rustc_hir_typeck/demand.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
use rustc_errors::{Applicability, Diag, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def::Res;
use rustc_hir::intravisit::Visitor;
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_middle::bug;
use rustc_middle::ty::adjustment::AllowTwoPhase;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, AssocItem, Ty, TypeFoldable, TypeVisitableExt};
use rustc_span::{DUMMY_SP, Ident, Span, sym};
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::ObligationCause;
use tracing::instrument;
use super::method::probe;
use crate::FnCtxt;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub(crate) fn emit_type_mismatch_suggestions(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'tcx>,
expr_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
error: Option<TypeError<'tcx>>,
) {
if expr_ty == expected {
return;
}
self.annotate_alternative_method_deref(err, expr, error);
self.explain_self_literal(err, expr, expected, expr_ty);
// Use `||` to give these suggestions a precedence
let suggested = self.suggest_missing_parentheses(err, expr)
|| self.suggest_missing_unwrap_expect(err, expr, expected, expr_ty)
|| self.suggest_remove_last_method_call(err, expr, expected)
|| self.suggest_associated_const(err, expr, expected)
|| self.suggest_deref_ref_or_into(err, expr, expected, expr_ty, expected_ty_expr)
|| self.suggest_option_to_bool(err, expr, expr_ty, expected)
|| self.suggest_compatible_variants(err, expr, expected, expr_ty)
|| self.suggest_non_zero_new_unwrap(err, expr, expected, expr_ty)
|| self.suggest_calling_boxed_future_when_appropriate(err, expr, expected, expr_ty)
|| self.suggest_no_capture_closure(err, expected, expr_ty)
|| self.suggest_boxing_when_appropriate(
err,
expr.peel_blocks().span,
expr.hir_id,
expected,
expr_ty,
)
|| self.suggest_block_to_brackets_peeling_refs(err, expr, expr_ty, expected)
|| self.suggest_copied_cloned_or_as_ref(err, expr, expr_ty, expected)
|| self.suggest_clone_for_ref(err, expr, expr_ty, expected)
|| self.suggest_into(err, expr, expr_ty, expected)
|| self.suggest_floating_point_literal(err, expr, expected)
|| self.suggest_null_ptr_for_literal_zero_given_to_ptr_arg(err, expr, expected)
|| self.suggest_coercing_result_via_try_operator(err, expr, expected, expr_ty)
|| self.suggest_returning_value_after_loop(err, expr, expected);
if !suggested {
self.note_source_of_type_mismatch_constraint(
err,
expr,
TypeMismatchSource::Ty(expected),
);
}
}
pub(crate) fn emit_coerce_suggestions(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'tcx>,
expr_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
error: Option<TypeError<'tcx>>,
) {
if expr_ty == expected {
return;
}
self.annotate_expected_due_to_let_ty(err, expr, error);
self.annotate_loop_expected_due_to_inference(err, expr, error);
// FIXME(#73154): For now, we do leak check when coercing function
// pointers in typeck, instead of only during borrowck. This can lead
// to these `RegionsInsufficientlyPolymorphic` errors that aren't helpful.
if matches!(error, Some(TypeError::RegionsInsufficientlyPolymorphic(..))) {
return;
}
if self.is_destruct_assignment_desugaring(expr) {
return;
}
self.emit_type_mismatch_suggestions(err, expr, expr_ty, expected, expected_ty_expr, error);
self.note_type_is_not_clone(err, expected, expr_ty, expr);
self.note_internal_mutation_in_method(err, expr, Some(expected), expr_ty);
self.suggest_method_call_on_range_literal(err, expr, expr_ty, expected);
self.suggest_return_binding_for_missing_tail_expr(err, expr, expr_ty, expected);
self.note_wrong_return_ty_due_to_generic_arg(err, expr, expr_ty);
}
/// Really hacky heuristic to remap an `assert_eq!` error to the user
/// expressions provided to the macro.
