1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
//! Lowers the AST to the HIR.
//!
//! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
//! much like a fold. Where lowering involves a bit more work things get more
//! interesting and there are some invariants you should know about. These mostly
//! concern spans and IDs.
//!
//! Spans are assigned to AST nodes during parsing and then are modified during
//! expansion to indicate the origin of a node and the process it went through
//! being expanded. IDs are assigned to AST nodes just before lowering.
//!
//! For the simpler lowering steps, IDs and spans should be preserved. Unlike
//! expansion we do not preserve the process of lowering in the spans, so spans
//! should not be modified here. When creating a new node (as opposed to
//! "folding" an existing one), create a new ID using `next_id()`.
//!
//! You must ensure that IDs are unique. That means that you should only use the
//! ID from an AST node in a single HIR node (you can assume that AST node-IDs
//! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
//! If you do, you must then set the new node's ID to a fresh one.
//!
//! Spans are used for error messages and for tools to map semantics back to
//! source code. It is therefore not as important with spans as IDs to be strict
//! about use (you can't break the compiler by screwing up a span). Obviously, a
//! HIR node can only have a single span. But multiple nodes can have the same
//! span and spans don't need to be kept in order, etc. Where code is preserved
//! by lowering, it should have the same span as in the AST. Where HIR nodes are
//! new it is probably best to give a span for the whole AST node being lowered.
//! All nodes should have real spans; don't use dummy spans. Tools are likely to
//! get confused if the spans from leaf AST nodes occur in multiple places
//! in the HIR, especially for multiple identifiers.

#![feature(box_patterns)]
#![feature(let_chains)]
#![feature(never_type)]
#![recursion_limit = "256"]
#![allow(rustc::potential_query_instability)]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]

#[macro_use]
extern crate tracing;

use crate::errors::{AssocTyParentheses, AssocTyParenthesesSub, MisplacedImplTrait, TraitFnAsync};

use rustc_arena::declare_arena;
use rustc_ast::ptr::P;
use rustc_ast::visit;
use rustc_ast::{self as ast, *};
use rustc_ast_pretty::pprust;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sorted_map::SortedMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::Lrc;
use rustc_errors::{DiagnosticArgFromDisplay, Handler, StashKey};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, LifetimeRes, Namespace, PartialRes, PerNS, Res};
use rustc_hir::def_id::{LocalDefId, CRATE_DEF_ID};
use rustc_hir::definitions::DefPathData;
use rustc_hir::{ConstArg, GenericArg, ItemLocalId, ParamName, TraitCandidate};
use rustc_index::vec::{Idx, IndexVec};
use rustc_middle::span_bug;
use rustc_middle::ty::{ResolverAstLowering, TyCtxt};
use rustc_session::parse::feature_err;
use rustc_span::hygiene::MacroKind;
use rustc_span::source_map::DesugaringKind;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};

use smallvec::SmallVec;
use std::collections::hash_map::Entry;

macro_rules! arena_vec {
    ($this:expr; $($x:expr),*) => (
        $this.arena.alloc_from_iter([$($x),*])
    );
}

mod asm;
mod block;
mod errors;
mod expr;
mod index;
mod item;
mod lifetime_collector;
mod pat;
mod path;

struct LoweringContext<'a, 'hir> {
    tcx: TyCtxt<'hir>,
    resolver: &'a mut ResolverAstLowering,

    /// Used to allocate HIR nodes.
    arena: &'hir hir::Arena<'hir>,

    /// Used to allocate temporary AST nodes for use during lowering.
    /// This allows us to create "fake" AST -- these nodes can sometimes
    /// be allocated on the stack, but other times we need them to live longer
    /// than the current stack frame, so they can be collected into vectors
    /// and things like that.
    ast_arena: &'a Arena<'static>,

    /// Bodies inside the owner being lowered.
    bodies: Vec<(hir::ItemLocalId, &'hir hir::Body<'hir>)>,
    /// Attributes inside the owner being lowered.
    attrs: SortedMap<hir::ItemLocalId, &'hir [Attribute]>,
    /// Collect items that were created by lowering the current owner.
    children: FxHashMap<LocalDefId, hir::MaybeOwner<&'hir hir::OwnerInfo<'hir>>>,

    generator_kind: Option<hir::GeneratorKind>,

    /// When inside an `async` context, this is the `HirId` of the
    /// `task_context` local bound to the resume argument of the generator.
    task_context: Option<hir::HirId>,

    /// Used to get the current `fn`'s def span to point to when using `await`
    /// outside of an `async fn`.
    current_item: Option<Span>,

    catch_scope: Option<NodeId>,
    loop_scope: Option<NodeId>,
    is_in_loop_condition: bool,
    is_in_trait_impl: bool,
    is_in_dyn_type: bool,

    current_hir_id_owner: hir::OwnerId,
    item_local_id_counter: hir::ItemLocalId,
    local_id_to_def_id: SortedMap<ItemLocalId, LocalDefId>,
    trait_map: FxHashMap<ItemLocalId, Box<[TraitCandidate]>>,

    impl_trait_defs: Vec<hir::GenericParam<'hir>>,
    impl_trait_bounds: Vec<hir::WherePredicate<'hir>>,

    /// NodeIds that are lowered inside the current HIR owner.
    node_id_to_local_id: FxHashMap<NodeId, hir::ItemLocalId>,

    allow_try_trait: Option<Lrc<[Symbol]>>,
    allow_gen_future: Option<Lrc<[Symbol]>>,
    allow_into_future: Option<Lrc<[Symbol]>>,

    /// Mapping from generics `def_id`s to TAIT generics `def_id`s.
    /// For each captured lifetime (e.g., 'a), we create a new lifetime parameter that is a generic
    /// defined on the TAIT, so we have type Foo<'a1> = ... and we establish a mapping in this
    /// field from the original parameter 'a to the new parameter 'a1.
    generics_def_id_map: Vec<FxHashMap<LocalDefId, LocalDefId>>,
}

declare_arena!([
    [] tys: rustc_ast::Ty,
    [] aba: rustc_ast::AngleBracketedArgs,
    [] ptr: rustc_ast::PolyTraitRef,
    // This _marker field is needed because `declare_arena` creates `Arena<'tcx>` and we need to
    // use `'tcx`. If we don't have this we get a compile error.
    [] _marker: std::marker::PhantomData<&'tcx ()>,
]);

trait ResolverAstLoweringExt {
    fn legacy_const_generic_args(&self, expr: &Expr) -> Option<Vec<usize>>;
    fn get_partial_res(&self, id: NodeId) -> Option<PartialRes>;
    fn get_import_res(&self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;
    fn get_label_res(&self, id: NodeId) -> Option<NodeId>;
    fn get_lifetime_res(&self, id: NodeId) -> Option<LifetimeRes>;
    fn take_extra_lifetime_params(&mut self, id: NodeId) -> Vec<(Ident, NodeId, LifetimeRes)>;
    fn decl_macro_kind(&self, def_id: LocalDefId) -> MacroKind;
}

impl ResolverAstLoweringExt for ResolverAstLowering {
    fn legacy_const_generic_args(&self, expr: &Expr) -> Option<Vec<usize>> {
        if let ExprKind::Path(None, path) = &expr.kind {
            // Don't perform legacy const generics rewriting if the path already
            // has generic arguments.
            if path.segments.last().unwrap().args.is_some() {
                return None;
            }

            let partial_res = self.partial_res_map.get(&expr.id)?;
            if partial_res.unresolved_segments() != 0 {
                return None;
            }

            if let Res::Def(DefKind::Fn, def_id) = partial_res.base_res() {
                // We only support cross-crate argument rewriting. Uses
                // within the same crate should be updated to use the new
                // const generics style.
                if def_id.is_local() {
                    return None;
                }

                if let Some(v) = self.legacy_const_generic_args.get(&def_id) {
                    return v.clone();
                }
            }
        }

        None
    }

    /// Obtains resolution for a `NodeId` with a single resolution.
    fn get_partial_res(&self, id: NodeId) -> Option<PartialRes> {
        self.partial_res_map.get(&id).copied()
    }

    /// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
    fn get_import_res(&self, id: NodeId) -> PerNS<Option<Res<NodeId>>> {
        self.import_res_map.get(&id).copied().unwrap_or_default()
    }

    /// Obtains resolution for a label with the given `NodeId`.
    fn get_label_res(&self, id: NodeId) -> Option<NodeId> {
        self.label_res_map.get(&id).copied()
    }

    /// Obtains resolution for a lifetime with the given `NodeId`.
    fn get_lifetime_res(&self, id: NodeId) -> Option<LifetimeRes> {
        self.lifetimes_res_map.get(&id).copied()
    }

    /// Obtain the list of lifetimes parameters to add to an item.
    ///
    /// Extra lifetime parameters should only be added in places that can appear
    /// as a `binder` in `LifetimeRes`.
    ///
    /// The extra lifetimes that appear from the parenthesized `Fn`-trait desugaring
    /// should appear at the enclosing `PolyTraitRef`.
    fn take_extra_lifetime_params(&mut self, id: NodeId) -> Vec<(Ident, NodeId, LifetimeRes)> {
        self.extra_lifetime_params_map.remove(&id).unwrap_or_default()
    }

    fn decl_macro_kind(&self, def_id: LocalDefId) -> MacroKind {
        self.builtin_macro_kinds.get(&def_id).copied().unwrap_or(MacroKind::Bang)
    }
}

/// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
/// and if so, what meaning it has.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ImplTraitContext {
    /// Treat `impl Trait` as shorthand for a new universal generic parameter.
    /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
    /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
    ///
    /// Newly generated parameters should be inserted into the given `Vec`.
    Universal,

    /// Treat `impl Trait` as shorthand for a new opaque type.
    /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
    /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
    ///
    ReturnPositionOpaqueTy {
        /// Origin: Either OpaqueTyOrigin::FnReturn or OpaqueTyOrigin::AsyncFn,
        origin: hir::OpaqueTyOrigin,
        in_trait: bool,
    },
    /// Impl trait in type aliases.
    TypeAliasesOpaqueTy,
    /// `impl Trait` is not accepted in this position.
    Disallowed(ImplTraitPosition),
}

/// Position in which `impl Trait` is disallowed.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ImplTraitPosition {
    Path,
    Variable,
    Type,
    Trait,
    AsyncBlock,
    Bound,
    Generic,
    ExternFnParam,
    ClosureParam,
    PointerParam,
    FnTraitParam,
    TraitParam,
    ImplParam,
    ExternFnReturn,
    ClosureReturn,
    PointerReturn,
    FnTraitReturn,
    TraitReturn,
    ImplReturn,
}

impl std::fmt::Display for ImplTraitPosition {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let name = match self {
            ImplTraitPosition::Path => "path",
            ImplTraitPosition::Variable => "variable binding",
            ImplTraitPosition::Type => "type",
            ImplTraitPosition::Trait => "trait",
            ImplTraitPosition::AsyncBlock => "async block",
            ImplTraitPosition::Bound => "bound",
            ImplTraitPosition::Generic => "generic",
            ImplTraitPosition::ExternFnParam => "`extern fn` param",
            ImplTraitPosition::ClosureParam => "closure param",
            ImplTraitPosition::PointerParam => "`fn` pointer param",
            ImplTraitPosition::FnTraitParam => "`Fn` trait param",
            ImplTraitPosition::TraitParam => "trait method param",
            ImplTraitPosition::ImplParam => "`impl` method param",
            ImplTraitPosition::ExternFnReturn => "`extern fn` return",
            ImplTraitPosition::ClosureReturn => "closure return",
            ImplTraitPosition::PointerReturn => "`fn` pointer return",
            ImplTraitPosition::FnTraitReturn => "`Fn` trait return",
            ImplTraitPosition::TraitReturn => "trait method return",
            ImplTraitPosition::ImplReturn => "`impl` method return",
        };

        write!(f, "{}", name)
    }
}

#[derive(Debug, PartialEq, Eq)]
enum FnDeclKind {
    Fn,
    Inherent,
    ExternFn,
    Closure,
    Pointer,
    Trait,
    Impl,
}

impl FnDeclKind {
    fn impl_trait_allowed(&self, tcx: TyCtxt<'_>) -> bool {
        match self {
            FnDeclKind::Fn | FnDeclKind::Inherent => true,
            FnDeclKind::Impl if tcx.features().return_position_impl_trait_in_trait => true,
            FnDeclKind::Trait if tcx.features().return_position_impl_trait_in_trait => true,
            _ => false,
        }
    }

    fn async_fn_allowed(&self, tcx: TyCtxt<'_>) -> bool {
        match self {
            FnDeclKind::Fn | FnDeclKind::Inherent => true,
            FnDeclKind::Impl if tcx.features().async_fn_in_trait => true,
            FnDeclKind::Trait if tcx.features().async_fn_in_trait => true,
            _ => false,
        }
    }
}

