rustc_middle/ty/
mod.rs

1//! Defines how the compiler represents types internally.
2//!
3//! Two important entities in this module are:
4//!
5//! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
6//! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
7//!
8//! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide.
9//!
10//! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html
11
12#![allow(rustc::usage_of_ty_tykind)]
13
14use std::assert_matches::assert_matches;
15use std::fmt::Debug;
16use std::hash::{Hash, Hasher};
17use std::marker::PhantomData;
18use std::num::NonZero;
19use std::ptr::NonNull;
20use std::{fmt, iter, str};
21
22pub use adt::*;
23pub use assoc::*;
24pub use generic_args::{GenericArgKind, TermKind, *};
25pub use generics::*;
26pub use intrinsic::IntrinsicDef;
27use rustc_abi::{
28    Align, FieldIdx, Integer, IntegerType, ReprFlags, ReprOptions, ScalableElt, VariantIdx,
29};
30use rustc_ast::AttrVec;
31use rustc_ast::expand::typetree::{FncTree, Kind, Type, TypeTree};
32use rustc_ast::node_id::NodeMap;
33pub use rustc_ast_ir::{Movability, Mutability, try_visit};
34use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
35use rustc_data_structures::intern::Interned;
36use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
37use rustc_data_structures::steal::Steal;
38use rustc_data_structures::unord::{UnordMap, UnordSet};
39use rustc_errors::{Diag, ErrorGuaranteed, LintBuffer};
40use rustc_hir::attrs::{AttributeKind, StrippedCfgItem};
41use rustc_hir::def::{CtorKind, CtorOf, DefKind, DocLinkResMap, LifetimeRes, Res};
42use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap};
43use rustc_hir::{LangItem, attrs as attr, find_attr};
44use rustc_index::IndexVec;
45use rustc_index::bit_set::BitMatrix;
46use rustc_macros::{
47    BlobDecodable, Decodable, Encodable, HashStable, TyDecodable, TyEncodable, TypeFoldable,
48    TypeVisitable, extension,
49};
50use rustc_query_system::ich::StableHashingContext;
51use rustc_serialize::{Decodable, Encodable};
52pub use rustc_session::lint::RegisteredTools;
53use rustc_span::hygiene::MacroKind;
54use rustc_span::{DUMMY_SP, ExpnId, ExpnKind, Ident, Span, Symbol, sym};
55pub use rustc_type_ir::data_structures::{DelayedMap, DelayedSet};
56pub use rustc_type_ir::fast_reject::DeepRejectCtxt;
57#[allow(
58    hidden_glob_reexports,
59    rustc::usage_of_type_ir_inherent,
60    rustc::non_glob_import_of_type_ir_inherent
61)]
62use rustc_type_ir::inherent;
63pub use rustc_type_ir::relate::VarianceDiagInfo;
64pub use rustc_type_ir::solve::{CandidatePreferenceMode, SizedTraitKind};
65pub use rustc_type_ir::*;
66#[allow(hidden_glob_reexports, unused_imports)]
67use rustc_type_ir::{InferCtxtLike, Interner};
68use tracing::{debug, instrument, trace};
69pub use vtable::*;
70use {rustc_ast as ast, rustc_hir as hir};
71
72pub use self::closure::{
73    BorrowKind, CAPTURE_STRUCT_LOCAL, CaptureInfo, CapturedPlace, ClosureTypeInfo,
74    MinCaptureInformationMap, MinCaptureList, RootVariableMinCaptureList, UpvarCapture, UpvarId,
75    UpvarPath, analyze_coroutine_closure_captures, is_ancestor_or_same_capture,
76    place_to_string_for_capture,
77};
78pub use self::consts::{
79    AnonConstKind, AtomicOrdering, Const, ConstInt, ConstKind, ConstToValTreeResult, Expr,
80    ExprKind, ScalarInt, SimdAlign, UnevaluatedConst, ValTree, ValTreeKindExt, Value,
81};
82pub use self::context::{
83    CtxtInterners, CurrentGcx, Feed, FreeRegionInfo, GlobalCtxt, Lift, TyCtxt, TyCtxtFeed, tls,
84};
85pub use self::fold::*;
86pub use self::instance::{Instance, InstanceKind, ReifyReason, UnusedGenericParams};
87pub use self::list::{List, ListWithCachedTypeInfo};
88pub use self::opaque_types::OpaqueTypeKey;
89pub use self::pattern::{Pattern, PatternKind};
90pub use self::predicate::{
91    AliasTerm, ArgOutlivesPredicate, Clause, ClauseKind, CoercePredicate, ExistentialPredicate,
92    ExistentialPredicateStableCmpExt, ExistentialProjection, ExistentialTraitRef,
93    HostEffectPredicate, NormalizesTo, OutlivesPredicate, PolyCoercePredicate,
94    PolyExistentialPredicate, PolyExistentialProjection, PolyExistentialTraitRef,
95    PolyProjectionPredicate, PolyRegionOutlivesPredicate, PolySubtypePredicate, PolyTraitPredicate,
96    PolyTraitRef, PolyTypeOutlivesPredicate, Predicate, PredicateKind, ProjectionPredicate,
97    RegionOutlivesPredicate, SubtypePredicate, TraitPredicate, TraitRef, TypeOutlivesPredicate,
98};
99pub use self::region::{
100    BoundRegion, BoundRegionKind, EarlyParamRegion, LateParamRegion, LateParamRegionKind, Region,
101    RegionKind, RegionVid,
102};
103pub use self::sty::{
104    AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig,
105    CoroutineArgsExt, EarlyBinder, FnSig, InlineConstArgs, InlineConstArgsParts, ParamConst,
106    ParamTy, PolyFnSig, TyKind, TypeAndMut, TypingMode, UpvarArgs,
107};
108pub use self::trait_def::TraitDef;
109pub use self::typeck_results::{
110    CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, IsIdentity,
111    Rust2024IncompatiblePatInfo, TypeckResults, UserType, UserTypeAnnotationIndex, UserTypeKind,
112};
113use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason};
114use crate::metadata::{AmbigModChild, ModChild};
115use crate::middle::privacy::EffectiveVisibilities;
116use crate::mir::{Body, CoroutineLayout, CoroutineSavedLocal, SourceInfo};
117use crate::query::{IntoQueryParam, Providers};
118use crate::ty;
119use crate::ty::codec::{TyDecoder, TyEncoder};
120pub use crate::ty::diagnostics::*;
121use crate::ty::fast_reject::SimplifiedType;
122use crate::ty::layout::LayoutError;
123use crate::ty::util::Discr;
124use crate::ty::walk::TypeWalker;
125
126pub mod abstract_const;
127pub mod adjustment;
128pub mod cast;
129pub mod codec;
130pub mod error;
131pub mod fast_reject;
132pub mod inhabitedness;
133pub mod layout;
134pub mod normalize_erasing_regions;
135pub mod offload_meta;
136pub mod pattern;
137pub mod print;
138pub mod relate;
139pub mod significant_drop_order;
140pub mod trait_def;
141pub mod util;
142pub mod vtable;
143
144mod adt;
145mod assoc;
146mod closure;
147mod consts;
148mod context;
149mod diagnostics;
150mod elaborate_impl;
151mod erase_regions;
152mod fold;
153mod generic_args;
154mod generics;
155mod impls_ty;
156mod instance;
157mod intrinsic;
158mod list;
159mod opaque_types;
160mod predicate;
161mod region;
162mod structural_impls;
163#[allow(hidden_glob_reexports)]
164mod sty;
165mod typeck_results;
166mod visit;
167
168// Data types
169
170#[derive(Debug, HashStable)]
171pub struct ResolverGlobalCtxt {
172    pub visibilities_for_hashing: Vec<(LocalDefId, Visibility)>,
173    /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
174    pub expn_that_defined: UnordMap<LocalDefId, ExpnId>,
175    pub effective_visibilities: EffectiveVisibilities,
176    pub extern_crate_map: UnordMap<LocalDefId, CrateNum>,
177    pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
178    pub module_children: LocalDefIdMap<Vec<ModChild>>,
179    pub ambig_module_children: LocalDefIdMap<Vec<AmbigModChild>>,
180    pub glob_map: FxIndexMap<LocalDefId, FxIndexSet<Symbol>>,
181    pub main_def: Option<MainDefinition>,
182    pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
183    /// A list of proc macro LocalDefIds, written out in the order in which
184    /// they are declared in the static array generated by proc_macro_harness.
185    pub proc_macros: Vec<LocalDefId>,
186    /// Mapping from ident span to path span for paths that don't exist as written, but that
187    /// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`.
188    pub confused_type_with_std_module: FxIndexMap<Span, Span>,
189    pub doc_link_resolutions: FxIndexMap<LocalDefId, DocLinkResMap>,
190    pub doc_link_traits_in_scope: FxIndexMap<LocalDefId, Vec<DefId>>,
191    pub all_macro_rules: UnordSet<Symbol>,
192    pub stripped_cfg_items: Vec<StrippedCfgItem>,
193}
194
195/// Resolutions that should only be used for lowering.
196/// This struct is meant to be consumed by lowering.
197#[derive(Debug)]
198pub struct ResolverAstLowering {
199    /// Resolutions for nodes that have a single resolution.
200    pub partial_res_map: NodeMap<hir::def::PartialRes>,
201    /// Resolutions for import nodes, which have multiple resolutions in different namespaces.
202    pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>,
203    /// Resolutions for labels (node IDs of their corresponding blocks or loops).
204    pub label_res_map: NodeMap<ast::NodeId>,
205    /// Resolutions for lifetimes.
206    pub lifetimes_res_map: NodeMap<LifetimeRes>,
207    /// Lifetime parameters that lowering will have to introduce.
208    pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>,
209
210    pub next_node_id: ast::NodeId,
211
212    pub node_id_to_def_id: NodeMap<LocalDefId>,
213
214    pub trait_map: NodeMap<Vec<hir::TraitCandidate>>,
215    /// List functions and methods for which lifetime elision was successful.
216    pub lifetime_elision_allowed: FxHashSet<ast::NodeId>,
217
218    /// Lints that were emitted by the resolver and early lints.
219    pub lint_buffer: Steal<LintBuffer>,
220
221    /// Information about functions signatures for delegation items expansion
222    pub delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>,
223    // Information about delegations which is used when handling recursive delegations
224    pub delegation_infos: LocalDefIdMap<DelegationInfo>,
225}
226
227bitflags::bitflags! {
228    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
229    pub struct DelegationFnSigAttrs: u8 {
230        const TARGET_FEATURE = 1 << 0;
231        const MUST_USE = 1 << 1;
232    }
233}
234
235pub const DELEGATION_INHERIT_ATTRS_START: DelegationFnSigAttrs = DelegationFnSigAttrs::MUST_USE;
236
237#[derive(Debug)]
238pub struct DelegationInfo {
239    // NodeId (either delegation.id or item_id in case of a trait impl) for signature resolution,
240    // for details see https://github.com/rust-lang/rust/issues/118212#issuecomment-2160686914
241    pub resolution_node: ast::NodeId,
242    pub attrs: DelegationAttrs,
243}
244
245#[derive(Debug)]
246pub struct DelegationAttrs {
247    pub flags: DelegationFnSigAttrs,
248    pub to_inherit: AttrVec,
249}
250
251#[derive(Debug)]
252pub struct DelegationFnSig {
253    pub header: ast::FnHeader,
254    pub param_count: usize,
255    pub has_self: bool,
256    pub c_variadic: bool,
257    pub attrs: DelegationAttrs,
258}
259
260#[derive(Clone, Copy, Debug, HashStable)]
261pub struct MainDefinition {
262    pub res: Res<ast::NodeId>,
263    pub is_import: bool,
264    pub span: Span,
265}
266
267impl MainDefinition {
268    pub fn opt_fn_def_id(self) -> Option<DefId> {
269        if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
270    }
271}
272
273#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)]
274pub struct ImplTraitHeader<'tcx> {
275    pub trait_ref: ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>,
276    pub polarity: ImplPolarity,
277    pub safety: hir::Safety,
278    pub constness: hir::Constness,
279}
280
281#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)]
282#[derive(TypeFoldable, TypeVisitable, Default)]
283pub enum Asyncness {
284    Yes,
285    #[default]
286    No,
287}
288
289impl Asyncness {
290    pub fn is_async(self) -> bool {
291        matches!(self, Asyncness::Yes)
292    }
293}
294
295#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, BlobDecodable, HashStable)]
296pub enum Visibility<Id = LocalDefId> {
297    /// Visible everywhere (including in other crates).
