miri/range_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
//! Implements a map from integer indices to data.
//! Rather than storing data for every index, internally, this maps entire ranges to the data.
//! To this end, the APIs all work on ranges, not on individual integers. Ranges are split as
//! necessary (e.g., when [0,5) is first associated with X, and then [1,2) is mutated).
//! Users must not depend on whether a range is coalesced or not, even though this is observable
//! via the iteration APIs.
use std::ops;
use rustc_abi::Size;
#[derive(Clone, Debug)]
struct Elem<T> {
/// The range covered by this element; never empty.
range: ops::Range<u64>,
/// The data stored for this element.
data: T,
}
#[derive(Clone, Debug)]
pub struct RangeMap<T> {
v: Vec<Elem<T>>,
}
impl<T> RangeMap<T> {
/// Creates a new `RangeMap` for the given size, and with the given initial value used for
/// the entire range.
#[inline(always)]
pub fn new(size: Size, init: T) -> RangeMap<T> {
let size = size.bytes();
let v = if size > 0 { vec![Elem { range: 0..size, data: init }] } else { Vec::new() };
RangeMap { v }
}
/// Finds the index containing the given offset.
fn find_offset(&self, offset: u64) -> usize {
self.v
.binary_search_by(|elem| -> std::cmp::Ordering {
if offset < elem.range.start {
// We are too far right (offset is further left).
// (`Greater` means that `elem` is greater than the desired target.)
std::cmp::Ordering::Greater
} else if offset >= elem.range.end {
// We are too far left (offset is further right).
std::cmp::Ordering::Less
} else {
// This is it!
std::cmp::Ordering::Equal
}
})
.unwrap()
}
/// Provides read-only iteration over everything in the given range. This does
/// *not* split items if they overlap with the edges. Do not use this to mutate
/// through interior mutability.
///
/// The iterator also provides the range of the given element.
/// How exactly the ranges are split can differ even for otherwise identical
/// maps, so user-visible behavior should never depend on the exact range.
pub fn iter(&self, offset: Size, len: Size) -> impl Iterator<Item = (ops::Range<u64>, &T)> {
let offset = offset.bytes();
let len = len.bytes();
// Compute a slice starting with the elements we care about.
let slice: &[Elem<T>] = if len == 0 {
// We just need any empty iterator. We don't even want to
// yield the element that surrounds this position.
&[]
} else {
let first_idx = self.find_offset(offset);
&self.v[first_idx..]
};
// The first offset that is not included any more.
let end = offset + len;
assert!(
end <= self.v.last().unwrap().range.end,
"iterating beyond the bounds of this RangeMap"
);
slice
.iter()
.take_while(move |elem| elem.range.start < end)
.map(|elem| (elem.range.clone(), &elem.data))
}
/// Provides mutable iteration over all elements.
/// The iterator also provides the range of the given element.
/// How exactly the ranges are split can differ even for otherwise identical
/// maps, so user-visible behavior should never depend on the exact range.
pub fn iter_mut_all(&mut self) -> impl Iterator<Item = (ops::Range<u64>, &mut T)> {
self.v.iter_mut().map(|elem| (elem.range.clone(), &mut elem.data))
}
/// Provides iteration over all elements.
/// The iterator also provides the range of the given element.
/// How exactly the ranges are split can differ even for otherwise identical
/// maps, so user-visible behavior should never depend on the exact range.
pub fn iter_all(&self) -> impl Iterator<Item = (ops::Range<u64>, &T)> {
self.v.iter().map(|elem| (elem.range.clone(), &elem.data))
}
// Splits the element situated at the given `index`, such that the 2nd one starts at offset
// `split_offset`. Do nothing if the element already starts there.