#[derive(Copy, Clone)]
enum AstOwner<'a> {
    NonOwner,
    Crate(&'a ast::Crate),
    Item(&'a ast::Item),
    AssocItem(&'a ast::AssocItem, visit::AssocCtxt),
    ForeignItem(&'a ast::ForeignItem),
}

fn index_crate<'a>(
    node_id_to_def_id: &FxHashMap<NodeId, LocalDefId>,
    krate: &'a Crate,
) -> IndexVec<LocalDefId, AstOwner<'a>> {
    let mut indexer = Indexer { node_id_to_def_id, index: IndexVec::new() };
    indexer.index.ensure_contains_elem(CRATE_DEF_ID, || AstOwner::NonOwner);
    indexer.index[CRATE_DEF_ID] = AstOwner::Crate(krate);
    visit::walk_crate(&mut indexer, krate);
    return indexer.index;

    struct Indexer<'s, 'a> {
        node_id_to_def_id: &'s FxHashMap<NodeId, LocalDefId>,
        index: IndexVec<LocalDefId, AstOwner<'a>>,
    }

    impl<'a> visit::Visitor<'a> for Indexer<'_, 'a> {
        fn visit_attribute(&mut self, _: &'a Attribute) {
            // We do not want to lower expressions that appear in attributes,
            // as they are not accessible to the rest of the HIR.
        }

        fn visit_item(&mut self, item: &'a ast::Item) {
            let def_id = self.node_id_to_def_id[&item.id];
            self.index.ensure_contains_elem(def_id, || AstOwner::NonOwner);
            self.index[def_id] = AstOwner::Item(item);
            visit::walk_item(self, item)
        }

        fn visit_assoc_item(&mut self, item: &'a ast::AssocItem, ctxt: visit::AssocCtxt) {
            let def_id = self.node_id_to_def_id[&item.id];
            self.index.ensure_contains_elem(def_id, || AstOwner::NonOwner);
            self.index[def_id] = AstOwner::AssocItem(item, ctxt);
            visit::walk_assoc_item(self, item, ctxt);
        }

        fn visit_foreign_item(&mut self, item: &'a ast::ForeignItem) {
            let def_id = self.node_id_to_def_id[&item.id];
            self.index.ensure_contains_elem(def_id, || AstOwner::NonOwner);
            self.index[def_id] = AstOwner::ForeignItem(item);
            visit::walk_foreign_item(self, item);
        }
    }
}

/// Compute the hash for the HIR of the full crate.
/// This hash will then be part of the crate_hash which is stored in the metadata.
fn compute_hir_hash(
    tcx: TyCtxt<'_>,
    owners: &IndexVec<LocalDefId, hir::MaybeOwner<&hir::OwnerInfo<'_>>>,
) -> Fingerprint {
    let mut hir_body_nodes: Vec<_> = owners
        .iter_enumerated()
        .filter_map(|(def_id, info)| {
            let info = info.as_owner()?;
            let def_path_hash = tcx.hir().def_path_hash(def_id);
            Some((def_path_hash, info))
        })
        .collect();
    hir_body_nodes.sort_unstable_by_key(|bn| bn.0);

    tcx.with_stable_hashing_context(|mut hcx| {
        let mut stable_hasher = StableHasher::new();
        hir_body_nodes.hash_stable(&mut hcx, &mut stable_hasher);
        stable_hasher.finish()
    })
}

pub fn lower_to_hir<'hir>(tcx: TyCtxt<'hir>, (): ()) -> hir::Crate<'hir> {
    let sess = tcx.sess;
    let krate = tcx.untracked_crate.steal();
    let mut resolver = tcx.resolver_for_lowering(()).steal();

    let ast_index = index_crate(&resolver.node_id_to_def_id, &krate);
    let mut owners = IndexVec::from_fn_n(
        |_| hir::MaybeOwner::Phantom,
        tcx.definitions_untracked().def_index_count(),
    );

    let ast_arena = Arena::default();

    for def_id in ast_index.indices() {
        item::ItemLowerer {
            tcx,
            resolver: &mut resolver,
            ast_arena: &ast_arena,
            ast_index: &ast_index,
            owners: &mut owners,
        }
        .lower_node(def_id);
    }

    // Drop AST to free memory
    std::mem::drop(ast_index);
    sess.time("drop_ast", || std::mem::drop(krate));

    // Discard hygiene data, which isn't required after lowering to HIR.
    if !sess.opts.unstable_opts.keep_hygiene_data {
        rustc_span::hygiene::clear_syntax_context_map();
    }

    let hir_hash = compute_hir_hash(tcx, &owners);
    hir::Crate { owners, hir_hash }
}

#[derive(Copy, Clone, PartialEq, Debug)]
enum ParamMode {
    /// Any path in a type context.
    Explicit,
    /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
    ExplicitNamed,
    /// The `module::Type` in `module::Type::method` in an expression.
    Optional,
}

enum ParenthesizedGenericArgs {
    Ok,
    Err,
}

impl<'a, 'hir> LoweringContext<'a, 'hir> {
    fn create_def(
        &mut self,
        parent: LocalDefId,
        node_id: ast::NodeId,
        data: DefPathData,
    ) -> LocalDefId {
        debug_assert_ne!(node_id, ast::DUMMY_NODE_ID);
        assert!(
            self.opt_local_def_id(node_id).is_none(),
            "adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}",
            node_id,
            data,
            self.tcx.hir().def_key(self.local_def_id(node_id)),
        );

        let def_id = self.tcx.create_def(parent, data);

        debug!("create_def: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id);
        self.resolver.node_id_to_def_id.insert(node_id, def_id);

        def_id
    }

    fn next_node_id(&mut self) -> NodeId {
        let start = self.resolver.next_node_id;
        let next = start.as_u32().checked_add(1).expect("input too large; ran out of NodeIds");
        self.resolver.next_node_id = ast::NodeId::from_u32(next);
        start
    }

    /// Given the id of some node in the AST, finds the `LocalDefId` associated with it by the name
    /// resolver (if any), after applying any remapping from `get_remapped_def_id`.
    ///
    /// For example, in a function like `fn foo<'a>(x: &'a u32)`,
    /// invoking with the id from the `ast::Lifetime` node found inside
    /// the `&'a u32` type would return the `LocalDefId` of the
    /// `'a` parameter declared on `foo`.
    ///
    /// This function also applies remapping from `get_remapped_def_id`.
    /// These are used when synthesizing opaque types from `-> impl Trait` return types and so forth.
    /// For example, in a function like `fn foo<'a>() -> impl Debug + 'a`,
    /// we would create an opaque type `type FooReturn<'a1> = impl Debug + 'a1`.
    /// When lowering the `Debug + 'a` bounds, we add a remapping to map `'a` to `'a1`.
    fn opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId> {
        self.resolver
            .node_id_to_def_id
            .get(&node)
            .map(|local_def_id| self.get_remapped_def_id(*local_def_id))
    }

    fn local_def_id(&self, node: NodeId) -> LocalDefId {
        self.opt_local_def_id(node).unwrap_or_else(|| panic!("no entry for node id: `{:?}`", node))
    }

    /// Get the previously recorded `to` local def id given the `from` local def id, obtained using
    /// `generics_def_id_map` field.
    fn get_remapped_def_id(&self, mut local_def_id: LocalDefId) -> LocalDefId {
        // `generics_def_id_map` is a stack of mappings. As we go deeper in impl traits nesting we
        // push new mappings so we need to try first the latest mappings, hence `iter().rev()`.
        //
        // Consider:
        //
        // `fn test<'a, 'b>() -> impl Trait<&'a u8, Ty = impl Sized + 'b> {}`
        //
        // We would end with a generics_def_id_map like:
        //
        // `[[fn#'b -> impl_trait#'b], [fn#'b -> impl_sized#'b]]`
        //
        // for the opaque type generated on `impl Sized + 'b`, We want the result to be:
        // impl_sized#'b, so iterating forward is the wrong thing to do.
        for map in self.generics_def_id_map.iter().rev() {
            if let Some(r) = map.get(&local_def_id) {
                debug!("def_id_remapper: remapping from `{local_def_id:?}` to `{r:?}`");
                local_def_id = *r;
            } else {
                debug!("def_id_remapper: no remapping for `{local_def_id:?}` found in map");
            }
        }

        local_def_id
    }

    /// Freshen the `LoweringContext` and ready it to lower a nested item.
    /// The lowered item is registered into `self.children`.
    ///
    /// This function sets up `HirId` lowering infrastructure,
    /// and stashes the shared mutable state to avoid pollution by the closure.
    #[instrument(level = "debug", skip(self, f))]
    fn with_hir_id_owner(
        &mut self,
        owner: NodeId,
        f: impl FnOnce(&mut Self) -> hir::OwnerNode<'hir>,
    ) {
        let def_id = self.local_def_id(owner);

        let current_attrs = std::mem::take(&mut self.attrs);
        let current_bodies = std::mem::take(&mut self.bodies);
        let current_node_ids = std::mem::take(&mut self.node_id_to_local_id);
        let current_id_to_def_id = std::mem::take(&mut self.local_id_to_def_id);
        let current_trait_map = std::mem::take(&mut self.trait_map);
        let current_owner =
            std::mem::replace(&mut self.current_hir_id_owner, hir::OwnerId { def_id });
        let current_local_counter =
            std::mem::replace(&mut self.item_local_id_counter, hir::ItemLocalId::new(1));
        let current_impl_trait_defs = std::mem::take(&mut self.impl_trait_defs);
        let current_impl_trait_bounds = std::mem::take(&mut self.impl_trait_bounds);

        // Do not reset `next_node_id` and `node_id_to_def_id`:
        // we want `f` to be able to refer to the `LocalDefId`s that the caller created.
        // and the caller to refer to some of the subdefinitions' nodes' `LocalDefId`s.