fn adjust_expr_for_assert_eq_macro(
&self,
found_expr: &mut &'tcx hir::Expr<'tcx>,
expected_expr: &mut Option<&'tcx hir::Expr<'tcx>>,
) {
let Some(expected_expr) = expected_expr else {
return;
};
if !found_expr.span.eq_ctxt(expected_expr.span) {
return;
}
if !found_expr
.span
.ctxt()
.outer_expn_data()
.macro_def_id
.is_some_and(|def_id| self.tcx.is_diagnostic_item(sym::assert_eq_macro, def_id))
{
return;
}
let hir::ExprKind::Unary(
hir::UnOp::Deref,
hir::Expr { kind: hir::ExprKind::Path(found_path), .. },
) = found_expr.kind
else {
return;
};
let hir::ExprKind::Unary(
hir::UnOp::Deref,
hir::Expr { kind: hir::ExprKind::Path(expected_path), .. },
) = expected_expr.kind
else {
return;
};
for (path, name, idx, var) in [
(expected_path, "left_val", 0, expected_expr),
(found_path, "right_val", 1, found_expr),
] {
if let hir::QPath::Resolved(_, path) = path
&& let [segment] = path.segments
&& segment.ident.name.as_str() == name
&& let Res::Local(hir_id) = path.res
&& let Some((_, hir::Node::Expr(match_expr))) =
self.tcx.hir().parent_iter(hir_id).nth(2)
&& let hir::ExprKind::Match(scrutinee, _, _) = match_expr.kind
&& let hir::ExprKind::Tup(exprs) = scrutinee.kind
&& let hir::ExprKind::AddrOf(_, _, macro_arg) = exprs[idx].kind
{
*var = macro_arg;
}
}
}
/// Requires that the two types unify, and prints an error message if
/// they don't.
pub(crate) fn demand_suptype(&self, sp: Span, expected: Ty<'tcx>, actual: Ty<'tcx>) {
if let Err(e) = self.demand_suptype_diag(sp, expected, actual) {
e.emit();
}
}
pub(crate) fn demand_suptype_diag(
&'a self,
sp: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Result<(), Diag<'a>> {
self.demand_suptype_with_origin(&self.misc(sp), expected, actual)
}
#[instrument(skip(self), level = "debug")]
pub(crate) fn demand_suptype_with_origin(
&'a self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Result<(), Diag<'a>> {
self.at(cause, self.param_env)
.sup(DefineOpaqueTypes::Yes, expected, actual)
.map(|infer_ok| self.register_infer_ok_obligations(infer_ok))
.map_err(|e| {
self.err_ctxt().report_mismatched_types(cause, self.param_env, expected, actual, e)
})
}
pub(crate) fn demand_eqtype(&self, sp: Span, expected: Ty<'tcx>, actual: Ty<'tcx>) {
if let Err(err) = self.demand_eqtype_diag(sp, expected, actual) {
err.emit();
}
}
pub(crate) fn demand_eqtype_diag(
&'a self,
sp: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Result<(), Diag<'a>> {
self.demand_eqtype_with_origin(&self.misc(sp), expected, actual)
}
pub(crate) fn demand_eqtype_with_origin(
&'a self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Result<(), Diag<'a>> {
self.at(cause, self.param_env)
.eq(DefineOpaqueTypes::Yes, expected, actual)
.map(|infer_ok| self.register_infer_ok_obligations(infer_ok))
.map_err(|e| {
self.err_ctxt().report_mismatched_types(cause, self.param_env, expected, actual, e)
})
}
pub(crate) fn demand_coerce(
&self,
expr: &'tcx hir::Expr<'tcx>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
allow_two_phase: AllowTwoPhase,
) -> Ty<'tcx> {
match self.demand_coerce_diag(expr, checked_ty, expected, expected_ty_expr, allow_two_phase)
{
Ok(ty) => ty,
Err(err) => {
err.emit();
// Return the original type instead of an error type here, otherwise the type of `x` in
// `let x: u32 = ();` will be a type error, causing all subsequent usages of `x` to not
// report errors, even though `x` is definitely `u32`.
expected
}
}
}
/// Checks that the type of `expr` can be coerced to `expected`.
///
/// N.B., this code relies on `self.diverges` to be accurate. In particular, assignments to `!`
/// will be permitted if the diverges flag is currently "always".
#[instrument(level = "debug", skip(self, expr, expected_ty_expr, allow_two_phase))]
pub(crate) fn demand_coerce_diag(
&'a self,
mut expr: &'tcx hir::Expr<'tcx>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
mut expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
allow_two_phase: AllowTwoPhase,
) -> Result<Ty<'tcx>, Diag<'a>> {
let expected = self.resolve_vars_with_obligations(expected);
let e = match self.coerce(expr, checked_ty, expected, allow_two_phase, None) {
Ok(ty) => return Ok(ty),
Err(e) => e,
};
self.adjust_expr_for_assert_eq_macro(&mut expr, &mut expected_ty_expr);
self.set_tainted_by_errors(self.dcx().span_delayed_bug(
expr.span,
"`TypeError` when attempting coercion but no error emitted",
));
let expr = expr.peel_drop_temps();
let cause = self.misc(expr.span);
let expr_ty = self.resolve_vars_if_possible(checked_ty);
let mut err =
self.err_ctxt().report_mismatched_types(&cause, self.param_env, expected, expr_ty, e);
self.emit_coerce_suggestions(&mut err, expr, expr_ty, expected, expected_ty_expr, Some(e));
Err(err)
}
/// Notes the point at which a variable is constrained to some type incompatible
/// with some expectation given by `source`.