// Returns whether a split was necessary.
fn split_index(&mut self, index: usize, split_offset: u64) -> bool
where
T: Clone,
{
let elem = &mut self.v[index];
if split_offset == elem.range.start || split_offset == elem.range.end {
// Nothing to do.
return false;
}
debug_assert!(
elem.range.contains(&split_offset),
"the `split_offset` is not in the element to be split"
);
// Now we really have to split. Reduce length of first element.
let second_range = split_offset..elem.range.end;
elem.range.end = split_offset;
// Copy the data, and insert second element.
let second = Elem { range: second_range, data: elem.data.clone() };
self.v.insert(index + 1, second);
true
}
/// Provides mutable iteration over everything in the given range. As a side-effect,
/// this will split entries in the map that are only partially hit by the given range,
/// to make sure that when they are mutated, the effect is constrained to the given range.
/// Moreover, this will opportunistically merge neighbouring equal blocks.
///
/// The iterator also provides the range of the given element.
/// How exactly the ranges are split (both prior to and resulting from the execution of this
/// function) can differ even for otherwise identical maps,
/// so user-visible behavior should never depend on the exact range.
pub fn iter_mut(
&mut self,
offset: Size,
len: Size,
) -> impl Iterator<Item = (ops::Range<u64>, &mut T)>
where
T: Clone + PartialEq,
{
let offset = offset.bytes();
let len = len.bytes();
// Compute a slice containing exactly the elements we care about
let slice: &mut [Elem<T>] = if len == 0 {
// We just need any empty iterator. We don't even want to
// yield the element that surrounds this position, nor do
// any splitting.
&mut []
} else {
// Make sure we got a clear beginning
let mut first_idx = self.find_offset(offset);
if self.split_index(first_idx, offset) {
// The newly created 2nd element is ours
first_idx += 1;
}
// No more mutation.
let first_idx = first_idx;
// Find our end. Linear scan, but that's ok because the iteration
// is doing the same linear scan anyway -- no increase in complexity.
// We combine this scan with a scan for duplicates that we can merge, to reduce
// the number of elements.
// We stop searching after the first "block" of size 1, to avoid spending excessive
// amounts of time on the merging.
let mut equal_since_idx = first_idx;
// Once we see too many non-mergeable blocks, we stop.
// The initial value is chosen via... magic. Benchmarking and magic.
let mut successful_merge_count = 3usize;
// When the loop is done, this is the first excluded element.
let mut end_idx = first_idx;
loop {
// Compute if `end` is the last element we need to look at.
let done = self.v[end_idx].range.end >= offset + len;
// We definitely need to include `end`, so move the index.
end_idx += 1;
debug_assert!(
done || end_idx < self.v.len(),
"iter_mut: end-offset {} is out-of-bounds",
offset + len
);
// see if we want to merge everything in `equal_since..end` (exclusive at the end!)
if successful_merge_count > 0 {
if done || self.v[end_idx].data != self.v[equal_since_idx].data {
// Everything in `equal_since..end` was equal. Make them just one element covering
// the entire range.
let removed_elems = end_idx - equal_since_idx - 1; // number of elements that we would remove
if removed_elems > 0 {
// Adjust the range of the first element to cover all of them.
let equal_until = self.v[end_idx - 1].range.end; // end of range of last of the equal elements
self.v[equal_since_idx].range.end = equal_until;
// Delete the rest of them.
self.v.splice(equal_since_idx + 1..end_idx, std::iter::empty());
// Adjust `end_idx` because we made the list shorter.
end_idx -= removed_elems;
// Adjust the count for the cutoff.
successful_merge_count += removed_elems;
} else {
// Adjust the count for the cutoff.
successful_merge_count -= 1;
}
// Go on scanning for the next block starting here.
equal_since_idx = end_idx;
}
}
// Leave loop if this is the last element.
if done {
break;
}
}
// Move to last included instead of first excluded index.
let end_idx = end_idx - 1;
// We need to split the end as well. Even if this performs a
// split, we don't have to adjust our index as we only care about
// the first part of the split.
self.split_index(end_idx, offset + len);
// Now we yield the slice. `end` is inclusive.
