait_ref2 = impl2.trait_ref.skip_binder();
1620
1621        // If either trait impl references an error, they're allowed to overlap,
1622        // as one of them essentially doesn't exist.
1623        if trait_ref1.references_error() || trait_ref2.references_error() {
1624            return Some(ImplOverlapKind::Permitted { marker: false });
1625        }
1626
1627        match (impl1.polarity, impl2.polarity) {
1628            (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
1629                // `#[rustc_reservation_impl]` impls don't overlap with anything
1630                return Some(ImplOverlapKind::Permitted { marker: false });
1631            }
1632            (ImplPolarity::Positive, ImplPolarity::Negative)
1633            | (ImplPolarity::Negative, ImplPolarity::Positive) => {
1634                // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
1635                return None;
1636            }
1637            (ImplPolarity::Positive, ImplPolarity::Positive)
1638            | (ImplPolarity::Negative, ImplPolarity::Negative) => {}
1639        };
1640
1641        let is_marker_impl = |trait_ref: TraitRef<'_>| self.trait_def(trait_ref.def_id).is_marker;
1642        let is_marker_overlap = is_marker_impl(trait_ref1) && is_marker_impl(trait_ref2);
1643
1644        if is_marker_overlap {
1645            return Some(ImplOverlapKind::Permitted { marker: true });
1646        }
1647
1648        None
1649    }
1650
1651    /// Returns `ty::VariantDef` if `res` refers to a struct,
1652    /// or variant or their constructors, panics otherwise.
1653    pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
1654        match res {
1655            Res::Def(DefKind::Variant, did) => {
1656                let enum_did = self.parent(did);
1657                self.adt_def(enum_did).variant_with_id(did)
1658            }
1659            Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
1660            Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
1661                let variant_did = self.parent(variant_ctor_did);
1662                let enum_did = self.parent(variant_did);
1663                self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
1664            }
1665            Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
1666                let struct_did = self.parent(ctor_did);
1667                self.adt_def(struct_did).non_enum_variant()
1668            }
1669            _ => bug!("expect_variant_res used with unexpected res {:?}", res),
1670        }
1671    }
1672
1673    /// Returns the possibly-auto-generated MIR of a [`ty::InstanceKind`].
1674    #[instrument(skip(self), level = "debug")]
1675    pub fn instance_mir(self, instance: ty::InstanceKind<'tcx>) -> &'tcx Body<'tcx> {
1676        match instance {
1677            ty::InstanceKind::Item(def) => {
1678                debug!("calling def_kind on def: {:?}", def);
1679                let def_kind = self.def_kind(def);
1680                debug!("returned from def_kind: {:?}", def_kind);
1681                match def_kind {
1682                    DefKind::Const
1683                    | DefKind::Static { .. }
1684                    | DefKind::AssocConst
1685                    | DefKind::Ctor(..)
1686                    | DefKind::AnonConst
1687                    | DefKind::InlineConst => self.mir_for_ctfe(def),
1688                    // If the caller wants `mir_for_ctfe` of a function they should not be using
1689                    // `instance_mir`, so we'll assume const fn also wants the optimized version.
1690                    _ => self.optimized_mir(def),
1691                }
1692            }
1693            ty::InstanceKind::VTableShim(..)
1694            | ty::InstanceKind::ReifyShim(..)
1695            | ty::InstanceKind::Intrinsic(..)
1696            | ty::InstanceKind::FnPtrShim(..)
1697            | ty::InstanceKind::Virtual(..)
1698            | ty::InstanceKind::ClosureOnceShim { .. }
1699            | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
1700            | ty::InstanceKind::DropGlue(..)
1701            | ty::InstanceKind::CloneShim(..)
1702            | ty::InstanceKind::ThreadLocalShim(..)
1703            | ty::InstanceKind::FnPtrAddrShim(..)
1704            | ty::InstanceKind::AsyncDropGlueCtorShim(..) => self.mir_shims(instance),
1705        }
1706    }
1707
1708    // FIXME(@lcnr): Remove this function.
