1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
//! See `README.md`.

use self::CombineMapType::*;
use self::UndoLog::*;

use super::{MiscVariable, RegionVariableOrigin, Rollback, SubregionOrigin};
use crate::infer::snapshot::undo_log::{InferCtxtUndoLogs, Snapshot};

use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::undo_log::UndoLogs;
use rustc_data_structures::unify as ut;
use rustc_index::IndexVec;
use rustc_middle::infer::unify_key::{RegionVariableValue, RegionVidKey};
use rustc_middle::ty::ReStatic;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::ty::{ReBound, ReVar};
use rustc_middle::ty::{Region, RegionVid};
use rustc_span::Span;

use std::ops::Range;
use std::{cmp, fmt, mem};

mod leak_check;

pub use rustc_middle::infer::MemberConstraint;

#[derive(Clone, Default)]
pub struct RegionConstraintStorage<'tcx> {
    /// For each `RegionVid`, the corresponding `RegionVariableOrigin`.
    var_infos: IndexVec<RegionVid, RegionVariableInfo>,

    data: RegionConstraintData<'tcx>,

    /// For a given pair of regions (R1, R2), maps to a region R3 that
    /// is designated as their LUB (edges R1 <= R3 and R2 <= R3
    /// exist). This prevents us from making many such regions.
    lubs: CombineMap<'tcx>,

    /// For a given pair of regions (R1, R2), maps to a region R3 that
    /// is designated as their GLB (edges R3 <= R1 and R3 <= R2
    /// exist). This prevents us from making many such regions.
    glbs: CombineMap<'tcx>,

    /// When we add a R1 == R2 constraint, we currently add (a) edges
    /// R1 <= R2 and R2 <= R1 and (b) we unify the two regions in this
    /// table. You can then call `opportunistic_resolve_var` early
    /// which will map R1 and R2 to some common region (i.e., either
    /// R1 or R2). This is important when fulfillment, dropck and other such
    /// code is iterating to a fixed point, because otherwise we sometimes
    /// would wind up with a fresh stream of region variables that have been
    /// equated but appear distinct.
    pub(super) unification_table: ut::UnificationTableStorage<RegionVidKey<'tcx>>,

    /// a flag set to true when we perform any unifications; this is used
    /// to micro-optimize `take_and_reset_data`
    any_unifications: bool,
}

pub struct RegionConstraintCollector<'a, 'tcx> {
    storage: &'a mut RegionConstraintStorage<'tcx>,
    undo_log: &'a mut InferCtxtUndoLogs<'tcx>,
}

impl<'tcx> std::ops::Deref for RegionConstraintCollector<'_, 'tcx> {
    type Target = RegionConstraintStorage<'tcx>;
    #[inline]
    fn deref(&self) -> &RegionConstraintStorage<'tcx> {
        self.storage
    }
}

impl<'tcx> std::ops::DerefMut for RegionConstraintCollector<'_, 'tcx> {
    #[inline]
    fn deref_mut(&mut self) -> &mut RegionConstraintStorage<'tcx> {
        self.storage
    }
}

pub type VarInfos = IndexVec<RegionVid, RegionVariableInfo>;

/// The full set of region constraints gathered up by the collector.
/// Describes constraints between the region variables and other
/// regions, as well as other conditions that must be verified, or
/// assumptions that can be made.
#[derive(Debug, Default, Clone)]
pub struct RegionConstraintData<'tcx> {
    /// Constraints of the form `A <= B`, where either `A` or `B` can
    /// be a region variable (or neither, as it happens).
    pub constraints: Vec<(Constraint<'tcx>, SubregionOrigin<'tcx>)>,

    /// Constraints of the form `R0 member of [R1, ..., Rn]`, meaning that
    /// `R0` must be equal to one of the regions `R1..Rn`. These occur
    /// with `impl Trait` quite frequently.
    pub member_constraints: Vec<MemberConstraint<'tcx>>,

    /// A "verify" is something that we need to verify after inference
    /// is done, but which does not directly affect inference in any
    /// way.
    ///
    /// An example is a `A <= B` where neither `A` nor `B` are
    /// inference variables.
    pub verifys: Vec<Verify<'tcx>>,
}

