rustc_type_ir/fold.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
//! A folding traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a modifying traversal. It consumes the data structure, producing a
//! (possibly) modified version of it. Both fallible and infallible versions are
//! available. The name is potentially confusing, because this traversal is more
//! like `Iterator::map` than `Iterator::fold`.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! modification. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three traits involved in each traversal.
//! - `TypeFoldable`. This is implemented once for many types, including:
//! - Types of interest, for which the methods delegate to the folder.
//! - All other types, including generic containers like `Vec` and `Option`.
//! It defines a "skeleton" of how they should be folded.
//! - `TypeSuperFoldable`. This is implemented only for recursive types of
//! interest, and defines the folding "skeleton" for these types. (This
//! excludes `Region` because it is non-recursive, i.e. it never contains
//! other types of interest.)
//! - `TypeFolder`/`FallibleTypeFolder`. One of these is implemented for each
//! folder. This defines how types of interest are folded.
//!
//! This means each fold is a mixture of (a) generic folding operations, and (b)
//! custom fold operations that are specific to the folder.
//! - The `TypeFoldable` impls handle most of the traversal, and call into
//! `TypeFolder`/`FallibleTypeFolder` when they encounter a type of interest.
//! - A `TypeFolder`/`FallibleTypeFolder` may call into another `TypeFoldable`
//! impl, because some of the types of interest are recursive and can contain
//! other types of interest.
//! - A `TypeFolder`/`FallibleTypeFolder` may also call into a `TypeSuperFoldable`
//! impl, because each folder might provide custom handling only for some types
//! of interest, or only for some variants of each type of interest, and then
//! use default traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeFoldable` and `U:
//! TypeFoldable`, and an instance `s = S(ty, u)`, it would be folded like so:
//! ```text
//! s.fold_with(folder) calls
//! - ty.fold_with(folder) calls
//! - folder.fold_ty(ty) may call
//! - ty.super_fold_with(folder)
//! - u.fold_with(folder)
//! ```
use std::mem;
use rustc_index::{Idx, IndexVec};
use thin_vec::ThinVec;
use tracing::{debug, instrument};
use crate::data_structures::Lrc;
use crate::inherent::*;
use crate::visit::{TypeVisitable, TypeVisitableExt as _};
use crate::{self as ty, Interner};
#[cfg(feature = "nightly")]
type Never = !;
#[cfg(not(feature = "nightly"))]
type Never = std::convert::Infallible;
/// This trait is implemented for every type that can be folded,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
///
/// This trait is a sub-trait of `TypeVisitable`. This is because many
/// `TypeFolder` instances use the methods in `TypeVisitableExt` while folding,
/// which means in practice almost every foldable type needs to also be
/// visitable. (However, there are some types that are visitable without being
/// foldable.)
pub trait TypeFoldable<I: Interner>: TypeVisitable<I> {
/// The entry point for folding. To fold a value `t` with a folder `f`
/// call: `t.try_fold_with(f)`.
///
/// For most types, this just traverses the value, calling `try_fold_with`
/// on each field/element.
///
/// For types of interest (such as `Ty`), the implementation of this method
/// calls a folder method specifically for that type (such as
/// `F::try_fold_ty`). This is where control transfers from `TypeFoldable`
/// to `TypeFolder`.
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error>;
/// A convenient alternative to `try_fold_with` for use with infallible
/// folders. Do not override this method, to ensure coherence with
/// `try_fold_with`.
fn fold_with<F: TypeFolder<I>>(self, folder: &mut F) -> Self {
match self.try_fold_with(folder) {
Ok(t) => t,
}
}
}
// This trait is implemented for types of interest.
pub trait TypeSuperFoldable<I: Interner>: TypeFoldable<I> {
/// Provides a default fold for a recursive type of interest. This should
/// only be called within `TypeFolder` methods, when a non-custom traversal
/// is desired for the value of the type of interest passed to that method.
