1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
//! Defines how the compiler represents types internally.
//!
//! Two important entities in this module are:
//!
//! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
//! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
//!
//! For more information, see ["The `ty` module: representing types"] in the ructc-dev-guide.
//!
//! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html

pub use self::fold::{TypeFoldable, TypeFolder, TypeVisitor};
pub use self::AssocItemContainer::*;
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
pub use self::Variance::*;
pub use adt::*;
pub use assoc::*;
pub use closure::*;
pub use generics::*;

use crate::hir::exports::ExportMap;
use crate::ich::StableHashingContext;
use crate::middle::cstore::CrateStoreDyn;
use crate::mir::{Body, GeneratorLayout};
use crate::traits::{self, Reveal};
use crate::ty;
use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
use crate::ty::util::Discr;
use rustc_ast as ast;
use rustc_attr as attr;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{self, par_iter, ParallelIterator};
use rustc_data_structures::tagged_ptr::CopyTaggedPtr;
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, CRATE_DEF_INDEX};
use rustc_hir::{Constness, Node};
use rustc_macros::HashStable;
use rustc_span::hygiene::ExpnId;
use rustc_span::symbol::{kw, Ident, Symbol};
use rustc_span::Span;
use rustc_target::abi::Align;

use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::ops::ControlFlow;
use std::{fmt, ptr, str};

pub use crate::ty::diagnostics::*;
pub use rustc_type_ir::InferTy::*;
pub use rustc_type_ir::*;

pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;
pub use self::consts::{Const, ConstInt, ConstKind, InferConst, ScalarInt, Unevaluated, ValTree};
pub use self::context::{
    tls, CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations,
    CtxtInterners, DelaySpanBugEmitted, FreeRegionInfo, GeneratorInteriorTypeCause, GlobalCtxt,
    Lift, ResolvedOpaqueTy, TyCtxt, TypeckResults, UserType, UserTypeAnnotationIndex,
};
pub use self::instance::{Instance, InstanceDef};
pub use self::list::List;
pub use self::sty::BoundRegionKind::*;
pub use self::sty::RegionKind::*;
pub use self::sty::TyKind::*;
pub use self::sty::{
    Binder, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, BoundVar, BoundVariableKind,
    CanonicalPolyFnSig, ClosureSubsts, ClosureSubstsParts, ConstVid, EarlyBoundRegion,
    ExistentialPredicate, ExistentialProjection, ExistentialTraitRef, FnSig, FreeRegion, GenSig,
    GeneratorSubsts, GeneratorSubstsParts, ParamConst, ParamTy, PolyExistentialProjection,
    PolyExistentialTraitRef, PolyFnSig, PolyGenSig, PolyTraitRef, ProjectionTy, Region, RegionKind,
    RegionVid, TraitRef, TyKind, TypeAndMut, UpvarSubsts,
};
pub use self::trait_def::TraitDef;

pub mod _match;
pub mod adjustment;
pub mod binding;
pub mod cast;
pub mod codec;
pub mod error;
pub mod fast_reject;
pub mod flags;
pub mod fold;
pub mod inhabitedness;
pub mod layout;
pub mod normalize_erasing_regions;
pub mod outlives;
pub mod print;
pub mod query;
pub mod relate;
pub mod subst;
pub mod trait_def;
pub mod util;
pub mod walk;

mod adt;
mod assoc;
mod closure;
mod consts;
mod context;
mod diagnostics;
mod erase_regions;
mod generics;
mod instance;
mod list;
mod structural_impls;
mod sty;

// Data types

pub struct ResolverOutputs {
    pub definitions: rustc_hir::definitions::Definitions,
    pub cstore: Box<CrateStoreDyn>,
    pub visibilities: FxHashMap<LocalDefId, Visibility>,
    pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
    pub maybe_unused_trait_imports: FxHashSet<LocalDefId>,
    pub maybe_unused_extern_crates: Vec<(LocalDefId, Span)>,
    pub export_map: ExportMap<LocalDefId>,
    pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
    /// Extern prelude entries. The value is `true` if the entry was introduced
    /// via `extern crate` item and not `--extern` option or compiler built-in.
    pub extern_prelude: FxHashMap<Symbol, bool>,
    pub main_def: Option<MainDefinition>,
}

#[derive(Clone, Copy)]
pub struct MainDefinition {
    pub res: Res<ast::NodeId>,
    pub is_import: bool,
    pub span: Span,
}

impl MainDefinition {
    pub fn opt_fn_def_id(self) -> Option<DefId> {
        if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
    }
}

/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds / where-clauses).
#[derive(Clone, Debug, TypeFoldable)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

#[derive(Copy, Clone, PartialEq, TyEncodable, TyDecodable, HashStable, Debug)]
pub enum ImplPolarity {
    /// `impl Trait for Type`
    Positive,
    /// `impl !Trait for Type`
    Negative,
    /// `#[rustc_reservation_impl] impl Trait for Type`
    ///
    /// This is a "stability hack", not a real Rust feature.
    /// See #64631 for details.
    Reservation,
}

#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
    Restricted(DefId),
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
    Invisible,
}

pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
}

impl<'tcx> DefIdTree for TyCtxt<'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index, ..id })
    }
}

impl Visibility {
    pub fn from_hir(visibility: &hir::Visibility<'_>, id: hir::HirId, tcx: TyCtxt<'_>) -> Self {
        match visibility.node {
            hir::VisibilityKind::Public => Visibility::Public,
            hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::VisibilityKind::Restricted { ref path, .. } => match path.res {
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
                Res::Err => Visibility::Public,
                def => Visibility::Restricted(def.def_id()),
            },
            hir::VisibilityKind::Inherited => {
                Visibility::Restricted(tcx.parent_module(id).to_def_id())
            }
        }
    }

    /// Returns `true` if an item with this visibility is accessible from the given block.
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
            Visibility::Invisible => return false,
            // Restricted items are visible in an arbitrary local module.
            Visibility::Restricted(other) if other.krate != module.krate => return false,
            Visibility::Restricted(module) => module,
        };

        tree.is_descendant_of(module, restriction)
    }

    /// Returns `true` if this visibility is at least as accessible as the given visibility
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
            Visibility::Invisible => return true,
            Visibility::Restricted(module) => module,
        };

        self.is_accessible_from(vis_restriction, tree)
    }

    // Returns `true` if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
}

/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.variances_of()` to get the variance for a *particular*
/// item.
#[derive(HashStable, Debug)]
pub struct CrateVariancesMap<'tcx> {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics. If an item has no generics, it will have no
    /// entry.
    pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>,
}

// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct CReaderCacheKey {
    pub cnum: CrateNum,
    pub pos: usize,
}

#[allow(rustc::usage_of_ty_tykind)]
pub struct TyS<'tcx> {
    /// This field shouldn't be used directly and may be removed in the future.
    /// Use `TyS::kind()` instead.
    kind: TyKind<'tcx>,
    /// This field shouldn't be used directly and may be removed in the future.
    /// Use `TyS::flags()` instead.
    flags: TypeFlags,

    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be *innermost*, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with De Bruijn index `D`, this would be `D + 1`
    /// -- the binder itself does not capture `D`, but `D` is captured
    /// by an inner binder.
    ///
    /// We call this concept an "exclusive" binder `D` because all
    /// De Bruijn indices within the type are contained within `0..D`
    /// (exclusive).
    outer_exclusive_binder: ty::DebruijnIndex,
}

impl<'tcx> TyS<'tcx> {
    /// A constructor used only for internal testing.
    #[allow(rustc::usage_of_ty_tykind)]
    pub fn make_for_test(
        kind: TyKind<'tcx>,
        flags: TypeFlags,
        outer_exclusive_binder: ty::DebruijnIndex,
    ) -> TyS<'tcx> {
        TyS { kind, flags, outer_exclusive_binder }
    }
}

// `TyS` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(TyS<'_>, 40);

impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.kind().cmp(other.kind())
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.kind().cmp(other.kind()))
    }
}

impl<'tcx> PartialEq for TyS<'tcx> {
    #[inline]
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        ptr::eq(self, other)
    }
}
impl<'tcx> Eq for TyS<'tcx> {}

impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self as *const TyS<'_>).hash(s)
    }
}

impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for TyS<'tcx> {
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        let ty::TyS {
            ref kind,

            // The other fields just provide fast access to information that is
            // also contained in `kind`, so no need to hash them.
            flags: _,

            outer_exclusive_binder: _,
        } = *self;

        kind.hash_stable(hcx, hasher);
    }
}

#[rustc_diagnostic_item = "Ty"]
pub type Ty<'tcx> = &'tcx TyS<'tcx>;

impl ty::EarlyBoundRegion {
    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != kw::UnderscoreLifetime
    }
}

#[derive(Debug)]
crate struct PredicateInner<'tcx> {
    kind: Binder<'tcx, PredicateKind<'tcx>>,
    flags: TypeFlags,
    /// See the comment for the corresponding field of [TyS].
    outer_exclusive_binder: ty::DebruijnIndex,
}

#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(PredicateInner<'_>, 48);

#[derive(Clone, Copy, Lift)]
pub struct Predicate<'tcx> {
    inner: &'tcx PredicateInner<'tcx>,
}

impl<'tcx> PartialEq for Predicate<'tcx> {
    fn eq(&self, other: &Self) -> bool {
        // `self.kind` is always interned.
        ptr::eq(self.inner, other.inner)
    }
}

impl Hash for Predicate<'_> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.inner as *const PredicateInner<'_>).hash(s)
    }
}

impl<'tcx> Eq for Predicate<'tcx> {}

impl<'tcx> Predicate<'tcx> {
    /// Gets the inner `Binder<'tcx, PredicateKind<'tcx>>`.
    #[inline]
    pub fn kind(self) -> Binder<'tcx, PredicateKind<'tcx>> {
        self.inner.kind
    }
}

impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Predicate<'tcx> {
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        let PredicateInner {
            ref kind,

            // The other fields just provide fast access to information that is
            // also contained in `kind`, so no need to hash them.
            flags: _,
            outer_exclusive_binder: _,
        } = self.inner;

        kind.hash_stable(hcx, hasher);
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub enum PredicateKind<'tcx> {
    /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
    /// would be the type parameters.
    ///
    /// A trait predicate will have `Constness::Const` if it originates
    /// from a bound on a `const fn` without the `?const` opt-out (e.g.,
    /// `const fn foobar<Foo: Bar>() {}`).
    Trait(TraitPredicate<'tcx>, Constness),

    /// `where 'a: 'b`
    RegionOutlives(RegionOutlivesPredicate<'tcx>),

    /// `where T: 'a`
    TypeOutlives(TypeOutlivesPredicate<'tcx>),

    /// `where <T as TraitRef>::Name == X`, approximately.
    /// See the `ProjectionPredicate` struct for details.
    Projection(ProjectionPredicate<'tcx>),

    /// No syntax: `T` well-formed.
    WellFormed(GenericArg<'tcx>),

    /// Trait must be object-safe.
    ObjectSafe(DefId),

    /// No direct syntax. May be thought of as `where T: FnFoo<...>`
    /// for some substitutions `...` and `T` being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
    ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind),

    /// `T1 <: T2`
    Subtype(SubtypePredicate<'tcx>),

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>),

    /// Constants must be equal. The first component is the const that is expected.
    ConstEquate(&'tcx Const<'tcx>, &'tcx Const<'tcx>),

    /// Represents a type found in the environment that we can use for implied bounds.
    ///
    /// Only used for Chalk.
    TypeWellFormedFromEnv(Ty<'tcx>),
}

/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
#[derive(HashStable, Debug)]
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, &'tcx [(Predicate<'tcx>, Span)]>,
}

impl<'tcx> Predicate<'tcx> {
    /// Performs a substitution suitable for going from a
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions. See
    /// lengthy comment below for details.
    pub fn subst_supertrait(
        self,
        tcx: TyCtxt<'tcx>,
        trait_ref: &ty::PolyTraitRef<'tcx>,
    ) -> Predicate<'tcx> {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a>: Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
        // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