/// Represents a constraint that influences the inference process.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum Constraint<'tcx> {
    /// A region variable is a subregion of another.
    VarSubVar(RegionVid, RegionVid),

    /// A concrete region is a subregion of region variable.
    RegSubVar(Region<'tcx>, RegionVid),

    /// A region variable is a subregion of a concrete region. This does not
    /// directly affect inference, but instead is checked after
    /// inference is complete.
    VarSubReg(RegionVid, Region<'tcx>),

    /// A constraint where neither side is a variable. This does not
    /// directly affect inference, but instead is checked after
    /// inference is complete.
    RegSubReg(Region<'tcx>, Region<'tcx>),
}

impl Constraint<'_> {
    pub fn involves_placeholders(&self) -> bool {
        match self {
            Constraint::VarSubVar(_, _) => false,
            Constraint::VarSubReg(_, r) | Constraint::RegSubVar(r, _) => r.is_placeholder(),
            Constraint::RegSubReg(r, s) => r.is_placeholder() || s.is_placeholder(),
        }
    }
}

#[derive(Debug, Clone)]
pub struct Verify<'tcx> {
    pub kind: GenericKind<'tcx>,
    pub origin: SubregionOrigin<'tcx>,
    pub region: Region<'tcx>,
    pub bound: VerifyBound<'tcx>,
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
pub enum GenericKind<'tcx> {
    Param(ty::ParamTy),
    Placeholder(ty::PlaceholderType),
    Alias(ty::AliasTy<'tcx>),
}

/// Describes the things that some `GenericKind` value `G` is known to
/// outlive. Each variant of `VerifyBound` can be thought of as a
/// function:
/// ```ignore (pseudo-rust)
/// fn(min: Region) -> bool { .. }
/// ```
/// where `true` means that the region `min` meets that `G: min`.
/// (False means nothing.)
///
/// So, for example, if we have the type `T` and we have in scope that
/// `T: 'a` and `T: 'b`, then the verify bound might be:
/// ```ignore (pseudo-rust)
/// fn(min: Region) -> bool {
///    ('a: min) || ('b: min)
/// }
/// ```
/// This is described with an `AnyRegion('a, 'b)` node.
#[derive(Debug, Clone, TypeFoldable, TypeVisitable)]
pub enum VerifyBound<'tcx> {
    /// See [`VerifyIfEq`] docs
    IfEq(ty::Binder<'tcx, VerifyIfEq<'tcx>>),

    /// Given a region `R`, expands to the function:
    ///
    /// ```ignore (pseudo-rust)
    /// fn(min) -> bool {
    ///     R: min
    /// }
    /// ```
    ///
    /// This is used when we can establish that `G: R` -- therefore,
    /// if `R: min`, then by transitivity `G: min`.
    OutlivedBy(Region<'tcx>),

    /// Given a region `R`, true if it is `'empty`.
    IsEmpty,

    /// Given a set of bounds `B`, expands to the function:
    ///
    /// ```ignore (pseudo-rust)
    /// fn(min) -> bool {
    ///     exists (b in B) { b(min) }
    /// }
    /// ```
    ///
    /// In other words, if we meet some bound in `B`, that suffices.
    /// This is used when all the bounds in `B` are known to apply to `G`.
    AnyBound(Vec<VerifyBound<'tcx>>),

    /// Given a set of bounds `B`, expands to the function:
    ///
    /// ```ignore (pseudo-rust)
    /// fn(min) -> bool {
    ///     forall (b in B) { b(min) }
    /// }
    /// ```
    ///
    /// In other words, if we meet *all* bounds in `B`, that suffices.
    /// This is used when *some* bound in `B` is known to suffice, but
    /// we don't know which.
    AllBounds(Vec<VerifyBound<'tcx>>),
}