pub(crate) fn note_source_of_type_mismatch_constraint(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'_>,
source: TypeMismatchSource<'tcx>,
) -> bool {
let hir = self.tcx.hir();
let hir::ExprKind::Path(hir::QPath::Resolved(None, p)) = expr.kind else {
return false;
};
let [hir::PathSegment { ident, args: None, .. }] = p.segments else {
return false;
};
let hir::def::Res::Local(local_hir_id) = p.res else {
return false;
};
let hir::Node::Pat(pat) = self.tcx.hir_node(local_hir_id) else {
return false;
};
let (init_ty_hir_id, init) = match self.tcx.parent_hir_node(pat.hir_id) {
hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), init, .. }) => (ty.hir_id, *init),
hir::Node::LetStmt(hir::LetStmt { init: Some(init), .. }) => (init.hir_id, Some(*init)),
_ => return false,
};
let Some(init_ty) = self.node_ty_opt(init_ty_hir_id) else {
return false;
};
// Locate all the usages of the relevant binding.
struct FindExprs<'tcx> {
hir_id: hir::HirId,
uses: Vec<&'tcx hir::Expr<'tcx>>,
}
impl<'tcx> Visitor<'tcx> for FindExprs<'tcx> {
fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
if let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = ex.kind
&& let hir::def::Res::Local(hir_id) = path.res
&& hir_id == self.hir_id
{
self.uses.push(ex);
}
hir::intravisit::walk_expr(self, ex);
}
}
let mut expr_finder = FindExprs { hir_id: local_hir_id, uses: init.into_iter().collect() };
let body = hir.body_owned_by(self.body_id);
expr_finder.visit_expr(body.value);
// Replaces all of the variables in the given type with a fresh inference variable.
let mut fudger = BottomUpFolder {
tcx: self.tcx,
ty_op: |ty| {
if let ty::Infer(infer) = ty.kind() {
match infer {
ty::TyVar(_) => self.next_ty_var(DUMMY_SP),
ty::IntVar(_) => self.next_int_var(),
ty::FloatVar(_) => self.next_float_var(),
ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => {
bug!("unexpected fresh ty outside of the trait solver")
}
}
} else {
ty
}
},
lt_op: |_| self.tcx.lifetimes.re_erased,
ct_op: |ct| {
if let ty::ConstKind::Infer(_) = ct.kind() {
self.next_const_var(DUMMY_SP)
} else {
ct
}
},
};
let expected_ty = match source {
TypeMismatchSource::Ty(expected_ty) => expected_ty,
// Try to deduce what the possible value of `expr` would be if the
// incompatible arg were compatible. For example, given `Vec<i32>`
// and `vec.push(1u32)`, we ideally want to deduce that the type of
// `vec` *should* have been `Vec<u32>`. This will allow us to then
// run the subsequent code with this expectation, finding out exactly
// when this type diverged from our expectation.
TypeMismatchSource::Arg { call_expr, incompatible_arg: idx } => {
let hir::ExprKind::MethodCall(segment, _, args, _) = call_expr.kind else {
return false;
};
let Some(arg_ty) = self.node_ty_opt(args[idx].hir_id) else {
return false;
};
let possible_rcvr_ty = expr_finder.uses.iter().rev().find_map(|binding| {
let possible_rcvr_ty = self.node_ty_opt(binding.hir_id)?;
if possible_rcvr_ty.is_ty_var() {
return None;
}
// Fudge the receiver, so we can do new inference on it.
let possible_rcvr_ty = possible_rcvr_ty.fold_with(&mut fudger);
let method = self
.lookup_method_for_diagnostic(
possible_rcvr_ty,
segment,
DUMMY_SP,
call_expr,
binding,
)
.ok()?;
// Make sure we select the same method that we started with...
if Some(method.def_id)
!= self.typeck_results.borrow().type_dependent_def_id(call_expr.hir_id)
{
return None;
}
// Unify the method signature with our incompatible arg, to
// do inference in the *opposite* direction and to find out
// what our ideal rcvr ty would look like.
let _ = self
.at(&ObligationCause::dummy(), self.param_env)
.eq(DefineOpaqueTypes::Yes, method.sig.inputs()[idx + 1], arg_ty)
.ok()?;
self.select_obligations_where_possible(|errs| {
// Yeet the errors, we're already reporting errors.
errs.clear();
});
Some(self.resolve_vars_if_possible(possible_rcvr_ty))
});
if let Some(rcvr_ty) = possible_rcvr_ty {
rcvr_ty
} else {
return false;
}
}
};
// If our expected_ty does not equal init_ty, then it *began* as incompatible.