        // Working through the second example:
        // trait_ref: for<'x> T: Foo1<'^0.0>; substs: [T, '^0.0]
        // predicate: for<'b> Self: Bar1<'a, '^0.0>; substs: [Self, 'a, '^0.0]
        // We want to end up with:
        //     for<'x, 'b> T: Bar1<'^0.0, '^0.1>
        // To do this:
        // 1) We must shift all bound vars in predicate by the length
        //    of trait ref's bound vars. So, we would end up with predicate like
        //    Self: Bar1<'a, '^0.1>
        // 2) We can then apply the trait substs to this, ending up with
        //    T: Bar1<'^0.0, '^0.1>
        // 3) Finally, to create the final bound vars, we concatenate the bound
        //    vars of the trait ref with those of the predicate:
        //    ['x, 'b]
        let bound_pred = self.kind();
        let pred_bound_vars = bound_pred.bound_vars();
        let trait_bound_vars = trait_ref.bound_vars();
        // 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1>
        let shifted_pred =
            tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder());
        // 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1>
        let new = shifted_pred.subst(tcx, trait_ref.skip_binder().substs);
        // 3) ['x] + ['b] -> ['x, 'b]
        let bound_vars =
            tcx.mk_bound_variable_kinds(trait_bound_vars.iter().chain(pred_bound_vars));
        tcx.reuse_or_mk_predicate(self, ty::Binder::bind_with_vars(new, bound_vars))
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct TraitPredicate<'tcx> {
    pub trait_ref: TraitRef<'tcx>,
}

pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
    pub fn def_id(self) -> DefId {
        self.trait_ref.def_id
    }

    pub fn self_ty(self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
    pub fn def_id(self) -> DefId {
        // Ok to skip binder since trait `DefId` does not care about regions.
        self.skip_binder().def_id()
    }

    pub fn self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>> {
        self.map_bound(|trait_ref| trait_ref.self_ty())
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct OutlivesPredicate<A, B>(pub A, pub B); // `A: B`
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>;

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>,
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>;

/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T: TraitRef<..., Item = Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T: TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>;

impl<'tcx> PolyProjectionPredicate<'tcx> {
    /// Returns the `DefId` of the trait of the associated item being projected.
    #[inline]
    pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
        self.skip_binder().projection_ty.trait_def_id(tcx)
    }

    /// Get the [PolyTraitRef] required for this projection to be well formed.
    /// Note that for generic associated types the predicates of the associated
    /// type also need to be checked.
    #[inline]
    pub fn required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> {
        // Note: unlike with `TraitRef::to_poly_trait_ref()`,
        // `self.0.trait_ref` is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
    }

    pub fn ty(&self) -> Binder<'tcx, Ty<'tcx>> {
        self.map_bound(|predicate| predicate.ty)
    }

    /// The `DefId` of the `TraitItem` for the associated type.
    ///
    /// Note that this is not the `DefId` of the `TraitRef` containing this
    /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
    pub fn projection_def_id(&self) -> DefId {
        // Ok to skip binder since trait `DefId` does not care about regions.
        self.skip_binder().projection_ty.item_def_id
    }
}

pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        ty::Binder::dummy(*self)
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
    }
}

pub trait ToPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>;
}

impl ToPredicate<'tcx> for Binder<'tcx, PredicateKind<'tcx>> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        tcx.mk_predicate(self)
    }
}

impl ToPredicate<'tcx> for PredicateKind<'tcx> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        tcx.mk_predicate(Binder::dummy(self))
    }
}

impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<TraitRef<'tcx>> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        PredicateKind::Trait(ty::TraitPredicate { trait_ref: self.value }, self.constness)
            .to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitRef<'tcx>> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.value
            .map_bound(|trait_ref| {
                PredicateKind::Trait(ty::TraitPredicate { trait_ref }, self.constness)
            })
            .to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitPredicate<'tcx>> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.value.map_bound(|value| PredicateKind::Trait(value, self.constness)).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(PredicateKind::RegionOutlives).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(PredicateKind::TypeOutlives).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(PredicateKind::Projection).to_predicate(tcx)
    }
}

impl<'tcx> Predicate<'tcx> {
    pub fn to_opt_poly_trait_ref(self) -> Option<ConstnessAnd<PolyTraitRef<'tcx>>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::Trait(t, constness) => {
                Some(ConstnessAnd { constness, value: predicate.rebind(t.trait_ref) })
            }
            PredicateKind::Projection(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::RegionOutlives(..)
            | PredicateKind::WellFormed(..)
            | PredicateKind::ObjectSafe(..)
            | PredicateKind::ClosureKind(..)
            | PredicateKind::TypeOutlives(..)
            | PredicateKind::ConstEvaluatable(..)
            | PredicateKind::ConstEquate(..)
            | PredicateKind::TypeWellFormedFromEnv(..) => None,
        }
    }

    pub fn to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::TypeOutlives(data) => Some(predicate.rebind(data)),
            PredicateKind::Trait(..)
            | PredicateKind::Projection(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::RegionOutlives(..)
            | PredicateKind::WellFormed(..)
            | PredicateKind::ObjectSafe(..)
            | PredicateKind::ClosureKind(..)
            | PredicateKind::ConstEvaluatable(..)
            | PredicateKind::ConstEquate(..)
            | PredicateKind::TypeWellFormedFromEnv(..) => None,
        }
    }
}

/// Represents the bounds declared on a particular set of type
/// parameters. Should eventually be generalized into a flag list of
/// where-clauses. You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T, U: Bar<T>> { ... }
///
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
#[derive(Clone, Debug, TypeFoldable)]
pub struct InstantiatedPredicates<'tcx> {
    pub predicates: Vec<Predicate<'tcx>>,
    pub spans: Vec<Span>,
}

impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
        InstantiatedPredicates { predicates: vec![], spans: vec![] }
    }

    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
    }
}

rustc_index::newtype_index! {
    /// "Universes" are used during type- and trait-checking in the
    /// presence of `for<..>` binders to control what sets of names are
    /// visible. Universes are arranged into a tree: the root universe
    /// contains names that are always visible. Each child then adds a new
    /// set of names that are visible, in addition to those of its parent.
    /// We say that the child universe "extends" the parent universe with
    /// new names.
    ///
    /// To make this more concrete, consider this program:
    ///
    /// ```
    /// struct Foo { }
    /// fn bar<T>(x: T) {
    ///   let y: for<'a> fn(&'a u8, Foo) = ...;
    /// }
    /// ```
    ///
    /// The struct name `Foo` is in the root universe U0. But the type
    /// parameter `T`, introduced on `bar`, is in an extended universe U1
    /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
    /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
    /// region `'a` is in a universe U2 that extends U1, because we can
    /// name it inside the fn type but not outside.
    ///
    /// Universes are used to do type- and trait-checking around these
    /// "forall" binders (also called **universal quantification**). The
    /// idea is that when, in the body of `bar`, we refer to `T` as a
    /// type, we aren't referring to any type in particular, but rather a
    /// kind of "fresh" type that is distinct from all other types we have
    /// actually declared. This is called a **placeholder** type, and we
    /// use universes to talk about this. In other words, a type name in
    /// universe 0 always corresponds to some "ground" type that the user
    /// declared, but a type name in a non-zero universe is a placeholder
    /// type -- an idealized representative of "types in general" that we
    /// use for checking generic functions.
    pub struct UniverseIndex {
        derive [HashStable]
        DEBUG_FORMAT = "U{}",
    }
}

impl UniverseIndex {
    pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0);

