miri/shims/x86/
sse42.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
use rustc_abi::Size;
use rustc_middle::mir;
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::LayoutOf as _;
use rustc_span::Symbol;
use rustc_target::callconv::{Conv, FnAbi};

use crate::*;

/// A bitmask constant for scrutinizing the immediate byte provided
/// to the string comparison intrinsics. It distinuishes between
/// 16-bit integers and 8-bit integers. See [`compare_strings`]
/// for more details about the immediate byte.
const USE_WORDS: u8 = 1;

/// A bitmask constant for scrutinizing the immediate byte provided
/// to the string comparison intrinsics. It distinuishes between
/// signed integers and unsigned integers. See [`compare_strings`]
/// for more details about the immediate byte.
const USE_SIGNED: u8 = 2;

/// The main worker for the string comparison intrinsics, where the given
/// strings are analyzed according to the given immediate byte.
///
/// # Arguments
///
/// * `str1` - The first string argument. It is always a length 16 array of bytes
///   or a length 8 array of two-byte words.
/// * `str2` - The second string argument. It is always a length 16 array of bytes
///   or a length 8 array of two-byte words.
/// * `len` is the length values of the supplied strings. It is distinct from the operand length
///   in that it describes how much of `str1` and `str2` will be used for the calculation and may
///   be smaller than the array length of `str1` and `str2`. The string length is counted in bytes
///   if using byte operands and in two-byte words when using two-byte word operands.
///   If the value is `None`, the length of a string is determined by the first
///   null value inside the string.
/// * `imm` is the immediate byte argument supplied to the intrinsic. The byte influences
///   the operation as follows:
///
///   ```text
///   0babccddef
///     || | |||- Use of bytes vs use of two-byte words inside the operation.
///     || | ||
///     || | ||- Use of signed values versus use of unsigned values.
///     || | |
///     || | |- The comparison operation performed. A total of four operations are available.
///     || |    * Equal any: Checks which characters of `str2` are inside `str1`.
///     || |    * String ranges: Check if characters in `str2` are inside the provided character ranges.
///     || |      Adjacent characters in `str1` constitute one range.
///     || |    * String comparison: Mark positions where `str1` and `str2` have the same character.
///     || |    * Substring search: Mark positions where `str1` is a substring in `str2`.
///     || |
///     || |- Result Polarity. The result bits may be subjected to a bitwise complement
///     ||    if these bits are set.
///     ||
///     ||- Output selection. This bit has two meanings depending on the instruction.
///     |   If the instruction is generating a mask, it distinguishes between a bit mask
///     |   and a byte mask. Otherwise it distinguishes between the most significand bit
///     |   and the least significand bit when generating an index.
///     |
///     |- This bit is ignored. It is expected that this bit is set to zero, but it is
///        not a requirement.
///   ```
///
/// # Returns
///
/// A result mask. The bit at index `i` inside the mask is set if 'str2' starting at `i`
/// fulfills the test as defined inside the immediate byte.
/// The mask may be negated if negation flags inside the immediate byte are set.
///
/// For more information, see the Intel Software Developer's Manual, Vol. 2b, Chapter 4.1.
#[expect(clippy::arithmetic_side_effects)]
fn compare_strings<'tcx>(
    ecx: &mut MiriInterpCx<'tcx>,
    str1: &OpTy<'tcx>,
    str2: &OpTy<'tcx>,
    len: Option<(u64, u64)>,
    imm: u8,
) -> InterpResult<'tcx, i32> {
    let default_len = default_len::<u64>(imm);
    let (len1, len2) = if let Some(t) = len {
        t
    } else {
        let len1 = implicit_len(ecx, str1, imm)?.unwrap_or(default_len);
        let len2 = implicit_len(ecx, str2, imm)?.unwrap_or(default_len);
        (len1, len2)
    };

    let mut result = 0;
    match (imm >> 2) & 3 {
        0 => {
            // Equal any: Checks which characters of `str2` are inside `str1`.
            for i in 0..len2 {
                let ch2 = ecx.read_immediate(&ecx.project_index(str2, i)?)?;

                for j in 0..len1 {
                    let ch1 = ecx.read_immediate(&ecx.project_index(str1, j)?)?;