1709    pub fn get_attrs_unchecked(self, did: DefId) -> &'tcx [hir::Attribute] {
1710        if let Some(did) = did.as_local() {
1711            self.hir_attrs(self.local_def_id_to_hir_id(did))
1712        } else {
1713            self.attrs_for_def(did)
1714        }
1715    }
1716
1717    /// Gets all attributes with the given name.
1718    pub fn get_attrs(
1719        self,
1720        did: impl Into<DefId>,
1721        attr: Symbol,
1722    ) -> impl Iterator<Item = &'tcx hir::Attribute> {
1723        self.get_all_attrs(did).filter(move |a: &&hir::Attribute| a.has_name(attr))
1724    }
1725
1726    /// Gets all attributes.
1727    ///
1728    /// To see if an item has a specific attribute, you should use [`rustc_attr_data_structures::find_attr!`] so you can use matching.
1729    pub fn get_all_attrs(
1730        self,
1731        did: impl Into<DefId>,
1732    ) -> impl Iterator<Item = &'tcx hir::Attribute> {
1733        let did: DefId = did.into();
1734        if let Some(did) = did.as_local() {
1735            self.hir_attrs(self.local_def_id_to_hir_id(did)).iter()
1736        } else {
1737            self.attrs_for_def(did).iter()
1738        }
1739    }
1740
1741    /// Get an attribute from the diagnostic attribute namespace
1742    ///
1743    /// This function requests an attribute with the following structure:
1744    ///
1745    /// `#[diagnostic::$attr]`
1746    ///
1747    /// This function performs feature checking, so if an attribute is returned
1748    /// it can be used by the consumer
1749    pub fn get_diagnostic_attr(
1750        self,
1751        did: impl Into<DefId>,
1752        attr: Symbol,
1753    ) -> Option<&'tcx hir::Attribute> {
1754        let did: DefId = did.into();
1755        if did.as_local().is_some() {
1756            // it's a crate local item, we need to check feature flags
1757            if rustc_feature::is_stable_diagnostic_attribute(attr, self.features()) {
1758                self.get_attrs_by_path(did, &[sym::diagnostic, sym::do_not_recommend]).next()
1759            } else {
1760                None
1761            }
1762        } else {
1763            // we filter out unstable diagnostic attributes before
1764            // encoding attributes
1765            debug_assert!(rustc_feature::encode_cross_crate(attr));
1766            self.attrs_for_def(did)
1767                .iter()
1768                .find(|a| matches!(a.path().as_ref(), [sym::diagnostic, a] if *a == attr))
1769        }
1770    }
1771
1772    pub fn get_attrs_by_path(
1773        self,
1774        did: DefId,
1775        attr: &[Symbol],
1776    ) -> impl Iterator<Item = &'tcx hir::Attribute> {
1777        let filter_fn = move |a: &&hir::Attribute| a.path_matches(attr);
1778        if let Some(did) = did.as_local() {
1779            self.hir_attrs(self.local_def_id_to_hir_id(did)).iter().filter(filter_fn)
1780        } else {
1781            self.attrs_for_def(did).iter().filter(filter_fn)
1782        }
1783    }
1784
1785    pub fn get_attr(self, did: impl Into<DefId>, attr: Symbol) -> Option<&'tcx hir::Attribute> {
1786        if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) {
1787            let did: DefId = did.into();
1788            bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr);
1789        } else {
1790            self.get_attrs(did, attr).next()
1791        }
1792    }
1793
1794    /// Determines whether an item is annotated with an attribute.
1795    pub fn has_attr(self, did: impl Into<DefId>, attr: Symbol) -> bool {
1796        self.get_attrs(did, attr).next().is_some()
1797    }
1798
1799    /// Determines whether an item is annotated with a multi-segment attribute
1800    pub fn has_attrs_with_path(self, did: impl Into<DefId>, attrs: &[Symbol]) -> bool {
1801        self.get_attrs_by_path(did.into(), attrs).next().is_some()
1802    }
1803
1804    /// Returns `true` if this is an `auto trait`.
1805    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
1806        self.trait_def(trait_def_id).has_auto_impl
1807    }
1808
1809    /// Returns `true` if this is coinductive, either because it is
1810    /// an auto trait or because it has the `#[rustc_coinductive]` attribute.