// No need to note in this case...
if !self.can_eq(self.param_env, expected_ty, init_ty.fold_with(&mut fudger)) {
return false;
}
for window in expr_finder.uses.windows(2) {
// Bindings always update their recorded type after the fact, so we
// need to look at the *following* usage's type to see when the
// binding became incompatible.
let [binding, next_usage] = *window else {
continue;
};
// Don't go past the binding (always gonna be a nonsense label if so)
if binding.hir_id == expr.hir_id {
break;
}
let Some(next_use_ty) = self.node_ty_opt(next_usage.hir_id) else {
continue;
};
// If the type is not constrained in a way making it not possible to
// equate with `expected_ty` by this point, skip.
if self.can_eq(self.param_env, expected_ty, next_use_ty.fold_with(&mut fudger)) {
continue;
}
if let hir::Node::Expr(parent_expr) = self.tcx.parent_hir_node(binding.hir_id)
&& let hir::ExprKind::MethodCall(segment, rcvr, args, _) = parent_expr.kind
&& rcvr.hir_id == binding.hir_id
{
// If our binding became incompatible while it was a receiver
// to a method call, we may be able to make a better guess to
// the source of a type mismatch.
let Some(rcvr_ty) = self.node_ty_opt(rcvr.hir_id) else {
continue;
};
let rcvr_ty = rcvr_ty.fold_with(&mut fudger);
let Ok(method) = self.lookup_method_for_diagnostic(
rcvr_ty,
segment,
DUMMY_SP,
parent_expr,
rcvr,
) else {
continue;
};
// Make sure we select the same method that we started with...
if Some(method.def_id)
!= self.typeck_results.borrow().type_dependent_def_id(parent_expr.hir_id)
{
continue;
}
let ideal_rcvr_ty = rcvr_ty.fold_with(&mut fudger);
let ideal_method = self
.lookup_method_for_diagnostic(
ideal_rcvr_ty,
segment,
DUMMY_SP,
parent_expr,
rcvr,
)
.ok()
.and_then(|method| {
let _ = self
.at(&ObligationCause::dummy(), self.param_env)
.eq(DefineOpaqueTypes::Yes, ideal_rcvr_ty, expected_ty)
.ok()?;
Some(method)
});
// Find what argument caused our rcvr to become incompatible
// with the expected ty.
for (idx, (expected_arg_ty, arg_expr)) in
std::iter::zip(&method.sig.inputs()[1..], args).enumerate()
{
let Some(arg_ty) = self.node_ty_opt(arg_expr.hir_id) else {
continue;
};
let arg_ty = arg_ty.fold_with(&mut fudger);
let _ =
self.coerce(arg_expr, arg_ty, *expected_arg_ty, AllowTwoPhase::No, None);
self.select_obligations_where_possible(|errs| {
// Yeet the errors, we're already reporting errors.
errs.clear();
});
// If our rcvr, after inference due to unifying the signature
// with the expected argument type, is still compatible with
// the rcvr, then it must've not been the source of blame.
if self.can_eq(self.param_env, rcvr_ty, expected_ty) {
continue;
}
err.span_label(arg_expr.span, format!("this argument has type `{arg_ty}`..."));
err.span_label(
binding.span,
format!("... which causes `{ident}` to have type `{next_use_ty}`"),
);
// Using our "ideal" method signature, suggest a fix to this
// blame arg, if possible. Don't do this if we're coming from
// arg mismatch code, because we'll possibly suggest a mutually
// incompatible fix at the original mismatch site.
// HACK(compiler-errors): We don't actually consider the implications
// of our inference guesses in `emit_type_mismatch_suggestions`, so
// only suggest things when we know our type error is precisely due to
// a type mismatch, and not via some projection or something. See #116155.
if matches!(source, TypeMismatchSource::Ty(_))
&& let Some(ideal_method) = ideal_method
&& Some(ideal_method.def_id)
== self
.typeck_results
.borrow()
.type_dependent_def_id(parent_expr.hir_id)
&& let ideal_arg_ty =
self.resolve_vars_if_possible(ideal_method.sig.inputs()[idx + 1])
&& !ideal_arg_ty.has_non_region_infer()
{
self.emit_type_mismatch_suggestions(
err,
arg_expr,
arg_ty,
ideal_arg_ty,
None,
None,
);
}
return true;
}
}
err.span_label(
binding.span,
format!("here the type of `{ident}` is inferred to be `{next_use_ty}`"),
);
return true;
}
// We must've not found something that constrained the expr.
false
}
// When encountering a type error on the value of a `break`, try to point at the reason for the
// expected type.