    /// Returns the "next" universe index in order -- this new index
    /// is considered to extend all previous universes. This
    /// corresponds to entering a `forall` quantifier. So, for
    /// example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// new universe that extends `U` -- in this new universe, we can
    /// name the region `'a`, but that region was not nameable from
    /// `U` because it was not in scope there.
    pub fn next_universe(self) -> UniverseIndex {
        UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
    }

    /// Returns `true` if `self` can name a name from `other` -- in other words,
    /// if the set of names in `self` is a superset of those in
    /// `other` (`self >= other`).
    pub fn can_name(self, other: UniverseIndex) -> bool {
        self.private >= other.private
    }

    /// Returns `true` if `self` cannot name some names from `other` -- in other
    /// words, if the set of names in `self` is a strict subset of
    /// those in `other` (`self < other`).
    pub fn cannot_name(self, other: UniverseIndex) -> bool {
        self.private < other.private
    }
}

/// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
/// identified by both a universe, as well as a name residing within that universe. Distinct bound
/// regions/types/consts within the same universe simply have an unknown relationship to one
/// another.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable, PartialOrd, Ord)]
pub struct Placeholder<T> {
    pub universe: UniverseIndex,
    pub name: T,
}

impl<'a, T> HashStable<StableHashingContext<'a>> for Placeholder<T>
where
    T: HashStable<StableHashingContext<'a>>,
{
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        self.universe.hash_stable(hcx, hasher);
        self.name.hash_stable(hcx, hasher);
    }
}

pub type PlaceholderRegion = Placeholder<BoundRegionKind>;

pub type PlaceholderType = Placeholder<BoundVar>;

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
#[derive(TyEncodable, TyDecodable, PartialOrd, Ord)]
pub struct BoundConst<'tcx> {
    pub var: BoundVar,
    pub ty: Ty<'tcx>,
}

pub type PlaceholderConst<'tcx> = Placeholder<BoundConst<'tcx>>;

/// A `DefId` which, in case it is a const argument, is potentially bundled with
/// the `DefId` of the generic parameter it instantiates.
///
/// This is used to avoid calls to `type_of` for const arguments during typeck
/// which cause cycle errors.
///
/// ```rust
/// struct A;
/// impl A {
///     fn foo<const N: usize>(&self) -> [u8; N] { [0; N] }
///     //           ^ const parameter
/// }
/// struct B;
/// impl B {
///     fn foo<const M: u8>(&self) -> usize { 42 }
///     //           ^ const parameter
/// }
///
/// fn main() {
///     let a = A;
///     let _b = a.foo::<{ 3 + 7 }>();
///     //               ^^^^^^^^^ const argument
/// }
/// ```
///
/// Let's look at the call `a.foo::<{ 3 + 7 }>()` here. We do not know
/// which `foo` is used until we know the type of `a`.
///
/// We only know the type of `a` once we are inside of `typeck(main)`.
/// We also end up normalizing the type of `_b` during `typeck(main)` which
/// requires us to evaluate the const argument.
///
/// To evaluate that const argument we need to know its type,
/// which we would get using `type_of(const_arg)`. This requires us to
/// resolve `foo` as it can be either `usize` or `u8` in this example.
/// However, resolving `foo` once again requires `typeck(main)` to get the type of `a`,
/// which results in a cycle.
///
/// In short we must not call `type_of(const_arg)` during `typeck(main)`.
///
/// When first creating the `ty::Const` of the const argument inside of `typeck` we have
/// already resolved `foo` so we know which const parameter this argument instantiates.
/// This means that we also know the expected result of `type_of(const_arg)` even if we
/// aren't allowed to call that query: it is equal to `type_of(const_param)` which is
/// trivial to compute.
///
/// If we now want to use that constant in a place which potentionally needs its type
/// we also pass the type of its `const_param`. This is the point of `WithOptConstParam`,
/// except that instead of a `Ty` we bundle the `DefId` of the const parameter.
/// Meaning that we need to use `type_of(const_param_did)` if `const_param_did` is `Some`
/// to get the type of `did`.
#[derive(Copy, Clone, Debug, TypeFoldable, Lift, TyEncodable, TyDecodable)]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
#[derive(Hash, HashStable)]
pub struct WithOptConstParam<T> {
    pub did: T,
    /// The `DefId` of the corresponding generic parameter in case `did` is
    /// a const argument.
    ///
    /// Note that even if `did` is a const argument, this may still be `None`.
    /// All queries taking `WithOptConstParam` start by calling `tcx.opt_const_param_of(def.did)`
    /// to potentially update `param_did` in the case it is `None`.
    pub const_param_did: Option<DefId>,
}

impl<T> WithOptConstParam<T> {
    /// Creates a new `WithOptConstParam` setting `const_param_did` to `None`.
    #[inline(always)]
    pub fn unknown(did: T) -> WithOptConstParam<T> {
        WithOptConstParam { did, const_param_did: None }
    }
}

impl WithOptConstParam<LocalDefId> {
    /// Returns `Some((did, param_did))` if `def_id` is a const argument,
    /// `None` otherwise.
    #[inline(always)]
    pub fn try_lookup(did: LocalDefId, tcx: TyCtxt<'_>) -> Option<(LocalDefId, DefId)> {
        tcx.opt_const_param_of(did).map(|param_did| (did, param_did))
    }

    /// In case `self` is unknown but `self.did` is a const argument, this returns
    /// a `WithOptConstParam` with the correct `const_param_did`.
    #[inline(always)]
    pub fn try_upgrade(self, tcx: TyCtxt<'_>) -> Option<WithOptConstParam<LocalDefId>> {
        if self.const_param_did.is_none() {
            if let const_param_did @ Some(_) = tcx.opt_const_param_of(self.did) {
                return Some(WithOptConstParam { did: self.did, const_param_did });
            }
        }

        None
    }

    pub fn to_global(self) -> WithOptConstParam<DefId> {
        WithOptConstParam { did: self.did.to_def_id(), const_param_did: self.const_param_did }
    }

    pub fn def_id_for_type_of(self) -> DefId {
        if let Some(did) = self.const_param_did { did } else { self.did.to_def_id() }
    }
}

impl WithOptConstParam<DefId> {
    pub fn as_local(self) -> Option<WithOptConstParam<LocalDefId>> {
        self.did
            .as_local()
            .map(|did| WithOptConstParam { did, const_param_did: self.const_param_did })
    }

    pub fn as_const_arg(self) -> Option<(LocalDefId, DefId)> {
        if let Some(param_did) = self.const_param_did {
            if let Some(did) = self.did.as_local() {
                return Some((did, param_did));
            }
        }

