1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
use crate::FnCtxt;
use rustc_errors::MultiSpan;
use rustc_errors::{Applicability, Diag};
use rustc_hir as hir;
use rustc_hir::def::Res;
use rustc_hir::intravisit::Visitor;
use rustc_infer::infer::{DefineOpaqueTypes, InferOk};
use rustc_middle::ty::adjustment::AllowTwoPhase;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, AssocItem, Ty, TypeFoldable, TypeVisitableExt};
use rustc_span::symbol::sym;
use rustc_span::{Span, DUMMY_SP};
use rustc_trait_selection::traits::ObligationCause;

use super::method::probe;

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    pub fn emit_type_mismatch_suggestions(
        &self,
        err: &mut Diag<'_>,
        expr: &hir::Expr<'tcx>,
        expr_ty: Ty<'tcx>,
        expected: Ty<'tcx>,
        expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
        error: Option<TypeError<'tcx>>,
    ) {
        if expr_ty == expected {
            return;
        }

        self.annotate_alternative_method_deref(err, expr, error);
        self.explain_self_literal(err, expr, expected, expr_ty);

        // Use `||` to give these suggestions a precedence
        let suggested = self.suggest_missing_parentheses(err, expr)
            || self.suggest_missing_unwrap_expect(err, expr, expected, expr_ty)
            || self.suggest_remove_last_method_call(err, expr, expected)
            || self.suggest_associated_const(err, expr, expected)
            || self.suggest_deref_ref_or_into(err, expr, expected, expr_ty, expected_ty_expr)
            || self.suggest_option_to_bool(err, expr, expr_ty, expected)
            || self.suggest_compatible_variants(err, expr, expected, expr_ty)
            || self.suggest_non_zero_new_unwrap(err, expr, expected, expr_ty)
            || self.suggest_calling_boxed_future_when_appropriate(err, expr, expected, expr_ty)
            || self.suggest_no_capture_closure(err, expected, expr_ty)
            || self.suggest_boxing_when_appropriate(
                err,
                expr.peel_blocks().span,
                expr.hir_id,
                expected,
                expr_ty,
            )
            || self.suggest_block_to_brackets_peeling_refs(err, expr, expr_ty, expected)
            || self.suggest_copied_cloned_or_as_ref(err, expr, expr_ty, expected)
            || self.suggest_clone_for_ref(err, expr, expr_ty, expected)
            || self.suggest_into(err, expr, expr_ty, expected)
            || self.suggest_floating_point_literal(err, expr, expected)
            || self.suggest_null_ptr_for_literal_zero_given_to_ptr_arg(err, expr, expected)
            || self.suggest_coercing_result_via_try_operator(err, expr, expected, expr_ty);

        if !suggested {
            self.note_source_of_type_mismatch_constraint(
                err,
                expr,
                TypeMismatchSource::Ty(expected),
            );
        }
    }

    pub fn emit_coerce_suggestions(
        &self,
        err: &mut Diag<'_>,
        expr: &hir::Expr<'tcx>,
        expr_ty: Ty<'tcx>,
        expected: Ty<'tcx>,
        expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
        error: Option<TypeError<'tcx>>,
    ) {
        if expr_ty == expected {
            return;
        }

        self.annotate_expected_due_to_let_ty(err, expr, error);
        self.annotate_loop_expected_due_to_inference(err, expr, error);

        // FIXME(#73154): For now, we do leak check when coercing function
        // pointers in typeck, instead of only during borrowck. This can lead
        // to these `RegionsInsufficientlyPolymorphic` errors that aren't helpful.
        if matches!(error, Some(TypeError::RegionsInsufficientlyPolymorphic(..))) {
            return;
        }

        if self.is_destruct_assignment_desugaring(expr) {
            return;
        }
        self.emit_type_mismatch_suggestions(err, expr, expr_ty, expected, expected_ty_expr, error);
        self.note_type_is_not_clone(err, expected, expr_ty, expr);
        self.note_internal_mutation_in_method(err, expr, Some(expected), expr_ty);
        self.suggest_method_call_on_range_literal(err, expr, expr_ty, expected);
        self.suggest_return_binding_for_missing_tail_expr(err, expr, expr_ty, expected);
        self.note_wrong_return_ty_due_to_generic_arg(err, expr, expr_ty);
    }