        // Always allocate the first `HirId` for the owner itself.
        let _old = self.node_id_to_local_id.insert(owner, hir::ItemLocalId::new(0));
        debug_assert_eq!(_old, None);

        let item = f(self);
        debug_assert_eq!(def_id, item.def_id().def_id);
        // `f` should have consumed all the elements in these vectors when constructing `item`.
        debug_assert!(self.impl_trait_defs.is_empty());
        debug_assert!(self.impl_trait_bounds.is_empty());
        let info = self.make_owner_info(item);

        self.attrs = current_attrs;
        self.bodies = current_bodies;
        self.node_id_to_local_id = current_node_ids;
        self.local_id_to_def_id = current_id_to_def_id;
        self.trait_map = current_trait_map;
        self.current_hir_id_owner = current_owner;
        self.item_local_id_counter = current_local_counter;
        self.impl_trait_defs = current_impl_trait_defs;
        self.impl_trait_bounds = current_impl_trait_bounds;

        let _old = self.children.insert(def_id, hir::MaybeOwner::Owner(info));
        debug_assert!(_old.is_none())
    }

    /// Installs the remapping `remap` in scope while `f` is being executed.
    /// This causes references to the `LocalDefId` keys to be changed to
    /// refer to the values instead.
    ///
    /// The remapping is used when one piece of AST expands to multiple
    /// pieces of HIR. For example, the function `fn foo<'a>(...) -> impl Debug + 'a`,
    /// expands to both a function definition (`foo`) and a TAIT for the return value,
    /// both of which have a lifetime parameter `'a`. The remapping allows us to
    /// rewrite the `'a` in the return value to refer to the
    /// `'a` declared on the TAIT, instead of the function.
    fn with_remapping<R>(
        &mut self,
        remap: FxHashMap<LocalDefId, LocalDefId>,
        f: impl FnOnce(&mut Self) -> R,
    ) -> R {
        self.generics_def_id_map.push(remap);
        let res = f(self);
        self.generics_def_id_map.pop();
        res
    }

    fn make_owner_info(&mut self, node: hir::OwnerNode<'hir>) -> &'hir hir::OwnerInfo<'hir> {
        let attrs = std::mem::take(&mut self.attrs);
        let mut bodies = std::mem::take(&mut self.bodies);
        let local_id_to_def_id = std::mem::take(&mut self.local_id_to_def_id);
        let trait_map = std::mem::take(&mut self.trait_map);

        #[cfg(debug_assertions)]
        for (id, attrs) in attrs.iter() {
            // Verify that we do not store empty slices in the map.
            if attrs.is_empty() {
                panic!("Stored empty attributes for {:?}", id);
            }
        }

        bodies.sort_by_key(|(k, _)| *k);
        let bodies = SortedMap::from_presorted_elements(bodies);
        let (hash_including_bodies, hash_without_bodies) = self.hash_owner(node, &bodies);
        let (nodes, parenting) =
            index::index_hir(self.tcx.sess, &*self.tcx.definitions_untracked(), node, &bodies);
        let nodes = hir::OwnerNodes {
            hash_including_bodies,
            hash_without_bodies,
            nodes,
            bodies,
            local_id_to_def_id,
        };
        let attrs = {
            let hash = self.tcx.with_stable_hashing_context(|mut hcx| {
                let mut stable_hasher = StableHasher::new();
                attrs.hash_stable(&mut hcx, &mut stable_hasher);
                stable_hasher.finish()
            });
            hir::AttributeMap { map: attrs, hash }
        };

        self.arena.alloc(hir::OwnerInfo { nodes, parenting, attrs, trait_map })
    }

    /// Hash the HIR node twice, one deep and one shallow hash.  This allows to differentiate
    /// queries which depend on the full HIR tree and those which only depend on the item signature.
    fn hash_owner(
        &mut self,
        node: hir::OwnerNode<'hir>,
        bodies: &SortedMap<hir::ItemLocalId, &'hir hir::Body<'hir>>,
    ) -> (Fingerprint, Fingerprint) {
        self.tcx.with_stable_hashing_context(|mut hcx| {
            let mut stable_hasher = StableHasher::new();
            hcx.with_hir_bodies(node.def_id(), bodies, |hcx| {
                node.hash_stable(hcx, &mut stable_hasher)
            });
            let hash_including_bodies = stable_hasher.finish();
            let mut stable_hasher = StableHasher::new();
            hcx.without_hir_bodies(|hcx| node.hash_stable(hcx, &mut stable_hasher));
            let hash_without_bodies = stable_hasher.finish();
            (hash_including_bodies, hash_without_bodies)
        })
    }

    /// This method allocates a new `HirId` for the given `NodeId` and stores it in
    /// the `LoweringContext`'s `NodeId => HirId` map.
    /// Take care not to call this method if the resulting `HirId` is then not
    /// actually used in the HIR, as that would trigger an assertion in the
    /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
    /// properly. Calling the method twice with the same `NodeId` is fine though.
    #[instrument(level = "debug", skip(self), ret)]
    fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
        assert_ne!(ast_node_id, DUMMY_NODE_ID);

        match self.node_id_to_local_id.entry(ast_node_id) {
            Entry::Occupied(o) => {
                hir::HirId { owner: self.current_hir_id_owner, local_id: *o.get() }
            }
            Entry::Vacant(v) => {
                // Generate a new `HirId`.
                let owner = self.current_hir_id_owner;
                let local_id = self.item_local_id_counter;
                let hir_id = hir::HirId { owner, local_id };

                v.insert(local_id);
                self.item_local_id_counter.increment_by(1);

                assert_ne!(local_id, hir::ItemLocalId::new(0));
                if let Some(def_id) = self.opt_local_def_id(ast_node_id) {
                    // Do not override a `MaybeOwner::Owner` that may already here.
                    self.children.entry(def_id).or_insert(hir::MaybeOwner::NonOwner(hir_id));
                    self.local_id_to_def_id.insert(local_id, def_id);
                }

                if let Some(traits) = self.resolver.trait_map.remove(&ast_node_id) {
                    self.trait_map.insert(hir_id.local_id, traits.into_boxed_slice());
                }

                hir_id
            }
        }
    }

    /// Generate a new `HirId` without a backing `NodeId`.
    #[instrument(level = "debug", skip(self), ret)]
    fn next_id(&mut self) -> hir::HirId {
        let owner = self.current_hir_id_owner;
        let local_id = self.item_local_id_counter;
        assert_ne!(local_id, hir::ItemLocalId::new(0));
        self.item_local_id_counter.increment_by(1);
        hir::HirId { owner, local_id }
    }

    #[instrument(level = "trace", skip(self))]
    fn lower_res(&mut self, res: Res<NodeId>) -> Res {
        let res: Result<Res, ()> = res.apply_id(|id| {
            let owner = self.current_hir_id_owner;
            let local_id = self.node_id_to_local_id.get(&id).copied().ok_or(())?;
            Ok(hir::HirId { owner, local_id })
        });
        trace!(?res);

        // We may fail to find a HirId when the Res points to a Local from an enclosing HIR owner.
        // This can happen when trying to lower the return type `x` in erroneous code like
        //   async fn foo(x: u8) -> x {}
        // In that case, `x` is lowered as a function parameter, and the return type is lowered as
        // an opaque type as a synthesized HIR owner.
        res.unwrap_or(Res::Err)
    }

    fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
        self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
            if pr.unresolved_segments() != 0 {
                panic!("path not fully resolved: {:?}", pr);
            }
            pr.base_res()
        })
    }

    fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
        self.resolver.get_import_res(id).present_items()
    }

    fn diagnostic(&self) -> &Handler {
        self.tcx.sess.diagnostic()
    }

    /// Reuses the span but adds information like the kind of the desugaring and features that are
    /// allowed inside this span.
    fn mark_span_with_reason(
        &self,
        reason: DesugaringKind,
        span: Span,
        allow_internal_unstable: Option<Lrc<[Symbol]>>,
    ) -> Span {
        self.tcx.with_stable_hashing_context(|hcx| {
            span.mark_with_reason(allow_internal_unstable, reason, self.tcx.sess.edition(), hcx)
        })
    }

    /// Intercept all spans entering HIR.
    /// Mark a span as relative to the current owning item.
    fn lower_span(&self, span: Span) -> Span {
        if self.tcx.sess.opts.unstable_opts.incremental_relative_spans {
            span.with_parent(Some(self.current_hir_id_owner.def_id))
        } else {
            // Do not make spans relative when not using incremental compilation.
            span
        }
    }

    fn lower_ident(&self, ident: Ident) -> Ident {
        Ident::new(ident.name, self.lower_span(ident.span))
    }

    /// Converts a lifetime into a new generic parameter.
    #[instrument(level = "debug", skip(self))]
    fn lifetime_res_to_generic_param(
        &mut self,
        ident: Ident,
        node_id: NodeId,
        res: LifetimeRes,
    ) -> Option<hir::GenericParam<'hir>> {
        let (name, kind) = match res {
            LifetimeRes::Param { .. } => {
                (hir::ParamName::Plain(ident), hir::LifetimeParamKind::Explicit)
            }
            LifetimeRes::Fresh { param, .. } => {
                // Late resolution delegates to us the creation of the `LocalDefId`.
                let _def_id = self.create_def(
                    self.current_hir_id_owner.def_id,
                    param,
                    DefPathData::LifetimeNs(kw::UnderscoreLifetime),
                );
                debug!(?_def_id);

                (hir::ParamName::Fresh, hir::LifetimeParamKind::Elided)
            }
            LifetimeRes::Static | LifetimeRes::Error => return None,
            res => panic!(
                "Unexpected lifetime resolution {:?} for {:?} at {:?}",
                res, ident, ident.span
            ),
        };
        let hir_id = self.lower_node_id(node_id);
        Some(hir::GenericParam {
            hir_id,
            name,
            span: self.lower_span(ident.span),
            pure_wrt_drop: false,
            kind: hir::GenericParamKind::Lifetime { kind },
            colon_span: None,
        })
    }

    /// Lowers a lifetime binder that defines `generic_params`, returning the corresponding HIR
    /// nodes. The returned list includes any "extra" lifetime parameters that were added by the
    /// name resolver owing to lifetime elision; this also populates the resolver's node-id->def-id
    /// map, so that later calls to `opt_node_id_to_def_id` that refer to these extra lifetime
    /// parameters will be successful.
    #[instrument(level = "debug", skip(self))]
    #[inline]
    fn lower_lifetime_binder(
        &mut self,
        binder: NodeId,
        generic_params: &[GenericParam],
    ) -> &'hir [hir::GenericParam<'hir>] {
        let mut generic_params: Vec<_> = self.lower_generic_params_mut(generic_params).collect();
        let extra_lifetimes = self.resolver.take_extra_lifetime_params(binder);
        debug!(?extra_lifetimes);
        generic_params.extend(extra_lifetimes.into_iter().filter_map(|(ident, node_id, res)| {
            self.lifetime_res_to_generic_param(ident, node_id, res)
        }));
        let generic_params = self.arena.alloc_from_iter(generic_params);
        debug!(?generic_params);

        generic_params
    }

    fn with_dyn_type_scope<T>(&mut self, in_scope: bool, f: impl FnOnce(&mut Self) -> T) -> T {
        let was_in_dyn_type = self.is_in_dyn_type;
        self.is_in_dyn_type = in_scope;

        let result = f(self);

        self.is_in_dyn_type = was_in_dyn_type;

        result
    }

    fn with_new_scopes<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
        let was_in_loop_condition = self.is_in_loop_condition;
        self.is_in_loop_condition = false;

        let catch_scope = self.catch_scope.take();
        let loop_scope = self.loop_scope.take();
        let ret = f(self);
        self.catch_scope = catch_scope;
        self.loop_scope = loop_scope;

        self.is_in_loop_condition = was_in_loop_condition;

        ret
    }

    fn lower_attrs(&mut self, id: hir::HirId, attrs: &[Attribute]) -> Option<&'hir [Attribute]> {
        if attrs.is_empty() {
            None
        } else {
            debug_assert_eq!(id.owner, self.current_hir_id_owner);
            let ret = self.arena.alloc_from_iter(attrs.iter().map(|a| self.lower_attr(a)));
            debug_assert!(!ret.is_empty());
            self.attrs.insert(id.local_id, ret);
            Some(ret)
        }
    }

    fn lower_attr(&self, attr: &Attribute) -> Attribute {
        // Note that we explicitly do not walk the path. Since we don't really
        // lower attributes (we use the AST version) there is nowhere to keep
        // the `HirId`s. We don't actually need HIR version of attributes anyway.
        // Tokens are also not needed after macro expansion and parsing.
        let kind = match attr.kind {
            AttrKind::Normal(ref normal) => AttrKind::Normal(P(NormalAttr {
                item: AttrItem {
                    path: normal.item.path.clone(),
                    args: self.lower_mac_args(&normal.item.args),
                    tokens: None,
                },
                tokens: None,
            })),
            AttrKind::DocComment(comment_kind, data) => AttrKind::DocComment(comment_kind, data),
        };