&mut self.v[first_idx..=end_idx]
};
slice.iter_mut().map(|elem| (elem.range.clone(), &mut elem.data))
}
/// Remove all adjacent duplicates
pub fn merge_adjacent_thorough(&mut self)
where
T: PartialEq,
{
let clean = Vec::with_capacity(self.v.len());
for elem in std::mem::replace(&mut self.v, clean) {
if let Some(prev) = self.v.last_mut() {
if prev.data == elem.data {
assert_eq!(prev.range.end, elem.range.start);
prev.range.end = elem.range.end;
continue;
}
}
self.v.push(elem);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
/// Query the map at every offset in the range and collect the results.
fn to_vec<T: Copy>(map: &RangeMap<T>, offset: u64, len: u64) -> Vec<T> {
(offset..offset + len)
.map(|i| {
map.iter(Size::from_bytes(i), Size::from_bytes(1)).next().map(|(_, &t)| t).unwrap()
})
.collect()
}
#[test]
fn basic_insert() {
let mut map = RangeMap::<i32>::new(Size::from_bytes(20), -1);
// Insert.
for (_, x) in map.iter_mut(Size::from_bytes(10), Size::from_bytes(1)) {
*x = 42;
}
// Check.
assert_eq!(to_vec(&map, 10, 1), vec![42]);
assert_eq!(map.v.len(), 3);
// Insert with size 0.
for (_, x) in map.iter_mut(Size::from_bytes(10), Size::from_bytes(0)) {
*x = 19;
}
for (_, x) in map.iter_mut(Size::from_bytes(11), Size::from_bytes(0)) {
*x = 19;
}
assert_eq!(to_vec(&map, 10, 2), vec![42, -1]);
assert_eq!(map.v.len(), 3);
}
#[test]
fn gaps() {
let mut map = RangeMap::<i32>::new(Size::from_bytes(20), -1);
for (_, x) in map.iter_mut(Size::from_bytes(11), Size::from_bytes(1)) {
*x = 42;
}
for (_, x) in map.iter_mut(Size::from_bytes(15), Size::from_bytes(1)) {
*x = 43;
}
assert_eq!(map.v.len(), 5);
assert_eq!(to_vec(&map, 10, 10), vec![-1, 42, -1, -1, -1, 43, -1, -1, -1, -1]);
for (_, x) in map.iter_mut(Size::from_bytes(10), Size::from_bytes(10)) {
if *x < 42 {
*x = 23;
}
}
assert_eq!(map.v.len(), 6);
assert_eq!(to_vec(&map, 10, 10), vec![23, 42, 23, 23, 23, 43, 23, 23, 23, 23]);
assert_eq!(to_vec(&map, 13, 5), vec![23, 23, 43, 23, 23]);
for (_, x) in map.iter_mut(Size::from_bytes(15), Size::from_bytes(5)) {
*x = 19;
}
assert_eq!(map.v.len(), 6);
assert_eq!(to_vec(&map, 10, 10), vec![23, 42, 23, 23, 23, 19, 19, 19, 19, 19]);
// Should be seeing two blocks with 19.
assert_eq!(
map.iter(Size::from_bytes(15), Size::from_bytes(2))
.map(|(_, &t)| t)
.collect::<Vec<_>>(),
vec![19, 19]
);
// A NOP `iter_mut` should trigger merging.
for _ in map.iter_mut(Size::from_bytes(15), Size::from_bytes(5)) {}
assert_eq!(map.v.len(), 5);
assert_eq!(to_vec(&map, 10, 10), vec![23, 42, 23, 23, 23, 19, 19, 19, 19, 19]);
}
#[test]
#[should_panic]
fn out_of_range_iter_mut() {
let mut map = RangeMap::<i32>::new(Size::from_bytes(20), -1);
let _ = map.iter_mut(Size::from_bytes(11), Size::from_bytes(11));
}
#[test]
#[should_panic]
fn out_of_range_iter() {
let map = RangeMap::<i32>::new(Size::from_bytes(20), -1);
let _ = map.iter(Size::from_bytes(11), Size::from_bytes(11));
}
}