pub(crate) fn annotate_loop_expected_due_to_inference(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'_>,
error: Option<TypeError<'tcx>>,
) {
let Some(TypeError::Sorts(ExpectedFound { expected, .. })) = error else {
return;
};
let mut parent_id = self.tcx.parent_hir_id(expr.hir_id);
let mut parent;
'outer: loop {
// Climb the HIR tree to see if the current `Expr` is part of a `break;` statement.
let (hir::Node::Stmt(hir::Stmt { kind: hir::StmtKind::Semi(&ref p), .. })
| hir::Node::Block(hir::Block { expr: Some(&ref p), .. })
| hir::Node::Expr(&ref p)) = self.tcx.hir_node(parent_id)
else {
break;
};
parent = p;
parent_id = self.tcx.parent_hir_id(parent_id);
let hir::ExprKind::Break(destination, _) = parent.kind else {
continue;
};
let mut parent_id = parent_id;
let mut direct = false;
loop {
// Climb the HIR tree to find the (desugared) `loop` this `break` corresponds to.
let parent = match self.tcx.hir_node(parent_id) {
hir::Node::Expr(&ref parent) => {
parent_id = self.tcx.parent_hir_id(parent.hir_id);
parent
}
hir::Node::Stmt(hir::Stmt {
hir_id,
kind: hir::StmtKind::Semi(&ref parent) | hir::StmtKind::Expr(&ref parent),
..
}) => {
parent_id = self.tcx.parent_hir_id(*hir_id);
parent
}
hir::Node::Block(_) => {
parent_id = self.tcx.parent_hir_id(parent_id);
parent
}
_ => break,
};
if let hir::ExprKind::Loop(..) = parent.kind {
// When you have `'a: loop { break; }`, the `break` corresponds to the labeled
// loop, so we need to account for that.
direct = !direct;
}
if let hir::ExprKind::Loop(block, label, _, span) = parent.kind
&& (destination.label == label || direct)
{
if let Some((reason_span, message)) =
self.maybe_get_coercion_reason(parent_id, parent.span)
{
err.span_label(reason_span, message);
err.span_label(
span,
format!("this loop is expected to be of type `{expected}`"),
);
break 'outer;
} else {
// Locate all other `break` statements within the same `loop` that might
// have affected inference.
struct FindBreaks<'tcx> {
label: Option<rustc_ast::Label>,
uses: Vec<&'tcx hir::Expr<'tcx>>,
nest_depth: usize,
}
impl<'tcx> Visitor<'tcx> for FindBreaks<'tcx> {
fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
let nest_depth = self.nest_depth;
if let hir::ExprKind::Loop(_, label, _, _) = ex.kind {
if label == self.label {
// Account for `'a: loop { 'a: loop {...} }`.
return;
}
self.nest_depth += 1;
}
if let hir::ExprKind::Break(destination, _) = ex.kind
&& (self.label == destination.label
// Account for `loop { 'a: loop { loop { break; } } }`.
|| destination.label.is_none() && self.nest_depth == 0)
{
self.uses.push(ex);
}
hir::intravisit::walk_expr(self, ex);
self.nest_depth = nest_depth;
}
}
let mut expr_finder = FindBreaks { label, uses: vec![], nest_depth: 0 };
expr_finder.visit_block(block);
let mut exit = false;
for ex in expr_finder.uses {
let hir::ExprKind::Break(_, val) = ex.kind else {
continue;
};
let ty = match val {
Some(val) => {
match self.typeck_results.borrow().expr_ty_adjusted_opt(val) {
None => continue,
Some(ty) => ty,
}
}
None => self.tcx.types.unit,
};
if self.can_eq(self.param_env, ty, expected) {
err.span_label(ex.span, "expected because of this `break`");
exit = true;
}
}
if exit {
break 'outer;
}
}
}
}
}
}
fn annotate_expected_due_to_let_ty(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'_>,
error: Option<TypeError<'tcx>>,
) {
match (self.tcx.parent_hir_node(expr.hir_id), error) {
(hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), init: Some(init), .. }), _)
if init.hir_id == expr.hir_id =>
{
// Point at `let` assignment type.
err.span_label(ty.span, "expected due to this");
}
(
hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Assign(lhs, rhs, _), .. }),
Some(TypeError::Sorts(ExpectedFound { expected, .. })),
) if rhs.hir_id == expr.hir_id && !expected.is_closure() => {
// We ignore closures explicitly because we already point at them elsewhere.
// Point at the assigned-to binding.
let mut primary_span = lhs.span;
let mut secondary_span = lhs.span;
let mut post_message = "";
match lhs.kind {
hir::ExprKind::Path(hir::QPath::Resolved(
None,
hir::Path {
res:
hir::def::Res::Def(
hir::def::DefKind::Static { .. } | hir::def::DefKind::Const,
def_id,
),
..