        Attribute { kind, id: attr.id, style: attr.style, span: self.lower_span(attr.span) }
    }

    fn alias_attrs(&mut self, id: hir::HirId, target_id: hir::HirId) {
        debug_assert_eq!(id.owner, self.current_hir_id_owner);
        debug_assert_eq!(target_id.owner, self.current_hir_id_owner);
        if let Some(&a) = self.attrs.get(&target_id.local_id) {
            debug_assert!(!a.is_empty());
            self.attrs.insert(id.local_id, a);
        }
    }

    fn lower_mac_args(&self, args: &MacArgs) -> MacArgs {
        match *args {
            MacArgs::Empty => MacArgs::Empty,
            MacArgs::Delimited(dspan, delim, ref tokens) => {
                // This is either a non-key-value attribute, or a `macro_rules!` body.
                // We either not have any nonterminals present (in the case of an attribute),
                // or have tokens available for all nonterminals in the case of a nested
                // `macro_rules`: e.g:
                //
                // ```rust
                // macro_rules! outer {
                //     ($e:expr) => {
                //         macro_rules! inner {
                //             () => { $e }
                //         }
                //     }
                // }
                // ```
                //
                // In both cases, we don't want to synthesize any tokens
                MacArgs::Delimited(dspan, delim, tokens.flattened())
            }
            // This is an inert key-value attribute - it will never be visible to macros
            // after it gets lowered to HIR. Therefore, we can extract literals to handle
            // nonterminals in `#[doc]` (e.g. `#[doc = $e]`).
            MacArgs::Eq(eq_span, MacArgsEq::Ast(ref expr)) => {
                // In valid code the value always ends up as a single literal. Otherwise, a dummy
                // literal suffices because the error is handled elsewhere.
                let lit = if let ExprKind::Lit(lit) = &expr.kind {
                    lit.clone()
                } else {
                    Lit {
                        token_lit: token::Lit::new(token::LitKind::Err, kw::Empty, None),
                        kind: LitKind::Err,
                        span: DUMMY_SP,
                    }
                };
                MacArgs::Eq(eq_span, MacArgsEq::Hir(lit))
            }
            MacArgs::Eq(_, MacArgsEq::Hir(ref lit)) => {
                unreachable!("in literal form when lowering mac args eq: {:?}", lit)
            }
        }
    }

    /// Given an associated type constraint like one of these:
    ///
    /// ```ignore (illustrative)
    /// T: Iterator<Item: Debug>
    ///             ^^^^^^^^^^^
    /// T: Iterator<Item = Debug>
    ///             ^^^^^^^^^^^^
    /// ```
    ///
    /// returns a `hir::TypeBinding` representing `Item`.
    #[instrument(level = "debug", skip(self))]
    fn lower_assoc_ty_constraint(
        &mut self,
        constraint: &AssocConstraint,
        itctx: &ImplTraitContext,
    ) -> hir::TypeBinding<'hir> {
        debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);
        // lower generic arguments of identifier in constraint
        let gen_args = if let Some(ref gen_args) = constraint.gen_args {
            let gen_args_ctor = match gen_args {
                GenericArgs::AngleBracketed(ref data) => {
                    self.lower_angle_bracketed_parameter_data(data, ParamMode::Explicit, itctx).0
                }
                GenericArgs::Parenthesized(ref data) => {
                    self.emit_bad_parenthesized_trait_in_assoc_ty(data);
                    let aba = self.ast_arena.aba.alloc(data.as_angle_bracketed_args());
                    self.lower_angle_bracketed_parameter_data(aba, ParamMode::Explicit, itctx).0
                }
            };
            gen_args_ctor.into_generic_args(self)
        } else {
            self.arena.alloc(hir::GenericArgs::none())
        };
        let itctx_tait = &ImplTraitContext::TypeAliasesOpaqueTy;

        let kind = match constraint.kind {
            AssocConstraintKind::Equality { ref term } => {
                let term = match term {
                    Term::Ty(ref ty) => self.lower_ty(ty, itctx).into(),
                    Term::Const(ref c) => self.lower_anon_const(c).into(),
                };
                hir::TypeBindingKind::Equality { term }
            }
            AssocConstraintKind::Bound { ref bounds } => {
                // Piggy-back on the `impl Trait` context to figure out the correct behavior.
                let (desugar_to_impl_trait, itctx) = match itctx {
                    // We are in the return position:
                    //
                    //     fn foo() -> impl Iterator<Item: Debug>
                    //
                    // so desugar to
                    //
                    //     fn foo() -> impl Iterator<Item = impl Debug>
                    ImplTraitContext::ReturnPositionOpaqueTy { .. }
                    | ImplTraitContext::TypeAliasesOpaqueTy { .. } => (true, itctx),

                    // We are in the argument position, but within a dyn type:
                    //
                    //     fn foo(x: dyn Iterator<Item: Debug>)
                    //
                    // so desugar to
                    //
                    //     fn foo(x: dyn Iterator<Item = impl Debug>)
                    ImplTraitContext::Universal if self.is_in_dyn_type => (true, itctx),

                    // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
                    // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
                    // "impl trait context" to permit `impl Debug` in this position (it desugars
                    // then to an opaque type).
                    //
                    // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
                    ImplTraitContext::Disallowed(_) if self.is_in_dyn_type => (true, itctx_tait),

                    // We are in the parameter position, but not within a dyn type:
                    //
                    //     fn foo(x: impl Iterator<Item: Debug>)
                    //
                    // so we leave it as is and this gets expanded in astconv to a bound like
                    // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
                    // `impl Iterator`.
                    _ => (false, itctx),
                };

                if desugar_to_impl_trait {
                    // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
                    // constructing the HIR for `impl bounds...` and then lowering that.

                    let parent_def_id = self.current_hir_id_owner;
                    let impl_trait_node_id = self.next_node_id();
                    self.create_def(
                        parent_def_id.def_id,
                        impl_trait_node_id,
                        DefPathData::ImplTrait,
                    );

                    self.with_dyn_type_scope(false, |this| {
                        let node_id = this.next_node_id();
                        let ty = this.ast_arena.tys.alloc(Ty {
                            id: node_id,
                            kind: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
                            span: this.lower_span(constraint.span),
                            tokens: None,
                        });
                        let ty = this.lower_ty(ty, itctx);

                        hir::TypeBindingKind::Equality { term: ty.into() }
                    })
                } else {
                    // Desugar `AssocTy: Bounds` into a type binding where the
                    // later desugars into a trait predicate.
                    let bounds = self.lower_param_bounds(bounds, itctx);

                    hir::TypeBindingKind::Constraint { bounds }
                }
            }
        };

        hir::TypeBinding {
            hir_id: self.lower_node_id(constraint.id),
            ident: self.lower_ident(constraint.ident),
            gen_args,
            kind,
            span: self.lower_span(constraint.span),
        }
    }

    fn emit_bad_parenthesized_trait_in_assoc_ty(&self, data: &ParenthesizedArgs) {
        // Suggest removing empty parentheses: "Trait()" -> "Trait"
        let sub = if data.inputs.is_empty() {
            let parentheses_span =
                data.inputs_span.shrink_to_lo().to(data.inputs_span.shrink_to_hi());
            AssocTyParenthesesSub::Empty { parentheses_span }
        }
        // Suggest replacing parentheses with angle brackets `Trait(params...)` to `Trait<params...>`
        else {
            // Start of parameters to the 1st argument
            let open_param = data.inputs_span.shrink_to_lo().to(data
                .inputs
                .first()
                .unwrap()
                .span
                .shrink_to_lo());
            // End of last argument to end of parameters
            let close_param =
                data.inputs.last().unwrap().span.shrink_to_hi().to(data.inputs_span.shrink_to_hi());
            AssocTyParenthesesSub::NotEmpty { open_param, close_param }
        };
        self.tcx.sess.emit_err(AssocTyParentheses { span: data.span, sub });
    }

    #[instrument(level = "debug", skip(self))]
    fn lower_generic_arg(
        &mut self,
        arg: &ast::GenericArg,
        itctx: &ImplTraitContext,
    ) -> hir::GenericArg<'hir> {
        match arg {
            ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
            ast::GenericArg::Type(ty) => {
                match ty.kind {
                    TyKind::Infer if self.tcx.features().generic_arg_infer => {
                        return GenericArg::Infer(hir::InferArg {
                            hir_id: self.lower_node_id(ty.id),
                            span: self.lower_span(ty.span),
                        });
                    }
                    // We parse const arguments as path types as we cannot distinguish them during
                    // parsing. We try to resolve that ambiguity by attempting resolution in both the
                    // type and value namespaces. If we resolved the path in the value namespace, we
                    // transform it into a generic const argument.
                    TyKind::Path(ref qself, ref path) => {
                        if let Some(partial_res) = self.resolver.get_partial_res(ty.id) {
                            let res = partial_res.base_res();
                            if !res.matches_ns(Namespace::TypeNS) {
                                debug!(
                                    "lower_generic_arg: Lowering type argument as const argument: {:?}",
                                    ty,
                                );

                                // Construct an AnonConst where the expr is the "ty"'s path.

                                let parent_def_id = self.current_hir_id_owner;
                                let node_id = self.next_node_id();

                                // Add a definition for the in-band const def.
                                self.create_def(
                                    parent_def_id.def_id,
                                    node_id,
                                    DefPathData::AnonConst,
                                );

                                let span = self.lower_span(ty.span);
                                let path_expr = Expr {
                                    id: ty.id,
                                    kind: ExprKind::Path(qself.clone(), path.clone()),
                                    span,
                                    attrs: AttrVec::new(),
                                    tokens: None,
                                };

                                let ct = self.with_new_scopes(|this| hir::AnonConst {
                                    hir_id: this.lower_node_id(node_id),
                                    body: this.lower_const_body(path_expr.span, Some(&path_expr)),
                                });
                                return GenericArg::Const(ConstArg { value: ct, span });
                            }
                        }
                    }
                    _ => {}
                }
                GenericArg::Type(self.lower_ty(&ty, itctx))
            }
            ast::GenericArg::Const(ct) => GenericArg::Const(ConstArg {
                value: self.lower_anon_const(&ct),
                span: self.lower_span(ct.value.span),
            }),
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn lower_ty(&mut self, t: &Ty, itctx: &ImplTraitContext) -> &'hir hir::Ty<'hir> {
        self.arena.alloc(self.lower_ty_direct(t, itctx))
    }

    fn lower_path_ty(
        &mut self,
        t: &Ty,
        qself: &Option<QSelf>,
        path: &Path,
        param_mode: ParamMode,
        itctx: &ImplTraitContext,
    ) -> hir::Ty<'hir> {
        // Check whether we should interpret this as a bare trait object.
        // This check mirrors the one in late resolution.  We only introduce this special case in
        // the rare occurrence we need to lower `Fresh` anonymous lifetimes.
        // The other cases when a qpath should be opportunistically made a trait object are handled
        // by `ty_path`.
        if qself.is_none()
            && let Some(partial_res) = self.resolver.get_partial_res(t.id)
            && partial_res.unresolved_segments() == 0
            && let Res::Def(DefKind::Trait | DefKind::TraitAlias, _) = partial_res.base_res()
        {
            let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
                let poly_trait_ref = this.ast_arena.ptr.alloc(PolyTraitRef {
                    bound_generic_params: vec![],
                    trait_ref: TraitRef { path: path.clone(), ref_id: t.id },
                    span: t.span
                });
                let bound = this.lower_poly_trait_ref(
                    poly_trait_ref,
                    itctx,
                );
                let bounds = this.arena.alloc_from_iter([bound]);
                let lifetime_bound = this.elided_dyn_bound(t.span);
                (bounds, lifetime_bound)
            });
            let kind = hir::TyKind::TraitObject(bounds, &lifetime_bound, TraitObjectSyntax::None);
            return hir::Ty { kind, span: self.lower_span(t.span), hir_id: self.next_id() };
        }

        let id = self.lower_node_id(t.id);
        let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
        self.ty_path(id, t.span, qpath)
    }

    fn ty(&mut self, span: Span, kind: hir::TyKind<'hir>) -> hir::Ty<'hir> {
        hir::Ty { hir_id: self.next_id(), kind, span: self.lower_span(span) }
    }

    fn ty_tup(&mut self, span: Span, tys: &'hir [hir::Ty<'hir>]) -> hir::Ty<'hir> {
        self.ty(span, hir::TyKind::Tup(tys))
    }