1811    pub fn trait_is_coinductive(self, trait_def_id: DefId) -> bool {
1812        self.trait_def(trait_def_id).is_coinductive
1813    }
1814
1815    /// Returns `true` if this is a trait alias.
1816    pub fn trait_is_alias(self, trait_def_id: DefId) -> bool {
1817        self.def_kind(trait_def_id) == DefKind::TraitAlias
1818    }
1819
1820    /// Returns layout of a coroutine. Layout might be unavailable if the
1821    /// coroutine is tainted by errors.
1822    ///
1823    /// Takes `coroutine_kind` which can be acquired from the `CoroutineArgs::kind_ty`,
1824    /// e.g. `args.as_coroutine().kind_ty()`.
1825    pub fn coroutine_layout(
1826        self,
1827        def_id: DefId,
1828        coroutine_kind_ty: Ty<'tcx>,
1829    ) -> Option<&'tcx CoroutineLayout<'tcx>> {
1830        let mir = self.optimized_mir(def_id);
1831        // Regular coroutine
1832        if coroutine_kind_ty.is_unit() {
1833            mir.coroutine_layout_raw()
1834        } else {
1835            // If we have a `Coroutine` that comes from an coroutine-closure,
1836            // then it may be a by-move or by-ref body.
1837            let ty::Coroutine(_, identity_args) =
1838                *self.type_of(def_id).instantiate_identity().kind()
1839            else {
1840                unreachable!();
1841            };
1842            let identity_kind_ty = identity_args.as_coroutine().kind_ty();
1843            // If the types differ, then we must be getting the by-move body of
1844            // a by-ref coroutine.
1845            if identity_kind_ty == coroutine_kind_ty {
1846                mir.coroutine_layout_raw()
1847            } else {
1848                assert_matches!(coroutine_kind_ty.to_opt_closure_kind(), Some(ClosureKind::FnOnce));
1849                assert_matches!(
1850                    identity_kind_ty.to_opt_closure_kind(),
1851                    Some(ClosureKind::Fn | ClosureKind::FnMut)
1852                );
1853                self.optimized_mir(self.coroutine_by_move_body_def_id(def_id))
1854                    .coroutine_layout_raw()
1855            }
1856        }
1857    }
1858
1859    /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
1860    /// If it implements no trait, returns `None`.
1861    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
1862        self.impl_trait_ref(def_id).map(|tr| tr.skip_binder().def_id)
1863    }
1864
1865    /// If the given `DefId` describes an item belonging to a trait,
1866    /// returns the `DefId` of the trait that the trait item belongs to;
1867    /// otherwise, returns `None`.
1868    pub fn trait_of_item(self, def_id: DefId) -> Option<DefId> {
1869        if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1870            let parent = self.parent(def_id);
1871            if let DefKind::Trait | DefKind::TraitAlias = self.def_kind(parent) {
1872                return Some(parent);
1873            }
1874        }
1875        None
1876    }
1877
1878    /// If the given `DefId` describes a method belonging to an impl, returns the
1879    /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
1880    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
1881        if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1882            let parent = self.parent(def_id);
1883            if let DefKind::Impl { .. } = self.def_kind(parent) {
1884                return Some(parent);
1885            }
1886        }
1887        None
1888    }
1889
1890    /// Check if the given `DefId` is `#\[automatically_derived\]`, *and*
1891    /// whether it was produced by expanding a builtin derive macro.
1892    pub fn is_builtin_derived(self, def_id: DefId) -> bool {
1893        if self.is_automatically_derived(def_id)
1894            && let Some(def_id) = def_id.as_local()
1895            && let outer = self.def_span(def_id).ctxt().outer_expn_data()
1896            && matches!(outer.kind, ExpnKind::Macro(MacroKind::Derive, _))
1897            && self.has_attr(outer.macro_def_id.unwrap(), sym::rustc_builtin_macro)
1898        {
1899            true
1900        } else {
1901            false
1902        }
1903    }
1904
1905    /// Check if the given `DefId` is `#\[automatically_derived\]`.
