1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//! Finds local items that are "reachable", which means that other crates need access to their
//! compiled code or their *runtime* MIR. (Compile-time MIR is always encoded anyway, so we don't
//! worry about that here.)
//!
//! An item is "reachable" if codegen that happens in downstream crates can end up referencing this
//! item. This obviously includes all public items. However, some of these items cannot be codegen'd
//! (because they are generic), and for some the compiled code is not sufficient (because we want to
//! cross-crate inline them). These items "need cross-crate MIR". When a reachable function `f`
//! needs cross-crate MIR, then its MIR may be codegen'd in a downstream crate, and hence items it
//! mentions need to be considered reachable.
//!
//! Furthermore, if a `const`/`const fn` is reachable, then it can return pointers to other items,
//! making those reachable as well. For instance, consider a `const fn` returning a pointer to an
//! otherwise entirely private function: if a downstream crate calls that `const fn` to compute the
//! initial value of a `static`, then it needs to generate a direct reference to this function --
//! i.e., the function is directly reachable from that downstream crate! Hence we have to recurse
//! into `const` and `const fn`.
//!
//! Conversely, reachability *stops* when it hits a monomorphic non-`const` function that we do not
//! want to cross-crate inline. That function will just be codegen'd in this crate, which means the
//! monomorphization collector will consider it a root and then do another graph traversal to
//! codegen everything called by this function -- but that's a very different graph from what we are
//! considering here as at that point, everything is monomorphic.

use hir::def_id::LocalDefIdSet;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::Node;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
use rustc_middle::middle::privacy::{self, Level};
use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc};
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, ExistentialTraitRef, TyCtxt};
use rustc_privacy::DefIdVisitor;
use rustc_session::config::CrateType;

/// Determines whether this item is recursive for reachability. See `is_recursively_reachable_local`
/// below for details.
fn recursively_reachable(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
    tcx.generics_of(def_id).requires_monomorphization(tcx)
        || tcx.cross_crate_inlinable(def_id)
        || tcx.is_const_fn(def_id)
}

// Information needed while computing reachability.
struct ReachableContext<'tcx> {
    // The type context.
    tcx: TyCtxt<'tcx>,
    maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
    // The set of items which must be exported in the linkage sense.
    reachable_symbols: LocalDefIdSet,
    // A worklist of item IDs. Each item ID in this worklist will be inlined
    // and will be scanned for further references.
    // FIXME(eddyb) benchmark if this would be faster as a `VecDeque`.
    worklist: Vec<LocalDefId>,
    // Whether any output of this compilation is a library
    any_library: bool,
}

impl<'tcx> Visitor<'tcx> for ReachableContext<'tcx> {
    fn visit_nested_body(&mut self, body: hir::BodyId) {
        let old_maybe_typeck_results =
            self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
        let body = self.tcx.hir().body(body);
        self.visit_body(body);
        self.maybe_typeck_results = old_maybe_typeck_results;
    }

    fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
        let res = match expr.kind {
            hir::ExprKind::Path(ref qpath) => {
                // This covers fn ptr casts but also "non-method" calls.
                Some(self.typeck_results().qpath_res(qpath, expr.hir_id))
            }
            hir::ExprKind::MethodCall(..) => {
                // Method calls don't involve a full "path", so we need to determine the callee
                // based on the receiver type.
                // If this is a method call on a generic type, we might not be able to find the
                // callee. That's why `reachable_set` also adds all potential callees for such
                // calls, i.e. all trait impl items, to the reachable set. So here we only worry
                // about the calls we can identify.
                self.typeck_results()
                    .type_dependent_def(expr.hir_id)
                    .map(|(kind, def_id)| Res::Def(kind, def_id))
            }
            hir::ExprKind::Closure(&hir::Closure { def_id, .. }) => {
                self.reachable_symbols.insert(def_id);
                None
            }
            _ => None,
        };

        if let Some(res) = res {
            self.propagate_item(res);
        }

        intravisit::walk_expr(self, expr)
    }

    fn visit_inline_asm(&mut self, asm: &'tcx hir::InlineAsm<'tcx>, id: hir::HirId) {
        for (op, _) in asm.operands {
            if let hir::InlineAsmOperand::SymStatic { def_id, .. } = op {
                if let Some(def_id) = def_id.as_local() {
                    self.reachable_symbols.insert(def_id);
                }
            }
        }
        intravisit::walk_inline_asm(self, asm, id);
    }
}

impl<'tcx> ReachableContext<'tcx> {
    /// Gets the type-checking results for the current body.
    /// As this will ICE if called outside bodies, only call when working with
    /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
    #[track_caller]
    fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
        self.maybe_typeck_results
            .expect("`ReachableContext::typeck_results` called outside of body")
    }