    fn lower_ty_direct(&mut self, t: &Ty, itctx: &ImplTraitContext) -> hir::Ty<'hir> {
        let kind = match t.kind {
            TyKind::Infer => hir::TyKind::Infer,
            TyKind::Err => hir::TyKind::Err,
            TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
            TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
            TyKind::Rptr(ref region, ref mt) => {
                let region = region.unwrap_or_else(|| {
                    let id = if let Some(LifetimeRes::ElidedAnchor { start, end }) =
                        self.resolver.get_lifetime_res(t.id)
                    {
                        debug_assert_eq!(start.plus(1), end);
                        start
                    } else {
                        self.next_node_id()
                    };
                    let span = self.tcx.sess.source_map().start_point(t.span);
                    Lifetime { ident: Ident::new(kw::UnderscoreLifetime, span), id }
                });
                let lifetime = self.lower_lifetime(&region);
                hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
            }
            TyKind::BareFn(ref f) => {
                let generic_params = self.lower_lifetime_binder(t.id, &f.generic_params);
                hir::TyKind::BareFn(self.arena.alloc(hir::BareFnTy {
                    generic_params,
                    unsafety: self.lower_unsafety(f.unsafety),
                    abi: self.lower_extern(f.ext),
                    decl: self.lower_fn_decl(&f.decl, None, t.span, FnDeclKind::Pointer, None),
                    param_names: self.lower_fn_params_to_names(&f.decl),
                }))
            }
            TyKind::Never => hir::TyKind::Never,
            TyKind::Tup(ref tys) => hir::TyKind::Tup(
                self.arena.alloc_from_iter(tys.iter().map(|ty| self.lower_ty_direct(ty, itctx))),
            ),
            TyKind::Paren(ref ty) => {
                return self.lower_ty_direct(ty, itctx);
            }
            TyKind::Path(ref qself, ref path) => {
                return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
            }
            TyKind::ImplicitSelf => {
                let hir_id = self.next_id();
                let res = self.expect_full_res(t.id);
                let res = self.lower_res(res);
                hir::TyKind::Path(hir::QPath::Resolved(
                    None,
                    self.arena.alloc(hir::Path {
                        res,
                        segments: arena_vec![self; hir::PathSegment::new(
                            Ident::with_dummy_span(kw::SelfUpper),
                            hir_id,
                            res
                        )],
                        span: self.lower_span(t.span),
                    }),
                ))
            }
            TyKind::Array(ref ty, ref length) => {
                hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_array_length(length))
            }
            TyKind::Typeof(ref expr) => hir::TyKind::Typeof(self.lower_anon_const(expr)),
            TyKind::TraitObject(ref bounds, kind) => {
                let mut lifetime_bound = None;
                let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
                    let bounds =
                        this.arena.alloc_from_iter(bounds.iter().filter_map(
                            |bound| match *bound {
                                GenericBound::Trait(
                                    ref ty,
                                    TraitBoundModifier::None | TraitBoundModifier::MaybeConst,
                                ) => Some(this.lower_poly_trait_ref(ty, itctx)),
                                // `~const ?Bound` will cause an error during AST validation
                                // anyways, so treat it like `?Bound` as compilation proceeds.
                                GenericBound::Trait(
                                    _,
                                    TraitBoundModifier::Maybe | TraitBoundModifier::MaybeConstMaybe,
                                ) => None,
                                GenericBound::Outlives(ref lifetime) => {
                                    if lifetime_bound.is_none() {
                                        lifetime_bound = Some(this.lower_lifetime(lifetime));
                                    }
                                    None
                                }
                            },
                        ));
                    let lifetime_bound =
                        lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
                    (bounds, lifetime_bound)
                });
                hir::TyKind::TraitObject(bounds, lifetime_bound, kind)
            }
            TyKind::ImplTrait(def_node_id, ref bounds) => {
                let span = t.span;
                match itctx {
                    ImplTraitContext::ReturnPositionOpaqueTy { origin, in_trait } => self
                        .lower_opaque_impl_trait(
                            span,
                            *origin,
                            def_node_id,
                            bounds,
                            *in_trait,
                            itctx,
                        ),
                    ImplTraitContext::TypeAliasesOpaqueTy => self.lower_opaque_impl_trait(
                        span,
                        hir::OpaqueTyOrigin::TyAlias,
                        def_node_id,
                        bounds,
                        false,
                        &ImplTraitContext::TypeAliasesOpaqueTy,
                    ),
                    ImplTraitContext::Universal => {
                        let span = t.span;
                        let ident = Ident::from_str_and_span(&pprust::ty_to_string(t), span);
                        let (param, bounds, path) =
                            self.lower_generic_and_bounds(def_node_id, span, ident, bounds);
                        self.impl_trait_defs.push(param);
                        if let Some(bounds) = bounds {
                            self.impl_trait_bounds.push(bounds);
                        }
                        path
                    }
                    ImplTraitContext::Disallowed(
                        position @ (ImplTraitPosition::TraitReturn | ImplTraitPosition::ImplReturn),
                    ) => {
                        self.tcx
                            .sess
                            .create_feature_err(
                                MisplacedImplTrait {
                                    span: t.span,
                                    position: DiagnosticArgFromDisplay(&position),
                                },
                                sym::return_position_impl_trait_in_trait,
                            )
                            .emit();
                        hir::TyKind::Err
                    }
                    ImplTraitContext::Disallowed(position) => {
                        self.tcx.sess.emit_err(MisplacedImplTrait {
                            span: t.span,
                            position: DiagnosticArgFromDisplay(&position),
                        });
                        hir::TyKind::Err
                    }
                }
            }
            TyKind::MacCall(_) => panic!("`TyKind::MacCall` should have been expanded by now"),
            TyKind::CVarArgs => {
                self.tcx.sess.delay_span_bug(
                    t.span,
                    "`TyKind::CVarArgs` should have been handled elsewhere",
                );
                hir::TyKind::Err
            }
        };

        hir::Ty { kind, span: self.lower_span(t.span), hir_id: self.lower_node_id(t.id) }
    }

    /// Lowers a `ReturnPositionOpaqueTy` (`-> impl Trait`) or a `TypeAliasesOpaqueTy` (`type F =
    /// impl Trait`): this creates the associated Opaque Type (TAIT) definition and then returns a
    /// HIR type that references the TAIT.
    ///
    /// Given a function definition like:
    ///
    /// ```rust
    /// fn test<'a, T: Debug>(x: &'a T) -> impl Debug + 'a {
    ///     x
    /// }
    /// ```
    ///
    /// we will create a TAIT definition in the HIR like
    ///
    /// ```
    /// type TestReturn<'a, T, 'x> = impl Debug + 'x
    /// ```
    ///
    /// and return a type like `TestReturn<'static, T, 'a>`, so that the function looks like:
    ///
    /// ```rust
    /// fn test<'a, T: Debug>(x: &'a T) -> TestReturn<'static, T, 'a>
    /// ```
    ///
    /// Note the subtlety around type parameters! The new TAIT, `TestReturn`, inherits all the
    /// type parameters from the function `test` (this is implemented in the query layer, they aren't
    /// added explicitly in the HIR). But this includes all the lifetimes, and we only want to
    /// capture the lifetimes that are referenced in the bounds. Therefore, we add *extra* lifetime parameters
    /// for the lifetimes that get captured (`'x`, in our example above) and reference those.
    #[instrument(level = "debug", skip(self), ret)]
    fn lower_opaque_impl_trait(
        &mut self,
        span: Span,
        origin: hir::OpaqueTyOrigin,
        opaque_ty_node_id: NodeId,
        bounds: &GenericBounds,
        in_trait: bool,
        itctx: &ImplTraitContext,
    ) -> hir::TyKind<'hir> {
        // Make sure we know that some funky desugaring has been going on here.
        // This is a first: there is code in other places like for loop
        // desugaring that explicitly states that we don't want to track that.
        // Not tracking it makes lints in rustc and clippy very fragile, as
        // frequently opened issues show.
        let opaque_ty_span = self.mark_span_with_reason(DesugaringKind::OpaqueTy, span, None);

        let opaque_ty_def_id = self.local_def_id(opaque_ty_node_id);
        debug!(?opaque_ty_def_id);

        // Contains the new lifetime definitions created for the TAIT (if any).
        let mut collected_lifetimes = Vec::new();

        // If this came from a TAIT (as opposed to a function that returns an RPIT), we only want
        // to capture the lifetimes that appear in the bounds. So visit the bounds to find out
        // exactly which ones those are.
        let lifetimes_to_remap = if origin == hir::OpaqueTyOrigin::TyAlias {
            // in a TAIT like `type Foo<'a> = impl Foo<'a>`, we don't keep all the lifetime parameters
            Vec::new()
        } else {
            // in fn return position, like the `fn test<'a>() -> impl Debug + 'a` example,
            // we only keep the lifetimes that appear in the `impl Debug` itself:
            lifetime_collector::lifetimes_in_bounds(&self.resolver, bounds)
        };
        debug!(?lifetimes_to_remap);

        self.with_hir_id_owner(opaque_ty_node_id, |lctx| {
            let mut new_remapping = FxHashMap::default();

            // If this opaque type is only capturing a subset of the lifetimes (those that appear
            // in bounds), then create the new lifetime parameters required and create a mapping
            // from the old `'a` (on the function) to the new `'a` (on the opaque type).
            collected_lifetimes = lctx.create_lifetime_defs(
                opaque_ty_def_id,
                &lifetimes_to_remap,
                &mut new_remapping,
            );
            debug!(?collected_lifetimes);
            debug!(?new_remapping);

            // Install the remapping from old to new (if any):
            lctx.with_remapping(new_remapping, |lctx| {
                // This creates HIR lifetime definitions as `hir::GenericParam`, in the given
                // example `type TestReturn<'a, T, 'x> = impl Debug + 'x`, it creates a collection
                // containing `&['x]`.
                let lifetime_defs = lctx.arena.alloc_from_iter(collected_lifetimes.iter().map(
                    |&(new_node_id, lifetime)| {
                        let hir_id = lctx.lower_node_id(new_node_id);
                        debug_assert_ne!(lctx.opt_local_def_id(new_node_id), None);

                        let (name, kind) = if lifetime.ident.name == kw::UnderscoreLifetime {
                            (hir::ParamName::Fresh, hir::LifetimeParamKind::Elided)
                        } else {
                            (
                                hir::ParamName::Plain(lifetime.ident),
                                hir::LifetimeParamKind::Explicit,
                            )
                        };

                        hir::GenericParam {
                            hir_id,
                            name,
                            span: lifetime.ident.span,
                            pure_wrt_drop: false,
                            kind: hir::GenericParamKind::Lifetime { kind },
                            colon_span: None,
                        }
                    },
                ));
                debug!(?lifetime_defs);

                // Then when we lower the param bounds, references to 'a are remapped to 'a1, so we
                // get back Debug + 'a1, which is suitable for use on the TAIT.
                let hir_bounds = lctx.lower_param_bounds(bounds, itctx);
                debug!(?hir_bounds);

                let opaque_ty_item = hir::OpaqueTy {
                    generics: self.arena.alloc(hir::Generics {
                        params: lifetime_defs,
                        predicates: &[],
                        has_where_clause_predicates: false,
                        where_clause_span: lctx.lower_span(span),
                        span: lctx.lower_span(span),
                    }),
                    bounds: hir_bounds,
                    origin,
                    in_trait,
                };
                debug!(?opaque_ty_item);

                lctx.generate_opaque_type(opaque_ty_def_id, opaque_ty_item, span, opaque_ty_span)
            })
        });

        // This creates HIR lifetime arguments as `hir::GenericArg`, in the given example `type
        // TestReturn<'a, T, 'x> = impl Debug + 'x`, it creates a collection containing `&['x]`.
        let lifetimes =
            self.arena.alloc_from_iter(collected_lifetimes.into_iter().map(|(_, lifetime)| {
                let id = self.next_node_id();
                let span = lifetime.ident.span;

                let ident = if lifetime.ident.name == kw::UnderscoreLifetime {
                    Ident::with_dummy_span(kw::UnderscoreLifetime)
                } else {
                    lifetime.ident
                };

                let l = self.new_named_lifetime(lifetime.id, id, span, ident);
                hir::GenericArg::Lifetime(l)
            }));
        debug!(?lifetimes);

        // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
        hir::TyKind::OpaqueDef(
            hir::ItemId { def_id: hir::OwnerId { def_id: opaque_ty_def_id } },
            lifetimes,
            in_trait,
        )
    }