1906    pub fn is_automatically_derived(self, def_id: DefId) -> bool {
1907        self.has_attr(def_id, sym::automatically_derived)
1908    }
1909
1910    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
1911    /// with the name of the crate containing the impl.
1912    pub fn span_of_impl(self, impl_def_id: DefId) -> Result<Span, Symbol> {
1913        if let Some(impl_def_id) = impl_def_id.as_local() {
1914            Ok(self.def_span(impl_def_id))
1915        } else {
1916            Err(self.crate_name(impl_def_id.krate))
1917        }
1918    }
1919
1920    /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
1921    /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
1922    /// definition's parent/scope to perform comparison.
1923    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
1924        // We could use `Ident::eq` here, but we deliberately don't. The name
1925        // comparison fails frequently, and we want to avoid the expensive
1926        // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
1927        use_name.name == def_name.name
1928            && use_name
1929                .span
1930                .ctxt()
1931                .hygienic_eq(def_name.span.ctxt(), self.expn_that_defined(def_parent_def_id))
1932    }
1933
1934    pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
1935        ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
1936        ident
1937    }
1938
1939    // FIXME(vincenzopalazzo): move the HirId to a LocalDefId
1940    pub fn adjust_ident_and_get_scope(
1941        self,
1942        mut ident: Ident,
1943        scope: DefId,
1944        block: hir::HirId,
1945    ) -> (Ident, DefId) {
1946        let scope = ident
1947            .span
1948            .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
1949            .and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
1950            .unwrap_or_else(|| self.parent_module(block).to_def_id());
1951        (ident, scope)
1952    }
1953
1954    /// Checks whether this is a `const fn`. Returns `false` for non-functions.
1955    ///
1956    /// Even if this returns `true`, constness may still be unstable!
1957    #[inline]
1958    pub fn is_const_fn(self, def_id: DefId) -> bool {
1959        matches!(
1960            self.def_kind(def_id),
1961            DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Closure
1962        ) && self.constness(def_id) == hir::Constness::Const
1963    }
1964
1965    /// Whether this item is conditionally constant for the purposes of the
1966    /// effects implementation.
1967    ///
1968    /// This roughly corresponds to all const functions and other callable
1969    /// items, along with const impls and traits, and associated types within
1970    /// those impls and traits.
1971    pub fn is_conditionally_const(self, def_id: impl Into<DefId>) -> bool {
1972        let def_id: DefId = def_id.into();
1973        match self.def_kind(def_id) {
1974            DefKind::Impl { of_trait: true } => {
1975                let header = self.impl_trait_header(def_id).unwrap();
1976                header.constness == hir::Constness::Const
1977                    && self.is_const_trait(header.trait_ref.skip_binder().def_id)
1978            }
1979            DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) => {
1980                self.constness(def_id) == hir::Constness::Const
1981            }
1982            DefKind::Trait => self.is_const_trait(def_id),
1983            DefKind::AssocTy => {
1984                let parent_def_id = self.parent(def_id);
1985                match self.def_kind(parent_def_id) {
1986                    DefKind::Impl { of_trait: false } => false,
1987                    DefKind::Impl { of_trait: true } | DefKind::Trait => {
1988                        self.is_conditionally_const(parent_def_id)
1989                    }
1990                    _ => bug!("unexpected parent item of associated type: {parent_def_id:?}"),
1991                }
1992            }
1993            DefKind::AssocFn => {
1994                let parent_def_id = self.parent(def_id);
1995                match self.def_kind(parent_def_id) {
1996                    DefKind::Impl { of_trait: false } => {
1997                        self.constness(def_id) == hir::Constness::Const
1998                    }
1999                    DefKind::Impl { of_trait: true } | DefKind::Trait => {
2000                        self.is_conditionally_const(parent_def_id)
2001                    }
2002                    _ => bug!("unexpected parent item of associated fn: {parent_def_id:?}"),
2003                }
2004            }
2005            DefKind::OpaqueTy => match self.opaque_ty_origin(def_id) {
2006                hir::OpaqueTyOrigin::FnReturn { parent, .. } => self.is_conditionally_const(parent),
2007                hir::OpaqueTyOrigin::AsyncFn { .. } => false,
2008                // FIXME(const_trait_impl): ATPITs could be conditionally const?