298    Public,
299    /// Visible only in the given crate-local module.
300    Restricted(Id),
301}
302
303impl Visibility {
304    pub fn to_string(self, def_id: LocalDefId, tcx: TyCtxt<'_>) -> String {
305        match self {
306            ty::Visibility::Restricted(restricted_id) => {
307                if restricted_id.is_top_level_module() {
308                    "pub(crate)".to_string()
309                } else if restricted_id == tcx.parent_module_from_def_id(def_id).to_local_def_id() {
310                    "pub(self)".to_string()
311                } else {
312                    format!(
313                        "pub(in crate{})",
314                        tcx.def_path(restricted_id.to_def_id()).to_string_no_crate_verbose()
315                    )
316                }
317            }
318            ty::Visibility::Public => "pub".to_string(),
319        }
320    }
321}
322
323#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
324#[derive(TypeFoldable, TypeVisitable)]
325pub struct ClosureSizeProfileData<'tcx> {
326    /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
327    pub before_feature_tys: Ty<'tcx>,
328    /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
329    pub after_feature_tys: Ty<'tcx>,
330}
331
332impl TyCtxt<'_> {
333    #[inline]
334    pub fn opt_parent(self, id: DefId) -> Option<DefId> {
335        self.def_key(id).parent.map(|index| DefId { index, ..id })
336    }
337
338    #[inline]
339    #[track_caller]
340    pub fn parent(self, id: DefId) -> DefId {
341        match self.opt_parent(id) {
342            Some(id) => id,
343            // not `unwrap_or_else` to avoid breaking caller tracking
344            None => bug!("{id:?} doesn't have a parent"),
345        }
346    }
347
348    #[inline]
349    #[track_caller]
350    pub fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> {
351        self.opt_parent(id.to_def_id()).map(DefId::expect_local)
352    }
353
354    #[inline]
355    #[track_caller]
356    pub fn local_parent(self, id: impl Into<LocalDefId>) -> LocalDefId {
357        self.parent(id.into().to_def_id()).expect_local()
358    }
359
360    pub fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
361        if descendant.krate != ancestor.krate {
362            return false;
363        }
364
365        while descendant != ancestor {
366            match self.opt_parent(descendant) {
367                Some(parent) => descendant = parent,
368                None => return false,
369            }
370        }
371        true
372    }
373}
374
375impl<Id> Visibility<Id> {
376    pub fn is_public(self) -> bool {
377        matches!(self, Visibility::Public)
378    }
379
380    pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> {
381        match self {
382            Visibility::Public => Visibility::Public,
383            Visibility::Restricted(id) => Visibility::Restricted(f(id)),
384        }
385    }
386}
387
388impl<Id: Into<DefId>> Visibility<Id> {
389    pub fn to_def_id(self) -> Visibility<DefId> {
390        self.map_id(Into::into)
391    }
392
393    /// Returns `true` if an item with this visibility is accessible from the given module.
394    pub fn is_accessible_from(self, module: impl Into<DefId>, tcx: TyCtxt<'_>) -> bool {
395        match self {
396            // Public items are visible everywhere.
397            Visibility::Public => true,
398            Visibility::Restricted(id) => tcx.is_descendant_of(module.into(), id.into()),
399        }
400    }
401
402    /// Returns `true` if this visibility is at least as accessible as the given visibility
403    pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tcx: TyCtxt<'_>) -> bool {
404        match vis {
405            Visibility::Public => self.is_public(),
406            Visibility::Restricted(id) => self.is_accessible_from(id, tcx),
407        }
408    }
409}
410
411impl Visibility<DefId> {
412    pub fn expect_local(self) -> Visibility {
413        self.map_id(|id| id.expect_local())
414    }
415
416    /// Returns `true` if this item is visible anywhere in the local crate.
417    pub fn is_visible_locally(self) -> bool {
418        match self {
419            Visibility::Public => true,
420            Visibility::Restricted(def_id) => def_id.is_local(),
421        }
422    }
423}
424
425/// The crate variances map is computed during typeck and contains the
426/// variance of every item in the local crate. You should not use it
427/// directly, because to do so will make your pass dependent on the
428/// HIR of every item in the local crate. Instead, use
429/// `tcx.variances_of()` to get the variance for a *particular*
430/// item.
431#[derive(HashStable, Debug)]
432pub struct CrateVariancesMap<'tcx> {
433    /// For each item with generics, maps to a vector of the variance
434    /// of its generics. If an item has no generics, it will have no
435    /// entry.
436    pub variances: DefIdMap<&'tcx [ty::Variance]>,
437}
438
439// Contains information needed to resolve types and (in the future) look up
440// the types of AST nodes.
441#[derive(Copy, Clone, PartialEq, Eq, Hash)]
442pub struct CReaderCacheKey {
443    pub cnum: Option<CrateNum>,
444    pub pos: usize,
445}
446
447/// Use this rather than `TyKind`, whenever possible.
448#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable)]
449#[rustc_diagnostic_item = "Ty"]
450#[rustc_pass_by_value]
451pub struct Ty<'tcx>(Interned<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>);
452
453impl<'tcx> rustc_type_ir::inherent::IntoKind for Ty<'tcx> {
454    type Kind = TyKind<'tcx>;
455
456    fn kind(self) -> TyKind<'tcx> {
457        *self.kind()
458    }
459}
460
461impl<'tcx> rustc_type_ir::Flags for Ty<'tcx> {
462    fn flags(&self) -> TypeFlags {
463        self.0.flags
464    }
465
466    fn outer_exclusive_binder(&self) -> DebruijnIndex {
467        self.0.outer_exclusive_binder
468    }
469}
470
471/// The crate outlives map is computed during typeck and contains the
472/// outlives of every item in the local crate. You should not use it
473/// directly, because to do so will make your pass dependent on the
474/// HIR of every item in the local crate. Instead, use
475/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
476/// item.
477#[derive(HashStable, Debug)]
478pub struct CratePredicatesMap<'tcx> {
479    /// For each struct with outlive bounds, maps to a vector of the
480    /// predicate of its outlive bounds. If an item has no outlives
481    /// bounds, it will have no entry.
482    pub predicates: DefIdMap<&'tcx [(Clause<'tcx>, Span)]>,
483}
484
485#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
486pub struct Term<'tcx> {
487    ptr: NonNull<()>,
488    marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>,
489}
490
491impl<'tcx> rustc_type_ir::inherent::Term<TyCtxt<'tcx>> for Term<'tcx> {}
492
493impl<'tcx> rustc_type_ir::inherent::IntoKind for Term<'tcx> {
494    type Kind = TermKind<'tcx>;
495
496    fn kind(self) -> Self::Kind {
497        self.kind()
498    }
499}
500
501unsafe impl<'tcx> rustc_data_structures::sync::DynSend for Term<'tcx> where
502    &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSend
503{
504}
505unsafe impl<'tcx> rustc_data_structures::sync::DynSync for Term<'tcx> where
506    &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSync
507{
508}
509unsafe impl<'tcx> Send for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Send {}
510unsafe impl<'tcx> Sync for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Sync {}
511
512impl Debug for Term<'_> {
513    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
514        match self.kind() {
515            TermKind::Ty(ty) => write!(f, "Term::Ty({ty:?})"),
516            TermKind::Const(ct) => write!(f, "Term::Const({ct:?})"),
517        }
518    }
519}
520
521impl<'tcx> From<Ty<'tcx>> for Term<'tcx> {
522    fn from(ty: Ty<'tcx>) -> Self {
523        TermKind::Ty(ty).pack()
524    }
525}
526
527impl<'tcx> From<Const<'tcx>> for Term<'tcx> {
528    fn from(c: Const<'tcx>) -> Self {
529        TermKind::Const(c).pack()
530    }
531}
532
533impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> {
534    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
535        self.kind().hash_stable(hcx, hasher);
536    }
537}
538
539impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Term<'tcx> {
540    fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
541        self,
542        folder: &mut F,
543    ) -> Result<Self, F::Error> {
544        match self.kind() {
545            ty::TermKind::Ty(ty) => ty.try_fold_with(folder).map(Into::into),
546            ty::TermKind::Const(ct) => ct.try_fold_with(folder).map(Into::into),
547        }
548    }
549
550    fn fold_with<F: TypeFolder<TyCtxt<'tcx>>>(self, folder: &mut F) -> Self {
551        match self.kind() {
552            ty::TermKind::Ty(ty) => ty.fold_with(folder).into(),
553            ty::TermKind::Const(ct) => ct.fold_with(folder).into(),
554        }
555    }
556}
557
558impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Term<'tcx> {
559    fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result {
560        match self.kind() {
561            ty::TermKind::Ty(ty) => ty.visit_with(visitor),
562            ty::TermKind::Const(ct) => ct.visit_with(visitor),
563        }
564    }
565}
566
567impl<'tcx, E: TyEncoder<'tcx>> Encodable<E> for Term<'tcx> {
568    fn encode(&self, e: &mut E) {
569        self.kind().encode(e)
570    }
571}
572
573impl<'tcx, D: TyDecoder<'tcx>> Decodable<D> for Term<'tcx> {
574    fn decode(d: &mut D) -> Self {
575        let res: TermKind<'tcx> = Decodable::decode(d);
576        res.pack()
577    }
578}
579
580impl<'tcx> Term<'tcx> {
581    #[inline]
582    pub fn kind(self) -> TermKind<'tcx> {
583        let ptr =
584            unsafe { self.ptr.map_addr(|addr| NonZero::new_unchecked(addr.get() & !TAG_MASK)) };
585        // SAFETY: use of `Interned::new_unchecked` here is ok because these
586        // pointers were originally created from `Interned` types in `pack()`,
587        // and this is just going in the other direction.
588        unsafe {
589            match self.ptr.addr().get() & TAG_MASK {
590                TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked(
591                    ptr.cast::<WithCachedTypeInfo<ty::TyKind<'tcx>>>().as_ref(),
592                ))),
593                CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked(
594                    ptr.cast::<WithCachedTypeInfo<ty::ConstKind<'tcx>>>().as_ref(),
595                ))),
596                _ => core::intrinsics::unreachable(),
597            }
598        }
599    }
600
601    pub fn as_type(&self) -> Option<Ty<'tcx>> {
602        if let TermKind::Ty(ty) = self.kind() { Some(ty) } else { None }
603    }
604
605    pub fn expect_type(&self) -> Ty<'tcx> {
606        self.as_type().expect("expected a type, but found a const")
607    }
608
609    pub fn as_const(&self) -> Option<Const<'tcx>> {
610        if let TermKind::Const(c) = self.kind() { Some(c) } else { None }
611    }
612
613    pub fn expect_const(&self) -> Const<'tcx> {
614        self.as_const().expect("expected a const, but found a type")
615    }
616
617    pub fn into_arg(self) -> GenericArg<'tcx> {
618        match self.kind() {
619            TermKind::Ty(ty) => ty.into(),
620            TermKind::Const(c) => c.into(),
621        }
622    }
623
624    pub fn to_alias_term(self) -> Option<AliasTerm<'tcx>> {
625        match self.kind() {
626            TermKind::Ty(ty) => match *ty.kind() {
627                ty::Alias(_kind, alias_ty) => Some(alias_ty.into()),
628                _ => None,
629            },
630            TermKind::Const(ct) => match ct.kind() {
631                ConstKind::Unevaluated(uv) => Some(uv.into()),
632                _ => None,
633            },
634        }
635    }
636
637    pub fn is_infer(&self) -> bool {
638        match self.kind() {
639            TermKind::Ty(ty) => ty.is_ty_var(),
640            TermKind::Const(ct) => ct.is_ct_infer(),
641        }
642    }
643
644    pub fn is_trivially_wf(&self, tcx: TyCtxt<'tcx>) -> bool {
645        match self.kind() {
646            TermKind::Ty(ty) => ty.is_trivially_wf(tcx),
647            TermKind::Const(ct) => ct.is_trivially_wf(),
648        }
649    }
650
651    /// Iterator that walks `self` and any types reachable from
652    /// `self`, in depth-first order. Note that just walks the types
653    /// that appear in `self`, it does not descend into the fields of
654    /// structs or variants. For example:
655    ///
656    /// ```text
657    /// isize => { isize }
658    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
659    /// [isize] => { [isize], isize }
660    /// ```
661    pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> {
662        TypeWalker::new(self.into())
663    }
664}
665
666const TAG_MASK: usize = 0b11;
667const TYPE_TAG: usize = 0b00;
668const CONST_TAG: usize = 0b01;
669
670#[extension(pub trait TermKindPackExt<'tcx>)]
671impl<'tcx> TermKind<'tcx> {
672    #[inline]
673    fn pack(self) -> Term<'tcx> {
674        let (tag, ptr) = match self {
675            TermKind::Ty(ty) => {
676                // Ensure we can use the tag bits.