    /// Returns true if the given def ID represents a local item that is recursive for reachability,
    /// i.e. whether everything mentioned in here also needs to be considered reachable.
    ///
    /// There are two reasons why an item may be recursively reachable:
    /// - It needs cross-crate MIR (see the module-level doc comment above).
    /// - It is a `const` or `const fn`. This is *not* because we need the MIR to interpret them
    ///   (MIR for const-eval and MIR for codegen is separate, and MIR for const-eval is always
    ///   encoded). Instead, it is because `const fn` can create `fn()` pointers to other items
    ///   which end up in the evaluated result of the constant and can then be called from other
    ///   crates. Those items must be considered reachable.
    fn is_recursively_reachable_local(&self, def_id: DefId) -> bool {
        let Some(def_id) = def_id.as_local() else {
            return false;
        };

        match self.tcx.hir_node_by_def_id(def_id) {
            Node::Item(item) => match item.kind {
                hir::ItemKind::Fn(..) => recursively_reachable(self.tcx, def_id.into()),
                _ => false,
            },
            Node::TraitItem(trait_method) => match trait_method.kind {
                hir::TraitItemKind::Const(_, ref default) => default.is_some(),
                hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)) => true,
                hir::TraitItemKind::Fn(_, hir::TraitFn::Required(_))
                | hir::TraitItemKind::Type(..) => false,
            },
            Node::ImplItem(impl_item) => match impl_item.kind {
                hir::ImplItemKind::Const(..) => true,
                hir::ImplItemKind::Fn(..) => {
                    recursively_reachable(self.tcx, impl_item.hir_id().owner.to_def_id())
                }
                hir::ImplItemKind::Type(_) => false,
            },
            _ => false,
        }
    }

    // Step 2: Mark all symbols that the symbols on the worklist touch.
    fn propagate(&mut self) {
        let mut scanned = LocalDefIdSet::default();
        while let Some(search_item) = self.worklist.pop() {
            if !scanned.insert(search_item) {
                continue;
            }

            self.propagate_node(&self.tcx.hir_node_by_def_id(search_item), search_item);
        }
    }

    fn propagate_node(&mut self, node: &Node<'tcx>, search_item: LocalDefId) {
        if !self.any_library {
            // If we are building an executable, only explicitly extern
            // types need to be exported.
            let codegen_attrs = if self.tcx.def_kind(search_item).has_codegen_attrs() {
                self.tcx.codegen_fn_attrs(search_item)
            } else {
                CodegenFnAttrs::EMPTY
            };
            let is_extern = codegen_attrs.contains_extern_indicator();
            let std_internal =
                codegen_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL);
            if is_extern || std_internal {
                self.reachable_symbols.insert(search_item);
            }
        } else {
            // If we are building a library, then reachable symbols will
            // continue to participate in linkage after this product is
            // produced. In this case, we traverse the ast node, recursing on
            // all reachable nodes from this one.
            self.reachable_symbols.insert(search_item);
        }

        match *node {
            Node::Item(item) => {
                match item.kind {
                    hir::ItemKind::Fn(.., body) => {
                        if recursively_reachable(self.tcx, item.owner_id.into()) {
                            self.visit_nested_body(body);
                        }
                    }

                    // Reachable constants will be inlined into other crates
                    // unconditionally, so we need to make sure that their
                    // contents are also reachable.
                    hir::ItemKind::Const(_, _, init) => {
                        self.visit_nested_body(init);
                    }
                    hir::ItemKind::Static(..) => {
                        if let Ok(alloc) = self.tcx.eval_static_initializer(item.owner_id.def_id) {
                            self.propagate_from_alloc(alloc);
                        }
                    }