2009                hir::OpaqueTyOrigin::TyAlias { .. } => false,
2010            },
2011            DefKind::Closure => {
2012                // Closures and RPITs will eventually have const conditions
2013                // for `~const` bounds.
2014                false
2015            }
2016            DefKind::Ctor(_, CtorKind::Const)
2017            | DefKind::Impl { of_trait: false }
2018            | DefKind::Mod
2019            | DefKind::Struct
2020            | DefKind::Union
2021            | DefKind::Enum
2022            | DefKind::Variant
2023            | DefKind::TyAlias
2024            | DefKind::ForeignTy
2025            | DefKind::TraitAlias
2026            | DefKind::TyParam
2027            | DefKind::Const
2028            | DefKind::ConstParam
2029            | DefKind::Static { .. }
2030            | DefKind::AssocConst
2031            | DefKind::Macro(_)
2032            | DefKind::ExternCrate
2033            | DefKind::Use
2034            | DefKind::ForeignMod
2035            | DefKind::AnonConst
2036            | DefKind::InlineConst
2037            | DefKind::Field
2038            | DefKind::LifetimeParam
2039            | DefKind::GlobalAsm
2040            | DefKind::SyntheticCoroutineBody => false,
2041        }
2042    }
2043
2044    #[inline]
2045    pub fn is_const_trait(self, def_id: DefId) -> bool {
2046        self.trait_def(def_id).constness == hir::Constness::Const
2047    }
2048
2049    #[inline]
2050    pub fn is_const_default_method(self, def_id: DefId) -> bool {
2051        matches!(self.trait_of_item(def_id), Some(trait_id) if self.is_const_trait(trait_id))
2052    }
2053
2054    pub fn impl_method_has_trait_impl_trait_tys(self, def_id: DefId) -> bool {
2055        if self.def_kind(def_id) != DefKind::AssocFn {
2056            return false;
2057        }
2058
2059        let Some(item) = self.opt_associated_item(def_id) else {
2060            return false;
2061        };
2062        if item.container != ty::AssocItemContainer::Impl {
2063            return false;
2064        }
2065
2066        let Some(trait_item_def_id) = item.trait_item_def_id else {
2067            return false;
2068        };
2069
2070        return !self
2071            .associated_types_for_impl_traits_in_associated_fn(trait_item_def_id)
2072            .is_empty();
2073    }
2074}
2075
2076pub fn int_ty(ity: ast::IntTy) -> IntTy {
2077    match ity {
2078        ast::IntTy::Isize => IntTy::Isize,
2079        ast::IntTy::I8 => IntTy::I8,
2080        ast::IntTy::I16 => IntTy::I16,
2081        ast::IntTy::I32 => IntTy::I32,
2082        ast::IntTy::I64 => IntTy::I64,
2083        ast::IntTy::I128 => IntTy::I128,
2084    }
2085}
2086
2087pub fn uint_ty(uty: ast::UintTy) -> UintTy {
2088    match uty {
2089        ast::UintTy::Usize => UintTy::Usize,
2090        ast::UintTy::U8 => UintTy::U8,
2091        ast::UintTy::U16 => UintTy::U16,
2092        ast::UintTy::U32 => UintTy::U32,
2093        ast::UintTy::U64 => UintTy::U64,
2094        ast::UintTy::U128 => UintTy::U128,
2095    }
2096}
2097
2098pub fn float_ty(fty: ast::FloatTy) -> FloatTy {
2099    match fty {
2100        ast::FloatTy::F16 => FloatTy::F16,
2101        ast::FloatTy::F32 => FloatTy::F32,
2102        ast::FloatTy::F64 => FloatTy::F64,
2103        ast::FloatTy::F128 => FloatTy::F128,
2104    }
2105}
2106
2107pub fn ast_int_ty(ity: IntTy) -> ast::IntTy {
2108    match ity {
2109        IntTy::Isize => ast::IntTy::Isize,
2110        IntTy::I8 => ast::IntTy::I8,
2111        IntTy::I16 => ast::IntTy::I16,
2112        IntTy::I32 => ast::IntTy::I32,
2113        IntTy::I64 => ast::IntTy::I64,