/// For example, in `MyFolder::try_fold_ty(ty)`, it is valid to call
/// `ty.try_super_fold_with(self)`, but any other folding should be done
/// with `xyz.try_fold_with(self)`.
fn try_super_fold_with<F: FallibleTypeFolder<I>>(
self,
folder: &mut F,
) -> Result<Self, F::Error>;
/// A convenient alternative to `try_super_fold_with` for use with
/// infallible folders. Do not override this method, to ensure coherence
/// with `try_super_fold_with`.
fn super_fold_with<F: TypeFolder<I>>(self, folder: &mut F) -> Self {
match self.try_super_fold_with(folder) {
Ok(t) => t,
}
}
}
/// This trait is implemented for every infallible folding traversal. There is
/// a fold method defined for every type of interest. Each such method has a
/// default that does an "identity" fold. Implementations of these methods
/// often fall back to a `super_fold_with` method if the primary argument
/// doesn't satisfy a particular condition.
///
/// A blanket implementation of [`FallibleTypeFolder`] will defer to
/// the infallible methods of this trait to ensure that the two APIs
/// are coherent.
pub trait TypeFolder<I: Interner>: FallibleTypeFolder<I, Error = Never> {
fn cx(&self) -> I;
fn fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T>
where
T: TypeFoldable<I>,
{
t.super_fold_with(self)
}
fn fold_ty(&mut self, t: I::Ty) -> I::Ty {
t.super_fold_with(self)
}
// The default region folder is a no-op because `Region` is non-recursive
// and has no `super_fold_with` method to call.
fn fold_region(&mut self, r: I::Region) -> I::Region {
r
}
fn fold_const(&mut self, c: I::Const) -> I::Const {
c.super_fold_with(self)
}
fn fold_predicate(&mut self, p: I::Predicate) -> I::Predicate {
p.super_fold_with(self)
}
}
/// This trait is implemented for every folding traversal. There is a fold
/// method defined for every type of interest. Each such method has a default
/// that does an "identity" fold.
///
/// A blanket implementation of this trait (that defers to the relevant
/// method of [`TypeFolder`]) is provided for all infallible folders in
/// order to ensure the two APIs are coherent.
pub trait FallibleTypeFolder<I: Interner>: Sized {
type Error;
fn cx(&self) -> I;
fn try_fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> Result<ty::Binder<I, T>, Self::Error>
where
T: TypeFoldable<I>,
{
t.try_super_fold_with(self)
}
fn try_fold_ty(&mut self, t: I::Ty) -> Result<I::Ty, Self::Error> {
t.try_super_fold_with(self)
}
// The default region folder is a no-op because `Region` is non-recursive
// and has no `super_fold_with` method to call.
fn try_fold_region(&mut self, r: I::Region) -> Result<I::Region, Self::Error> {
Ok(r)
}
fn try_fold_const(&mut self, c: I::Const) -> Result<I::Const, Self::Error> {
c.try_super_fold_with(self)
}
fn try_fold_predicate(&mut self, p: I::Predicate) -> Result<I::Predicate, Self::Error> {
p.try_super_fold_with(self)
}
}
// This blanket implementation of the fallible trait for infallible folders
// delegates to infallible methods to ensure coherence.
impl<I: Interner, F> FallibleTypeFolder<I> for F
where
F: TypeFolder<I>,
{
type Error = Never;
fn cx(&self) -> I {
TypeFolder::cx(self)
}
fn try_fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> Result<ty::Binder<I, T>, Never>
where
T: TypeFoldable<I>,
{
Ok(self.fold_binder(t))
}
fn try_fold_ty(&mut self, t: I::Ty) -> Result<I::Ty, Never> {
Ok(self.fold_ty(t))
}
fn try_fold_region(&mut self, r: I::Region) -> Result<I::Region, Never> {
Ok(self.fold_region(r))
}
fn try_fold_const(&mut self, c: I::Const) -> Result<I::Const, Never> {
Ok(self.fold_const(c))
}
fn try_fold_predicate(&mut self, p: I::Predicate) -> Result<I::Predicate, Never> {
Ok(self.fold_predicate(p))
}
}
///////////////////////////////////////////////////////////////////////////
// Traversal implementations.
impl<I: Interner, T: TypeFoldable<I>, U: TypeFoldable<I>> TypeFoldable<I> for (T, U) {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<(T, U), F::Error> {
Ok((self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?))