    /// Registers a new opaque type with the proper `NodeId`s and
    /// returns the lowered node-ID for the opaque type.
    fn generate_opaque_type(
        &mut self,
        opaque_ty_id: LocalDefId,
        opaque_ty_item: hir::OpaqueTy<'hir>,
        span: Span,
        opaque_ty_span: Span,
    ) -> hir::OwnerNode<'hir> {
        let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
        // Generate an `type Foo = impl Trait;` declaration.
        trace!("registering opaque type with id {:#?}", opaque_ty_id);
        let opaque_ty_item = hir::Item {
            def_id: hir::OwnerId { def_id: opaque_ty_id },
            ident: Ident::empty(),
            kind: opaque_ty_item_kind,
            vis_span: self.lower_span(span.shrink_to_lo()),
            span: self.lower_span(opaque_ty_span),
        };
        hir::OwnerNode::Item(self.arena.alloc(opaque_ty_item))
    }

    /// Given a `parent_def_id`, a list of `lifetimes_in_bounds and a `remapping` hash to be
    /// filled, this function creates new definitions for `Param` and `Fresh` lifetimes, inserts the
    /// new definition, adds it to the remapping with the definition of the given lifetime and
    /// returns a list of lifetimes to be lowered afterwards.
    fn create_lifetime_defs(
        &mut self,
        parent_def_id: LocalDefId,
        lifetimes_in_bounds: &[Lifetime],
        remapping: &mut FxHashMap<LocalDefId, LocalDefId>,
    ) -> Vec<(NodeId, Lifetime)> {
        let mut result = Vec::new();

        for lifetime in lifetimes_in_bounds {
            let res = self.resolver.get_lifetime_res(lifetime.id).unwrap_or(LifetimeRes::Error);
            debug!(?res);

            match res {
                LifetimeRes::Param { param: old_def_id, binder: _ } => {
                    if remapping.get(&old_def_id).is_none() {
                        let node_id = self.next_node_id();

                        let new_def_id = self.create_def(
                            parent_def_id,
                            node_id,
                            DefPathData::LifetimeNs(lifetime.ident.name),
                        );
                        remapping.insert(old_def_id, new_def_id);

                        result.push((node_id, *lifetime));
                    }
                }

                LifetimeRes::Fresh { param, binder: _ } => {
                    debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);
                    if let Some(old_def_id) = self.opt_local_def_id(param) && remapping.get(&old_def_id).is_none() {
                        let node_id = self.next_node_id();

                        let new_def_id = self.create_def(
                            parent_def_id,
                            node_id,
                            DefPathData::LifetimeNs(kw::UnderscoreLifetime),
                        );
                        remapping.insert(old_def_id, new_def_id);

                        result.push((node_id, *lifetime));
                    }
                }

                LifetimeRes::Static | LifetimeRes::Error => {}

                res => {
                    let bug_msg = format!(
                        "Unexpected lifetime resolution {:?} for {:?} at {:?}",
                        res, lifetime.ident, lifetime.ident.span
                    );
                    span_bug!(lifetime.ident.span, "{}", bug_msg);
                }
            }
        }

        result
    }

    fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> &'hir [Ident] {
        // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
        // as they are not explicit in HIR/Ty function signatures.
        // (instead, the `c_variadic` flag is set to `true`)
        let mut inputs = &decl.inputs[..];
        if decl.c_variadic() {
            inputs = &inputs[..inputs.len() - 1];
        }
        self.arena.alloc_from_iter(inputs.iter().map(|param| match param.pat.kind {
            PatKind::Ident(_, ident, _) => self.lower_ident(ident),
            _ => Ident::new(kw::Empty, self.lower_span(param.pat.span)),
        }))
    }

    // Lowers a function declaration.
    //
    // `decl`: the unlowered (AST) function declaration.
    // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
    //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
    //      `make_ret_async` is also `Some`.
    // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
    //      return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
    //      return type `impl Trait` item, and the `Span` points to the `async` keyword.
    #[instrument(level = "debug", skip(self))]
    fn lower_fn_decl(
        &mut self,
        decl: &FnDecl,
        fn_node_id: Option<NodeId>,
        fn_span: Span,
        kind: FnDeclKind,
        make_ret_async: Option<(NodeId, Span)>,
    ) -> &'hir hir::FnDecl<'hir> {
        let c_variadic = decl.c_variadic();

        // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
        // as they are not explicit in HIR/Ty function signatures.
        // (instead, the `c_variadic` flag is set to `true`)
        let mut inputs = &decl.inputs[..];
        if c_variadic {
            inputs = &inputs[..inputs.len() - 1];
        }
        let inputs = self.arena.alloc_from_iter(inputs.iter().map(|param| {
            if fn_node_id.is_some() {
                self.lower_ty_direct(&param.ty, &ImplTraitContext::Universal)
            } else {
                self.lower_ty_direct(
                    &param.ty,
                    &ImplTraitContext::Disallowed(match kind {
                        FnDeclKind::Fn | FnDeclKind::Inherent => {
                            unreachable!("fn should allow in-band lifetimes")
                        }
                        FnDeclKind::ExternFn => ImplTraitPosition::ExternFnParam,
                        FnDeclKind::Closure => ImplTraitPosition::ClosureParam,
                        FnDeclKind::Pointer => ImplTraitPosition::PointerParam,
                        FnDeclKind::Trait => ImplTraitPosition::TraitParam,
                        FnDeclKind::Impl => ImplTraitPosition::ImplParam,
                    }),
                )
            }
        }));

        let output = if let Some((ret_id, span)) = make_ret_async {
            if !kind.async_fn_allowed(self.tcx) {
                match kind {
                    FnDeclKind::Trait | FnDeclKind::Impl => {
                        self.tcx
                            .sess
                            .create_feature_err(
                                TraitFnAsync { fn_span, span },
                                sym::async_fn_in_trait,
                            )
                            .emit();
                    }
                    _ => {
                        self.tcx.sess.emit_err(TraitFnAsync { fn_span, span });
                    }
                }
            }

            self.lower_async_fn_ret_ty(
                &decl.output,
                fn_node_id.expect("`make_ret_async` but no `fn_def_id`"),
                ret_id,
                matches!(kind, FnDeclKind::Trait),
            )
        } else {
            match decl.output {
                FnRetTy::Ty(ref ty) => {
                    let mut context = match fn_node_id {
                        Some(fn_node_id) if kind.impl_trait_allowed(self.tcx) => {
                            let fn_def_id = self.local_def_id(fn_node_id);
                            ImplTraitContext::ReturnPositionOpaqueTy {
                                origin: hir::OpaqueTyOrigin::FnReturn(fn_def_id),
                                in_trait: matches!(kind, FnDeclKind::Trait),
                            }
                        }
                        _ => ImplTraitContext::Disallowed(match kind {
                            FnDeclKind::Fn | FnDeclKind::Inherent => {
                                unreachable!("fn should allow in-band lifetimes")
                            }
                            FnDeclKind::ExternFn => ImplTraitPosition::ExternFnReturn,
                            FnDeclKind::Closure => ImplTraitPosition::ClosureReturn,
                            FnDeclKind::Pointer => ImplTraitPosition::PointerReturn,
                            FnDeclKind::Trait => ImplTraitPosition::TraitReturn,
                            FnDeclKind::Impl => ImplTraitPosition::ImplReturn,
                        }),
                    };
                    hir::FnRetTy::Return(self.lower_ty(ty, &mut context))
                }
                FnRetTy::Default(span) => hir::FnRetTy::DefaultReturn(self.lower_span(span)),
            }
        };

        self.arena.alloc(hir::FnDecl {
            inputs,
            output,
            c_variadic,
            implicit_self: decl.inputs.get(0).map_or(hir::ImplicitSelfKind::None, |arg| {
                let is_mutable_pat = matches!(
                    arg.pat.kind,
                    PatKind::Ident(hir::BindingAnnotation(_, Mutability::Mut), ..)
                );

                match arg.ty.kind {
                    TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
                    TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
                    // Given we are only considering `ImplicitSelf` types, we needn't consider
                    // the case where we have a mutable pattern to a reference as that would
                    // no longer be an `ImplicitSelf`.
                    TyKind::Rptr(_, ref mt)
                        if mt.ty.kind.is_implicit_self() && mt.mutbl == ast::Mutability::Mut =>
                    {
                        hir::ImplicitSelfKind::MutRef
                    }
                    TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() => {
                        hir::ImplicitSelfKind::ImmRef
                    }
                    _ => hir::ImplicitSelfKind::None,
                }
            }),
        })
    }

    // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
    // combined with the following definition of `OpaqueTy`:
    //
    //     type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
    //
    // `output`: unlowered output type (`T` in `-> T`)
    // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
    // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
    #[instrument(level = "debug", skip(self))]
    fn lower_async_fn_ret_ty(
        &mut self,
        output: &FnRetTy,
        fn_node_id: NodeId,
        opaque_ty_node_id: NodeId,
        in_trait: bool,
    ) -> hir::FnRetTy<'hir> {
        let span = output.span();

        let opaque_ty_span = self.mark_span_with_reason(DesugaringKind::Async, span, None);

        let opaque_ty_def_id = self.local_def_id(opaque_ty_node_id);
        let fn_def_id = self.local_def_id(fn_node_id);

        // When we create the opaque type for this async fn, it is going to have
        // to capture all the lifetimes involved in the signature (including in the
        // return type). This is done by introducing lifetime parameters for:
        //
        // - all the explicitly declared lifetimes from the impl and function itself;
        // - all the elided lifetimes in the fn arguments;
        // - all the elided lifetimes in the return type.
        //
        // So for example in this snippet:
        //
        // ```rust
        // impl<'a> Foo<'a> {
        //   async fn bar<'b>(&self, x: &'b Vec<f64>, y: &str) -> &u32 {
        //   //               ^ '0                       ^ '1     ^ '2
        //   // elided lifetimes used below
        //   }
        // }
        // ```
        //
        // we would create an opaque type like:
        //
        // ```
        // type Bar<'a, 'b, '0, '1, '2> = impl Future<Output = &'2 u32>;
        // ```
        //
        // and we would then desugar `bar` to the equivalent of:
        //
        // ```rust
        // impl<'a> Foo<'a> {
        //   fn bar<'b, '0, '1>(&'0 self, x: &'b Vec<f64>, y: &'1 str) -> Bar<'a, 'b, '0, '1, '_>
        // }
        // ```
        //
        // Note that the final parameter to `Bar` is `'_`, not `'2` --
        // this is because the elided lifetimes from the return type
        // should be figured out using the ordinary elision rules, and
        // this desugaring achieves that.

        // Calculate all the lifetimes that should be captured
        // by the opaque type. This should include all in-scope
        // lifetime parameters, including those defined in-band.