        None
    }

    pub fn is_local(self) -> bool {
        self.did.is_local()
    }

    pub fn def_id_for_type_of(self) -> DefId {
        self.const_param_did.unwrap_or(self.did)
    }
}

/// When type checking, we use the `ParamEnv` to track
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub struct ParamEnv<'tcx> {
    /// This packs both caller bounds and the reveal enum into one pointer.
    ///
    /// Caller bounds are `Obligation`s that the caller must satisfy. This is
    /// basically the set of bounds on the in-scope type parameters, translated
    /// into `Obligation`s, and elaborated and normalized.
    ///
    /// Use the `caller_bounds()` method to access.
    ///
    /// Typically, this is `Reveal::UserFacing`, but during codegen we
    /// want `Reveal::All`.
    ///
    /// Note: This is packed, use the reveal() method to access it.
    packed: CopyTaggedPtr<&'tcx List<Predicate<'tcx>>, traits::Reveal, true>,
}

unsafe impl rustc_data_structures::tagged_ptr::Tag for traits::Reveal {
    const BITS: usize = 1;
    fn into_usize(self) -> usize {
        match self {
            traits::Reveal::UserFacing => 0,
            traits::Reveal::All => 1,
        }
    }
    unsafe fn from_usize(ptr: usize) -> Self {
        match ptr {
            0 => traits::Reveal::UserFacing,
            1 => traits::Reveal::All,
            _ => std::hint::unreachable_unchecked(),
        }
    }
}

impl<'tcx> fmt::Debug for ParamEnv<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ParamEnv")
            .field("caller_bounds", &self.caller_bounds())
            .field("reveal", &self.reveal())
            .finish()
    }
}

impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> {
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        self.caller_bounds().hash_stable(hcx, hasher);
        self.reveal().hash_stable(hcx, hasher);
    }
}

impl<'tcx> TypeFoldable<'tcx> for ParamEnv<'tcx> {
    fn super_fold_with<F: ty::fold::TypeFolder<'tcx>>(self, folder: &mut F) -> Self {
        ParamEnv::new(self.caller_bounds().fold_with(folder), self.reveal().fold_with(folder))
    }

    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
        self.caller_bounds().visit_with(visitor)?;
        self.reveal().visit_with(visitor)
    }
}

impl<'tcx> ParamEnv<'tcx> {
    /// Construct a trait environment suitable for contexts where
    /// there are no where-clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    #[inline]
    pub fn empty() -> Self {
        Self::new(List::empty(), Reveal::UserFacing)
    }

    #[inline]
    pub fn caller_bounds(self) -> &'tcx List<Predicate<'tcx>> {
        self.packed.pointer()
    }

    #[inline]
    pub fn reveal(self) -> traits::Reveal {
        self.packed.tag()
    }

    /// Construct a trait environment with no where-clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like codegen or doing optimizations.
    ///
    /// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    #[inline]
    pub fn reveal_all() -> Self {
        Self::new(List::empty(), Reveal::All)
    }

    /// Construct a trait environment with the given set of predicates.
    #[inline]
    pub fn new(caller_bounds: &'tcx List<Predicate<'tcx>>, reveal: Reveal) -> Self {
        ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, reveal) }
    }

    pub fn with_user_facing(mut self) -> Self {
        self.packed.set_tag(Reveal::UserFacing);
        self
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable). This is
    /// the desired behavior during codegen and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    /// All opaque types in the caller_bounds of the `ParamEnv`
    /// will be normalized to their underlying types.
    /// See PR #65989 and issue #65918 for more details
    pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self {
        if self.packed.tag() == traits::Reveal::All {
            return self;
        }

        ParamEnv::new(tcx.normalize_opaque_types(self.caller_bounds()), Reveal::All)
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        Self::new(List::empty(), self.reveal())
    }

    /// Creates a suitable environment in which to perform trait
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
    ///
    /// N.B., we preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
    /// `where Box<u32>: Copy`, which are clearly never
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
        match self.reveal() {
            Reveal::UserFacing => ParamEnvAnd { param_env: self, value },

            Reveal::All => {
                if value.is_global() {
                    ParamEnvAnd { param_env: self.without_caller_bounds(), value }
                } else {
                    ParamEnvAnd { param_env: self, value }
                }
            }
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
pub struct ConstnessAnd<T> {
    pub constness: Constness,
    pub value: T,
}

// FIXME(ecstaticmorse): Audit all occurrences of `without_const().to_predicate(tcx)` to ensure that
// the constness of trait bounds is being propagated correctly.
pub trait WithConstness: Sized {
    #[inline]
    fn with_constness(self, constness: Constness) -> ConstnessAnd<Self> {
        ConstnessAnd { constness, value: self }
    }

    #[inline]
    fn with_const(self) -> ConstnessAnd<Self> {
        self.with_constness(Constness::Const)
    }

    #[inline]
    fn without_const(self) -> ConstnessAnd<Self> {
        self.with_constness(Constness::NotConst)
    }
}

impl<T> WithConstness for T {}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
    pub value: T,
}

impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
        (self.param_env, self.value)
    }
}

impl<'a, 'tcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'tcx, T>
where
    T: HashStable<StableHashingContext<'a>>,
{
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        let ParamEnvAnd { ref param_env, ref value } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

#[derive(Copy, Clone, Debug, HashStable)]
pub struct Destructor {
    /// The `DefId` of the destructor method
    pub did: DefId,
}

bitflags! {
    #[derive(HashStable)]
    pub struct VariantFlags: u32 {
        const NO_VARIANT_FLAGS        = 0;
        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
        /// Indicates whether this variant was obtained as part of recovering from
        /// a syntactic error. May be incomplete or bogus.
        const IS_RECOVERED = 1 << 1;
    }
}