/// This is a "conditional bound" that checks the result of inference
/// and supplies a bound if it ended up being relevant. It's used in situations
/// like this:
///
/// ```rust,ignore (pseudo-Rust)
/// fn foo<'a, 'b, T: SomeTrait<'a>>
/// where
///    <T as SomeTrait<'a>>::Item: 'b
/// ```
///
/// If we have an obligation like `<T as SomeTrait<'?x>>::Item: 'c`, then
/// we don't know yet whether it suffices to show that `'b: 'c`. If `'?x` winds
/// up being equal to `'a`, then the where-clauses on function applies, and
/// in that case we can show `'b: 'c`. But if `'?x` winds up being something
/// else, the bound isn't relevant.
///
/// In the [`VerifyBound`], this struct is enclosed in `Binder` to account
/// for cases like
///
/// ```rust,ignore (pseudo-Rust)
/// where for<'a> <T as SomeTrait<'a>::Item: 'a
/// ```
///
/// The idea is that we have to find some instantiation of `'a` that can
/// make `<T as SomeTrait<'a>>::Item` equal to the final value of `G`,
/// the generic we are checking.
///
/// ```ignore (pseudo-rust)
/// fn(min) -> bool {
///     exists<'a> {
///         if G == K {
///             B(min)
///         } else {
///             false
///         }
///     }
/// }
/// ```
#[derive(Debug, Copy, Clone, TypeFoldable, TypeVisitable)]
pub struct VerifyIfEq<'tcx> {
    /// Type which must match the generic `G`
    pub ty: Ty<'tcx>,

    /// Bound that applies if `ty` is equal.
    pub bound: Region<'tcx>,
}

#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) struct TwoRegions<'tcx> {
    a: Region<'tcx>,
    b: Region<'tcx>,
}

#[derive(Copy, Clone, PartialEq)]
pub(crate) enum UndoLog<'tcx> {
    /// We added `RegionVid`.
    AddVar(RegionVid),

    /// We added the given `constraint`.
    AddConstraint(usize),

    /// We added the given `verify`.
    AddVerify(usize),

    /// We added a GLB/LUB "combination variable".
    AddCombination(CombineMapType, TwoRegions<'tcx>),
}

#[derive(Copy, Clone, PartialEq)]
pub(crate) enum CombineMapType {
    Lub,
    Glb,
}

type CombineMap<'tcx> = FxHashMap<TwoRegions<'tcx>, RegionVid>;

#[derive(Debug, Clone, Copy)]
pub struct RegionVariableInfo {
    pub origin: RegionVariableOrigin,
    // FIXME: This is only necessary for `fn take_and_reset_data` and
    // `lexical_region_resolve`. We should rework `lexical_region_resolve`
    // in the near/medium future anyways and could move the unverse info
    // for `fn take_and_reset_data` into a separate table which is
    // only populated when needed.
    //
    // For both of these cases it is fine that this can diverge from the
    // actual universe of the variable, which is directly stored in the
    // unification table for unknown region variables. At some point we could
    // stop emitting bidirectional outlives constraints if equate succeeds.
    // This would be currently unsound as it would cause us to drop the universe
    // changes in `lexical_region_resolve`.
    pub universe: ty::UniverseIndex,
}

pub struct RegionSnapshot {
    any_unifications: bool,
}

impl<'tcx> RegionConstraintStorage<'tcx> {
    pub fn new() -> Self {
        Self::default()
    }

    #[inline]
    pub(crate) fn with_log<'a>(
        &'a mut self,
        undo_log: &'a mut InferCtxtUndoLogs<'tcx>,
    ) -> RegionConstraintCollector<'a, 'tcx> {
        RegionConstraintCollector { storage: self, undo_log }
    }

    fn rollback_undo_entry(&mut self, undo_entry: UndoLog<'tcx>) {
        match undo_entry {
            AddVar(vid) => {
                self.var_infos.pop().unwrap();
                assert_eq!(self.var_infos.len(), vid.index());
            }
            AddConstraint(index) => {
                self.data.constraints.pop().unwrap();
                assert_eq!(self.data.constraints.len(), index);
            }
            AddVerify(index) => {
                self.data.verifys.pop();
                assert_eq!(self.data.verifys.len(), index);
            }
            AddCombination(Glb, ref regions) => {
                self.glbs.remove(regions);
            }
            AddCombination(Lub, ref regions) => {
                self.lubs.remove(regions);
            }
        }
    }
}

impl<'tcx> RegionConstraintCollector<'_, 'tcx> {
    pub fn num_region_vars(&self) -> usize {
        self.var_infos.len()
    }

    pub fn region_constraint_data(&self) -> &RegionConstraintData<'tcx> {
        &self.data
    }