},
)) => {
if let Some(hir::Node::Item(hir::Item {
ident,
kind: hir::ItemKind::Static(ty, ..) | hir::ItemKind::Const(ty, ..),
..
})) = self.tcx.hir().get_if_local(*def_id)
{
primary_span = ty.span;
secondary_span = ident.span;
post_message = " type";
}
}
hir::ExprKind::Path(hir::QPath::Resolved(
None,
hir::Path { res: hir::def::Res::Local(hir_id), .. },
)) => {
if let hir::Node::Pat(pat) = self.tcx.hir_node(*hir_id) {
primary_span = pat.span;
secondary_span = pat.span;
match self.tcx.parent_hir_node(pat.hir_id) {
hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), .. }) => {
primary_span = ty.span;
post_message = " type";
}
hir::Node::LetStmt(hir::LetStmt { init: Some(init), .. }) => {
primary_span = init.span;
post_message = " value";
}
hir::Node::Param(hir::Param { ty_span, .. }) => {
primary_span = *ty_span;
post_message = " parameter type";
}
_ => {}
}
}
}
_ => {}
}
if primary_span != secondary_span
&& self
.tcx
.sess
.source_map()
.is_multiline(secondary_span.shrink_to_hi().until(primary_span))
{
// We are pointing at the binding's type or initializer value, but it's pattern
// is in a different line, so we point at both.
err.span_label(secondary_span, "expected due to the type of this binding");
err.span_label(primary_span, format!("expected due to this{post_message}"));
} else if post_message.is_empty() {
// We are pointing at either the assignment lhs or the binding def pattern.
err.span_label(primary_span, "expected due to the type of this binding");
} else {
// We are pointing at the binding's type or initializer value.
err.span_label(primary_span, format!("expected due to this{post_message}"));
}
if !lhs.is_syntactic_place_expr() {
// We already emitted E0070 "invalid left-hand side of assignment", so we
// silence this.
err.downgrade_to_delayed_bug();
}
}
(
hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Binary(_, lhs, rhs), .. }),
Some(TypeError::Sorts(ExpectedFound { expected, .. })),
) if rhs.hir_id == expr.hir_id
&& self.typeck_results.borrow().expr_ty_adjusted_opt(lhs) == Some(expected) =>
{
err.span_label(lhs.span, format!("expected because this is `{expected}`"));
}
_ => {}
}
}
fn annotate_alternative_method_deref(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'_>,
error: Option<TypeError<'tcx>>,
) {
let Some(TypeError::Sorts(ExpectedFound { expected, .. })) = error else {
return;
};
let hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Assign(lhs, rhs, _), .. }) =
self.tcx.parent_hir_node(expr.hir_id)
else {
return;
};
if rhs.hir_id != expr.hir_id || expected.is_closure() {
return;
}
let hir::ExprKind::Unary(hir::UnOp::Deref, deref) = lhs.kind else {
return;
};
let hir::ExprKind::MethodCall(path, base, args, _) = deref.kind else {
return;
};
let Some(self_ty) = self.typeck_results.borrow().expr_ty_adjusted_opt(base) else {
return;
};
let Ok(pick) = self.lookup_probe_for_diagnostic(
path.ident,
self_ty,
deref,
probe::ProbeScope::TraitsInScope,
None,
) else {
return;
};
let Ok(in_scope_methods) = self.probe_for_name_many(
probe::Mode::MethodCall,
path.ident,
Some(expected),
probe::IsSuggestion(true),
self_ty,
deref.hir_id,
probe::ProbeScope::TraitsInScope,
) else {
return;
};
let other_methods_in_scope: Vec<_> =
in_scope_methods.iter().filter(|c| c.item.def_id != pick.item.def_id).collect();
let Ok(all_methods) = self.probe_for_name_many(
probe::Mode::MethodCall,
path.ident,
Some(expected),
probe::IsSuggestion(true),
self_ty,
deref.hir_id,
probe::ProbeScope::AllTraits,
) else {
return;
};
let suggestions: Vec<_> = all_methods
.into_iter()
.filter(|c| c.item.def_id != pick.item.def_id)
.map(|c| {
let m = c.item;
let generic_args = ty::GenericArgs::for_item(self.tcx, m.def_id, |param, _| {
self.var_for_def(deref.span, param)
});
let mutability =
match self.tcx.fn_sig(m.def_id).skip_binder().input(0).skip_binder().kind() {
ty::Ref(_, _, hir::Mutability::Mut) => "&mut ",
ty::Ref(_, _, _) => "&",