        // Contains the new lifetime definitions created for the TAIT (if any) generated for the
        // return type.
        let mut collected_lifetimes = Vec::new();
        let mut new_remapping = FxHashMap::default();

        let extra_lifetime_params = self.resolver.take_extra_lifetime_params(opaque_ty_node_id);
        debug!(?extra_lifetime_params);
        for (ident, outer_node_id, outer_res) in extra_lifetime_params {
            let outer_def_id = self.local_def_id(outer_node_id);
            let inner_node_id = self.next_node_id();

            // Add a definition for the in scope lifetime def.
            let inner_def_id = self.create_def(
                opaque_ty_def_id,
                inner_node_id,
                DefPathData::LifetimeNs(ident.name),
            );
            new_remapping.insert(outer_def_id, inner_def_id);

            let inner_res = match outer_res {
                // Input lifetime like `'a`:
                LifetimeRes::Param { param, .. } => {
                    LifetimeRes::Param { param, binder: fn_node_id }
                }
                // Input lifetime like `'1`:
                LifetimeRes::Fresh { param, .. } => {
                    LifetimeRes::Fresh { param, binder: fn_node_id }
                }
                LifetimeRes::Static | LifetimeRes::Error => continue,
                res => {
                    panic!(
                        "Unexpected lifetime resolution {:?} for {:?} at {:?}",
                        res, ident, ident.span
                    )
                }
            };

            let lifetime = Lifetime { id: outer_node_id, ident };
            collected_lifetimes.push((inner_node_id, lifetime, Some(inner_res)));
        }

        debug!(?collected_lifetimes);

        // We only want to capture the lifetimes that appear in the bounds. So visit the bounds to
        // find out exactly which ones those are.
        // in fn return position, like the `fn test<'a>() -> impl Debug + 'a` example,
        // we only keep the lifetimes that appear in the `impl Debug` itself:
        let lifetimes_to_remap = lifetime_collector::lifetimes_in_ret_ty(&self.resolver, output);
        debug!(?lifetimes_to_remap);

        self.with_hir_id_owner(opaque_ty_node_id, |this| {
            // If this opaque type is only capturing a subset of the lifetimes (those that appear
            // in bounds), then create the new lifetime parameters required and create a mapping
            // from the old `'a` (on the function) to the new `'a` (on the opaque type).
            collected_lifetimes.extend(
                this.create_lifetime_defs(
                    opaque_ty_def_id,
                    &lifetimes_to_remap,
                    &mut new_remapping,
                )
                .into_iter()
                .map(|(new_node_id, lifetime)| (new_node_id, lifetime, None)),
            );
            debug!(?collected_lifetimes);
            debug!(?new_remapping);

            // Install the remapping from old to new (if any):
            this.with_remapping(new_remapping, |this| {
                // We have to be careful to get elision right here. The
                // idea is that we create a lifetime parameter for each
                // lifetime in the return type.  So, given a return type
                // like `async fn foo(..) -> &[&u32]`, we lower to `impl
                // Future<Output = &'1 [ &'2 u32 ]>`.
                //
                // Then, we will create `fn foo(..) -> Foo<'_, '_>`, and
                // hence the elision takes place at the fn site.
                let future_bound = this.lower_async_fn_output_type_to_future_bound(
                    output,
                    span,
                    if in_trait && !this.tcx.features().return_position_impl_trait_in_trait {
                        ImplTraitContext::Disallowed(ImplTraitPosition::TraitReturn)
                    } else {
                        ImplTraitContext::ReturnPositionOpaqueTy {
                            origin: hir::OpaqueTyOrigin::FnReturn(fn_def_id),
                            in_trait,
                        }
                    },
                );

                let generic_params = this.arena.alloc_from_iter(collected_lifetimes.iter().map(
                    |&(new_node_id, lifetime, _)| {
                        let hir_id = this.lower_node_id(new_node_id);
                        debug_assert_ne!(this.opt_local_def_id(new_node_id), None);

                        let (name, kind) = if lifetime.ident.name == kw::UnderscoreLifetime {
                            (hir::ParamName::Fresh, hir::LifetimeParamKind::Elided)
                        } else {
                            (
                                hir::ParamName::Plain(lifetime.ident),
                                hir::LifetimeParamKind::Explicit,
                            )
                        };

                        hir::GenericParam {
                            hir_id,
                            name,
                            span: lifetime.ident.span,
                            pure_wrt_drop: false,
                            kind: hir::GenericParamKind::Lifetime { kind },
                            colon_span: None,
                        }
                    },
                ));
                debug!("lower_async_fn_ret_ty: generic_params={:#?}", generic_params);

                let opaque_ty_item = hir::OpaqueTy {
                    generics: this.arena.alloc(hir::Generics {
                        params: generic_params,
                        predicates: &[],
                        has_where_clause_predicates: false,
                        where_clause_span: this.lower_span(span),
                        span: this.lower_span(span),
                    }),
                    bounds: arena_vec![this; future_bound],
                    origin: hir::OpaqueTyOrigin::AsyncFn(fn_def_id),
                    in_trait,
                };

                trace!("exist ty from async fn def id: {:#?}", opaque_ty_def_id);
                this.generate_opaque_type(opaque_ty_def_id, opaque_ty_item, span, opaque_ty_span)
            })
        });

        // As documented above, we need to create the lifetime
        // arguments to our opaque type. Continuing with our example,
        // we're creating the type arguments for the return type:
        //
        // ```
        // Bar<'a, 'b, '0, '1, '_>
        // ```
        //
        // For the "input" lifetime parameters, we wish to create
        // references to the parameters themselves, including the
        // "implicit" ones created from parameter types (`'a`, `'b`,
        // '`0`, `'1`).
        //
        // For the "output" lifetime parameters, we just want to
        // generate `'_`.
        let generic_args = self.arena.alloc_from_iter(collected_lifetimes.into_iter().map(
            |(_, lifetime, res)| {
                let id = self.next_node_id();
                let span = lifetime.ident.span;

                let ident = if lifetime.ident.name == kw::UnderscoreLifetime {
                    Ident::with_dummy_span(kw::UnderscoreLifetime)
                } else {
                    lifetime.ident
                };

                let res = res.unwrap_or(
                    self.resolver.get_lifetime_res(lifetime.id).unwrap_or(LifetimeRes::Error),
                );
                hir::GenericArg::Lifetime(self.new_named_lifetime_with_res(id, span, ident, res))
            },
        ));

        // Create the `Foo<...>` reference itself. Note that the `type
        // Foo = impl Trait` is, internally, created as a child of the
        // async fn, so the *type parameters* are inherited.  It's
        // only the lifetime parameters that we must supply.
        let opaque_ty_ref = hir::TyKind::OpaqueDef(
            hir::ItemId { def_id: hir::OwnerId { def_id: opaque_ty_def_id } },
            generic_args,
            in_trait,
        );
        let opaque_ty = self.ty(opaque_ty_span, opaque_ty_ref);
        hir::FnRetTy::Return(self.arena.alloc(opaque_ty))
    }

    /// Transforms `-> T` into `Future<Output = T>`.
    fn lower_async_fn_output_type_to_future_bound(
        &mut self,
        output: &FnRetTy,
        span: Span,
        mut nested_impl_trait_context: ImplTraitContext,
    ) -> hir::GenericBound<'hir> {
        // Compute the `T` in `Future<Output = T>` from the return type.
        let output_ty = match output {
            FnRetTy::Ty(ty) => {
                // Not `OpaqueTyOrigin::AsyncFn`: that's only used for the
                // `impl Future` opaque type that `async fn` implicitly
                // generates.
                self.lower_ty(ty, &mut nested_impl_trait_context)
            }
            FnRetTy::Default(ret_ty_span) => self.arena.alloc(self.ty_tup(*ret_ty_span, &[])),
        };

        // "<Output = T>"
        let future_args = self.arena.alloc(hir::GenericArgs {
            args: &[],
            bindings: arena_vec![self; self.output_ty_binding(span, output_ty)],
            parenthesized: false,
            span_ext: DUMMY_SP,
        });

        hir::GenericBound::LangItemTrait(
            // ::std::future::Future<future_params>
            hir::LangItem::Future,
            self.lower_span(span),
            self.next_id(),
            future_args,
        )
    }

    #[instrument(level = "trace", skip(self))]
    fn lower_param_bound(
        &mut self,
        tpb: &GenericBound,
        itctx: &ImplTraitContext,
    ) -> hir::GenericBound<'hir> {
        match tpb {
            GenericBound::Trait(p, modifier) => hir::GenericBound::Trait(
                self.lower_poly_trait_ref(p, itctx),
                self.lower_trait_bound_modifier(*modifier),
            ),
            GenericBound::Outlives(lifetime) => {
                hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
            }
        }
    }

    fn lower_lifetime(&mut self, l: &Lifetime) -> &'hir hir::Lifetime {
        let span = self.lower_span(l.ident.span);
        let ident = self.lower_ident(l.ident);
        self.new_named_lifetime(l.id, l.id, span, ident)
    }

    #[instrument(level = "debug", skip(self))]
    fn new_named_lifetime_with_res(
        &mut self,
        id: NodeId,
        span: Span,
        ident: Ident,
        res: LifetimeRes,
    ) -> &'hir hir::Lifetime {
        let name = match res {
            LifetimeRes::Param { param, .. } => {
                let p_name = ParamName::Plain(ident);
                let param = self.get_remapped_def_id(param);

                hir::LifetimeName::Param(param, p_name)
            }
            LifetimeRes::Fresh { param, .. } => {
                debug_assert_eq!(ident.name, kw::UnderscoreLifetime);
                let param = self.local_def_id(param);

                hir::LifetimeName::Param(param, ParamName::Fresh)
            }
            LifetimeRes::Infer => hir::LifetimeName::Infer,
            LifetimeRes::Static => hir::LifetimeName::Static,
            LifetimeRes::Error => hir::LifetimeName::Error,
            res => panic!("Unexpected lifetime resolution {:?} for {:?} at {:?}", res, ident, span),
        };

        debug!(?name);
        self.arena.alloc(hir::Lifetime {
            hir_id: self.lower_node_id(id),
            span: self.lower_span(span),
            name,
        })
    }

    #[instrument(level = "debug", skip(self))]
    fn new_named_lifetime(
        &mut self,
        id: NodeId,
        new_id: NodeId,
        span: Span,
        ident: Ident,
    ) -> &'hir hir::Lifetime {
        let res = self.resolver.get_lifetime_res(id).unwrap_or(LifetimeRes::Error);
        self.new_named_lifetime_with_res(new_id, span, ident, res)
    }

    fn lower_generic_params_mut<'s>(
        &'s mut self,
        params: &'s [GenericParam],
    ) -> impl Iterator<Item = hir::GenericParam<'hir>> + Captures<'a> + Captures<'s> {
        params.iter().map(move |param| self.lower_generic_param(param))
    }

    fn lower_generic_params(&mut self, params: &[GenericParam]) -> &'hir [hir::GenericParam<'hir>] {
        self.arena.alloc_from_iter(self.lower_generic_params_mut(params))
    }

    #[instrument(level = "trace", skip(self))]
    fn lower_generic_param(&mut self, param: &GenericParam) -> hir::GenericParam<'hir> {
        let (name, kind) = self.lower_generic_param_kind(param);

        let hir_id = self.lower_node_id(param.id);
        self.lower_attrs(hir_id, &param.attrs);
        hir::GenericParam {
            hir_id,
            name,
            span: self.lower_span(param.span()),
            pure_wrt_drop: self.tcx.sess.contains_name(&param.attrs, sym::may_dangle),
            kind,
            colon_span: param.colon_span.map(|s| self.lower_span(s)),
        }
    }

    fn lower_generic_param_kind(
        &mut self,
        param: &GenericParam,
    ) -> (hir::ParamName, hir::GenericParamKind<'hir>) {
        match param.kind {
            GenericParamKind::Lifetime => {
                // AST resolution emitted an error on those parameters, so we lower them using
                // `ParamName::Error`.
                let param_name =
                    if let Some(LifetimeRes::Error) = self.resolver.get_lifetime_res(param.id) {
                        ParamName::Error
                    } else {
                        let ident = self.lower_ident(param.ident);
                        ParamName::Plain(ident)
                    };
                let kind =
                    hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit };

                (param_name, kind)
            }
            GenericParamKind::Type { ref default, .. } => {
                let kind = hir::GenericParamKind::Type {
                    default: default.as_ref().map(|x| {
                        self.lower_ty(x, &ImplTraitContext::Disallowed(ImplTraitPosition::Type))
                    }),
                    synthetic: false,
                };

                (hir::ParamName::Plain(self.lower_ident(param.ident)), kind)
            }
            GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
                let ty = self.lower_ty(&ty, &ImplTraitContext::Disallowed(ImplTraitPosition::Type));
                let default = default.as_ref().map(|def| self.lower_anon_const(def));
                (
                    hir::ParamName::Plain(self.lower_ident(param.ident)),
                    hir::GenericParamKind::Const { ty, default },
                )
            }
        }
    }

    fn lower_trait_ref(&mut self, p: &TraitRef, itctx: &ImplTraitContext) -> hir::TraitRef<'hir> {
        let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
            hir::QPath::Resolved(None, path) => path,
            qpath => panic!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
        };
        hir::TraitRef { path, hir_ref_id: self.lower_node_id(p.ref_id) }
    }

    #[instrument(level = "debug", skip(self))]
    fn lower_poly_trait_ref(
        &mut self,
        p: &PolyTraitRef,
        itctx: &ImplTraitContext,
    ) -> hir::PolyTraitRef<'hir> {
        let bound_generic_params =
            self.lower_lifetime_binder(p.trait_ref.ref_id, &p.bound_generic_params);
        let trait_ref = self.lower_trait_ref(&p.trait_ref, itctx);
        hir::PolyTraitRef { bound_generic_params, trait_ref, span: self.lower_span(p.span) }
    }

    fn lower_mt(&mut self, mt: &MutTy, itctx: &ImplTraitContext) -> hir::MutTy<'hir> {
        hir::MutTy { ty: self.lower_ty(&mt.ty, itctx), mutbl: mt.mutbl }
    }