                    let eq = ecx.binary_op(mir::BinOp::Eq, &ch1, &ch2)?;
                    if eq.to_scalar().to_bool()? {
                        result |= 1 << i;
                        break;
                    }
                }
            }
        }
        1 => {
            // String ranges: Check if characters in `str2` are inside the provided character ranges.
            // Adjacent characters in `str1` constitute one range.
            let len1 = len1 - (len1 & 1);
            let get_ch = |ch: Scalar| -> InterpResult<'tcx, i32> {
                let result = match (imm & USE_WORDS != 0, imm & USE_SIGNED != 0) {
                    (true, true) => i32::from(ch.to_i16()?),
                    (true, false) => i32::from(ch.to_u16()?),
                    (false, true) => i32::from(ch.to_i8()?),
                    (false, false) => i32::from(ch.to_u8()?),
                };
                interp_ok(result)
            };

            for i in 0..len2 {
                for j in (0..len1).step_by(2) {
                    let ch2 = get_ch(ecx.read_scalar(&ecx.project_index(str2, i)?)?)?;
                    let ch1_1 = get_ch(ecx.read_scalar(&ecx.project_index(str1, j)?)?)?;
                    let ch1_2 = get_ch(ecx.read_scalar(&ecx.project_index(str1, j + 1)?)?)?;

                    if ch1_1 <= ch2 && ch2 <= ch1_2 {
                        result |= 1 << i;
                    }
                }
            }
        }
        2 => {
            // String comparison: Mark positions where `str1` and `str2` have the same character.
            result = (1 << default_len) - 1;
            result ^= (1 << len1.max(len2)) - 1;

            for i in 0..len1.min(len2) {
                let ch1 = ecx.read_immediate(&ecx.project_index(str1, i)?)?;
                let ch2 = ecx.read_immediate(&ecx.project_index(str2, i)?)?;
                let eq = ecx.binary_op(mir::BinOp::Eq, &ch1, &ch2)?;
                result |= i32::from(eq.to_scalar().to_bool()?) << i;
            }
        }
        3 => {
            // Substring search: Mark positions where `str1` is a substring in `str2`.
            if len1 == 0 {
                result = (1 << default_len) - 1;
            } else if len1 <= len2 {
                for i in 0..len2 {
                    if len1 > len2 - i {
                        break;
                    }

                    result |= 1 << i;

                    for j in 0..len1 {
                        let k = i + j;

                        if k >= default_len {
                            break;
                        } else {
                            let ch1 = ecx.read_immediate(&ecx.project_index(str1, j)?)?;
                            let ch2 = ecx.read_immediate(&ecx.project_index(str2, k)?)?;
                            let ne = ecx.binary_op(mir::BinOp::Ne, &ch1, &ch2)?;

                            if ne.to_scalar().to_bool()? {
                                result &= !(1 << i);
                                break;
                            }
                        }
                    }
                }
            }
        }
        _ => unreachable!(),
    }

    // Polarity: Possibly perform a bitwise complement on the result.
    match (imm >> 4) & 3 {
        3 => result ^= (1 << len1) - 1,
        1 => result ^= (1 << default_len) - 1,
        _ => (),
    }

    interp_ok(result)
}

/// Obtain the arguments of the intrinsic based on its name.
/// The result is a tuple with the following values:
/// * The first string argument.
/// * The second string argument.
/// * The string length values, if the intrinsic requires them.
/// * The immediate instruction byte.
///
/// The string arguments will be transmuted into arrays of bytes
/// or two-byte words, depending on the value of the immediate byte.
/// Originally, they are [__m128i](https://doc.rust-lang.org/stable/core/arch/x86_64/struct.__m128i.html) values
/// corresponding to the x86 128-bit integer SIMD type.
fn deconstruct_args<'tcx>(
    unprefixed_name: &str,
    ecx: &mut MiriInterpCx<'tcx>,
    link_name: Symbol,
    abi: &FnAbi<'tcx, Ty<'tcx>>,
    args: &[OpTy<'tcx>],
) -> InterpResult<'tcx, (OpTy<'tcx>, OpTy<'tcx>, Option<(u64, u64)>, u8)> {
    let array_layout_fn = |ecx: &mut MiriInterpCx<'tcx>, imm: u8| {
        if imm & USE_WORDS != 0 {
            ecx.layout_of(Ty::new_array(ecx.tcx.tcx, ecx.tcx.types.u16, 8))
        } else {
            ecx.layout_of(Ty::new_array(ecx.tcx.tcx, ecx.tcx.types.u8, 16))
        }
    };

