rustc_abi/callconv.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
mod abi {
pub(crate) use crate::Primitive::*;
pub(crate) use crate::Variants;
}
#[cfg(feature = "nightly")]
use rustc_macros::HashStable_Generic;
use crate::{Align, HasDataLayout, Size};
#[cfg(feature = "nightly")]
use crate::{BackendRepr, FieldsShape, TyAbiInterface, TyAndLayout};
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum RegKind {
Integer,
Float,
Vector,
}
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct Reg {
pub kind: RegKind,
pub size: Size,
}
macro_rules! reg_ctor {
($name:ident, $kind:ident, $bits:expr) => {
pub fn $name() -> Reg {
Reg { kind: RegKind::$kind, size: Size::from_bits($bits) }
}
};
}
impl Reg {
reg_ctor!(i8, Integer, 8);
reg_ctor!(i16, Integer, 16);
reg_ctor!(i32, Integer, 32);
reg_ctor!(i64, Integer, 64);
reg_ctor!(i128, Integer, 128);
reg_ctor!(f32, Float, 32);
reg_ctor!(f64, Float, 64);
}
impl Reg {
pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
let dl = cx.data_layout();
match self.kind {
RegKind::Integer => match self.size.bits() {
1 => dl.i1_align.abi,
2..=8 => dl.i8_align.abi,
9..=16 => dl.i16_align.abi,
17..=32 => dl.i32_align.abi,
33..=64 => dl.i64_align.abi,
65..=128 => dl.i128_align.abi,
_ => panic!("unsupported integer: {self:?}"),
},
RegKind::Float => match self.size.bits() {
16 => dl.f16_align.abi,
32 => dl.f32_align.abi,
64 => dl.f64_align.abi,
128 => dl.f128_align.abi,
_ => panic!("unsupported float: {self:?}"),
},
RegKind::Vector => dl.vector_align(self.size).abi,
}
}
}
/// Return value from the `homogeneous_aggregate` test function.
#[derive(Copy, Clone, Debug)]
pub enum HomogeneousAggregate {
/// Yes, all the "leaf fields" of this struct are passed in the
/// same way (specified in the `Reg` value).
Homogeneous(Reg),
/// There are no leaf fields at all.
NoData,
}
/// Error from the `homogeneous_aggregate` test function, indicating
/// there are distinct leaf fields passed in different ways,
/// or this is uninhabited.
#[derive(Copy, Clone, Debug)]
pub struct Heterogeneous;
impl HomogeneousAggregate {
/// If this is a homogeneous aggregate, returns the homogeneous
/// unit, else `None`.
pub fn unit(self) -> Option<Reg> {
match self {
HomogeneousAggregate::Homogeneous(reg) => Some(reg),
HomogeneousAggregate::NoData => None,
}
}
/// Try to combine two `HomogeneousAggregate`s, e.g. from two fields in
/// the same `struct`. Only succeeds if only one of them has any data,
/// or both units are identical.
fn merge(self, other: HomogeneousAggregate) -> Result<HomogeneousAggregate, Heterogeneous> {
match (self, other) {
(x, HomogeneousAggregate::NoData) | (HomogeneousAggregate::NoData, x) => Ok(x),
(HomogeneousAggregate::Homogeneous(a), HomogeneousAggregate::Homogeneous(b)) => {
if a != b {
return Err(Heterogeneous);
}
Ok(self)
}
}
}
}
#[cfg(feature = "nightly")]
impl<'a, Ty> TyAndLayout<'a, Ty> {
/// Returns `Homogeneous` if this layout is an aggregate containing fields of
/// only a single type (e.g., `(u32, u32)`). Such aggregates are often
/// special-cased in ABIs.
///
/// Note: We generally ignore 1-ZST fields when computing this value (see #56877).
///
/// This is public so that it can be used in unit tests, but
/// should generally only be relevant to the ABI details of
/// specific targets.
pub fn homogeneous_aggregate<C>(&self, cx: &C) -> Result<HomogeneousAggregate, Heterogeneous>
where
Ty: TyAbiInterface<'a, C> + Copy,
{
match self.backend_repr {
BackendRepr::Uninhabited => Err(Heterogeneous),
// The primitive for this algorithm.
BackendRepr::Scalar(scalar) => {
let kind = match scalar.primitive() {
abi::Int(..) | abi::Pointer(_) => RegKind::Integer,
abi::Float(_) => RegKind::Float,
};
Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size }))
}
BackendRepr::Vector { .. } => {
assert!(!self.is_zst());
Ok(HomogeneousAggregate::Homogeneous(Reg {
kind: RegKind::Vector,
size: self.size,
}))
}
BackendRepr::ScalarPair(..) | BackendRepr::Memory { sized: true } => {
// Helper for computing `homogeneous_aggregate`, allowing a custom
// starting offset (used below for handling variants).
let from_fields_at =
|layout: Self,
start: Size|
-> Result<(HomogeneousAggregate, Size), Heterogeneous> {
let is_union = match layout.fields {
FieldsShape::Primitive => {
unreachable!("aggregates can't have `FieldsShape::Primitive`")
}
FieldsShape::Array { count, .. } => {
assert_eq!(start, Size::ZERO);
let result = if count > 0 {
layout.field(cx, 0).homogeneous_aggregate(cx)?
} else {
HomogeneousAggregate::NoData
};
return Ok((result, layout.size));
}
FieldsShape::Union(_) => true,
FieldsShape::Arbitrary { .. } => false,
};
let mut result = HomogeneousAggregate::NoData;
let mut total = start;
for i in 0..layout.fields.count() {
let field = layout.field(cx, i);
if field.is_1zst() {
// No data here and no impact on layout, can be ignored.
// (We might be able to also ignore all aligned ZST but that's less clear.)
continue;
}
if !is_union && total != layout.fields.offset(i) {
// This field isn't just after the previous one we considered, abort.
return Err(Heterogeneous);
}
result = result.merge(field.homogeneous_aggregate(cx)?)?;
// Keep track of the offset (without padding).
let size = field.size;
if is_union {
total = total.max(size);
} else {
total += size;
}
}
Ok((result, total))
};
let (mut result, mut total) = from_fields_at(*self, Size::ZERO)?;
match &self.variants {
abi::Variants::Single { .. } => {}
abi::Variants::Multiple { variants, .. } => {
// Treat enum variants like union members.
// HACK(eddyb) pretend the `enum` field (discriminant)
// is at the start of every variant (otherwise the gap
// at the start of all variants would disqualify them).
//
// NB: for all tagged `enum`s (which include all non-C-like
// `enum`s with defined FFI representation), this will
// match the homogeneous computation on the equivalent
// `struct { tag; union { variant1; ... } }` and/or
// `union { struct { tag; variant1; } ... }`
// (the offsets of variant fields should be identical
// between the two for either to be a homogeneous aggregate).
let variant_start = total;
for variant_idx in variants.indices() {
let (variant_result, variant_total) =
from_fields_at(self.for_variant(cx, variant_idx), variant_start)?;
result = result.merge(variant_result)?;
total = total.max(variant_total);
}
}
}
// There needs to be no padding.
if total != self.size {
Err(Heterogeneous)
} else {
match result {
HomogeneousAggregate::Homogeneous(_) => {
assert_ne!(total, Size::ZERO);
}
HomogeneousAggregate::NoData => {
assert_eq!(total, Size::ZERO);
}
}
Ok(result)
}
}
BackendRepr::Memory { sized: false } => Err(Heterogeneous),
}
}
}