677                assert_eq!(align_of_val(&*ty.0.0) & TAG_MASK, 0);
678                (TYPE_TAG, NonNull::from(ty.0.0).cast())
679            }
680            TermKind::Const(ct) => {
681                // Ensure we can use the tag bits.
682                assert_eq!(align_of_val(&*ct.0.0) & TAG_MASK, 0);
683                (CONST_TAG, NonNull::from(ct.0.0).cast())
684            }
685        };
686
687        Term { ptr: ptr.map_addr(|addr| addr | tag), marker: PhantomData }
688    }
689}
690
691/// Represents the bounds declared on a particular set of type
692/// parameters. Should eventually be generalized into a flag list of
693/// where-clauses. You can obtain an `InstantiatedPredicates` list from a
694/// `GenericPredicates` by using the `instantiate` method. Note that this method
695/// reflects an important semantic invariant of `InstantiatedPredicates`: while
696/// the `GenericPredicates` are expressed in terms of the bound type
697/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
698/// represented a set of bounds for some particular instantiation,
699/// meaning that the generic parameters have been instantiated with
700/// their values.
701///
702/// Example:
703/// ```ignore (illustrative)
704/// struct Foo<T, U: Bar<T>> { ... }
705/// ```
706/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
707/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
708/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
709/// [usize:Bar<isize>]]`.
710#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
711pub struct InstantiatedPredicates<'tcx> {
712    pub predicates: Vec<Clause<'tcx>>,
713    pub spans: Vec<Span>,
714}
715
716impl<'tcx> InstantiatedPredicates<'tcx> {
717    pub fn empty() -> InstantiatedPredicates<'tcx> {
718        InstantiatedPredicates { predicates: vec![], spans: vec![] }
719    }
720
721    pub fn is_empty(&self) -> bool {
722        self.predicates.is_empty()
723    }
724
725    pub fn iter(&self) -> <&Self as IntoIterator>::IntoIter {
726        self.into_iter()
727    }
728}
729
730impl<'tcx> IntoIterator for InstantiatedPredicates<'tcx> {
731    type Item = (Clause<'tcx>, Span);
732
733    type IntoIter = std::iter::Zip<std::vec::IntoIter<Clause<'tcx>>, std::vec::IntoIter<Span>>;
734
735    fn into_iter(self) -> Self::IntoIter {
736        debug_assert_eq!(self.predicates.len(), self.spans.len());
737        std::iter::zip(self.predicates, self.spans)
738    }
739}
740
741impl<'a, 'tcx> IntoIterator for &'a InstantiatedPredicates<'tcx> {
742    type Item = (Clause<'tcx>, Span);
743
744    type IntoIter = std::iter::Zip<
745        std::iter::Copied<std::slice::Iter<'a, Clause<'tcx>>>,
746        std::iter::Copied<std::slice::Iter<'a, Span>>,
747    >;
748
749    fn into_iter(self) -> Self::IntoIter {
750        debug_assert_eq!(self.predicates.len(), self.spans.len());
751        std::iter::zip(self.predicates.iter().copied(), self.spans.iter().copied())
752    }
753}
754
755#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)]
756pub struct ProvisionalHiddenType<'tcx> {
757    /// The span of this particular definition of the opaque type. So
758    /// for example:
759    ///
760    /// ```ignore (incomplete snippet)
761    /// type Foo = impl Baz;
762    /// fn bar() -> Foo {
763    /// //          ^^^ This is the span we are looking for!
764    /// }
765    /// ```
766    ///
767    /// In cases where the fn returns `(impl Trait, impl Trait)` or
768    /// other such combinations, the result is currently
769    /// over-approximated, but better than nothing.
770    pub span: Span,
771
772    /// The type variable that represents the value of the opaque type
773    /// that we require. In other words, after we compile this function,
774    /// we will be created a constraint like:
775    /// ```ignore (pseudo-rust)
776    /// Foo<'a, T> = ?C
777    /// ```
778    /// where `?C` is the value of this type variable. =) It may
779    /// naturally refer to the type and lifetime parameters in scope
780    /// in this function, though ultimately it should only reference
781    /// those that are arguments to `Foo` in the constraint above. (In
782    /// other words, `?C` should not include `'b`, even though it's a
783    /// lifetime parameter on `foo`.)
784    pub ty: Ty<'tcx>,
785}
786
787/// Whether we're currently in HIR typeck or MIR borrowck.
788#[derive(Debug, Clone, Copy)]
789pub enum DefiningScopeKind {
790    /// During writeback in typeck, we don't care about regions and simply
791    /// erase them. This means we also don't check whether regions are
792    /// universal in the opaque type key. This will only be checked in
793    /// MIR borrowck.
794    HirTypeck,
795    MirBorrowck,
796}
797
798impl<'tcx> ProvisionalHiddenType<'tcx> {
799    pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> ProvisionalHiddenType<'tcx> {
800        ProvisionalHiddenType { span: DUMMY_SP, ty: Ty::new_error(tcx, guar) }
801    }
802
803    pub fn build_mismatch_error(
804        &self,
805        other: &Self,
806        tcx: TyCtxt<'tcx>,
807    ) -> Result<Diag<'tcx>, ErrorGuaranteed> {
808        (self.ty, other.ty).error_reported()?;
809        // Found different concrete types for the opaque type.
810        let sub_diag = if self.span == other.span {
811            TypeMismatchReason::ConflictType { span: self.span }
812        } else {
813            TypeMismatchReason::PreviousUse { span: self.span }
814        };
815        Ok(tcx.dcx().create_err(OpaqueHiddenTypeMismatch {
816            self_ty: self.ty,
817            other_ty: other.ty,
818            other_span: other.span,
819            sub: sub_diag,
820        }))
821    }
822
823    #[instrument(level = "debug", skip(tcx), ret)]
824    pub fn remap_generic_params_to_declaration_params(
825        self,
826        opaque_type_key: OpaqueTypeKey<'tcx>,
827        tcx: TyCtxt<'tcx>,
828        defining_scope_kind: DefiningScopeKind,
829    ) -> DefinitionSiteHiddenType<'tcx> {
830        let OpaqueTypeKey { def_id, args } = opaque_type_key;
831
832        // Use args to build up a reverse map from regions to their
833        // identity mappings. This is necessary because of `impl
834        // Trait` lifetimes are computed by replacing existing
835        // lifetimes with 'static and remapping only those used in the
836        // `impl Trait` return type, resulting in the parameters
837        // shifting.
838        let id_args = GenericArgs::identity_for_item(tcx, def_id);
839        debug!(?id_args);
840
841        // This zip may have several times the same lifetime in `args` paired with a different
842        // lifetime from `id_args`. Simply `collect`ing the iterator is the correct behaviour:
843        // it will pick the last one, which is the one we introduced in the impl-trait desugaring.
844        let map = args.iter().zip(id_args).collect();
845        debug!("map = {:#?}", map);
846
847        // Convert the type from the function into a type valid outside by mapping generic
848        // parameters to into the context of the opaque.
849        //
850        // We erase regions when doing this during HIR typeck. We manually use `fold_regions`
851        // here as we do not want to anonymize bound variables.
852        let ty = match defining_scope_kind {
853            DefiningScopeKind::HirTypeck => {
854                fold_regions(tcx, self.ty, |_, _| tcx.lifetimes.re_erased)
855            }
856            DefiningScopeKind::MirBorrowck => self.ty,
857        };
858        let result_ty = ty.fold_with(&mut opaque_types::ReverseMapper::new(tcx, map, self.span));
859        if cfg!(debug_assertions) && matches!(defining_scope_kind, DefiningScopeKind::HirTypeck) {
860            assert_eq!(result_ty, fold_regions(tcx, result_ty, |_, _| tcx.lifetimes.re_erased));
861        }
862        DefinitionSiteHiddenType { span: self.span, ty: ty::EarlyBinder::bind(result_ty) }
863    }
864}
865
866#[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)]
867pub struct DefinitionSiteHiddenType<'tcx> {
868    /// The span of the definition of the opaque type. So for example:
869    ///
870    /// ```ignore (incomplete snippet)
871    /// type Foo = impl Baz;
872    /// fn bar() -> Foo {
873    /// //          ^^^ This is the span we are looking for!
874    /// }
875    /// ```
876    ///
877    /// In cases where the fn returns `(impl Trait, impl Trait)` or
878    /// other such combinations, the result is currently
879    /// over-approximated, but better than nothing.
880    pub span: Span,
881
882    /// The final type of the opaque.
883    pub ty: ty::EarlyBinder<'tcx, Ty<'tcx>>,
884}
885
886impl<'tcx> DefinitionSiteHiddenType<'tcx> {
887    pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> DefinitionSiteHiddenType<'tcx> {
888        DefinitionSiteHiddenType {
889            span: DUMMY_SP,
890            ty: ty::EarlyBinder::bind(Ty::new_error(tcx, guar)),
891        }
892    }
893
894    pub fn build_mismatch_error(
895        &self,
896        other: &Self,
897        tcx: TyCtxt<'tcx>,
898    ) -> Result<Diag<'tcx>, ErrorGuaranteed> {
899        let self_ty = self.ty.instantiate_identity();
900        let other_ty = other.ty.instantiate_identity();
901        (self_ty, other_ty).error_reported()?;
902        // Found different concrete types for the opaque type.
903        let sub_diag = if self.span == other.span {
904            TypeMismatchReason::ConflictType { span: self.span }
905        } else {
906            TypeMismatchReason::PreviousUse { span: self.span }
907        };
908        Ok(tcx.dcx().create_err(OpaqueHiddenTypeMismatch {
909            self_ty,
910            other_ty,
911            other_span: other.span,
912            sub: sub_diag,
913        }))
914    }
915}
916
917pub type PlaceholderRegion<'tcx> = ty::Placeholder<TyCtxt<'tcx>, BoundRegion>;
918
919impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderRegion<'tcx> {
920    type Bound = BoundRegion;
921
922    fn universe(self) -> UniverseIndex {
923        self.universe
924    }
925
926    fn var(self) -> BoundVar {
927        self.bound.var
928    }
929
930    fn with_updated_universe(self, ui: UniverseIndex) -> Self {
931        ty::Placeholder::new(ui, self.bound)
932    }
933
934    fn new(ui: UniverseIndex, bound: BoundRegion) -> Self {
935        ty::Placeholder::new(ui, bound)
936    }
937
938    fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self {
939        ty::Placeholder::new(ui, BoundRegion { var, kind: BoundRegionKind::Anon })
940    }
941}
942
943pub type PlaceholderType<'tcx> = ty::Placeholder<TyCtxt<'tcx>, BoundTy>;
944
945impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderType<'tcx> {
946    type Bound = BoundTy;
947
948    fn universe(self) -> UniverseIndex {
949        self.universe
950    }
951
952    fn var(self) -> BoundVar {
953        self.bound.var
954    }
955
956    fn with_updated_universe(self, ui: UniverseIndex) -> Self {
957        ty::Placeholder::new(ui, self.bound)
958    }
959
960    fn new(ui: UniverseIndex, bound: BoundTy) -> Self {
961        ty::Placeholder::new(ui, bound)
962    }
963
964    fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self {
965        ty::Placeholder::new(ui, BoundTy { var, kind: BoundTyKind::Anon })
966    }
967}
968
969#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
970#[derive(TyEncodable, TyDecodable)]
971pub struct BoundConst {
972    pub var: BoundVar,
973}
974
975impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundConst {
976    fn var(self) -> BoundVar {
977        self.var
978    }
979
980    fn assert_eq(self, var: ty::BoundVariableKind) {
981        var.expect_const()
982    }
983}
984
985pub type PlaceholderConst<'tcx> = ty::Placeholder<TyCtxt<'tcx>, BoundConst>;
986
987impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderConst<'tcx> {
988    type Bound = BoundConst;
989
990    fn universe(self) -> UniverseIndex {
991        self.universe
992    }
993
994    fn var(self) -> BoundVar {
995        self.bound.var
996    }
997
998    fn with_updated_universe(self, ui: UniverseIndex) -> Self {
999        ty::Placeholder::new(ui, self.bound)
1000    }
1001
1002    fn new(ui: UniverseIndex, bound: BoundConst) -> Self {
1003        ty::Placeholder::new(ui, bound)
1004    }
1005
1006    fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self {
1007        ty::Placeholder::new(ui, BoundConst { var })
1008    }
1009}
1010
1011pub type Clauses<'tcx> = &'tcx ListWithCachedTypeInfo<Clause<'tcx>>;
1012
1013impl<'tcx> rustc_type_ir::Flags for Clauses<'tcx> {
1014    fn flags(&self) -> TypeFlags {
1015        (**self).flags()
1016    }
1017
1018    fn outer_exclusive_binder(&self) -> DebruijnIndex {
1019        (**self).outer_exclusive_binder()
1020    }
1021}
1022
1023/// When interacting with the type system we must provide information about the
1024/// environment. `ParamEnv` is the type that represents this information. See the
1025/// [dev guide chapter][param_env_guide] for more information.