/// Definition of a variant -- a struct's fields or a enum variant.
#[derive(Debug, HashStable)]
pub struct VariantDef {
    /// `DefId` that identifies the variant itself.
    /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
    pub def_id: DefId,
    /// `DefId` that identifies the variant's constructor.
    /// If this variant is a struct variant, then this is `None`.
    pub ctor_def_id: Option<DefId>,
    /// Variant or struct name.
    #[stable_hasher(project(name))]
    pub ident: Ident,
    /// Discriminant of this variant.
    pub discr: VariantDiscr,
    /// Fields of this variant.
    pub fields: Vec<FieldDef>,
    /// Type of constructor of variant.
    pub ctor_kind: CtorKind,
    /// Flags of the variant (e.g. is field list non-exhaustive)?
    flags: VariantFlags,
}

impl VariantDef {
    /// Creates a new `VariantDef`.
    ///
    /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
    /// represents an enum variant).
    ///
    /// `ctor_did` is the `DefId` that identifies the constructor of unit or
    /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
    ///
    /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
    /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
    /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
    /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
    /// built-in trait), and we do not want to load attributes twice.
    ///
    /// If someone speeds up attribute loading to not be a performance concern, they can
    /// remove this hack and use the constructor `DefId` everywhere.
    pub fn new(
        ident: Ident,
        variant_did: Option<DefId>,
        ctor_def_id: Option<DefId>,
        discr: VariantDiscr,
        fields: Vec<FieldDef>,
        ctor_kind: CtorKind,
        adt_kind: AdtKind,
        parent_did: DefId,
        recovered: bool,
        is_field_list_non_exhaustive: bool,
    ) -> Self {
        debug!(
            "VariantDef::new(ident = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?},
             fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})",
            ident, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did,
        );

        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
        if is_field_list_non_exhaustive {
            flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
        }

        if recovered {
            flags |= VariantFlags::IS_RECOVERED;
        }

        VariantDef {
            def_id: variant_did.unwrap_or(parent_did),
            ctor_def_id,
            ident,
            discr,
            fields,
            ctor_kind,
            flags,
        }
    }

    /// Is this field list non-exhaustive?
    #[inline]
    pub fn is_field_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
    }

    /// Was this variant obtained as part of recovering from a syntactic error?
    #[inline]
    pub fn is_recovered(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_RECOVERED)
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e., `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(u32),
}

#[derive(Debug, HashStable)]
pub struct FieldDef {
    pub did: DefId,
    #[stable_hasher(project(name))]
    pub ident: Ident,
    pub vis: Visibility,
}

bitflags! {
    #[derive(TyEncodable, TyDecodable, Default, HashStable)]
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
        // Internal only for now. If true, don't reorder fields.
        const IS_LINEAR          = 1 << 3;
        // If true, don't expose any niche to type's context.
        const HIDE_NICHE         = 1 << 4;
        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
                                   ReprFlags::IS_LINEAR.bits;
    }
}

/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Default, HashStable)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
    pub align: Option<Align>,
    pub pack: Option<Align>,
    pub flags: ReprFlags,
}

impl ReprOptions {
    pub fn new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions {
        let mut flags = ReprFlags::empty();
        let mut size = None;
        let mut max_align: Option<Align> = None;
        let mut min_pack: Option<Align> = None;
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(&tcx.sess, attr) {
                flags.insert(match r {
                    attr::ReprC => ReprFlags::IS_C,
                    attr::ReprPacked(pack) => {
                        let pack = Align::from_bytes(pack as u64).unwrap();
                        min_pack = Some(if let Some(min_pack) = min_pack {
                            min_pack.min(pack)
                        } else {
                            pack
                        });
                        ReprFlags::empty()
                    }
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
                    attr::ReprNoNiche => ReprFlags::HIDE_NICHE,
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    }
                    attr::ReprAlign(align) => {
                        max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap()));
                        ReprFlags::empty()
                    }
                });
            }
        }

        // This is here instead of layout because the choice must make it into metadata.
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
        ReprOptions { int: size, align: max_align, pack: min_pack, flags }
    }

    #[inline]
    pub fn simd(&self) -> bool {
        self.flags.contains(ReprFlags::IS_SIMD)
    }
    #[inline]
    pub fn c(&self) -> bool {
        self.flags.contains(ReprFlags::IS_C)
    }
    #[inline]
    pub fn packed(&self) -> bool {
        self.pack.is_some()
    }
    #[inline]
    pub fn transparent(&self) -> bool {
        self.flags.contains(ReprFlags::IS_TRANSPARENT)
    }
    #[inline]
    pub fn linear(&self) -> bool {
        self.flags.contains(ReprFlags::IS_LINEAR)
    }
    #[inline]
    pub fn hide_niche(&self) -> bool {
        self.flags.contains(ReprFlags::HIDE_NICHE)
    }

    /// Returns the discriminant type, given these `repr` options.
    /// This must only be called on enums!
    pub fn discr_type(&self) -> attr::IntType {
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
    }

    /// Returns `true` if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
        self.c() || self.int.is_some()
    }

    /// Returns `true` if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`.
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        if let Some(pack) = self.pack {
            if pack.bytes() == 1 {
                return true;
            }
        }
        self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.int.is_some()
    }

    /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
    pub fn inhibit_union_abi_opt(&self) -> bool {
        self.c()
    }
}

impl<'tcx> FieldDef {
    /// Returns the type of this field. The `subst` is typically obtained
    /// via the second field of `TyKind::AdtDef`.
    pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> {
        tcx.type_of(self.did).subst(tcx, subst)
    }
}

pub type Attributes<'tcx> = &'tcx [ast::Attribute];

#[derive(Debug, PartialEq, Eq)]
pub enum ImplOverlapKind {
    /// These impls are always allowed to overlap.
    Permitted {
        /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
        marker: bool,
    },
    /// These impls are allowed to overlap, but that raises
    /// an issue #33140 future-compatibility warning.
    ///
    /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
    /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
    ///
    /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
    /// that difference, making what reduces to the following set of impls:
    ///
    /// ```
    /// trait Trait {}
    /// impl Trait for dyn Send + Sync {}
    /// impl Trait for dyn Sync + Send {}
    /// ```
    ///
    /// Obviously, once we made these types be identical, that code causes a coherence
    /// error and a fairly big headache for us. However, luckily for us, the trait
    /// `Trait` used in this case is basically a marker trait, and therefore having
    /// overlapping impls for it is sound.
    ///
    /// To handle this, we basically regard the trait as a marker trait, with an additional
    /// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
    /// it has the following restrictions:
    ///
    /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
    /// positive impls.
    /// 2. The trait-ref of both impls must be equal.
    /// 3. The trait-ref of both impls must be a trait object type consisting only of
    /// marker traits.
    /// 4. Neither of the impls can have any where-clauses.
    ///
    /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
    Issue33140,
}

impl<'tcx> TyCtxt<'tcx> {
    pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
        self.typeck(self.hir().body_owner_def_id(body))
    }