_ => "",
};
vec![
(
deref.span.until(base.span),
format!(
"{}({}",
with_no_trimmed_paths!(
self.tcx.def_path_str_with_args(m.def_id, generic_args,)
),
mutability,
),
),
match &args {
[] => (base.span.shrink_to_hi().with_hi(deref.span.hi()), ")".to_string()),
[first, ..] => (base.span.between(first.span), ", ".to_string()),
},
]
})
.collect();
if suggestions.is_empty() {
return;
}
let mut path_span: MultiSpan = path.ident.span.into();
path_span.push_span_label(
path.ident.span,
with_no_trimmed_paths!(format!(
"refers to `{}`",
self.tcx.def_path_str(pick.item.def_id),
)),
);
let container_id = pick.item.container_id(self.tcx);
let container = with_no_trimmed_paths!(self.tcx.def_path_str(container_id));
for def_id in pick.import_ids {
let hir_id = self.tcx.local_def_id_to_hir_id(def_id);
path_span.push_span_label(
self.tcx.hir().span(hir_id),
format!("`{container}` imported here"),
);
}
let tail = with_no_trimmed_paths!(match &other_methods_in_scope[..] {
[] => return,
[candidate] => format!(
"the method of the same name on {} `{}`",
match candidate.kind {
probe::CandidateKind::InherentImplCandidate { .. } => "the inherent impl for",
_ => "trait",
},
self.tcx.def_path_str(candidate.item.container_id(self.tcx))
),
[.., last] if other_methods_in_scope.len() < 5 => {
format!(
"the methods of the same name on {} and `{}`",
other_methods_in_scope[..other_methods_in_scope.len() - 1]
.iter()
.map(|c| format!(
"`{}`",
self.tcx.def_path_str(c.item.container_id(self.tcx))
))
.collect::<Vec<String>>()
.join(", "),
self.tcx.def_path_str(last.item.container_id(self.tcx))
)
}
_ => format!(
"the methods of the same name on {} other traits",
other_methods_in_scope.len()
),
});
err.span_note(
path_span,
format!(
"the `{}` call is resolved to the method in `{container}`, shadowing {tail}",
path.ident,
),
);
if suggestions.len() > other_methods_in_scope.len() {
err.note(format!(
"additionally, there are {} other available methods that aren't in scope",
suggestions.len() - other_methods_in_scope.len()
));
}
err.multipart_suggestions(
format!(
"you might have meant to call {}; you can use the fully-qualified path to call {} \
explicitly",
if suggestions.len() == 1 {
"the other method"
} else {
"one of the other methods"
},
if suggestions.len() == 1 { "it" } else { "one of them" },
),
suggestions,
Applicability::MaybeIncorrect,
);
}
pub(crate) fn get_conversion_methods_for_diagnostic(
&self,
span: Span,
expected: Ty<'tcx>,
checked_ty: Ty<'tcx>,
hir_id: hir::HirId,
) -> Vec<AssocItem> {
let methods = self.probe_for_return_type_for_diagnostic(
span,
probe::Mode::MethodCall,
expected,
checked_ty,
hir_id,
|m| {
self.has_only_self_parameter(m)
&& self
.tcx
// This special internal attribute is used to permit
// "identity-like" conversion methods to be suggested here.
//
// FIXME (#46459 and #46460): ideally
// `std::convert::Into::into` and `std::borrow:ToOwned` would
// also be `#[rustc_conversion_suggestion]`, if not for
// method-probing false-positives and -negatives (respectively).
//
// FIXME? Other potential candidate methods: `as_ref` and
// `as_mut`?
.has_attr(m.def_id, sym::rustc_conversion_suggestion)
},
);
methods
}
/// This function checks whether the method is not static and does not accept other parameters than `self`.
fn has_only_self_parameter(&self, method: &AssocItem) -> bool {
match method.kind {
ty::AssocKind::Fn => {
method.fn_has_self_parameter
&& self.tcx.fn_sig(method.def_id).skip_binder().inputs().skip_binder().len()
== 1
}
_ => false,
}
}
/// If the given `HirId` corresponds to a block with a trailing expression, return that expression
pub(crate) fn maybe_get_block_expr(
&self,
expr: &hir::Expr<'tcx>,
) -> Option<&'tcx hir::Expr<'tcx>> {
match expr {
hir::Expr { kind: hir::ExprKind::Block(block, ..), .. } => block.expr,
_ => None,
}
}
// Returns whether the given expression is a destruct assignment desugaring.