1026///
1027/// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/typing_parameter_envs.html
1028#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
1029#[derive(HashStable, TypeVisitable, TypeFoldable)]
1030pub struct ParamEnv<'tcx> {
1031    /// Caller bounds are `Obligation`s that the caller must satisfy. This is
1032    /// basically the set of bounds on the in-scope type parameters, translated
1033    /// into `Obligation`s, and elaborated and normalized.
1034    ///
1035    /// Use the `caller_bounds()` method to access.
1036    caller_bounds: Clauses<'tcx>,
1037}
1038
1039impl<'tcx> rustc_type_ir::inherent::ParamEnv<TyCtxt<'tcx>> for ParamEnv<'tcx> {
1040    fn caller_bounds(self) -> impl inherent::SliceLike<Item = ty::Clause<'tcx>> {
1041        self.caller_bounds()
1042    }
1043}
1044
1045impl<'tcx> ParamEnv<'tcx> {
1046    /// Construct a trait environment suitable for contexts where there are
1047    /// no where-clauses in scope. In the majority of cases it is incorrect
1048    /// to use an empty environment. See the [dev guide section][param_env_guide]
1049    /// for information on what a `ParamEnv` is and how to acquire one.
1050    ///
1051    /// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/typing_parameter_envs.html
1052    #[inline]
1053    pub fn empty() -> Self {
1054        Self::new(ListWithCachedTypeInfo::empty())
1055    }
1056
1057    #[inline]
1058    pub fn caller_bounds(self) -> Clauses<'tcx> {
1059        self.caller_bounds
1060    }
1061
1062    /// Construct a trait environment with the given set of predicates.
1063    #[inline]
1064    pub fn new(caller_bounds: Clauses<'tcx>) -> Self {
1065        ParamEnv { caller_bounds }
1066    }
1067
1068    /// Creates a pair of param-env and value for use in queries.
1069    pub fn and<T: TypeVisitable<TyCtxt<'tcx>>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1070        ParamEnvAnd { param_env: self, value }
1071    }
1072}
1073
1074#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
1075#[derive(HashStable)]
1076pub struct ParamEnvAnd<'tcx, T> {
1077    pub param_env: ParamEnv<'tcx>,
1078    pub value: T,
1079}
1080
1081/// The environment in which to do trait solving.
1082///
1083/// Most of the time you only need to care about the `ParamEnv`
1084/// as the `TypingMode` is simply stored in the `InferCtxt`.
1085///
1086/// However, there are some places which rely on trait solving
1087/// without using an `InferCtxt` themselves. For these to be
1088/// able to use the trait system they have to be able to initialize
1089/// such an `InferCtxt` with the right `typing_mode`, so they need
1090/// to track both.
1091#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
1092#[derive(TypeVisitable, TypeFoldable)]
1093pub struct TypingEnv<'tcx> {
1094    #[type_foldable(identity)]
1095    #[type_visitable(ignore)]
1096    pub typing_mode: TypingMode<'tcx>,
1097    pub param_env: ParamEnv<'tcx>,
1098}
1099
1100impl<'tcx> TypingEnv<'tcx> {
1101    /// Create a typing environment with no where-clauses in scope
1102    /// where all opaque types and default associated items are revealed.
1103    ///
1104    /// This is only suitable for monomorphized, post-typeck environments.
1105    /// Do not use this for MIR optimizations, as even though they also
1106    /// use `TypingMode::PostAnalysis`, they may still have where-clauses
1107    /// in scope.
1108    pub fn fully_monomorphized() -> TypingEnv<'tcx> {
1109        TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env: ParamEnv::empty() }
1110    }
1111
1112    /// Create a typing environment for use during analysis outside of a body.
1113    ///
1114    /// Using a typing environment inside of bodies is not supported as the body
1115    /// may define opaque types. In this case the used functions have to be
1116    /// converted to use proper canonical inputs instead.
1117    pub fn non_body_analysis(
1118        tcx: TyCtxt<'tcx>,
1119        def_id: impl IntoQueryParam<DefId>,
1120    ) -> TypingEnv<'tcx> {
1121        TypingEnv { typing_mode: TypingMode::non_body_analysis(), param_env: tcx.param_env(def_id) }
1122    }
1123
1124    pub fn post_analysis(tcx: TyCtxt<'tcx>, def_id: impl IntoQueryParam<DefId>) -> TypingEnv<'tcx> {
1125        tcx.typing_env_normalized_for_post_analysis(def_id)
1126    }
1127
1128    /// Modify the `typing_mode` to `PostAnalysis` and eagerly reveal all
1129    /// opaque types in the `param_env`.
1130    pub fn with_post_analysis_normalized(self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
1131        let TypingEnv { typing_mode, param_env } = self;
1132        if let TypingMode::PostAnalysis = typing_mode {
1133            return self;
1134        }
1135
1136        // No need to reveal opaques with the new solver enabled,
1137        // since we have lazy norm.
1138        let param_env = if tcx.next_trait_solver_globally() {
1139            param_env
1140        } else {
1141            ParamEnv::new(tcx.reveal_opaque_types_in_bounds(param_env.caller_bounds()))
1142        };
1143        TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env }
1144    }
1145
1146    /// Combine this typing environment with the given `value` to be used by
1147    /// not (yet) canonicalized queries. This only works if the value does not
1148    /// contain anything local to some `InferCtxt`, i.e. inference variables or
1149    /// placeholders.
1150    pub fn as_query_input<T>(self, value: T) -> PseudoCanonicalInput<'tcx, T>
1151    where
1152        T: TypeVisitable<TyCtxt<'tcx>>,
1153    {
1154        // FIXME(#132279): We should assert that the value does not contain any placeholders
1155        // as these placeholders are also local to the current inference context. However, we
1156        // currently use pseudo-canonical queries in the trait solver, which replaces params
1157        // with placeholders during canonicalization. We should also simply not use pseudo-
1158        // canonical queries in the trait solver, at which point we can readd this assert.
1159        //
1160        // As of writing this comment, this is only used when normalizing consts that mention
1161        // params.
1162        /* debug_assert!(
1163            !value.has_placeholders(),
1164            "{value:?} which has placeholder shouldn't be pseudo-canonicalized"
1165        ); */
1166        PseudoCanonicalInput { typing_env: self, value }
1167    }
1168}
1169
1170/// Similar to `CanonicalInput`, this carries the `typing_mode` and the environment
1171/// necessary to do any kind of trait solving inside of nested queries.
1172///
1173/// Unlike proper canonicalization, this requires the `param_env` and the `value` to not
1174/// contain anything local to the `infcx` of the caller, so we don't actually canonicalize
1175/// anything.
1176///
1177/// This should be created by using `infcx.pseudo_canonicalize_query(param_env, value)`
1178/// or by using `typing_env.as_query_input(value)`.
1179#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1180#[derive(HashStable, TypeVisitable, TypeFoldable)]
1181pub struct PseudoCanonicalInput<'tcx, T> {
1182    pub typing_env: TypingEnv<'tcx>,
1183    pub value: T,
1184}
1185
1186#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
1187pub struct Destructor {
1188    /// The `DefId` of the destructor method
1189    pub did: DefId,
1190}
1191
1192// FIXME: consider combining this definition with regular `Destructor`
1193#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
1194pub struct AsyncDestructor {
1195    /// The `DefId` of the `impl AsyncDrop`
1196    pub impl_did: DefId,
1197}
1198
1199#[derive(Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
1200pub struct VariantFlags(u8);
1201bitflags::bitflags! {
1202    impl VariantFlags: u8 {
1203        const NO_VARIANT_FLAGS        = 0;
1204        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
1205        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1206    }
1207}
1208rustc_data_structures::external_bitflags_debug! { VariantFlags }
1209
1210/// Definition of a variant -- a struct's fields or an enum variant.
1211#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
1212pub struct VariantDef {
1213    /// `DefId` that identifies the variant itself.
1214    /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
1215    pub def_id: DefId,
1216    /// `DefId` that identifies the variant's constructor.
1217    /// If this variant is a struct variant, then this is `None`.
1218    pub ctor: Option<(CtorKind, DefId)>,
1219    /// Variant or struct name.
1220    pub name: Symbol,
1221    /// Discriminant of this variant.
1222    pub discr: VariantDiscr,
1223    /// Fields of this variant.
1224    pub fields: IndexVec<FieldIdx, FieldDef>,
1225    /// The error guarantees from parser, if any.
1226    tainted: Option<ErrorGuaranteed>,
1227    /// Flags of the variant (e.g. is field list non-exhaustive)?
1228    flags: VariantFlags,
1229}
1230
1231impl VariantDef {
1232    /// Creates a new `VariantDef`.
1233    ///
1234    /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
1235    /// represents an enum variant).
1236    ///
1237    /// `ctor_did` is the `DefId` that identifies the constructor of unit or
1238    /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
1239    ///
1240    /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
1241    /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
1242    /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
1243    /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
1244    /// built-in trait), and we do not want to load attributes twice.
1245    ///
1246    /// If someone speeds up attribute loading to not be a performance concern, they can
1247    /// remove this hack and use the constructor `DefId` everywhere.
1248    #[instrument(level = "debug")]
1249    pub fn new(
1250        name: Symbol,
1251        variant_did: Option<DefId>,
1252        ctor: Option<(CtorKind, DefId)>,
1253        discr: VariantDiscr,
1254        fields: IndexVec<FieldIdx, FieldDef>,
1255        parent_did: DefId,
1256        recover_tainted: Option<ErrorGuaranteed>,
1257        is_field_list_non_exhaustive: bool,
1258    ) -> Self {
1259        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1260        if is_field_list_non_exhaustive {
1261            flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
1262        }
1263
1264        VariantDef {
1265            def_id: variant_did.unwrap_or(parent_did),
1266            ctor,
1267            name,
1268            discr,
1269            fields,
1270            flags,
1271            tainted: recover_tainted,
1272        }
1273    }
1274
1275    /// Returns `true` if the field list of this variant is `#[non_exhaustive]`.
1276    ///
1277    /// Note that this function will return `true` even if the type has been
1278    /// defined in the crate currently being compiled. If that's not what you
1279    /// want, see [`Self::field_list_has_applicable_non_exhaustive`].
1280    #[inline]
1281    pub fn is_field_list_non_exhaustive(&self) -> bool {
1282        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
1283    }
1284
1285    /// Returns `true` if the field list of this variant is `#[non_exhaustive]`
1286    /// and the type has been defined in another crate.
1287    #[inline]
1288    pub fn field_list_has_applicable_non_exhaustive(&self) -> bool {
1289        self.is_field_list_non_exhaustive() && !self.def_id.is_local()
1290    }
1291
1292    /// Computes the `Ident` of this variant by looking up the `Span`
1293    pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
1294        Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap())
1295    }
1296
1297    /// Was this variant obtained as part of recovering from a syntactic error?
1298    #[inline]
1299    pub fn has_errors(&self) -> Result<(), ErrorGuaranteed> {
1300        self.tainted.map_or(Ok(()), Err)
1301    }
1302
1303    #[inline]
1304    pub fn ctor_kind(&self) -> Option<CtorKind> {
1305        self.ctor.map(|(kind, _)| kind)
1306    }
1307
1308    #[inline]
1309    pub fn ctor_def_id(&self) -> Option<DefId> {
1310        self.ctor.map(|(_, def_id)| def_id)
1311    }
1312
1313    /// Returns the one field in this variant.
1314    ///
1315    /// `panic!`s if there are no fields or multiple fields.
1316    #[inline]
1317    pub fn single_field(&self) -> &FieldDef {
1318        assert!(self.fields.len() == 1);
1319
1320        &self.fields[FieldIdx::ZERO]
1321    }
1322
1323    /// Returns the last field in this variant, if present.
1324    #[inline]
1325    pub fn tail_opt(&self) -> Option<&FieldDef> {
1326        self.fields.raw.last()
1327    }
1328
1329    /// Returns the last field in this variant.