    /// Returns an iterator of the `DefId`s for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir().krate().body_ids.iter()`.
    pub fn body_owners(self) -> impl Iterator<Item = LocalDefId> + Captures<'tcx> + 'tcx {
        self.hir()
            .krate()
            .body_ids
            .iter()
            .map(move |&body_id| self.hir().body_owner_def_id(body_id))
    }

    pub fn par_body_owners<F: Fn(LocalDefId) + sync::Sync + sync::Send>(self, f: F) {
        par_iter(&self.hir().krate().body_ids)
            .for_each(|&body_id| f(self.hir().body_owner_def_id(body_id)));
    }

    pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
        self.associated_items(id)
            .in_definition_order()
            .filter(|item| item.kind == AssocKind::Fn && item.defaultness.has_value())
    }

    fn item_name_from_hir(self, def_id: DefId) -> Option<Ident> {
        self.hir().get_if_local(def_id).and_then(|node| node.ident())
    }

    fn item_name_from_def_id(self, def_id: DefId) -> Option<Symbol> {
        if def_id.index == CRATE_DEF_INDEX {
            Some(self.original_crate_name(def_id.krate))
        } else {
            let def_key = self.def_key(def_id);
            match def_key.disambiguated_data.data {
                // The name of a constructor is that of its parent.
                rustc_hir::definitions::DefPathData::Ctor => self.item_name_from_def_id(DefId {
                    krate: def_id.krate,
                    index: def_key.parent.unwrap(),
                }),
                _ => def_key.disambiguated_data.data.get_opt_name(),
            }
        }
    }

    /// Look up the name of an item across crates. This does not look at HIR.
    ///
    /// When possible, this function should be used for cross-crate lookups over
    /// [`opt_item_name`] to avoid invalidating the incremental cache. If you
    /// need to handle items without a name, or HIR items that will not be
    /// serialized cross-crate, or if you need the span of the item, use
    /// [`opt_item_name`] instead.
    ///
    /// [`opt_item_name`]: Self::opt_item_name
    pub fn item_name(self, id: DefId) -> Symbol {
        // Look at cross-crate items first to avoid invalidating the incremental cache
        // unless we have to.
        self.item_name_from_def_id(id).unwrap_or_else(|| {
            bug!("item_name: no name for {:?}", self.def_path(id));
        })
    }

    /// Look up the name and span of an item or [`Node`].
    ///
    /// See [`item_name`][Self::item_name] for more information.
    pub fn opt_item_name(self, def_id: DefId) -> Option<Ident> {
        // Look at the HIR first so the span will be correct if this is a local item.
        self.item_name_from_hir(def_id)
            .or_else(|| self.item_name_from_def_id(def_id).map(Ident::with_dummy_span))
    }

    pub fn opt_associated_item(self, def_id: DefId) -> Option<&'tcx AssocItem> {
        if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

    pub fn field_index(self, hir_id: hir::HirId, typeck_results: &TypeckResults<'_>) -> usize {
        typeck_results.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| self.hygienic_eq(ident, field.ident, variant.def_id))
    }

    /// Returns `true` if the impls are the same polarity and the trait either
    /// has no items or is annotated `#[marker]` and prevents item overrides.
    pub fn impls_are_allowed_to_overlap(
        self,
        def_id1: DefId,
        def_id2: DefId,
    ) -> Option<ImplOverlapKind> {
        // If either trait impl references an error, they're allowed to overlap,
        // as one of them essentially doesn't exist.
        if self.impl_trait_ref(def_id1).map_or(false, |tr| tr.references_error())
            || self.impl_trait_ref(def_id2).map_or(false, |tr| tr.references_error())
        {
            return Some(ImplOverlapKind::Permitted { marker: false });
        }

        match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) {
            (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
                // `#[rustc_reservation_impl]` impls don't overlap with anything
                debug!(
                    "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (reservations)",
                    def_id1, def_id2
                );
                return Some(ImplOverlapKind::Permitted { marker: false });
            }
            (ImplPolarity::Positive, ImplPolarity::Negative)
            | (ImplPolarity::Negative, ImplPolarity::Positive) => {
                // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
                debug!(
                    "impls_are_allowed_to_overlap({:?}, {:?}) - None (differing polarities)",
                    def_id1, def_id2
                );
                return None;
            }
            (ImplPolarity::Positive, ImplPolarity::Positive)
            | (ImplPolarity::Negative, ImplPolarity::Negative) => {}
        };

        let is_marker_overlap = {
            let is_marker_impl = |def_id: DefId| -> bool {
                let trait_ref = self.impl_trait_ref(def_id);
                trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
            };
            is_marker_impl(def_id1) && is_marker_impl(def_id2)
        };

        if is_marker_overlap {
            debug!(
                "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (marker overlap)",
                def_id1, def_id2
            );
            Some(ImplOverlapKind::Permitted { marker: true })
        } else {
            if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
                if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
                    if self_ty1 == self_ty2 {
                        debug!(
                            "impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
                            def_id1, def_id2
                        );
                        return Some(ImplOverlapKind::Issue33140);
                    } else {
                        debug!(
                            "impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
                            def_id1, def_id2, self_ty1, self_ty2
                        );
                    }
                }
            }

            debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None", def_id1, def_id2);
            None
        }
    }

    /// Returns `ty::VariantDef` if `res` refers to a struct,
    /// or variant or their constructors, panics otherwise.
    pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
        match res {
            Res::Def(DefKind::Variant, did) => {
                let enum_did = self.parent(did).unwrap();
                self.adt_def(enum_did).variant_with_id(did)
            }
            Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
            Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
                let variant_did = self.parent(variant_ctor_did).unwrap();
                let enum_did = self.parent(variant_did).unwrap();
                self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
            }
            Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
                let struct_did = self.parent(ctor_did).expect("struct ctor has no parent");
                self.adt_def(struct_did).non_enum_variant()
            }
            _ => bug!("expect_variant_res used with unexpected res {:?}", res),
        }
    }

    /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> {
        match instance {
            ty::InstanceDef::Item(def) => match self.def_kind(def.did) {
                DefKind::Const
                | DefKind::Static
                | DefKind::AssocConst
                | DefKind::Ctor(..)
                | DefKind::AnonConst => self.mir_for_ctfe_opt_const_arg(def),
                // If the caller wants `mir_for_ctfe` of a function they should not be using
                // `instance_mir`, so we'll assume const fn also wants the optimized version.
                _ => {
                    assert_eq!(def.const_param_did, None);
                    self.optimized_mir(def.did)
                }
            },
            ty::InstanceDef::VtableShim(..)
            | ty::InstanceDef::ReifyShim(..)
            | ty::InstanceDef::Intrinsic(..)
            | ty::InstanceDef::FnPtrShim(..)
            | ty::InstanceDef::Virtual(..)
            | ty::InstanceDef::ClosureOnceShim { .. }
            | ty::InstanceDef::DropGlue(..)
            | ty::InstanceDef::CloneShim(..) => self.mir_shims(instance),
        }
    }