    /// Once all the constraints have been gathered, extract out the final data.
    ///
    /// Not legal during a snapshot.
    pub fn into_infos_and_data(self) -> (VarInfos, RegionConstraintData<'tcx>) {
        assert!(!UndoLogs::<UndoLog<'_>>::in_snapshot(&self.undo_log));
        (mem::take(&mut self.storage.var_infos), mem::take(&mut self.storage.data))
    }

    /// Takes (and clears) the current set of constraints. Note that
    /// the set of variables remains intact, but all relationships
    /// between them are reset. This is used during NLL checking to
    /// grab the set of constraints that arose from a particular
    /// operation.
    ///
    /// We don't want to leak relationships between variables between
    /// points because just because (say) `r1 == r2` was true at some
    /// point P in the graph doesn't imply that it will be true at
    /// some other point Q, in NLL.
    ///
    /// Not legal during a snapshot.
    pub fn take_and_reset_data(&mut self) -> RegionConstraintData<'tcx> {
        assert!(!UndoLogs::<UndoLog<'_>>::in_snapshot(&self.undo_log));

        // If you add a new field to `RegionConstraintCollector`, you
        // should think carefully about whether it needs to be cleared
        // or updated in some way.
        let RegionConstraintStorage {
            var_infos: _,
            data,
            lubs,
            glbs,
            unification_table: _,
            any_unifications,
        } = self.storage;

        // Clear the tables of (lubs, glbs), so that we will create
        // fresh regions if we do a LUB operation. As it happens,
        // LUB/GLB are not performed by the MIR type-checker, which is
        // the one that uses this method, but it's good to be correct.
        lubs.clear();
        glbs.clear();

        let data = mem::take(data);

        // Clear all unifications and recreate the variables a "now
        // un-unified" state. Note that when we unify `a` and `b`, we
        // also insert `a <= b` and a `b <= a` edges, so the
        // `RegionConstraintData` contains the relationship here.
        if *any_unifications {
            *any_unifications = false;
            // Manually inlined `self.unification_table_mut()` as `self` is used in the closure.
            ut::UnificationTable::with_log(&mut self.storage.unification_table, &mut self.undo_log)
                .reset_unifications(|key| RegionVariableValue::Unknown {
                    universe: self.storage.var_infos[key.vid].universe,
                });
        }

        data
    }

    pub fn data(&self) -> &RegionConstraintData<'tcx> {
        &self.data
    }

    pub(super) fn start_snapshot(&mut self) -> RegionSnapshot {
        debug!("RegionConstraintCollector: start_snapshot");
        RegionSnapshot { any_unifications: self.any_unifications }
    }

    pub(super) fn rollback_to(&mut self, snapshot: RegionSnapshot) {
        debug!("RegionConstraintCollector: rollback_to({:?})", snapshot);
        self.any_unifications = snapshot.any_unifications;
    }

    pub(super) fn new_region_var(
        &mut self,
        universe: ty::UniverseIndex,
        origin: RegionVariableOrigin,
    ) -> RegionVid {
        let vid = self.var_infos.push(RegionVariableInfo { origin, universe });

        let u_vid = self.unification_table_mut().new_key(RegionVariableValue::Unknown { universe });
        assert_eq!(vid, u_vid.vid);
        self.undo_log.push(AddVar(vid));
        debug!("created new region variable {:?} in {:?} with origin {:?}", vid, universe, origin);
        vid
    }