                    // These are normal, nothing reachable about these
                    // inherently and their children are already in the
                    // worklist, as determined by the privacy pass
                    hir::ItemKind::ExternCrate(_)
                    | hir::ItemKind::Use(..)
                    | hir::ItemKind::OpaqueTy(..)
                    | hir::ItemKind::TyAlias(..)
                    | hir::ItemKind::Macro(..)
                    | hir::ItemKind::Mod(..)
                    | hir::ItemKind::ForeignMod { .. }
                    | hir::ItemKind::Impl { .. }
                    | hir::ItemKind::Trait(..)
                    | hir::ItemKind::TraitAlias(..)
                    | hir::ItemKind::Struct(..)
                    | hir::ItemKind::Enum(..)
                    | hir::ItemKind::Union(..)
                    | hir::ItemKind::GlobalAsm(..) => {}
                }
            }
            Node::TraitItem(trait_method) => {
                match trait_method.kind {
                    hir::TraitItemKind::Const(_, None)
                    | hir::TraitItemKind::Fn(_, hir::TraitFn::Required(_)) => {
                        // Keep going, nothing to get exported
                    }
                    hir::TraitItemKind::Const(_, Some(body_id))
                    | hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(body_id)) => {
                        self.visit_nested_body(body_id);
                    }
                    hir::TraitItemKind::Type(..) => {}
                }
            }
            Node::ImplItem(impl_item) => match impl_item.kind {
                hir::ImplItemKind::Const(_, body) => {
                    self.visit_nested_body(body);
                }
                hir::ImplItemKind::Fn(_, body) => {
                    if recursively_reachable(self.tcx, impl_item.hir_id().owner.to_def_id()) {
                        self.visit_nested_body(body)
                    }
                }
                hir::ImplItemKind::Type(_) => {}
            },
            Node::Expr(&hir::Expr {
                kind: hir::ExprKind::Closure(&hir::Closure { body, .. }),
                ..
            }) => {
                self.visit_nested_body(body);
            }
            // Nothing to recurse on for these
            Node::ForeignItem(_)
            | Node::Variant(_)
            | Node::Ctor(..)
            | Node::Field(_)
            | Node::Ty(_)
            | Node::Crate(_)
            | Node::Synthetic => {}
            _ => {
                bug!(
                    "found unexpected node kind in worklist: {} ({:?})",
                    self.tcx.hir().node_to_string(self.tcx.local_def_id_to_hir_id(search_item)),
                    node,
                );
            }
        }
    }

    /// Finds things to add to `reachable_symbols` within allocations.
    /// In contrast to visit_nested_body this ignores things that were only needed to evaluate
    /// the allocation.
    fn propagate_from_alloc(&mut self, alloc: ConstAllocation<'tcx>) {
        if !self.any_library {
            return;
        }
        for (_, prov) in alloc.0.provenance().ptrs().iter() {
            match self.tcx.global_alloc(prov.alloc_id()) {
                GlobalAlloc::Static(def_id) => {
                    self.propagate_item(Res::Def(self.tcx.def_kind(def_id), def_id))
                }
                GlobalAlloc::Function(instance) => {
                    // Manually visit to actually see the instance's `DefId`. Type visitors won't see it
                    self.propagate_item(Res::Def(
                        self.tcx.def_kind(instance.def_id()),
                        instance.def_id(),
                    ));
                    self.visit(instance.args);
                }
                GlobalAlloc::VTable(ty, trait_ref) => {
                    self.visit(ty);
                    // Manually visit to actually see the trait's `DefId`. Type visitors won't see it
                    if let Some(trait_ref) = trait_ref {
                        let ExistentialTraitRef { def_id, args } = trait_ref.skip_binder();
                        self.visit_def_id(def_id, "", &"");
                        self.visit(args);
                    }
                }
                GlobalAlloc::Memory(alloc) => self.propagate_from_alloc(alloc),
            }
        }
    }

    fn propagate_item(&mut self, res: Res) {
        let Res::Def(kind, def_id) = res else { return };
        let Some(def_id) = def_id.as_local() else { return };
        match kind {
            DefKind::Static { nested: true, .. } => {
                // This is the main purpose of this function: add the def_id we find
                // to `reachable_symbols`.
                if self.reachable_symbols.insert(def_id) {
                    if let Ok(alloc) = self.tcx.eval_static_initializer(def_id) {
                        // This cannot cause infinite recursion, because we abort by inserting into the
                        // work list once we hit a normal static. Nested statics, even if they somehow
                        // become recursive, are also not infinitely recursing, because of the
                        // `reachable_symbols` check above.
                        // We still need to protect against stack overflow due to deeply nested statics.
                        ensure_sufficient_stack(|| self.propagate_from_alloc(alloc));
                    }
                }
            }
            // Reachable constants and reachable statics can have their contents inlined
            // into other crates. Mark them as reachable and recurse into their body.
            DefKind::Const | DefKind::AssocConst | DefKind::Static { .. } => {
                self.worklist.push(def_id);
            }
            _ => {
                if self.is_recursively_reachable_local(def_id.to_def_id()) {
                    self.worklist.push(def_id);
                } else {
                    self.reachable_symbols.insert(def_id);
                }
            }
        }
    }
}

impl<'tcx> DefIdVisitor<'tcx> for ReachableContext<'tcx> {
    type Result = ();