}
}
impl<I: Interner, A: TypeFoldable<I>, B: TypeFoldable<I>, C: TypeFoldable<I>> TypeFoldable<I>
for (A, B, C)
{
fn try_fold_with<F: FallibleTypeFolder<I>>(
self,
folder: &mut F,
) -> Result<(A, B, C), F::Error> {
Ok((
self.0.try_fold_with(folder)?,
self.1.try_fold_with(folder)?,
self.2.try_fold_with(folder)?,
))
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Option<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
Ok(match self {
Some(v) => Some(v.try_fold_with(folder)?),
None => None,
})
}
}
impl<I: Interner, T: TypeFoldable<I>, E: TypeFoldable<I>> TypeFoldable<I> for Result<T, E> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
Ok(match self {
Ok(v) => Ok(v.try_fold_with(folder)?),
Err(e) => Err(e.try_fold_with(folder)?),
})
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Lrc<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(mut self, folder: &mut F) -> Result<Self, F::Error> {
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `Lrc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `Lrc::make_mut` will accomplish (by
// allocating a new `Lrc` and cloning the `T` only if required).
// This is done *before* casting to `Lrc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
Lrc::make_mut(&mut self);
// Casting to `Lrc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = Lrc::into_raw(self).cast::<mem::ManuallyDrop<T>>();
let mut unique = Lrc::from_raw(ptr);
// Call to `Lrc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = Lrc::get_mut(&mut unique).unwrap_unchecked();
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = mem::ManuallyDrop::take(slot);
let folded = owned.try_fold_with(folder)?;
*slot = mem::ManuallyDrop::new(folded);
// Cast back to `Lrc<T>`.
Ok(Lrc::from_raw(Lrc::into_raw(unique).cast()))
}
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Box<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(mut self, folder: &mut F) -> Result<Self, F::Error> {
*self = (*self).try_fold_with(folder)?;
Ok(self)
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Vec<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.into_iter().map(|t| t.try_fold_with(folder)).collect()
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for ThinVec<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.into_iter().map(|t| t.try_fold_with(folder)).collect()
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Box<[T]> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
Vec::from(self).try_fold_with(folder).map(Vec::into_boxed_slice)
}
}
impl<I: Interner, T: TypeFoldable<I>, Ix: Idx> TypeFoldable<I> for IndexVec<Ix, T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.raw.try_fold_with(folder).map(IndexVec::from_raw)
}
}
///////////////////////////////////////////////////////////////////////////
// Shifter
//
// Shifts the De Bruijn indices on all escaping bound vars by a
// fixed amount. Useful in instantiation or when otherwise introducing
// a binding level that is not intended to capture the existing bound
// vars. See comment on `shift_vars_through_binders` method in
// `rustc_middle/src/ty/generic_args.rs` for more details.