    // The fourth letter of each string comparison intrinsic is either 'e' for "explicit" or 'i' for "implicit".
    // The distinction will correspond to the intrinsics type signature. In this constext, "explicit" and "implicit"
    // refer to the way the string length is determined. The length is either passed explicitly in the "explicit"
    // case or determined by a null terminator in the "implicit" case.
    let is_explicit = match unprefixed_name.as_bytes().get(4) {
        Some(&b'e') => true,
        Some(&b'i') => false,
        _ => unreachable!(),
    };

    if is_explicit {
        let [str1, len1, str2, len2, imm] = ecx.check_shim(abi, Conv::C, link_name, args)?;
        let imm = ecx.read_scalar(imm)?.to_u8()?;

        let default_len = default_len::<u32>(imm);
        let len1 = u64::from(ecx.read_scalar(len1)?.to_u32()?.min(default_len));
        let len2 = u64::from(ecx.read_scalar(len2)?.to_u32()?.min(default_len));

        let array_layout = array_layout_fn(ecx, imm)?;
        let str1 = str1.transmute(array_layout, ecx)?;
        let str2 = str2.transmute(array_layout, ecx)?;

        interp_ok((str1, str2, Some((len1, len2)), imm))
    } else {
        let [str1, str2, imm] = ecx.check_shim(abi, Conv::C, link_name, args)?;
        let imm = ecx.read_scalar(imm)?.to_u8()?;

        let array_layout = array_layout_fn(ecx, imm)?;
        let str1 = str1.transmute(array_layout, ecx)?;
        let str2 = str2.transmute(array_layout, ecx)?;

        interp_ok((str1, str2, None, imm))
    }
}

/// Calculate the c-style string length for a given string `str`.
/// The string is either a length 16 array of bytes a length 8 array of two-byte words.
fn implicit_len<'tcx>(
    ecx: &mut MiriInterpCx<'tcx>,
    str: &OpTy<'tcx>,
    imm: u8,
) -> InterpResult<'tcx, Option<u64>> {
    let mut result = None;
    let zero = ImmTy::from_int(0, str.layout.field(ecx, 0));

    for i in 0..default_len::<u64>(imm) {
        let ch = ecx.read_immediate(&ecx.project_index(str, i)?)?;
        let is_zero = ecx.binary_op(mir::BinOp::Eq, &ch, &zero)?;
        if is_zero.to_scalar().to_bool()? {
            result = Some(i);
            break;
        }
    }
    interp_ok(result)
}

#[inline]
fn default_len<T: From<u8>>(imm: u8) -> T {
    if imm & USE_WORDS != 0 { T::from(8u8) } else { T::from(16u8) }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    fn emulate_x86_sse42_intrinsic(
        &mut self,
        link_name: Symbol,
        abi: &FnAbi<'tcx, Ty<'tcx>>,
        args: &[OpTy<'tcx>],
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx, EmulateItemResult> {
        let this = self.eval_context_mut();
        this.expect_target_feature_for_intrinsic(link_name, "sse4.2")?;
        // Prefix should have already been checked.
        let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.sse42.").unwrap();

        match unprefixed_name {
            // Used to implement the `_mm_cmpestrm` and the `_mm_cmpistrm` functions.
            // These functions compare the input strings and return the resulting mask.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=1044,922
            "pcmpistrm128" | "pcmpestrm128" => {
                let (str1, str2, len, imm) =
                    deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
                let mask = compare_strings(this, &str1, &str2, len, imm)?;