1330    ///
1331    /// # Panics
1332    ///
1333    /// Panics, if the variant has no fields.
1334    #[inline]
1335    pub fn tail(&self) -> &FieldDef {
1336        self.tail_opt().expect("expected unsized ADT to have a tail field")
1337    }
1338
1339    /// Returns whether this variant has unsafe fields.
1340    pub fn has_unsafe_fields(&self) -> bool {
1341        self.fields.iter().any(|x| x.safety.is_unsafe())
1342    }
1343}
1344
1345impl PartialEq for VariantDef {
1346    #[inline]
1347    fn eq(&self, other: &Self) -> bool {
1348        // There should be only one `VariantDef` for each `def_id`, therefore
1349        // it is fine to implement `PartialEq` only based on `def_id`.
1350        //
1351        // Below, we exhaustively destructure `self` and `other` so that if the
1352        // definition of `VariantDef` changes, a compile-error will be produced,
1353        // reminding us to revisit this assumption.
1354
1355        let Self {
1356            def_id: lhs_def_id,
1357            ctor: _,
1358            name: _,
1359            discr: _,
1360            fields: _,
1361            flags: _,
1362            tainted: _,
1363        } = &self;
1364        let Self {
1365            def_id: rhs_def_id,
1366            ctor: _,
1367            name: _,
1368            discr: _,
1369            fields: _,
1370            flags: _,
1371            tainted: _,
1372        } = other;
1373
1374        let res = lhs_def_id == rhs_def_id;
1375
1376        // Double check that implicit assumption detailed above.
1377        if cfg!(debug_assertions) && res {
1378            let deep = self.ctor == other.ctor
1379                && self.name == other.name
1380                && self.discr == other.discr
1381                && self.fields == other.fields
1382                && self.flags == other.flags;
1383            assert!(deep, "VariantDef for the same def-id has differing data");
1384        }
1385
1386        res
1387    }
1388}
1389
1390impl Eq for VariantDef {}
1391
1392impl Hash for VariantDef {
1393    #[inline]
1394    fn hash<H: Hasher>(&self, s: &mut H) {
1395        // There should be only one `VariantDef` for each `def_id`, therefore
1396        // it is fine to implement `Hash` only based on `def_id`.
1397        //
1398        // Below, we exhaustively destructure `self` so that if the definition
1399        // of `VariantDef` changes, a compile-error will be produced, reminding
1400        // us to revisit this assumption.
1401
1402        let Self { def_id, ctor: _, name: _, discr: _, fields: _, flags: _, tainted: _ } = &self;
1403        def_id.hash(s)
1404    }
1405}
1406
1407#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
1408pub enum VariantDiscr {
1409    /// Explicit value for this variant, i.e., `X = 123`.
1410    /// The `DefId` corresponds to the embedded constant.
1411    Explicit(DefId),
1412
1413    /// The previous variant's discriminant plus one.
1414    /// For efficiency reasons, the distance from the
1415    /// last `Explicit` discriminant is being stored,
1416    /// or `0` for the first variant, if it has none.
1417    Relative(u32),
1418}
1419
1420#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
1421pub struct FieldDef {
1422    pub did: DefId,
1423    pub name: Symbol,
1424    pub vis: Visibility<DefId>,
1425    pub safety: hir::Safety,
1426    pub value: Option<DefId>,
1427}
1428
1429impl PartialEq for FieldDef {
1430    #[inline]
1431    fn eq(&self, other: &Self) -> bool {
1432        // There should be only one `FieldDef` for each `did`, therefore it is
1433        // fine to implement `PartialEq` only based on `did`.
1434        //
1435        // Below, we exhaustively destructure `self` so that if the definition
1436        // of `FieldDef` changes, a compile-error will be produced, reminding
1437        // us to revisit this assumption.
1438
1439        let Self { did: lhs_did, name: _, vis: _, safety: _, value: _ } = &self;
1440
1441        let Self { did: rhs_did, name: _, vis: _, safety: _, value: _ } = other;
1442
1443        let res = lhs_did == rhs_did;
1444
1445        // Double check that implicit assumption detailed above.
1446        if cfg!(debug_assertions) && res {
1447            let deep =
1448                self.name == other.name && self.vis == other.vis && self.safety == other.safety;
1449            assert!(deep, "FieldDef for the same def-id has differing data");
1450        }
1451
1452        res
1453    }
1454}
1455
1456impl Eq for FieldDef {}
1457
1458impl Hash for FieldDef {
1459    #[inline]
1460    fn hash<H: Hasher>(&self, s: &mut H) {
1461        // There should be only one `FieldDef` for each `did`, therefore it is
1462        // fine to implement `Hash` only based on `did`.
1463        //
1464        // Below, we exhaustively destructure `self` so that if the definition
1465        // of `FieldDef` changes, a compile-error will be produced, reminding
1466        // us to revisit this assumption.
1467
1468        let Self { did, name: _, vis: _, safety: _, value: _ } = &self;
1469
1470        did.hash(s)
1471    }
1472}
1473
1474impl<'tcx> FieldDef {
1475    /// Returns the type of this field. The resulting type is not normalized. The `arg` is
1476    /// typically obtained via the second field of [`TyKind::Adt`].
1477    pub fn ty(&self, tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
1478        tcx.type_of(self.did).instantiate(tcx, args)
1479    }
1480
1481    /// Computes the `Ident` of this variant by looking up the `Span`
1482    pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
1483        Ident::new(self.name, tcx.def_ident_span(self.did).unwrap())
1484    }
1485}
1486
1487#[derive(Debug, PartialEq, Eq)]
1488pub enum ImplOverlapKind {
1489    /// These impls are always allowed to overlap.
1490    Permitted {
1491        /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
1492        marker: bool,
1493    },
1494}
1495
1496/// Useful source information about where a desugared associated type for an
1497/// RPITIT originated from.
1498#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable, HashStable)]
1499pub enum ImplTraitInTraitData {
1500    Trait { fn_def_id: DefId, opaque_def_id: DefId },
1501    Impl { fn_def_id: DefId },
1502}
1503
1504impl<'tcx> TyCtxt<'tcx> {
1505    pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
1506        self.typeck(self.hir_body_owner_def_id(body))
1507    }
1508
1509    pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
1510        self.associated_items(id)
1511            .in_definition_order()
1512            .filter(move |item| item.is_fn() && item.defaultness(self).has_value())
1513    }
1514
1515    pub fn repr_options_of_def(self, did: LocalDefId) -> ReprOptions {
1516        let mut flags = ReprFlags::empty();
1517        let mut size = None;
1518        let mut max_align: Option<Align> = None;
1519        let mut min_pack: Option<Align> = None;
1520
1521        // Generate a deterministically-derived seed from the item's path hash
1522        // to allow for cross-crate compilation to actually work
1523        let mut field_shuffle_seed = self.def_path_hash(did.to_def_id()).0.to_smaller_hash();
1524
1525        // If the user defined a custom seed for layout randomization, xor the item's
1526        // path hash with the user defined seed, this will allowing determinism while
1527        // still allowing users to further randomize layout generation for e.g. fuzzing
1528        if let Some(user_seed) = self.sess.opts.unstable_opts.layout_seed {
1529            field_shuffle_seed ^= user_seed;
1530        }
1531
1532        let attributes = self.get_all_attrs(did);
1533        let elt = find_attr!(
1534            attributes,
1535            AttributeKind::RustcScalableVector { element_count, .. } => element_count
1536        )
1537        .map(|elt| match elt {
1538            Some(n) => ScalableElt::ElementCount(*n),
1539            None => ScalableElt::Container,
1540        });
1541        if elt.is_some() {
1542            flags.insert(ReprFlags::IS_SCALABLE);
1543        }
1544        if let Some(reprs) = find_attr!(attributes, AttributeKind::Repr { reprs, .. } => reprs) {
1545            for (r, _) in reprs {
1546                flags.insert(match *r {
1547                    attr::ReprRust => ReprFlags::empty(),
1548                    attr::ReprC => ReprFlags::IS_C,
1549                    attr::ReprPacked(pack) => {
1550                        min_pack = Some(if let Some(min_pack) = min_pack {
1551                            min_pack.min(pack)
1552                        } else {
1553                            pack
1554                        });
1555                        ReprFlags::empty()
1556                    }
1557                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1558                    attr::ReprSimd => ReprFlags::IS_SIMD,
1559                    attr::ReprInt(i) => {
1560                        size = Some(match i {
1561                            attr::IntType::SignedInt(x) => match x {
1562                                ast::IntTy::Isize => IntegerType::Pointer(true),
1563                                ast::IntTy::I8 => IntegerType::Fixed(Integer::I8, true),
1564                                ast::IntTy::I16 => IntegerType::Fixed(Integer::I16, true),
1565                                ast::IntTy::I32 => IntegerType::Fixed(Integer::I32, true),
1566                                ast::IntTy::I64 => IntegerType::Fixed(Integer::I64, true),
1567                                ast::IntTy::I128 => IntegerType::Fixed(Integer::I128, true),
1568                            },
1569                            attr::IntType::UnsignedInt(x) => match x {
1570                                ast::UintTy::Usize => IntegerType::Pointer(false),
1571                                ast::UintTy::U8 => IntegerType::Fixed(Integer::I8, false),
1572                                ast::UintTy::U16 => IntegerType::Fixed(Integer::I16, false),
1573                                ast::UintTy::U32 => IntegerType::Fixed(Integer::I32, false),
1574                                ast::UintTy::U64 => IntegerType::Fixed(Integer::I64, false),
1575                                ast::UintTy::U128 => IntegerType::Fixed(Integer::I128, false),
1576                            },
1577                        });
1578                        ReprFlags::empty()
1579                    }
1580                    attr::ReprAlign(align) => {
1581                        max_align = max_align.max(Some(align));
1582                        ReprFlags::empty()
1583                    }
1584                });
1585            }
1586        }
1587
1588        // If `-Z randomize-layout` was enabled for the type definition then we can
1589        // consider performing layout randomization
1590        if self.sess.opts.unstable_opts.randomize_layout {
1591            flags.insert(ReprFlags::RANDOMIZE_LAYOUT);
1592        }
1593
1594        // box is special, on the one hand the compiler assumes an ordered layout, with the pointer
1595        // always at offset zero. On the other hand we want scalar abi optimizations.
1596        let is_box = self.is_lang_item(did.to_def_id(), LangItem::OwnedBox);
1597
1598        // This is here instead of layout because the choice must make it into metadata.
1599        if is_box {
1600            flags.insert(ReprFlags::IS_LINEAR);
1601        }
1602
1603        // See `TyAndLayout::pass_indirectly_in_non_rustic_abis` for details.
1604        if find_attr!(attributes, AttributeKind::RustcPassIndirectlyInNonRusticAbis(..)) {
1605            flags.insert(ReprFlags::PASS_INDIRECTLY_IN_NON_RUSTIC_ABIS);
1606        }
1607
1608        ReprOptions {
1609            int: size,
1610            align: max_align,
1611            pack: min_pack,
1612            flags,
1613            field_shuffle_seed,
1614            scalable: elt,
1615        }
1616    }
1617
1618    /// Look up the name of a definition across crates. This does not look at HIR.
1619    pub fn opt_item_name(self, def_id: impl IntoQueryParam<DefId>) -> Option<Symbol> {
1620        let def_id = def_id.into_query_param();
1621        if let Some(cnum) = def_id.as_crate_root() {
1622            Some(self.crate_name(cnum))
1623        } else {
1624            let def_key = self.def_key(def_id);
1625            match def_key.disambiguated_data.data {
1626                // The name of a constructor is that of its parent.
1627                rustc_hir::definitions::DefPathData::Ctor => self
1628                    .opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }),
1629                _ => def_key.get_opt_name(),
1630            }
1631        }
1632    }
1633
1634    /// Look up the name of a definition across crates. This does not look at HIR.
1635    ///
1636    /// This method will ICE if the corresponding item does not have a name. In these cases, use
1637    /// [`opt_item_name`] instead.
1638    ///
1639    /// [`opt_item_name`]: Self::opt_item_name
1640    pub fn item_name(self, id: impl IntoQueryParam<DefId>) -> Symbol {
1641        let id = id.into_query_param();
1642        self.opt_item_name(id).unwrap_or_else(|| {
1643            bug!("item_name: no name for {:?}", self.def_path(id));
1644        })
1645    }
1646
1647    /// Look up the name and span of a definition.
1648    ///
1649    /// See [`item_name`][Self::item_name] for more information.