struct Shifter<I: Interner> {
cx: I,
current_index: ty::DebruijnIndex,
amount: u32,
}
impl<I: Interner> Shifter<I> {
fn new(cx: I, amount: u32) -> Self {
Shifter { cx, current_index: ty::INNERMOST, amount }
}
}
impl<I: Interner> TypeFolder<I> for Shifter<I> {
fn cx(&self) -> I {
self.cx
}
fn fold_binder<T: TypeFoldable<I>>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T> {
self.current_index.shift_in(1);
let t = t.super_fold_with(self);
self.current_index.shift_out(1);
t
}
fn fold_region(&mut self, r: I::Region) -> I::Region {
match r.kind() {
ty::ReBound(debruijn, br) if debruijn >= self.current_index => {
let debruijn = debruijn.shifted_in(self.amount);
Region::new_bound(self.cx, debruijn, br)
}
_ => r,
}
}
fn fold_ty(&mut self, ty: I::Ty) -> I::Ty {
match ty.kind() {
ty::Bound(debruijn, bound_ty) if debruijn >= self.current_index => {
let debruijn = debruijn.shifted_in(self.amount);
Ty::new_bound(self.cx, debruijn, bound_ty)
}
_ if ty.has_vars_bound_at_or_above(self.current_index) => ty.super_fold_with(self),
_ => ty,
}
}
fn fold_const(&mut self, ct: I::Const) -> I::Const {
match ct.kind() {
ty::ConstKind::Bound(debruijn, bound_ct) if debruijn >= self.current_index => {
let debruijn = debruijn.shifted_in(self.amount);
Const::new_bound(self.cx, debruijn, bound_ct)
}
_ => ct.super_fold_with(self),
}
}
fn fold_predicate(&mut self, p: I::Predicate) -> I::Predicate {
if p.has_vars_bound_at_or_above(self.current_index) { p.super_fold_with(self) } else { p }
}
}
pub fn shift_region<I: Interner>(cx: I, region: I::Region, amount: u32) -> I::Region {
match region.kind() {
ty::ReBound(debruijn, br) if amount > 0 => {
Region::new_bound(cx, debruijn.shifted_in(amount), br)
}
_ => region,
}
}
#[instrument(level = "trace", skip(cx), ret)]
pub fn shift_vars<I: Interner, T>(cx: I, value: T, amount: u32) -> T
where
T: TypeFoldable<I>,
{
if amount == 0 || !value.has_escaping_bound_vars() {
value
} else {
value.fold_with(&mut Shifter::new(cx, amount))
}
}
///////////////////////////////////////////////////////////////////////////
// Region folder
pub fn fold_regions<I: Interner, T>(
cx: I,
value: T,
mut f: impl FnMut(I::Region, ty::DebruijnIndex) -> I::Region,
) -> T
where
T: TypeFoldable<I>,
{
value.fold_with(&mut RegionFolder::new(cx, &mut f))
}
/// Folds over the substructure of a type, visiting its component
/// types and all regions that occur *free* within it.
///
/// That is, function pointer types and trait object can introduce
/// new bound regions which are not visited by this visitors as
/// they are not free; only regions that occur free will be
/// visited by `fld_r`.
pub struct RegionFolder<'a, I: Interner> {
cx: I,
/// Stores the index of a binder *just outside* the stuff we have
/// visited. So this begins as INNERMOST; when we pass through a
/// binder, it is incremented (via `shift_in`).
current_index: ty::DebruijnIndex,
/// Callback invokes for each free region. The `DebruijnIndex`
/// points to the binder *just outside* the ones we have passed
/// through.
fold_region_fn: &'a mut (dyn FnMut(I::Region, ty::DebruijnIndex) -> I::Region + 'a),
}
impl<'a, I: Interner> RegionFolder<'a, I> {
#[inline]
pub fn new(
cx: I,
fold_region_fn: &'a mut dyn FnMut(I::Region, ty::DebruijnIndex) -> I::Region,
) -> RegionFolder<'a, I> {
RegionFolder { cx, current_index: ty::INNERMOST, fold_region_fn }
}
}
impl<'a, I: Interner> TypeFolder<I> for RegionFolder<'a, I> {
fn cx(&self) -> I {
self.cx
}
fn fold_binder<T: TypeFoldable<I>>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T> {
self.current_index.shift_in(1);
let t = t.super_fold_with(self);
self.current_index.shift_out(1);
t
}
#[instrument(skip(self), level = "debug", ret)]
fn fold_region(&mut self, r: I::Region) -> I::Region {
match r.kind() {
ty::ReBound(debruijn, _) if debruijn < self.current_index => {
debug!(?self.current_index, "skipped bound region");
r
}
_ => {
debug!(?self.current_index, "folding free region");
(self.fold_region_fn)(r, self.current_index)
}
}
}
}