                // The sixth bit inside the immediate byte distiguishes
                // between a bit mask or a byte mask when generating a mask.
                if imm & 0b100_0000 != 0 {
                    let (array_layout, size) = if imm & USE_WORDS != 0 {
                        (this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u16, 8))?, 2)
                    } else {
                        (this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u8, 16))?, 1)
                    };
                    let size = Size::from_bytes(size);
                    let dest = dest.transmute(array_layout, this)?;

                    for i in 0..default_len::<u64>(imm) {
                        let result = helpers::bool_to_simd_element(mask & (1 << i) != 0, size);
                        this.write_scalar(result, &this.project_index(&dest, i)?)?;
                    }
                } else {
                    let layout = this.layout_of(this.tcx.types.i128)?;
                    let dest = dest.transmute(layout, this)?;
                    this.write_scalar(Scalar::from_i128(i128::from(mask)), &dest)?;
                }
            }

            // Used to implement the `_mm_cmpestra` and the `_mm_cmpistra` functions.
            // These functions compare the input strings and return `1` if the end of the second
            // input string is not reached and the resulting mask is zero, and `0` otherwise.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=919,1041
            "pcmpistria128" | "pcmpestria128" => {
                let (str1, str2, len, imm) =
                    deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
                let result = if compare_strings(this, &str1, &str2, len, imm)? != 0 {
                    false
                } else if let Some((_, len)) = len {
                    len >= default_len::<u64>(imm)
                } else {
                    implicit_len(this, &str1, imm)?.is_some()
                };

                this.write_scalar(Scalar::from_i32(i32::from(result)), dest)?;
            }

            // Used to implement the `_mm_cmpestri` and the `_mm_cmpistri` functions.
            // These functions compare the input strings and return the bit index
            // for most significant or least significant bit of the resulting mask.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=921,1043
            "pcmpistri128" | "pcmpestri128" => {
                let (str1, str2, len, imm) =
                    deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
                let mask = compare_strings(this, &str1, &str2, len, imm)?;

                let len = default_len::<u32>(imm);
                // The sixth bit inside the immediate byte distiguishes between the least
                // significant bit and the most significant bit when generating an index.
                let result = if imm & 0b100_0000 != 0 {
                    // most significant bit
                    31u32.wrapping_sub(mask.leading_zeros()).min(len)
                } else {
                    // least significant bit
                    mask.trailing_zeros().min(len)
                };
                this.write_scalar(Scalar::from_i32(i32::try_from(result).unwrap()), dest)?;
            }

            // Used to implement the `_mm_cmpestro` and the `_mm_cmpistro` functions.
            // These functions compare the input strings and return the lowest bit of the
            // resulting mask.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=923,1045
            "pcmpistrio128" | "pcmpestrio128" => {
                let (str1, str2, len, imm) =
                    deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
                let mask = compare_strings(this, &str1, &str2, len, imm)?;
                this.write_scalar(Scalar::from_i32(mask & 1), dest)?;
            }

            // Used to implement the `_mm_cmpestrc` and the `_mm_cmpistrc` functions.
            // These functions compare the input strings and return `1` if the resulting
            // mask was non-zero, and `0` otherwise.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=920,1042
            "pcmpistric128" | "pcmpestric128" => {
                let (str1, str2, len, imm) =
                    deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
                let mask = compare_strings(this, &str1, &str2, len, imm)?;
                this.write_scalar(Scalar::from_i32(i32::from(mask != 0)), dest)?;
            }

            // Used to implement the `_mm_cmpistrz` and the `_mm_cmpistrs` functions.
            // These functions return `1` if the string end has been reached and `0` otherwise.
            // Since these functions define the string length implicitly, it is equal to a
            // search for a null terminator (see `deconstruct_args` for more details).
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=924,925
            "pcmpistriz128" | "pcmpistris128" => {
                let [str1, str2, imm] = this.check_shim(abi, Conv::C, link_name, args)?;
                let imm = this.read_scalar(imm)?.to_u8()?;

                let str = if unprefixed_name == "pcmpistris128" { str1 } else { str2 };
                let array_layout = if imm & USE_WORDS != 0 {
                    this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u16, 8))?
                } else {
                    this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u8, 16))?
                };
                let str = str.transmute(array_layout, this)?;
                let result = implicit_len(this, &str, imm)?.is_some();