    /// Returns the origin for the given variable.
    pub(super) fn var_origin(&self, vid: RegionVid) -> RegionVariableOrigin {
        self.var_infos[vid].origin
    }

    fn add_constraint(&mut self, constraint: Constraint<'tcx>, origin: SubregionOrigin<'tcx>) {
        // cannot add constraints once regions are resolved
        debug!("RegionConstraintCollector: add_constraint({:?})", constraint);

        let index = self.storage.data.constraints.len();
        self.storage.data.constraints.push((constraint, origin));
        self.undo_log.push(AddConstraint(index));
    }

    fn add_verify(&mut self, verify: Verify<'tcx>) {
        // cannot add verifys once regions are resolved
        debug!("RegionConstraintCollector: add_verify({:?})", verify);

        // skip no-op cases known to be satisfied
        if let VerifyBound::AllBounds(ref bs) = verify.bound
            && bs.is_empty()
        {
            return;
        }

        let index = self.data.verifys.len();
        self.data.verifys.push(verify);
        self.undo_log.push(AddVerify(index));
    }

    pub(super) fn make_eqregion(
        &mut self,
        origin: SubregionOrigin<'tcx>,
        a: Region<'tcx>,
        b: Region<'tcx>,
    ) {
        if a != b {
            // Eventually, it would be nice to add direct support for
            // equating regions.
            self.make_subregion(origin.clone(), a, b);
            self.make_subregion(origin, b, a);

            match (a.kind(), b.kind()) {
                (ty::ReVar(a), ty::ReVar(b)) => {
                    debug!("make_eqregion: unifying {:?} with {:?}", a, b);
                    if self.unification_table_mut().unify_var_var(a, b).is_ok() {
                        self.any_unifications = true;
                    }
                }
                (ty::ReVar(vid), _) => {
                    debug!("make_eqregion: unifying {:?} with {:?}", vid, b);
                    if self
                        .unification_table_mut()
                        .unify_var_value(vid, RegionVariableValue::Known { value: b })
                        .is_ok()
                    {
                        self.any_unifications = true;
                    };
                }
                (_, ty::ReVar(vid)) => {
                    debug!("make_eqregion: unifying {:?} with {:?}", a, vid);
                    if self
                        .unification_table_mut()
                        .unify_var_value(vid, RegionVariableValue::Known { value: a })
                        .is_ok()
                    {
                        self.any_unifications = true;
                    };
                }
                (_, _) => {}
            }
        }
    }

    pub(super) fn member_constraint(
        &mut self,
        key: ty::OpaqueTypeKey<'tcx>,
        definition_span: Span,
        hidden_ty: Ty<'tcx>,
        member_region: ty::Region<'tcx>,
        choice_regions: &Lrc<Vec<ty::Region<'tcx>>>,
    ) {
        debug!("member_constraint({:?} in {:#?})", member_region, choice_regions);

        if choice_regions.iter().any(|&r| r == member_region) {
            return;
        }

        self.data.member_constraints.push(MemberConstraint {
            key,
            definition_span,
            hidden_ty,
            member_region,
            choice_regions: choice_regions.clone(),
        });
    }

    #[instrument(skip(self, origin), level = "debug")]
    pub(super) fn make_subregion(
        &mut self,
        origin: SubregionOrigin<'tcx>,
        sub: Region<'tcx>,
        sup: Region<'tcx>,
    ) {
        // cannot add constraints once regions are resolved
        debug!("origin = {:#?}", origin);

        match (*sub, *sup) {
            (ReBound(..), _) | (_, ReBound(..)) => {
                span_bug!(origin.span(), "cannot relate bound region: {:?} <= {:?}", sub, sup);
            }
            (_, ReStatic) => {
                // all regions are subregions of static, so we can ignore this
            }
            (ReVar(sub_id), ReVar(sup_id)) => {
                self.add_constraint(Constraint::VarSubVar(sub_id, sup_id), origin);
            }
            (_, ReVar(sup_id)) => {
                self.add_constraint(Constraint::RegSubVar(sub, sup_id), origin);
            }
            (ReVar(sub_id), _) => {
                self.add_constraint(Constraint::VarSubReg(sub_id, sup), origin);
            }
            _ => {
                self.add_constraint(Constraint::RegSubReg(sub, sup), origin);
            }
        }
    }

    pub(super) fn verify_generic_bound(
        &mut self,
        origin: SubregionOrigin<'tcx>,
        kind: GenericKind<'tcx>,
        sub: Region<'tcx>,
        bound: VerifyBound<'tcx>,
    ) {
        self.add_verify(Verify { kind, origin, region: sub, bound });
    }