1650    pub fn opt_item_ident(self, def_id: impl IntoQueryParam<DefId>) -> Option<Ident> {
1651        let def_id = def_id.into_query_param();
1652        let def = self.opt_item_name(def_id)?;
1653        let span = self
1654            .def_ident_span(def_id)
1655            .unwrap_or_else(|| bug!("missing ident span for {def_id:?}"));
1656        Some(Ident::new(def, span))
1657    }
1658
1659    /// Look up the name and span of a definition.
1660    ///
1661    /// See [`item_name`][Self::item_name] for more information.
1662    pub fn item_ident(self, def_id: impl IntoQueryParam<DefId>) -> Ident {
1663        let def_id = def_id.into_query_param();
1664        self.opt_item_ident(def_id).unwrap_or_else(|| {
1665            bug!("item_ident: no name for {:?}", self.def_path(def_id));
1666        })
1667    }
1668
1669    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> {
1670        if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1671            Some(self.associated_item(def_id))
1672        } else {
1673            None
1674        }
1675    }
1676
1677    /// If the `def_id` is an associated type that was desugared from a
1678    /// return-position `impl Trait` from a trait, then provide the source info
1679    /// about where that RPITIT came from.
1680    pub fn opt_rpitit_info(self, def_id: DefId) -> Option<ImplTraitInTraitData> {
1681        if let DefKind::AssocTy = self.def_kind(def_id)
1682            && let AssocKind::Type { data: AssocTypeData::Rpitit(rpitit_info) } =
1683                self.associated_item(def_id).kind
1684        {
1685            Some(rpitit_info)
1686        } else {
1687            None
1688        }
1689    }
1690
1691    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<FieldIdx> {
1692        variant.fields.iter_enumerated().find_map(|(i, field)| {
1693            self.hygienic_eq(ident, field.ident(self), variant.def_id).then_some(i)
1694        })
1695    }
1696
1697    /// Returns `Some` if the impls are the same polarity and the trait either
1698    /// has no items or is annotated `#[marker]` and prevents item overrides.
1699    #[instrument(level = "debug", skip(self), ret)]
1700    pub fn impls_are_allowed_to_overlap(
1701        self,
1702        def_id1: DefId,
1703        def_id2: DefId,
1704    ) -> Option<ImplOverlapKind> {
1705        let impl1 = self.impl_trait_header(def_id1);
1706        let impl2 = self.impl_trait_header(def_id2);
1707
1708        let trait_ref1 = impl1.trait_ref.skip_binder();
1709        let trait_ref2 = impl2.trait_ref.skip_binder();
1710
1711        // If either trait impl references an error, they're allowed to overlap,
1712        // as one of them essentially doesn't exist.
1713        if trait_ref1.references_error() || trait_ref2.references_error() {
1714            return Some(ImplOverlapKind::Permitted { marker: false });
1715        }
1716
1717        match (impl1.polarity, impl2.polarity) {
1718            (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
1719                // `#[rustc_reservation_impl]` impls don't overlap with anything
1720                return Some(ImplOverlapKind::Permitted { marker: false });
1721            }
1722            (ImplPolarity::Positive, ImplPolarity::Negative)
1723            | (ImplPolarity::Negative, ImplPolarity::Positive) => {
1724                // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
1725                return None;
1726            }
1727            (ImplPolarity::Positive, ImplPolarity::Positive)
1728            | (ImplPolarity::Negative, ImplPolarity::Negative) => {}
1729        };
1730
1731        let is_marker_impl = |trait_ref: TraitRef<'_>| self.trait_def(trait_ref.def_id).is_marker;
1732        let is_marker_overlap = is_marker_impl(trait_ref1) && is_marker_impl(trait_ref2);
1733
1734        if is_marker_overlap {
1735            return Some(ImplOverlapKind::Permitted { marker: true });
1736        }
1737
1738        None
1739    }
1740
1741    /// Returns `ty::VariantDef` if `res` refers to a struct,
1742    /// or variant or their constructors, panics otherwise.
1743    pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
1744        match res {
1745            Res::Def(DefKind::Variant, did) => {
1746                let enum_did = self.parent(did);
1747                self.adt_def(enum_did).variant_with_id(did)
1748            }
1749            Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
1750            Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
1751                let variant_did = self.parent(variant_ctor_did);
1752                let enum_did = self.parent(variant_did);
1753                self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
1754            }
1755            Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
1756                let struct_did = self.parent(ctor_did);
1757                self.adt_def(struct_did).non_enum_variant()
1758            }
1759            _ => bug!("expect_variant_res used with unexpected res {:?}", res),
1760        }
1761    }
1762
1763    /// Returns the possibly-auto-generated MIR of a [`ty::InstanceKind`].
1764    #[instrument(skip(self), level = "debug")]
1765    pub fn instance_mir(self, instance: ty::InstanceKind<'tcx>) -> &'tcx Body<'tcx> {
1766        match instance {
1767            ty::InstanceKind::Item(def) => {
1768                debug!("calling def_kind on def: {:?}", def);
1769                let def_kind = self.def_kind(def);
1770                debug!("returned from def_kind: {:?}", def_kind);
1771                match def_kind {
1772                    DefKind::Const
1773                    | DefKind::Static { .. }
1774                    | DefKind::AssocConst
1775                    | DefKind::Ctor(..)
1776                    | DefKind::AnonConst
1777                    | DefKind::InlineConst => self.mir_for_ctfe(def),
1778                    // If the caller wants `mir_for_ctfe` of a function they should not be using
1779                    // `instance_mir`, so we'll assume const fn also wants the optimized version.
1780                    _ => self.optimized_mir(def),
1781                }
1782            }
1783            ty::InstanceKind::VTableShim(..)
1784            | ty::InstanceKind::ReifyShim(..)
1785            | ty::InstanceKind::Intrinsic(..)
1786            | ty::InstanceKind::FnPtrShim(..)
1787            | ty::InstanceKind::Virtual(..)
1788            | ty::InstanceKind::ClosureOnceShim { .. }
1789            | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
1790            | ty::InstanceKind::FutureDropPollShim(..)
1791            | ty::InstanceKind::DropGlue(..)
1792            | ty::InstanceKind::CloneShim(..)
1793            | ty::InstanceKind::ThreadLocalShim(..)
1794            | ty::InstanceKind::FnPtrAddrShim(..)
1795            | ty::InstanceKind::AsyncDropGlueCtorShim(..)
1796            | ty::InstanceKind::AsyncDropGlue(..) => self.mir_shims(instance),
1797        }
1798    }
1799
1800    /// Gets all attributes with the given name.
1801    pub fn get_attrs(
1802        self,
1803        did: impl Into<DefId>,
1804        attr: Symbol,
1805    ) -> impl Iterator<Item = &'tcx hir::Attribute> {
1806        self.get_all_attrs(did).iter().filter(move |a: &&hir::Attribute| a.has_name(attr))
1807    }
1808
1809    /// Gets all attributes.
1810    ///
1811    /// To see if an item has a specific attribute, you should use
1812    /// [`rustc_hir::find_attr!`] so you can use matching.
1813    pub fn get_all_attrs(self, did: impl Into<DefId>) -> &'tcx [hir::Attribute] {
1814        let did: DefId = did.into();
1815        if let Some(did) = did.as_local() {
1816            self.hir_attrs(self.local_def_id_to_hir_id(did))
1817        } else {
1818            self.attrs_for_def(did)
1819        }
1820    }
1821
1822    /// Get an attribute from the diagnostic attribute namespace
1823    ///
1824    /// This function requests an attribute with the following structure:
1825    ///
1826    /// `#[diagnostic::$attr]`
1827    ///
1828    /// This function performs feature checking, so if an attribute is returned
1829    /// it can be used by the consumer
1830    pub fn get_diagnostic_attr(
1831        self,
1832        did: impl Into<DefId>,
1833        attr: Symbol,
1834    ) -> Option<&'tcx hir::Attribute> {
1835        let did: DefId = did.into();
1836        if did.as_local().is_some() {
1837            // it's a crate local item, we need to check feature flags
1838            if rustc_feature::is_stable_diagnostic_attribute(attr, self.features()) {
1839                self.get_attrs_by_path(did, &[sym::diagnostic, sym::do_not_recommend]).next()
1840            } else {
1841                None
1842            }
1843        } else {
1844            // we filter out unstable diagnostic attributes before
1845            // encoding attributes
1846            debug_assert!(rustc_feature::encode_cross_crate(attr));
1847            self.attrs_for_def(did)
1848                .iter()
1849                .find(|a| matches!(a.path().as_ref(), [sym::diagnostic, a] if *a == attr))
1850        }
1851    }
1852
1853    pub fn get_attrs_by_path(
1854        self,
1855        did: DefId,
1856        attr: &[Symbol],
1857    ) -> impl Iterator<Item = &'tcx hir::Attribute> {
1858        let filter_fn = move |a: &&hir::Attribute| a.path_matches(attr);
1859        if let Some(did) = did.as_local() {
1860            self.hir_attrs(self.local_def_id_to_hir_id(did)).iter().filter(filter_fn)
1861        } else {
1862            self.attrs_for_def(did).iter().filter(filter_fn)
1863        }
1864    }
1865
1866    pub fn get_attr(self, did: impl Into<DefId>, attr: Symbol) -> Option<&'tcx hir::Attribute> {
1867        if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) {
1868            let did: DefId = did.into();
1869            bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr);
1870        } else {
1871            self.get_attrs(did, attr).next()
1872        }
1873    }
1874
1875    /// Determines whether an item is annotated with an attribute.
1876    pub fn has_attr(self, did: impl Into<DefId>, attr: Symbol) -> bool {
1877        self.get_attrs(did, attr).next().is_some()
1878    }
1879
1880    /// Determines whether an item is annotated with a multi-segment attribute
1881    pub fn has_attrs_with_path(self, did: impl Into<DefId>, attrs: &[Symbol]) -> bool {
1882        self.get_attrs_by_path(did.into(), attrs).next().is_some()
1883    }
1884
1885    /// Returns `true` if this is an `auto trait`.
1886    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
1887        self.trait_def(trait_def_id).has_auto_impl
1888    }
1889
1890    /// Returns `true` if this is coinductive, either because it is
1891    /// an auto trait or because it has the `#[rustc_coinductive]` attribute.
1892    pub fn trait_is_coinductive(self, trait_def_id: DefId) -> bool {
1893        self.trait_def(trait_def_id).is_coinductive
1894    }
1895
1896    /// Returns `true` if this is a trait alias.
1897    pub fn trait_is_alias(self, trait_def_id: DefId) -> bool {
1898        self.def_kind(trait_def_id) == DefKind::TraitAlias
1899    }
1900
1901    /// Arena-alloc of LayoutError for coroutine layout
1902    fn layout_error(self, err: LayoutError<'tcx>) -> &'tcx LayoutError<'tcx> {
1903        self.arena.alloc(err)
1904    }
1905
1906    /// Returns layout of a non-async-drop coroutine. Layout might be unavailable if the
1907    /// coroutine is tainted by errors.
1908    ///
1909    /// Takes `coroutine_kind` which can be acquired from the `CoroutineArgs::kind_ty`,
1910    /// e.g. `args.as_coroutine().kind_ty()`.
1911    fn ordinary_coroutine_layout(
1912        self,
1913        def_id: DefId,
1914        args: GenericArgsRef<'tcx>,
1915    ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> {
1916        let coroutine_kind_ty = args.as_coroutine().kind_ty();
1917        let mir = self.optimized_mir(def_id);
1918        let ty = || Ty::new_coroutine(self, def_id, args);
1919        // Regular coroutine
1920        if coroutine_kind_ty.is_unit() {
1921            mir.coroutine_layout_raw().ok_or_else(|| self.layout_error(LayoutError::Unknown(ty())))
1922        } else {
1923            // If we have a `Coroutine` that comes from an coroutine-closure,
1924            // then it may be a by-move or by-ref body.
1925            let ty::Coroutine(_, identity_args) =
1926                *self.type_of(def_id).instantiate_identity().kind()
1927            else {
1928                unreachable!();
1929            };
1930            let identity_kind_ty = identity_args.as_coroutine().kind_ty();
1931            // If the types differ, then we must be getting the by-move body of
1932            // a by-ref coroutine.
1933            if identity_kind_ty == coroutine_kind_ty {
1934                mir.coroutine_layout_raw()
1935                    .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty())))
1936            } else {
1937                assert_matches!(coroutine_kind_ty.to_opt_closure_kind(), Some(ClosureKind::FnOnce));
1938                assert_matches!(
1939                    identity_kind_ty.to_opt_closure_kind(),
1940                    Some(ClosureKind::Fn | ClosureKind::FnMut)
1941                );
1942                self.optimized_mir(self.coroutine_by_move_body_def_id(def_id))
1943                    .coroutine_layout_raw()
1944                    .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty())))
1945            }
1946        }
1947    }
1948
1949    /// Returns layout of a `async_drop_in_place::{closure}` coroutine
1950    ///   (returned from `async fn async_drop_in_place<T>(..)`).