                this.write_scalar(Scalar::from_i32(i32::from(result)), dest)?;
            }

            // Used to implement the `_mm_cmpestrz` and the `_mm_cmpestrs` functions.
            // These functions return 1 if the explicitly passed string length is smaller
            // than 16 for byte-sized operands or 8 for word-sized operands.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=1046,1047
            "pcmpestriz128" | "pcmpestris128" => {
                let [_, len1, _, len2, imm] = this.check_shim(abi, Conv::C, link_name, args)?;
                let len = if unprefixed_name == "pcmpestris128" { len1 } else { len2 };
                let len = this.read_scalar(len)?.to_i32()?;
                let imm = this.read_scalar(imm)?.to_u8()?;
                this.write_scalar(
                    Scalar::from_i32(i32::from(len < default_len::<i32>(imm))),
                    dest,
                )?;
            }

            // Used to implement the `_mm_crc32_u{8, 16, 32, 64}` functions.
            // These functions calculate a 32-bit CRC using `0x11EDC6F41`
            // as the polynomial, also known as CRC32C.
            // https://datatracker.ietf.org/doc/html/rfc3720#section-12.1
            "crc32.32.8" | "crc32.32.16" | "crc32.32.32" | "crc32.64.64" => {
                let bit_size = match unprefixed_name {
                    "crc32.32.8" => 8,
                    "crc32.32.16" => 16,
                    "crc32.32.32" => 32,
                    "crc32.64.64" => 64,
                    _ => unreachable!(),
                };

                if bit_size == 64 && this.tcx.sess.target.arch != "x86_64" {
                    return interp_ok(EmulateItemResult::NotSupported);
                }

                let [left, right] = this.check_shim(abi, Conv::C, link_name, args)?;
                let left = this.read_scalar(left)?;
                let right = this.read_scalar(right)?;

                let crc = if bit_size == 64 {
                    // The 64-bit version will only consider the lower 32 bits,
                    // while the upper 32 bits get discarded.
                    #[expect(clippy::cast_possible_truncation)]
                    u128::from((left.to_u64()? as u32).reverse_bits())
                } else {
                    u128::from(left.to_u32()?.reverse_bits())
                };
                let v = match bit_size {
                    8 => u128::from(right.to_u8()?.reverse_bits()),
                    16 => u128::from(right.to_u16()?.reverse_bits()),
                    32 => u128::from(right.to_u32()?.reverse_bits()),
                    64 => u128::from(right.to_u64()?.reverse_bits()),
                    _ => unreachable!(),
                };

                // Perform polynomial division modulo 2.
                // The algorithm for the division is an adapted version of the
                // schoolbook division algorithm used for normal integer or polynomial
                // division. In this context, the quotient is not calculated, since
                // only the remainder is needed.
                //
                // The algorithm works as follows:
                // 1. Pull down digits until division can be performed. In the context of division
                //    modulo 2 it means locating the most significant digit of the dividend and shifting
                //    the divisor such that the position of the divisors most significand digit and the
                //    dividends most significand digit match.
                // 2. Perform a division and determine the remainder. Since it is arithmetic modulo 2,
                //    this operation is a simple bitwise exclusive or.
                // 3. Repeat steps 1. and 2. until the full remainder is calculated. This is the case
                //    once the degree of the remainder polynomial is smaller than the degree of the
                //    divisor polynomial. In other words, the number of leading zeros of the remainder
                //    is larger than the number of leading zeros of the divisor. It is important to
                //    note that standard arithmetic comparison is not applicable here:
                //    0b10011 / 0b11111 = 0b01100 is a valid division, even though the dividend is
                //    smaller than the divisor.
                let mut dividend = (crc << bit_size) ^ (v << 32);
                const POLYNOMIAL: u128 = 0x11EDC6F41;
                while dividend.leading_zeros() <= POLYNOMIAL.leading_zeros() {
                    dividend ^=
                        (POLYNOMIAL << POLYNOMIAL.leading_zeros()) >> dividend.leading_zeros();
                }

                let result = u32::try_from(dividend).unwrap().reverse_bits();
                let result = if bit_size == 64 {
                    Scalar::from_u64(u64::from(result))
                } else {
                    Scalar::from_u32(result)
                };

                this.write_scalar(result, dest)?;
            }
            _ => return interp_ok(EmulateItemResult::NotSupported),
        }
        interp_ok(EmulateItemResult::NeedsReturn)
    }
}