// For example, `(a, b) = (1, &2);`
// Here we try to find the pattern binding of the expression,
// `default_binding_modes` is false only for destruct assignment desugaring.
pub(crate) fn is_destruct_assignment_desugaring(&self, expr: &hir::Expr<'_>) -> bool {
if let hir::ExprKind::Path(hir::QPath::Resolved(
_,
hir::Path { res: hir::def::Res::Local(bind_hir_id), .. },
)) = expr.kind
{
let bind = self.tcx.hir_node(*bind_hir_id);
let parent = self.tcx.parent_hir_node(*bind_hir_id);
if let hir::Node::Pat(hir::Pat {
kind: hir::PatKind::Binding(_, _hir_id, _, _), ..
}) = bind
&& let hir::Node::Pat(hir::Pat { default_binding_modes: false, .. }) = parent
{
return true;
}
}
false
}
fn explain_self_literal(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'tcx>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
) {
match expr.peel_drop_temps().kind {
hir::ExprKind::Struct(
hir::QPath::Resolved(
None,
hir::Path { res: hir::def::Res::SelfTyAlias { alias_to, .. }, span, .. },
),
..,
)
| hir::ExprKind::Call(
hir::Expr {
kind:
hir::ExprKind::Path(hir::QPath::Resolved(
None,
hir::Path {
res: hir::def::Res::SelfTyAlias { alias_to, .. },
span,
..
},
)),
..
},
..,
) => {
if let Some(hir::Node::Item(hir::Item {
kind: hir::ItemKind::Impl(hir::Impl { self_ty, .. }),
..
})) = self.tcx.hir().get_if_local(*alias_to)
{
err.span_label(self_ty.span, "this is the type of the `Self` literal");
}
if let ty::Adt(e_def, e_args) = expected.kind()
&& let ty::Adt(f_def, _f_args) = found.kind()
&& e_def == f_def
{
err.span_suggestion_verbose(
*span,
"use the type name directly",
self.tcx.value_path_str_with_args(e_def.did(), e_args),
Applicability::MaybeIncorrect,
);
}
}
_ => {}
}
}
fn note_wrong_return_ty_due_to_generic_arg(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'_>,
checked_ty: Ty<'tcx>,
) {
let hir::Node::Expr(parent_expr) = self.tcx.parent_hir_node(expr.hir_id) else {
return;
};
enum CallableKind {
Function,
Method,
Constructor,
}
let mut maybe_emit_help = |def_id: hir::def_id::DefId,
callable: Ident,
args: &[hir::Expr<'_>],
kind: CallableKind| {
let arg_idx = args.iter().position(|a| a.hir_id == expr.hir_id).unwrap();
let fn_ty = self.tcx.type_of(def_id).skip_binder();
if !fn_ty.is_fn() {
return;
}
let fn_sig = fn_ty.fn_sig(self.tcx).skip_binder();
let Some(&arg) = fn_sig
.inputs()
.get(arg_idx + if matches!(kind, CallableKind::Method) { 1 } else { 0 })
else {
return;
};
if matches!(arg.kind(), ty::Param(_))
&& fn_sig.output().contains(arg)
&& self.node_ty(args[arg_idx].hir_id) == checked_ty
{
let mut multi_span: MultiSpan = parent_expr.span.into();
multi_span.push_span_label(
args[arg_idx].span,
format!(
"this argument influences the {} of `{}`",
if matches!(kind, CallableKind::Constructor) {
"type"
} else {
"return type"
},
callable
),
);
err.span_help(
multi_span,
format!(
"the {} `{}` due to the type of the argument passed",
match kind {
CallableKind::Function => "return type of this call is",
CallableKind::Method => "return type of this call is",
CallableKind::Constructor => "type constructed contains",
},
checked_ty
),
);
}
};
match parent_expr.kind {
hir::ExprKind::Call(fun, args) => {
let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = fun.kind else {
return;
};
let hir::def::Res::Def(kind, def_id) = path.res else {
return;
};
let callable_kind = if matches!(kind, hir::def::DefKind::Ctor(_, _)) {
CallableKind::Constructor
} else {
CallableKind::Function
};
maybe_emit_help(def_id, path.segments[0].ident, args, callable_kind);
}
hir::ExprKind::MethodCall(method, _receiver, args, _span) => {
let Some(def_id) =
self.typeck_results.borrow().type_dependent_def_id(parent_expr.hir_id)
else {
return;
};
maybe_emit_help(def_id, method.ident, args, CallableKind::Method)
}
_ => return,
}
}
}
pub(crate) enum TypeMismatchSource<'tcx> {
/// Expected the binding to have the given type, but it was found to have
/// a different type. Find out when that type first became incompatible.
Ty(Ty<'tcx>),
/// When we fail during method argument checking, try to find out if a previous
/// expression has constrained the method's receiver in a way that makes the
/// argument's type incompatible.
Arg { call_expr: &'tcx hir::Expr<'tcx>, incompatible_arg: usize },
}