1951    /// Layout might be unavailable if the coroutine is tainted by errors.
1952    fn async_drop_coroutine_layout(
1953        self,
1954        def_id: DefId,
1955        args: GenericArgsRef<'tcx>,
1956    ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> {
1957        let ty = || Ty::new_coroutine(self, def_id, args);
1958        if args[0].has_placeholders() || args[0].has_non_region_param() {
1959            return Err(self.layout_error(LayoutError::TooGeneric(ty())));
1960        }
1961        let instance = InstanceKind::AsyncDropGlue(def_id, Ty::new_coroutine(self, def_id, args));
1962        self.mir_shims(instance)
1963            .coroutine_layout_raw()
1964            .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty())))
1965    }
1966
1967    /// Returns layout of a coroutine. Layout might be unavailable if the
1968    /// coroutine is tainted by errors.
1969    pub fn coroutine_layout(
1970        self,
1971        def_id: DefId,
1972        args: GenericArgsRef<'tcx>,
1973    ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> {
1974        if self.is_async_drop_in_place_coroutine(def_id) {
1975            // layout of `async_drop_in_place<T>::{closure}` in case,
1976            // when T is a coroutine, contains this internal coroutine's ptr in upvars
1977            // and doesn't require any locals. Here is an `empty coroutine's layout`
1978            let arg_cor_ty = args.first().unwrap().expect_ty();
1979            if arg_cor_ty.is_coroutine() {
1980                let span = self.def_span(def_id);
1981                let source_info = SourceInfo::outermost(span);
1982                // Even minimal, empty coroutine has 3 states (RESERVED_VARIANTS),
1983                // so variant_fields and variant_source_info should have 3 elements.
1984                let variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>> =
1985                    iter::repeat(IndexVec::new()).take(CoroutineArgs::RESERVED_VARIANTS).collect();
1986                let variant_source_info: IndexVec<VariantIdx, SourceInfo> =
1987                    iter::repeat(source_info).take(CoroutineArgs::RESERVED_VARIANTS).collect();
1988                let proxy_layout = CoroutineLayout {
1989                    field_tys: [].into(),
1990                    field_names: [].into(),
1991                    variant_fields,
1992                    variant_source_info,
1993                    storage_conflicts: BitMatrix::new(0, 0),
1994                };
1995                return Ok(self.arena.alloc(proxy_layout));
1996            } else {
1997                self.async_drop_coroutine_layout(def_id, args)
1998            }
1999        } else {
2000            self.ordinary_coroutine_layout(def_id, args)
2001        }
2002    }
2003
2004    /// If the given `DefId` is an associated item, returns the `DefId` and `DefKind` of the parent trait or impl.
2005    pub fn assoc_parent(self, def_id: DefId) -> Option<(DefId, DefKind)> {
2006        if !self.def_kind(def_id).is_assoc() {
2007            return None;
2008        }
2009        let parent = self.parent(def_id);
2010        let def_kind = self.def_kind(parent);
2011        Some((parent, def_kind))
2012    }
2013
2014    /// Returns the trait item that is implemented by the given item `DefId`.
2015    pub fn trait_item_of(self, def_id: impl IntoQueryParam<DefId>) -> Option<DefId> {
2016        self.opt_associated_item(def_id.into_query_param())?.trait_item_def_id()
2017    }
2018
2019    /// If the given `DefId` is an associated item of a trait,
2020    /// returns the `DefId` of the trait; otherwise, returns `None`.
2021    pub fn trait_of_assoc(self, def_id: DefId) -> Option<DefId> {
2022        match self.assoc_parent(def_id) {
2023            Some((id, DefKind::Trait)) => Some(id),
2024            _ => None,
2025        }
2026    }
2027
2028    pub fn impl_is_of_trait(self, def_id: impl IntoQueryParam<DefId>) -> bool {
2029        let def_id = def_id.into_query_param();
2030        let DefKind::Impl { of_trait } = self.def_kind(def_id) else {
2031            panic!("expected Impl for {def_id:?}");
2032        };
2033        of_trait
2034    }
2035
2036    /// If the given `DefId` is an associated item of an impl,
2037    /// returns the `DefId` of the impl; otherwise returns `None`.
2038    pub fn impl_of_assoc(self, def_id: DefId) -> Option<DefId> {
2039        match self.assoc_parent(def_id) {
2040            Some((id, DefKind::Impl { .. })) => Some(id),
2041            _ => None,
2042        }
2043    }
2044
2045    /// If the given `DefId` is an associated item of an inherent impl,
2046    /// returns the `DefId` of the impl; otherwise, returns `None`.
2047    pub fn inherent_impl_of_assoc(self, def_id: DefId) -> Option<DefId> {
2048        match self.assoc_parent(def_id) {
2049            Some((id, DefKind::Impl { of_trait: false })) => Some(id),
2050            _ => None,
2051        }
2052    }
2053
2054    /// If the given `DefId` is an associated item of a trait impl,
2055    /// returns the `DefId` of the impl; otherwise, returns `None`.
2056    pub fn trait_impl_of_assoc(self, def_id: DefId) -> Option<DefId> {
2057        match self.assoc_parent(def_id) {
2058            Some((id, DefKind::Impl { of_trait: true })) => Some(id),
2059            _ => None,
2060        }
2061    }
2062
2063    pub fn impl_polarity(self, def_id: impl IntoQueryParam<DefId>) -> ty::ImplPolarity {
2064        self.impl_trait_header(def_id).polarity
2065    }
2066
2067    /// Given an `impl_id`, return the trait it implements.
2068    pub fn impl_trait_ref(
2069        self,
2070        def_id: impl IntoQueryParam<DefId>,
2071    ) -> ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>> {
2072        self.impl_trait_header(def_id).trait_ref
2073    }
2074
2075    /// Given an `impl_id`, return the trait it implements.
2076    /// Returns `None` if it is an inherent impl.
2077    pub fn impl_opt_trait_ref(
2078        self,
2079        def_id: impl IntoQueryParam<DefId>,
2080    ) -> Option<ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>> {
2081        let def_id = def_id.into_query_param();
2082        self.impl_is_of_trait(def_id).then(|| self.impl_trait_ref(def_id))
2083    }
2084
2085    /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
2086    pub fn impl_trait_id(self, def_id: impl IntoQueryParam<DefId>) -> DefId {
2087        self.impl_trait_ref(def_id).skip_binder().def_id
2088    }
2089
2090    /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
2091    /// Returns `None` if it is an inherent impl.
2092    pub fn impl_opt_trait_id(self, def_id: impl IntoQueryParam<DefId>) -> Option<DefId> {
2093        let def_id = def_id.into_query_param();
2094        self.impl_is_of_trait(def_id).then(|| self.impl_trait_id(def_id))
2095    }
2096
2097    pub fn is_exportable(self, def_id: DefId) -> bool {
2098        self.exportable_items(def_id.krate).contains(&def_id)
2099    }
2100
2101    /// Check if the given `DefId` is `#\[automatically_derived\]`, *and*
2102    /// whether it was produced by expanding a builtin derive macro.
2103    pub fn is_builtin_derived(self, def_id: DefId) -> bool {
2104        if self.is_automatically_derived(def_id)
2105            && let Some(def_id) = def_id.as_local()
2106            && let outer = self.def_span(def_id).ctxt().outer_expn_data()
2107            && matches!(outer.kind, ExpnKind::Macro(MacroKind::Derive, _))
2108            && find_attr!(
2109                self.get_all_attrs(outer.macro_def_id.unwrap()),
2110                AttributeKind::RustcBuiltinMacro { .. }
2111            )
2112        {
2113            true
2114        } else {
2115            false
2116        }
2117    }
2118
2119    /// Check if the given `DefId` is `#\[automatically_derived\]`.
2120    pub fn is_automatically_derived(self, def_id: DefId) -> bool {
2121        find_attr!(self.get_all_attrs(def_id), AttributeKind::AutomaticallyDerived(..))
2122    }
2123
2124    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
2125    /// with the name of the crate containing the impl.
2126    pub fn span_of_impl(self, impl_def_id: DefId) -> Result<Span, Symbol> {
2127        if let Some(impl_def_id) = impl_def_id.as_local() {
2128            Ok(self.def_span(impl_def_id))
2129        } else {
2130            Err(self.crate_name(impl_def_id.krate))
2131        }
2132    }
2133
2134    /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
2135    /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
2136    /// definition's parent/scope to perform comparison.
2137    pub fn hygienic_eq(self, use_ident: Ident, def_ident: Ident, def_parent_def_id: DefId) -> bool {
2138        // We could use `Ident::eq` here, but we deliberately don't. The identifier
2139        // comparison fails frequently, and we want to avoid the expensive
2140        // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
2141        use_ident.name == def_ident.name
2142            && use_ident
2143                .span
2144                .ctxt()
2145                .hygienic_eq(def_ident.span.ctxt(), self.expn_that_defined(def_parent_def_id))
2146    }
2147
2148    pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
2149        ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
2150        ident
2151    }
2152
2153    // FIXME(vincenzopalazzo): move the HirId to a LocalDefId
2154    pub fn adjust_ident_and_get_scope(
2155        self,
2156        mut ident: Ident,
2157        scope: DefId,
2158        block: hir::HirId,
2159    ) -> (Ident, DefId) {
2160        let scope = ident
2161            .span
2162            .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
2163            .and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
2164            .unwrap_or_else(|| self.parent_module(block).to_def_id());
2165        (ident, scope)
2166    }
2167
2168    /// Checks whether this is a `const fn`. Returns `false` for non-functions.
2169    ///
2170    /// Even if this returns `true`, constness may still be unstable!
2171    #[inline]
2172    pub fn is_const_fn(self, def_id: DefId) -> bool {
2173        matches!(
2174            self.def_kind(def_id),
2175            DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Closure
2176        ) && self.constness(def_id) == hir::Constness::Const
2177    }
2178
2179    /// Whether this item is conditionally constant for the purposes of the
2180    /// effects implementation.
2181    ///
2182    /// This roughly corresponds to all const functions and other callable
2183    /// items, along with const impls and traits, and associated types within
2184    /// those impls and traits.
2185    pub fn is_conditionally_const(self, def_id: impl Into<DefId>) -> bool {
2186        let def_id: DefId = def_id.into();
2187        match self.def_kind(def_id) {
2188            DefKind::Impl { of_trait: true } => {
2189                let header = self.impl_trait_header(def_id);
2190                header.constness == hir::Constness::Const
2191                    && self.is_const_trait(header.trait_ref.skip_binder().def_id)
2192            }
2193            DefKind::Impl { of_trait: false } => self.constness(def_id) == hir::Constness::Const,
2194            DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) => {
2195                self.constness(def_id) == hir::Constness::Const
2196            }
2197            DefKind::TraitAlias | DefKind::Trait => self.is_const_trait(def_id),
2198            DefKind::AssocTy => {
2199                let parent_def_id = self.parent(def_id);
2200                match self.def_kind(parent_def_id) {
2201                    DefKind::Impl { of_trait: false } => false,
2202                    DefKind::Impl { of_trait: true } | DefKind::Trait => {
2203                        self.is_conditionally_const(parent_def_id)
2204                    }
2205                    _ => bug!("unexpected parent item of associated type: {parent_def_id:?}"),
2206                }
2207            }
2208            DefKind::AssocFn => {
2209                let parent_def_id = self.parent(def_id);
2210                match self.def_kind(parent_def_id) {
2211                    DefKind::Impl { of_trait: false } => {
2212                        self.constness(def_id) == hir::Constness::Const
2213                    }
2214                    DefKind::Impl { of_trait: true } | DefKind::Trait => {
2215                        self.is_conditionally_const(parent_def_id)
2216                    }
2217                    _ => bug!("unexpected parent item of associated fn: {parent_def_id:?}"),
2218                }
2219            }
2220            DefKind::OpaqueTy => match self.opaque_ty_origin(def_id) {
2221                hir::OpaqueTyOrigin::FnReturn { parent, .. } => self.is_conditionally_const(parent),
2222                hir::OpaqueTyOrigin::AsyncFn { .. } => false,
2223                // FIXME(const_trait_impl): ATPITs could be conditionally const?