    /// Gets the attributes of a definition.
    pub fn get_attrs(self, did: DefId) -> Attributes<'tcx> {
        if let Some(did) = did.as_local() {
            self.hir().attrs(self.hir().local_def_id_to_hir_id(did))
        } else {
            self.item_attrs(did)
        }
    }

    /// Determines whether an item is annotated with an attribute.
    pub fn has_attr(self, did: DefId, attr: Symbol) -> bool {
        self.sess.contains_name(&self.get_attrs(did), attr)
    }

    /// Returns `true` if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
        self.trait_def(trait_def_id).has_auto_impl
    }

    /// Returns layout of a generator. Layout might be unavailable if the
    /// generator is tainted by errors.
    pub fn generator_layout(self, def_id: DefId) -> Option<&'tcx GeneratorLayout<'tcx>> {
        self.optimized_mir(def_id).generator_layout()
    }

    /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
    /// If it implements no trait, returns `None`.
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
    }

    /// If the given defid describes a method belonging to an impl, returns the
    /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
        self.opt_associated_item(def_id).and_then(|trait_item| match trait_item.container {
            TraitContainer(_) => None,
            ImplContainer(def_id) => Some(def_id),
        })
    }

    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
        if let Some(impl_did) = impl_did.as_local() {
            let hir_id = self.hir().local_def_id_to_hir_id(impl_did);
            Ok(self.hir().span(hir_id))
        } else {
            Err(self.crate_name(impl_did.krate))
        }
    }

    /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
    /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    /// definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        // We could use `Ident::eq` here, but we deliberately don't. The name
        // comparison fails frequently, and we want to avoid the expensive
        // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
        use_name.name == def_name.name
            && use_name
                .span
                .ctxt()
                .hygienic_eq(def_name.span.ctxt(), self.expansion_that_defined(def_parent_def_id))
    }

    pub fn expansion_that_defined(self, scope: DefId) -> ExpnId {
        match scope.as_local() {
            // Parsing and expansion aren't incremental, so we don't
            // need to go through a query for the same-crate case.
            Some(scope) => self.hir().definitions().expansion_that_defined(scope),
            None => self.expn_that_defined(scope),
        }
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
        ident.span.normalize_to_macros_2_0_and_adjust(self.expansion_that_defined(scope));
        ident
    }

    pub fn adjust_ident_and_get_scope(
        self,
        mut ident: Ident,
        scope: DefId,
        block: hir::HirId,
    ) -> (Ident, DefId) {
        let scope =
            match ident.span.normalize_to_macros_2_0_and_adjust(self.expansion_that_defined(scope))
            {
                Some(actual_expansion) => {
                    self.hir().definitions().parent_module_of_macro_def(actual_expansion)
                }
                None => self.parent_module(block).to_def_id(),
            };
        (ident, scope)
    }

    pub fn is_object_safe(self, key: DefId) -> bool {
        self.object_safety_violations(key).is_empty()
    }
}

/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
    if let Some(def_id) = def_id.as_local() {
        if let Node::Item(item) = tcx.hir().get(tcx.hir().local_def_id_to_hir_id(def_id)) {
            if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind {
                return opaque_ty.impl_trait_fn;
            }
        }
    }
    None
}

pub fn int_ty(ity: ast::IntTy) -> IntTy {
    match ity {
        ast::IntTy::Isize => IntTy::Isize,
        ast::IntTy::I8 => IntTy::I8,
        ast::IntTy::I16 => IntTy::I16,
        ast::IntTy::I32 => IntTy::I32,
        ast::IntTy::I64 => IntTy::I64,
        ast::IntTy::I128 => IntTy::I128,
    }
}

pub fn uint_ty(uty: ast::UintTy) -> UintTy {
    match uty {
        ast::UintTy::Usize => UintTy::Usize,
        ast::UintTy::U8 => UintTy::U8,
        ast::UintTy::U16 => UintTy::U16,
        ast::UintTy::U32 => UintTy::U32,
        ast::UintTy::U64 => UintTy::U64,
        ast::UintTy::U128 => UintTy::U128,
    }
}

pub fn float_ty(fty: ast::FloatTy) -> FloatTy {
    match fty {
        ast::FloatTy::F32 => FloatTy::F32,
        ast::FloatTy::F64 => FloatTy::F64,
    }
}

pub fn ast_int_ty(ity: IntTy) -> ast::IntTy {
    match ity {
        IntTy::Isize => ast::IntTy::Isize,
        IntTy::I8 => ast::IntTy::I8,
        IntTy::I16 => ast::IntTy::I16,
        IntTy::I32 => ast::IntTy::I32,
        IntTy::I64 => ast::IntTy::I64,
        IntTy::I128 => ast::IntTy::I128,
    }
}

pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy {
    match uty {
        UintTy::Usize => ast::UintTy::Usize,
        UintTy::U8 => ast::UintTy::U8,
        UintTy::U16 => ast::UintTy::U16,
        UintTy::U32 => ast::UintTy::U32,
        UintTy::U64 => ast::UintTy::U64,
        UintTy::U128 => ast::UintTy::U128,
    }
}

pub fn provide(providers: &mut ty::query::Providers) {
    context::provide(providers);
    erase_regions::provide(providers);
    layout::provide(providers);
    util::provide(providers);
    print::provide(providers);
    super::util::bug::provide(providers);
    *providers = ty::query::Providers {
        trait_impls_of: trait_def::trait_impls_of_provider,
        all_local_trait_impls: trait_def::all_local_trait_impls,
        type_uninhabited_from: inhabitedness::type_uninhabited_from,
        const_param_default: consts::const_param_default,
        ..*providers
    };
}

/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
#[derive(Clone, Debug, Default, HashStable)]
pub struct CrateInherentImpls {
    pub inherent_impls: DefIdMap<Vec<DefId>>,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
pub struct SymbolName<'tcx> {
    /// `&str` gives a consistent ordering, which ensures reproducible builds.
    pub name: &'tcx str,
}

impl<'tcx> SymbolName<'tcx> {
    pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
        SymbolName {
            name: unsafe { str::from_utf8_unchecked(tcx.arena.alloc_slice(name.as_bytes())) },
        }
    }
}

impl<'tcx> fmt::Display for SymbolName<'tcx> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}

impl<'tcx> fmt::Debug for SymbolName<'tcx> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}