    pub(super) fn lub_regions(
        &mut self,
        tcx: TyCtxt<'tcx>,
        origin: SubregionOrigin<'tcx>,
        a: Region<'tcx>,
        b: Region<'tcx>,
    ) -> Region<'tcx> {
        // cannot add constraints once regions are resolved
        debug!("RegionConstraintCollector: lub_regions({:?}, {:?})", a, b);
        if a.is_static() || b.is_static() {
            a // nothing lives longer than static
        } else if a == b {
            a // LUB(a,a) = a
        } else {
            self.combine_vars(tcx, Lub, a, b, origin)
        }
    }

    pub(super) fn glb_regions(
        &mut self,
        tcx: TyCtxt<'tcx>,
        origin: SubregionOrigin<'tcx>,
        a: Region<'tcx>,
        b: Region<'tcx>,
    ) -> Region<'tcx> {
        // cannot add constraints once regions are resolved
        debug!("RegionConstraintCollector: glb_regions({:?}, {:?})", a, b);
        if a.is_static() {
            b // static lives longer than everything else
        } else if b.is_static() {
            a // static lives longer than everything else
        } else if a == b {
            a // GLB(a,a) = a
        } else {
            self.combine_vars(tcx, Glb, a, b, origin)
        }
    }

    /// Resolves a region var to its value in the unification table, if it exists.
    /// Otherwise, it is resolved to the root `ReVar` in the table.
    pub fn opportunistic_resolve_var(
        &mut self,
        tcx: TyCtxt<'tcx>,
        vid: ty::RegionVid,
    ) -> ty::Region<'tcx> {
        let mut ut = self.unification_table_mut();
        let root_vid = ut.find(vid).vid;
        match ut.probe_value(root_vid) {
            RegionVariableValue::Known { value } => value,
            RegionVariableValue::Unknown { .. } => ty::Region::new_var(tcx, root_vid),
        }
    }

    pub fn probe_value(
        &mut self,
        vid: ty::RegionVid,
    ) -> Result<ty::Region<'tcx>, ty::UniverseIndex> {
        match self.unification_table_mut().probe_value(vid) {
            RegionVariableValue::Known { value } => Ok(value),
            RegionVariableValue::Unknown { universe } => Err(universe),
        }
    }

    fn combine_map(&mut self, t: CombineMapType) -> &mut CombineMap<'tcx> {
        match t {
            Glb => &mut self.glbs,
            Lub => &mut self.lubs,
        }
    }

    fn combine_vars(
        &mut self,
        tcx: TyCtxt<'tcx>,
        t: CombineMapType,
        a: Region<'tcx>,
        b: Region<'tcx>,
        origin: SubregionOrigin<'tcx>,
    ) -> Region<'tcx> {
        let vars = TwoRegions { a, b };
        if let Some(&c) = self.combine_map(t).get(&vars) {
            return ty::Region::new_var(tcx, c);
        }
        let a_universe = self.universe(a);
        let b_universe = self.universe(b);
        let c_universe = cmp::max(a_universe, b_universe);
        let c = self.new_region_var(c_universe, MiscVariable(origin.span()));
        self.combine_map(t).insert(vars, c);
        self.undo_log.push(AddCombination(t, vars));
        let new_r = ty::Region::new_var(tcx, c);
        for old_r in [a, b] {
            match t {
                Glb => self.make_subregion(origin.clone(), new_r, old_r),
                Lub => self.make_subregion(origin.clone(), old_r, new_r),
            }
        }
        debug!("combine_vars() c={:?}", c);
        new_r
    }

    pub fn universe(&mut self, region: Region<'tcx>) -> ty::UniverseIndex {
        match *region {
            ty::ReStatic
            | ty::ReErased
            | ty::ReLateParam(..)
            | ty::ReEarlyParam(..)
            | ty::ReError(_) => ty::UniverseIndex::ROOT,
            ty::RePlaceholder(placeholder) => placeholder.universe,
            ty::ReVar(vid) => match self.probe_value(vid) {
                Ok(value) => self.universe(value),
                Err(universe) => universe,
            },
            ty::ReBound(..) => bug!("universe(): encountered bound region {:?}", region),
        }
    }