2224                hir::OpaqueTyOrigin::TyAlias { .. } => false,
2225            },
2226            DefKind::Closure => {
2227                // Closures and RPITs will eventually have const conditions
2228                // for `[const]` bounds.
2229                false
2230            }
2231            DefKind::Ctor(_, CtorKind::Const)
2232            | DefKind::Mod
2233            | DefKind::Struct
2234            | DefKind::Union
2235            | DefKind::Enum
2236            | DefKind::Variant
2237            | DefKind::TyAlias
2238            | DefKind::ForeignTy
2239            | DefKind::TyParam
2240            | DefKind::Const
2241            | DefKind::ConstParam
2242            | DefKind::Static { .. }
2243            | DefKind::AssocConst
2244            | DefKind::Macro(_)
2245            | DefKind::ExternCrate
2246            | DefKind::Use
2247            | DefKind::ForeignMod
2248            | DefKind::AnonConst
2249            | DefKind::InlineConst
2250            | DefKind::Field
2251            | DefKind::LifetimeParam
2252            | DefKind::GlobalAsm
2253            | DefKind::SyntheticCoroutineBody => false,
2254        }
2255    }
2256
2257    #[inline]
2258    pub fn is_const_trait(self, def_id: DefId) -> bool {
2259        self.trait_def(def_id).constness == hir::Constness::Const
2260    }
2261
2262    pub fn impl_method_has_trait_impl_trait_tys(self, def_id: DefId) -> bool {
2263        if self.def_kind(def_id) != DefKind::AssocFn {
2264            return false;
2265        }
2266
2267        let Some(item) = self.opt_associated_item(def_id) else {
2268            return false;
2269        };
2270
2271        let AssocContainer::TraitImpl(Ok(trait_item_def_id)) = item.container else {
2272            return false;
2273        };
2274
2275        !self.associated_types_for_impl_traits_in_associated_fn(trait_item_def_id).is_empty()
2276    }
2277}
2278
2279pub fn provide(providers: &mut Providers) {
2280    closure::provide(providers);
2281    context::provide(providers);
2282    erase_regions::provide(providers);
2283    inhabitedness::provide(providers);
2284    util::provide(providers);
2285    print::provide(providers);
2286    super::util::bug::provide(providers);
2287    *providers = Providers {
2288        trait_impls_of: trait_def::trait_impls_of_provider,
2289        incoherent_impls: trait_def::incoherent_impls_provider,
2290        trait_impls_in_crate: trait_def::trait_impls_in_crate_provider,
2291        traits: trait_def::traits_provider,
2292        vtable_allocation: vtable::vtable_allocation_provider,
2293        ..*providers
2294    };
2295}
2296
2297/// A map for the local crate mapping each type to a vector of its
2298/// inherent impls. This is not meant to be used outside of coherence;
2299/// rather, you should request the vector for a specific type via
2300/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
2301/// (constructing this map requires touching the entire crate).
2302#[derive(Clone, Debug, Default, HashStable)]
2303pub struct CrateInherentImpls {
2304    pub inherent_impls: FxIndexMap<LocalDefId, Vec<DefId>>,
2305    pub incoherent_impls: FxIndexMap<SimplifiedType, Vec<LocalDefId>>,
2306}
2307
2308#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
2309pub struct SymbolName<'tcx> {
2310    /// `&str` gives a consistent ordering, which ensures reproducible builds.
2311    pub name: &'tcx str,
2312}
2313
2314impl<'tcx> SymbolName<'tcx> {
2315    pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
2316        SymbolName { name: tcx.arena.alloc_str(name) }
2317    }
2318}
2319
2320impl<'tcx> fmt::Display for SymbolName<'tcx> {
2321    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2322        fmt::Display::fmt(&self.name, fmt)
2323    }
2324}
2325
2326impl<'tcx> fmt::Debug for SymbolName<'tcx> {
2327    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2328        fmt::Display::fmt(&self.name, fmt)
2329    }
2330}
2331
2332/// The constituent parts of a type level constant of kind ADT or array.
2333#[derive(Copy, Clone, Debug, HashStable)]
2334pub struct DestructuredConst<'tcx> {
2335    pub variant: Option<VariantIdx>,
2336    pub fields: &'tcx [ty::Const<'tcx>],
2337}
2338
2339/// Generate TypeTree information for autodiff.
2340/// This function creates TypeTree metadata that describes the memory layout
2341/// of function parameters and return types for Enzyme autodiff.
2342pub fn fnc_typetrees<'tcx>(tcx: TyCtxt<'tcx>, fn_ty: Ty<'tcx>) -> FncTree {
2343    // Check if TypeTrees are disabled via NoTT flag
2344    if tcx.sess.opts.unstable_opts.autodiff.contains(&rustc_session::config::AutoDiff::NoTT) {
2345        return FncTree { args: vec![], ret: TypeTree::new() };
2346    }
2347
2348    // Check if this is actually a function type
2349    if !fn_ty.is_fn() {
2350        return FncTree { args: vec![], ret: TypeTree::new() };
2351    }
2352
2353    // Get the function signature
2354    let fn_sig = fn_ty.fn_sig(tcx);
2355    let sig = tcx.instantiate_bound_regions_with_erased(fn_sig);
2356
2357    // Create TypeTrees for each input parameter
2358    let mut args = vec![];
2359    for ty in sig.inputs().iter() {
2360        let type_tree = typetree_from_ty(tcx, *ty);
2361        args.push(type_tree);
2362    }
2363
2364    // Create TypeTree for return type
2365    let ret = typetree_from_ty(tcx, sig.output());
2366
2367    FncTree { args, ret }
2368}
2369
2370/// Generate TypeTree for a specific type.
2371/// This function analyzes a Rust type and creates appropriate TypeTree metadata.
2372pub fn typetree_from_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> TypeTree {
2373    let mut visited = Vec::new();
2374    typetree_from_ty_inner(tcx, ty, 0, &mut visited)
2375}
2376
2377/// Maximum recursion depth for TypeTree generation to prevent stack overflow
2378/// from pathological deeply nested types. Combined with cycle detection.
2379const MAX_TYPETREE_DEPTH: usize = 6;
2380
2381/// Internal recursive function for TypeTree generation with cycle detection and depth limiting.
2382fn typetree_from_ty_inner<'tcx>(
2383    tcx: TyCtxt<'tcx>,
2384    ty: Ty<'tcx>,
2385    depth: usize,
2386    visited: &mut Vec<Ty<'tcx>>,
2387) -> TypeTree {
2388    if depth >= MAX_TYPETREE_DEPTH {
2389        trace!("typetree depth limit {} reached for type: {}", MAX_TYPETREE_DEPTH, ty);
2390        return TypeTree::new();
2391    }
2392
2393    if visited.contains(&ty) {
2394        return TypeTree::new();
2395    }
2396
2397    visited.push(ty);
2398    let result = typetree_from_ty_impl(tcx, ty, depth, visited);
2399    visited.pop();
2400    result
2401}
2402
2403/// Implementation of TypeTree generation logic.
2404fn typetree_from_ty_impl<'tcx>(
2405    tcx: TyCtxt<'tcx>,
2406    ty: Ty<'tcx>,
2407    depth: usize,
2408    visited: &mut Vec<Ty<'tcx>>,
2409) -> TypeTree {
2410    typetree_from_ty_impl_inner(tcx, ty, depth, visited, false)
2411}
2412
2413/// Internal implementation with context about whether this is for a reference target.
2414fn typetree_from_ty_impl_inner<'tcx>(
2415    tcx: TyCtxt<'tcx>,
2416    ty: Ty<'tcx>,
2417    depth: usize,
2418    visited: &mut Vec<Ty<'tcx>>,
2419    is_reference_target: bool,
2420) -> TypeTree {
2421    if ty.is_scalar() {
2422        let (kind, size) = if ty.is_integral() || ty.is_char() || ty.is_bool() {
2423            (Kind::Integer, ty.primitive_size(tcx).bytes_usize())
2424        } else if ty.is_floating_point() {
2425            match ty {
2426                x if x == tcx.types.f16 => (Kind::Half, 2),
2427                x if x == tcx.types.f32 => (Kind::Float, 4),
2428                x if x == tcx.types.f64 => (Kind::Double, 8),
2429                x if x == tcx.types.f128 => (Kind::F128, 16),
2430                _ => (Kind::Integer, 0),
2431            }
2432        } else {
2433            (Kind::Integer, 0)
2434        };
2435
2436        // Use offset 0 for scalars that are direct targets of references (like &f64)
2437        // Use offset -1 for scalars used directly (like function return types)
2438        let offset = if is_reference_target && !ty.is_array() { 0 } else { -1 };
2439        return TypeTree(vec![Type { offset, size, kind, child: TypeTree::new() }]);
2440    }
2441
2442    if ty.is_ref() || ty.is_raw_ptr() || ty.is_box() {
2443        let Some(inner_ty) = ty.builtin_deref(true) else {
2444            return TypeTree::new();
2445        };
2446
2447        let child = typetree_from_ty_impl_inner(tcx, inner_ty, depth + 1, visited, true);
2448        return TypeTree(vec![Type {
2449            offset: -1,
2450            size: tcx.data_layout.pointer_size().bytes_usize(),
2451            kind: Kind::Pointer,
2452            child,
2453        }]);
2454    }
2455
2456    if ty.is_array() {
2457        if let ty::Array(element_ty, len_const) = ty.kind() {
2458            let len = len_const.try_to_target_usize(tcx).unwrap_or(0);
2459            if len == 0 {
2460                return TypeTree::new();
2461            }
2462            let element_tree =
2463                typetree_from_ty_impl_inner(tcx, *element_ty, depth + 1, visited, false);
2464            let mut types = Vec::new();
2465            for elem_type in &element_tree.0 {
2466                types.push(Type {
2467                    offset: -1,
2468                    size: elem_type.size,
2469                    kind: elem_type.kind,
2470                    child: elem_type.child.clone(),
2471                });
2472            }
2473
2474            return TypeTree(types);
2475        }
2476    }
2477
2478    if ty.is_slice() {
2479        if let ty::Slice(element_ty) = ty.kind() {
2480            let element_tree =
2481                typetree_from_ty_impl_inner(tcx, *element_ty, depth + 1, visited, false);
2482            return element_tree;
2483        }
2484    }
2485
2486    if let ty::Tuple(tuple_types) = ty.kind() {
2487        if tuple_types.is_empty() {
2488            return TypeTree::new();
2489        }
2490
2491        let mut types = Vec::new();
2492        let mut current_offset = 0;
2493
2494        for tuple_ty in tuple_types.iter() {
2495            let element_tree =
2496                typetree_from_ty_impl_inner(tcx, tuple_ty, depth + 1, visited, false);
2497
2498            let element_layout = tcx
2499                .layout_of(ty::TypingEnv::fully_monomorphized().as_query_input(tuple_ty))
2500                .ok()
2501                .map(|layout| layout.size.bytes_usize())
2502                .unwrap_or(0);
2503
2504            for elem_type in &element_tree.0 {
2505                types.push(Type {
2506                    offset: if elem_type.offset == -1 {
2507                        current_offset as isize
2508                    } else {
2509                        current_offset as isize + elem_type.offset
2510                    },
2511                    size: elem_type.size,
2512                    kind: elem_type.kind,
2513                    child: elem_type.child.clone(),
2514                });
2515            }
2516
2517            current_offset += element_layout;
2518        }
2519
2520        return TypeTree(types);
2521    }
2522
2523    if let ty::Adt(adt_def, args) = ty.kind() {
2524        if adt_def.is_struct() {
2525            let struct_layout =
2526                tcx.layout_of(ty::TypingEnv::fully_monomorphized().as_query_input(ty));
2527            if let Ok(layout) = struct_layout {
2528                let mut types = Vec::new();
2529
2530                for (field_idx, field_def) in adt_def.all_fields().enumerate() {
2531                    let field_ty = field_def.ty(tcx, args);
2532                    let field_tree =
2533                        typetree_from_ty_impl_inner(tcx, field_ty, depth + 1, visited, false);
2534
2535                    let field_offset = layout.fields.offset(field_idx).bytes_usize();
2536
2537                    for elem_type in &field_tree.0 {
2538                        types.push(Type {
2539                            offset: if elem_type.offset == -1 {
2540                                field_offset as isize
2541                            } else {
2542                                field_offset as isize + elem_type.offset
2543                            },
2544                            size: elem_type.size,
2545                            kind: elem_type.kind,
2546                            child: elem_type.child.clone(),
2547                        });
2548                    }
2549                }
2550
2551                return TypeTree(types);
2552            }
2553        }
2554    }
2555
2556    TypeTree::new()
2557}