    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_def_id(
        &mut self,
        def_id: DefId,
        _kind: &str,
        _descr: &dyn std::fmt::Display,
    ) -> Self::Result {
        self.propagate_item(Res::Def(self.tcx.def_kind(def_id), def_id))
    }
}

fn check_item<'tcx>(
    tcx: TyCtxt<'tcx>,
    id: hir::ItemId,
    worklist: &mut Vec<LocalDefId>,
    effective_visibilities: &privacy::EffectiveVisibilities,
) {
    if has_custom_linkage(tcx, id.owner_id.def_id) {
        worklist.push(id.owner_id.def_id);
    }

    if !matches!(tcx.def_kind(id.owner_id), DefKind::Impl { of_trait: true }) {
        return;
    }

    // We need only trait impls here, not inherent impls, and only non-exported ones
    if effective_visibilities.is_reachable(id.owner_id.def_id) {
        return;
    }

    let items = tcx.associated_item_def_ids(id.owner_id);
    worklist.extend(items.iter().map(|ii_ref| ii_ref.expect_local()));

    let Some(trait_def_id) = tcx.trait_id_of_impl(id.owner_id.to_def_id()) else {
        unreachable!();
    };

    if !trait_def_id.is_local() {
        return;
    }

    worklist
        .extend(tcx.provided_trait_methods(trait_def_id).map(|assoc| assoc.def_id.expect_local()));
}

fn has_custom_linkage(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
    // Anything which has custom linkage gets thrown on the worklist no
    // matter where it is in the crate, along with "special std symbols"
    // which are currently akin to allocator symbols.
    if !tcx.def_kind(def_id).has_codegen_attrs() {
        return false;
    }
    let codegen_attrs = tcx.codegen_fn_attrs(def_id);
    codegen_attrs.contains_extern_indicator()
        || codegen_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
        // FIXME(nbdd0121): `#[used]` are marked as reachable here so it's picked up by
        // `linked_symbols` in cg_ssa. They won't be exported in binary or cdylib due to their
        // `SymbolExportLevel::Rust` export level but may end up being exported in dylibs.
        || codegen_attrs.flags.contains(CodegenFnAttrFlags::USED)
        || codegen_attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER)
}

/// See module-level doc comment above.
fn reachable_set(tcx: TyCtxt<'_>, (): ()) -> LocalDefIdSet {
    let effective_visibilities = &tcx.effective_visibilities(());

    let any_library = tcx
        .crate_types()
        .iter()
        .any(|ty| *ty == CrateType::Rlib || *ty == CrateType::Dylib || *ty == CrateType::ProcMacro);
    let mut reachable_context = ReachableContext {
        tcx,
        maybe_typeck_results: None,
        reachable_symbols: Default::default(),
        worklist: Vec::new(),
        any_library,
    };

    // Step 1: Seed the worklist with all nodes which were found to be public as
    //         a result of the privacy pass along with all local lang items and impl items.
    //         If other crates link to us, they're going to expect to be able to
    //         use the lang items, so we need to be sure to mark them as
    //         exported.
    reachable_context.worklist = effective_visibilities
        .iter()
        .filter_map(|(&id, effective_vis)| {
            effective_vis.is_public_at_level(Level::ReachableThroughImplTrait).then_some(id)
        })
        .collect::<Vec<_>>();

    for (_, def_id) in tcx.lang_items().iter() {
        if let Some(def_id) = def_id.as_local() {
            reachable_context.worklist.push(def_id);
        }
    }
    {
        // As explained above, we have to mark all functions called from reachable
        // `item_might_be_inlined` items as reachable. The issue is, when those functions are
        // generic and call a trait method, we have no idea where that call goes! So, we
        // conservatively mark all trait impl items as reachable.
        // FIXME: One possible strategy for pruning the reachable set is to avoid marking impl
        // items of non-exported traits (or maybe all local traits?) unless their respective
        // trait items are used from inlinable code through method call syntax or UFCS, or their
        // trait is a lang item.
        // (But if you implement this, don't forget to take into account that vtables can also
        // make trait methods reachable!)
        let crate_items = tcx.hir_crate_items(());

        for id in crate_items.free_items() {
            check_item(tcx, id, &mut reachable_context.worklist, effective_visibilities);
        }

        for id in crate_items.impl_items() {
            if has_custom_linkage(tcx, id.owner_id.def_id) {
                reachable_context.worklist.push(id.owner_id.def_id);
            }
        }
    }

    // Step 2: Mark all symbols that the symbols on the worklist touch.
    reachable_context.propagate();

    debug!("Inline reachability shows: {:?}", reachable_context.reachable_symbols);

    // Return the set of reachable symbols.
    reachable_context.reachable_symbols
}

pub fn provide(providers: &mut Providers) {
    *providers = Providers { reachable_set, ..*providers };
}