    pub fn vars_since_snapshot(
        &self,
        value_count: usize,
    ) -> (Range<RegionVid>, Vec<RegionVariableOrigin>) {
        let range = RegionVid::from(value_count)..RegionVid::from(self.unification_table.len());
        (
            range.clone(),
            (range.start.index()..range.end.index())
                .map(|index| self.var_infos[ty::RegionVid::from(index)].origin)
                .collect(),
        )
    }

    /// See `InferCtxt::region_constraints_added_in_snapshot`.
    pub fn region_constraints_added_in_snapshot(&self, mark: &Snapshot<'tcx>) -> bool {
        self.undo_log
            .region_constraints_in_snapshot(mark)
            .any(|&elt| matches!(elt, AddConstraint(_)))
    }

    #[inline]
    fn unification_table_mut(&mut self) -> super::UnificationTable<'_, 'tcx, RegionVidKey<'tcx>> {
        ut::UnificationTable::with_log(&mut self.storage.unification_table, self.undo_log)
    }
}

impl fmt::Debug for RegionSnapshot {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "RegionSnapshot")
    }
}

impl<'tcx> fmt::Debug for GenericKind<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            GenericKind::Param(ref p) => write!(f, "{p:?}"),
            GenericKind::Placeholder(ref p) => write!(f, "{p:?}"),
            GenericKind::Alias(ref p) => write!(f, "{p:?}"),
        }
    }
}

impl<'tcx> fmt::Display for GenericKind<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            GenericKind::Param(ref p) => write!(f, "{p}"),
            GenericKind::Placeholder(ref p) => write!(f, "{p:?}"),
            GenericKind::Alias(ref p) => write!(f, "{p}"),
        }
    }
}

impl<'tcx> GenericKind<'tcx> {
    pub fn to_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match *self {
            GenericKind::Param(ref p) => p.to_ty(tcx),
            GenericKind::Placeholder(ref p) => Ty::new_placeholder(tcx, *p),
            GenericKind::Alias(ref p) => p.to_ty(tcx),
        }
    }
}

impl<'tcx> VerifyBound<'tcx> {
    pub fn must_hold(&self) -> bool {
        match self {
            VerifyBound::IfEq(..) => false,
            VerifyBound::OutlivedBy(re) => re.is_static(),
            VerifyBound::IsEmpty => false,
            VerifyBound::AnyBound(bs) => bs.iter().any(|b| b.must_hold()),
            VerifyBound::AllBounds(bs) => bs.iter().all(|b| b.must_hold()),
        }
    }

    pub fn cannot_hold(&self) -> bool {
        match self {
            VerifyBound::IfEq(..) => false,
            VerifyBound::IsEmpty => false,
            VerifyBound::OutlivedBy(_) => false,
            VerifyBound::AnyBound(bs) => bs.iter().all(|b| b.cannot_hold()),
            VerifyBound::AllBounds(bs) => bs.iter().any(|b| b.cannot_hold()),
        }
    }

    pub fn or(self, vb: VerifyBound<'tcx>) -> VerifyBound<'tcx> {
        if self.must_hold() || vb.cannot_hold() {
            self
        } else if self.cannot_hold() || vb.must_hold() {
            vb
        } else {
            VerifyBound::AnyBound(vec![self, vb])
        }
    }
}

impl<'tcx> RegionConstraintData<'tcx> {
    /// Returns `true` if this region constraint data contains no constraints, and `false`
    /// otherwise.
    pub fn is_empty(&self) -> bool {
        let RegionConstraintData { constraints, member_constraints, verifys } = self;
        constraints.is_empty() && member_constraints.is_empty() && verifys.is_empty()
    }
}

impl<'tcx> Rollback<UndoLog<'tcx>> for RegionConstraintStorage<'tcx> {
    fn reverse(&mut self, undo: UndoLog<'tcx>) {
        self.rollback_undo_entry(undo)
    }
}