2114        IntTy::I128 => ast::IntTy::I128,
2115    }
2116}
2117
2118pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy {
2119    match uty {
2120        UintTy::Usize => ast::UintTy::Usize,
2121        UintTy::U8 => ast::UintTy::U8,
2122        UintTy::U16 => ast::UintTy::U16,
2123        UintTy::U32 => ast::UintTy::U32,
2124        UintTy::U64 => ast::UintTy::U64,
2125        UintTy::U128 => ast::UintTy::U128,
2126    }
2127}
2128
2129pub fn provide(providers: &mut Providers) {
2130    closure::provide(providers);
2131    context::provide(providers);
2132    erase_regions::provide(providers);
2133    inhabitedness::provide(providers);
2134    util::provide(providers);
2135    print::provide(providers);
2136    super::util::bug::provide(providers);
2137    *providers = Providers {
2138        trait_impls_of: trait_def::trait_impls_of_provider,
2139        incoherent_impls: trait_def::incoherent_impls_provider,
2140        trait_impls_in_crate: trait_def::trait_impls_in_crate_provider,
2141        traits: trait_def::traits_provider,
2142        vtable_allocation: vtable::vtable_allocation_provider,
2143        ..*providers
2144    };
2145}
2146
2147/// A map for the local crate mapping each type to a vector of its
2148/// inherent impls. This is not meant to be used outside of coherence;
2149/// rather, you should request the vector for a specific type via
2150/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
2151/// (constructing this map requires touching the entire crate).
2152#[derive(Clone, Debug, Default, HashStable)]
2153pub struct CrateInherentImpls {
2154    pub inherent_impls: FxIndexMap<LocalDefId, Vec<DefId>>,
2155    pub incoherent_impls: FxIndexMap<SimplifiedType, Vec<LocalDefId>>,
2156}
2157
2158#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
2159pub struct SymbolName<'tcx> {
2160    /// `&str` gives a consistent ordering, which ensures reproducible builds.
2161    pub name: &'tcx str,
2162}
2163
2164impl<'tcx> SymbolName<'tcx> {
2165    pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
2166        SymbolName { name: tcx.arena.alloc_str(name) }
2167    }
2168}
2169
2170impl<'tcx> fmt::Display for SymbolName<'tcx> {
2171    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2172        fmt::Display::fmt(&self.name, fmt)
2173    }
2174}
2175
2176impl<'tcx> fmt::Debug for SymbolName<'tcx> {
2177    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2178        fmt::Display::fmt(&self.name, fmt)
2179    }
2180}
2181
2182#[derive(Debug, Default, Copy, Clone)]
2183pub struct InferVarInfo {
2184    /// This is true if we identified that this Ty (`?T`) is found in a `?T: Foo`
2185    /// obligation, where:
2186    ///
2187    ///  * `Foo` is not `Sized`
2188    ///  * `(): Foo` may be satisfied
2189    pub self_in_trait: bool,
2190    /// This is true if we identified that this Ty (`?T`) is found in a `<_ as
2191    /// _>::AssocType = ?T`
2192    pub output: bool,
2193}
2194
2195/// The constituent parts of a type level constant of kind ADT or array.
2196#[derive(Copy, Clone, Debug, HashStable)]
2197pub struct DestructuredConst<'tcx> {
2198    pub variant: Option<VariantIdx>,
2199    pub fields: &'tcx [ty::Const<'tcx>],
2200}
2201
2202// Some types are used a lot. Make sure they don't unintentionally get bigger.
2203#[cfg(target_pointer_width = "64")]
2204mod size_asserts {
2205    use rustc_data_structures::static_assert_size;
2206
2207    use super::*;
2208    // tidy-alphabetical-start
2209    static_assert_size!(PredicateKind<'_>, 32);
2210    static_assert_size!(WithCachedTypeInfo<TyKind<'_>>, 48);
2211    // tidy-alphabetical-end
2212}