    #[instrument(level = "debug", skip(self), ret)]
    fn lower_param_bounds(
        &mut self,
        bounds: &[GenericBound],
        itctx: &ImplTraitContext,
    ) -> hir::GenericBounds<'hir> {
        self.arena.alloc_from_iter(self.lower_param_bounds_mut(bounds, itctx))
    }

    fn lower_param_bounds_mut<'s>(
        &'s mut self,
        bounds: &'s [GenericBound],
        itctx: &'s ImplTraitContext,
    ) -> impl Iterator<Item = hir::GenericBound<'hir>> + Captures<'s> + Captures<'a> {
        bounds.iter().map(move |bound| self.lower_param_bound(bound, itctx))
    }

    #[instrument(level = "debug", skip(self), ret)]
    fn lower_generic_and_bounds(
        &mut self,
        node_id: NodeId,
        span: Span,
        ident: Ident,
        bounds: &[GenericBound],
    ) -> (hir::GenericParam<'hir>, Option<hir::WherePredicate<'hir>>, hir::TyKind<'hir>) {
        // Add a definition for the in-band `Param`.
        let def_id = self.local_def_id(node_id);

        // Set the name to `impl Bound1 + Bound2`.
        let param = hir::GenericParam {
            hir_id: self.lower_node_id(node_id),
            name: ParamName::Plain(self.lower_ident(ident)),
            pure_wrt_drop: false,
            span: self.lower_span(span),
            kind: hir::GenericParamKind::Type { default: None, synthetic: true },
            colon_span: None,
        };

        let preds = self.lower_generic_bound_predicate(
            ident,
            node_id,
            &GenericParamKind::Type { default: None },
            bounds,
            &ImplTraitContext::Universal,
            hir::PredicateOrigin::ImplTrait,
        );

        let hir_id = self.next_id();
        let res = Res::Def(DefKind::TyParam, def_id.to_def_id());
        let ty = hir::TyKind::Path(hir::QPath::Resolved(
            None,
            self.arena.alloc(hir::Path {
                span: self.lower_span(span),
                res,
                segments:
                    arena_vec![self; hir::PathSegment::new(self.lower_ident(ident), hir_id, res)],
            }),
        ));

        (param, preds, ty)
    }

    /// Lowers a block directly to an expression, presuming that it
    /// has no attributes and is not targeted by a `break`.
    fn lower_block_expr(&mut self, b: &Block) -> hir::Expr<'hir> {
        let block = self.lower_block(b, false);
        self.expr_block(block, AttrVec::new())
    }

    fn lower_array_length(&mut self, c: &AnonConst) -> hir::ArrayLen {
        match c.value.kind {
            ExprKind::Underscore => {
                if self.tcx.features().generic_arg_infer {
                    hir::ArrayLen::Infer(self.lower_node_id(c.id), c.value.span)
                } else {
                    feature_err(
                        &self.tcx.sess.parse_sess,
                        sym::generic_arg_infer,
                        c.value.span,
                        "using `_` for array lengths is unstable",
                    )
                    .stash(c.value.span, StashKey::UnderscoreForArrayLengths);
                    hir::ArrayLen::Body(self.lower_anon_const(c))
                }
            }
            _ => hir::ArrayLen::Body(self.lower_anon_const(c)),
        }
    }

    fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
        self.with_new_scopes(|this| hir::AnonConst {
            hir_id: this.lower_node_id(c.id),
            body: this.lower_const_body(c.value.span, Some(&c.value)),
        })
    }

    fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
        match u {
            CompilerGenerated => hir::UnsafeSource::CompilerGenerated,
            UserProvided => hir::UnsafeSource::UserProvided,
        }
    }

    fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
        match f {
            TraitBoundModifier::None => hir::TraitBoundModifier::None,
            TraitBoundModifier::MaybeConst => hir::TraitBoundModifier::MaybeConst,

            // `MaybeConstMaybe` will cause an error during AST validation, but we need to pick a
            // placeholder for compilation to proceed.
            TraitBoundModifier::MaybeConstMaybe | TraitBoundModifier::Maybe => {
                hir::TraitBoundModifier::Maybe
            }
        }
    }

    // Helper methods for building HIR.

    fn stmt(&mut self, span: Span, kind: hir::StmtKind<'hir>) -> hir::Stmt<'hir> {
        hir::Stmt { span: self.lower_span(span), kind, hir_id: self.next_id() }
    }

    fn stmt_expr(&mut self, span: Span, expr: hir::Expr<'hir>) -> hir::Stmt<'hir> {
        self.stmt(span, hir::StmtKind::Expr(self.arena.alloc(expr)))
    }

    fn stmt_let_pat(
        &mut self,
        attrs: Option<&'hir [Attribute]>,
        span: Span,
        init: Option<&'hir hir::Expr<'hir>>,
        pat: &'hir hir::Pat<'hir>,
        source: hir::LocalSource,
    ) -> hir::Stmt<'hir> {
        let hir_id = self.next_id();
        if let Some(a) = attrs {
            debug_assert!(!a.is_empty());
            self.attrs.insert(hir_id.local_id, a);
        }
        let local = hir::Local {
            hir_id,
            init,
            pat,
            els: None,
            source,
            span: self.lower_span(span),
            ty: None,
        };
        self.stmt(span, hir::StmtKind::Local(self.arena.alloc(local)))
    }

    fn block_expr(&mut self, expr: &'hir hir::Expr<'hir>) -> &'hir hir::Block<'hir> {
        self.block_all(expr.span, &[], Some(expr))
    }

    fn block_all(
        &mut self,
        span: Span,
        stmts: &'hir [hir::Stmt<'hir>],
        expr: Option<&'hir hir::Expr<'hir>>,
    ) -> &'hir hir::Block<'hir> {
        let blk = hir::Block {
            stmts,
            expr,
            hir_id: self.next_id(),
            rules: hir::BlockCheckMode::DefaultBlock,
            span: self.lower_span(span),
            targeted_by_break: false,
        };
        self.arena.alloc(blk)
    }

    fn pat_cf_continue(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
        let field = self.single_pat_field(span, pat);
        self.pat_lang_item_variant(span, hir::LangItem::ControlFlowContinue, field, None)
    }

    fn pat_cf_break(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
        let field = self.single_pat_field(span, pat);
        self.pat_lang_item_variant(span, hir::LangItem::ControlFlowBreak, field, None)
    }

    fn pat_some(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
        let field = self.single_pat_field(span, pat);
        self.pat_lang_item_variant(span, hir::LangItem::OptionSome, field, None)
    }

    fn pat_none(&mut self, span: Span) -> &'hir hir::Pat<'hir> {
        self.pat_lang_item_variant(span, hir::LangItem::OptionNone, &[], None)
    }

    fn single_pat_field(
        &mut self,
        span: Span,
        pat: &'hir hir::Pat<'hir>,
    ) -> &'hir [hir::PatField<'hir>] {
        let field = hir::PatField {
            hir_id: self.next_id(),
            ident: Ident::new(sym::integer(0), self.lower_span(span)),
            is_shorthand: false,
            pat,
            span: self.lower_span(span),
        };
        arena_vec![self; field]
    }

    fn pat_lang_item_variant(
        &mut self,
        span: Span,
        lang_item: hir::LangItem,
        fields: &'hir [hir::PatField<'hir>],
        hir_id: Option<hir::HirId>,
    ) -> &'hir hir::Pat<'hir> {
        let qpath = hir::QPath::LangItem(lang_item, self.lower_span(span), hir_id);
        self.pat(span, hir::PatKind::Struct(qpath, fields, false))
    }

    fn pat_ident(&mut self, span: Span, ident: Ident) -> (&'hir hir::Pat<'hir>, hir::HirId) {
        self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::NONE)
    }

    fn pat_ident_mut(&mut self, span: Span, ident: Ident) -> (hir::Pat<'hir>, hir::HirId) {
        self.pat_ident_binding_mode_mut(span, ident, hir::BindingAnnotation::NONE)
    }

    fn pat_ident_binding_mode(
        &mut self,
        span: Span,
        ident: Ident,
        bm: hir::BindingAnnotation,
    ) -> (&'hir hir::Pat<'hir>, hir::HirId) {
        let (pat, hir_id) = self.pat_ident_binding_mode_mut(span, ident, bm);
        (self.arena.alloc(pat), hir_id)
    }

    fn pat_ident_binding_mode_mut(
        &mut self,
        span: Span,
        ident: Ident,
        bm: hir::BindingAnnotation,
    ) -> (hir::Pat<'hir>, hir::HirId) {
        let hir_id = self.next_id();

        (
            hir::Pat {
                hir_id,
                kind: hir::PatKind::Binding(bm, hir_id, self.lower_ident(ident), None),
                span: self.lower_span(span),
                default_binding_modes: true,
            },
            hir_id,
        )
    }

    fn pat(&mut self, span: Span, kind: hir::PatKind<'hir>) -> &'hir hir::Pat<'hir> {
        self.arena.alloc(hir::Pat {
            hir_id: self.next_id(),
            kind,
            span: self.lower_span(span),
            default_binding_modes: true,
        })
    }

    fn pat_without_dbm(&mut self, span: Span, kind: hir::PatKind<'hir>) -> hir::Pat<'hir> {
        hir::Pat {
            hir_id: self.next_id(),
            kind,
            span: self.lower_span(span),
            default_binding_modes: false,
        }
    }

    fn ty_path(
        &mut self,
        mut hir_id: hir::HirId,
        span: Span,
        qpath: hir::QPath<'hir>,
    ) -> hir::Ty<'hir> {
        let kind = match qpath {
            hir::QPath::Resolved(None, path) => {
                // Turn trait object paths into `TyKind::TraitObject` instead.
                match path.res {
                    Res::Def(DefKind::Trait | DefKind::TraitAlias, _) => {
                        let principal = hir::PolyTraitRef {
                            bound_generic_params: &[],
                            trait_ref: hir::TraitRef { path, hir_ref_id: hir_id },
                            span: self.lower_span(span),
                        };

                        // The original ID is taken by the `PolyTraitRef`,
                        // so the `Ty` itself needs a different one.
                        hir_id = self.next_id();
                        hir::TyKind::TraitObject(
                            arena_vec![self; principal],
                            self.elided_dyn_bound(span),
                            TraitObjectSyntax::None,
                        )
                    }
                    _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
                }
            }
            _ => hir::TyKind::Path(qpath),
        };

        hir::Ty { hir_id, kind, span: self.lower_span(span) }
    }

    /// Invoked to create the lifetime argument(s) for an elided trait object
    /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
    /// when the bound is written, even if it is written with `'_` like in
    /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
    fn elided_dyn_bound(&mut self, span: Span) -> &'hir hir::Lifetime {
        let r = hir::Lifetime {
            hir_id: self.next_id(),
            span: self.lower_span(span),
            name: hir::LifetimeName::ImplicitObjectLifetimeDefault,
        };
        debug!("elided_dyn_bound: r={:?}", r);
        self.arena.alloc(r)
    }
}

/// Helper struct for delayed construction of GenericArgs.
struct GenericArgsCtor<'hir> {
    args: SmallVec<[hir::GenericArg<'hir>; 4]>,
    bindings: &'hir [hir::TypeBinding<'hir>],
    parenthesized: bool,
    span: Span,
}

impl<'hir> GenericArgsCtor<'hir> {
    fn is_empty(&self) -> bool {
        self.args.is_empty() && self.bindings.is_empty() && !self.parenthesized
    }

    fn into_generic_args(self, this: &LoweringContext<'_, 'hir>) -> &'hir hir::GenericArgs<'hir> {
        let ga = hir::GenericArgs {
            args: this.arena.alloc_from_iter(self.args),
            bindings: self.bindings,
            parenthesized: self.parenthesized,
            span_ext: this.lower_span(self.span),
        };
        this.arena.alloc(ga)
    }
}