    /// Really hacky heuristic to remap an `assert_eq!` error to the user
    /// expressions provided to the macro.
    fn adjust_expr_for_assert_eq_macro(
        &self,
        found_expr: &mut &'tcx hir::Expr<'tcx>,
        expected_expr: &mut Option<&'tcx hir::Expr<'tcx>>,
    ) {
        let Some(expected_expr) = expected_expr else {
            return;
        };

        if !found_expr.span.eq_ctxt(expected_expr.span) {
            return;
        }

        if !found_expr
            .span
            .ctxt()
            .outer_expn_data()
            .macro_def_id
            .is_some_and(|def_id| self.tcx.is_diagnostic_item(sym::assert_eq_macro, def_id))
        {
            return;
        }

        let hir::ExprKind::Unary(
            hir::UnOp::Deref,
            hir::Expr { kind: hir::ExprKind::Path(found_path), .. },
        ) = found_expr.kind
        else {
            return;
        };
        let hir::ExprKind::Unary(
            hir::UnOp::Deref,
            hir::Expr { kind: hir::ExprKind::Path(expected_path), .. },
        ) = expected_expr.kind
        else {
            return;
        };

        for (path, name, idx, var) in [
            (expected_path, "left_val", 0, expected_expr),
            (found_path, "right_val", 1, found_expr),
        ] {
            if let hir::QPath::Resolved(_, path) = path
                && let [segment] = path.segments
                && segment.ident.name.as_str() == name
                && let Res::Local(hir_id) = path.res
                && let Some((_, hir::Node::Expr(match_expr))) =
                    self.tcx.hir().parent_iter(hir_id).nth(2)
                && let hir::ExprKind::Match(scrutinee, _, _) = match_expr.kind
                && let hir::ExprKind::Tup(exprs) = scrutinee.kind
                && let hir::ExprKind::AddrOf(_, _, macro_arg) = exprs[idx].kind
            {
                *var = macro_arg;
            }
        }
    }

    /// Requires that the two types unify, and prints an error message if
    /// they don't.
    pub fn demand_suptype(&self, sp: Span, expected: Ty<'tcx>, actual: Ty<'tcx>) {
        if let Some(e) = self.demand_suptype_diag(sp, expected, actual) {
            e.emit();
        }
    }

    pub fn demand_suptype_diag(
        &self,
        sp: Span,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
    ) -> Option<Diag<'tcx>> {
        self.demand_suptype_with_origin(&self.misc(sp), expected, actual)
    }

    #[instrument(skip(self), level = "debug")]
    pub fn demand_suptype_with_origin(
        &self,
        cause: &ObligationCause<'tcx>,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
    ) -> Option<Diag<'tcx>> {
        match self.at(cause, self.param_env).sup(DefineOpaqueTypes::Yes, expected, actual) {
            Ok(InferOk { obligations, value: () }) => {
                self.register_predicates(obligations);
                None
            }
            Err(e) => Some(self.err_ctxt().report_mismatched_types(cause, expected, actual, e)),
        }
    }

    pub fn demand_eqtype(&self, sp: Span, expected: Ty<'tcx>, actual: Ty<'tcx>) {
        if let Some(err) = self.demand_eqtype_diag(sp, expected, actual) {
            err.emit();
        }
    }

    pub fn demand_eqtype_diag(
        &self,
        sp: Span,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
    ) -> Option<Diag<'tcx>> {
        self.demand_eqtype_with_origin(&self.misc(sp), expected, actual)
    }

    pub fn demand_eqtype_with_origin(
        &self,
        cause: &ObligationCause<'tcx>,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
    ) -> Option<Diag<'tcx>> {
        match self.at(cause, self.param_env).eq(DefineOpaqueTypes::Yes, expected, actual) {
            Ok(InferOk { obligations, value: () }) => {
                self.register_predicates(obligations);
                None
            }
            Err(e) => Some(self.err_ctxt().report_mismatched_types(cause, expected, actual, e)),
        }
    }

    pub fn demand_coerce(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        checked_ty: Ty<'tcx>,
        expected: Ty<'tcx>,
        expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
        allow_two_phase: AllowTwoPhase,
    ) -> Ty<'tcx> {
        let (ty, err) =
            self.demand_coerce_diag(expr, checked_ty, expected, expected_ty_expr, allow_two_phase);
        if let Some(err) = err {
            err.emit();
        }
        ty
    }

    /// Checks that the type of `expr` can be coerced to `expected`.
    ///
    /// N.B., this code relies on `self.diverges` to be accurate. In particular, assignments to `!`
    /// will be permitted if the diverges flag is currently "always".
    #[instrument(level = "debug", skip(self, expr, expected_ty_expr, allow_two_phase))]
    pub fn demand_coerce_diag(
        &self,
        mut expr: &'tcx hir::Expr<'tcx>,
        checked_ty: Ty<'tcx>,
        expected: Ty<'tcx>,
        mut expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
        allow_two_phase: AllowTwoPhase,
    ) -> (Ty<'tcx>, Option<Diag<'tcx>>) {
        let expected = self.resolve_vars_with_obligations(expected);

        let e = match self.coerce(expr, checked_ty, expected, allow_two_phase, None) {
            Ok(ty) => return (ty, None),
            Err(e) => e,
        };

        self.adjust_expr_for_assert_eq_macro(&mut expr, &mut expected_ty_expr);

        self.set_tainted_by_errors(self.dcx().span_delayed_bug(
            expr.span,
            "`TypeError` when attempting coercion but no error emitted",
        ));
        let expr = expr.peel_drop_temps();
        let cause = self.misc(expr.span);
        let expr_ty = self.resolve_vars_if_possible(checked_ty);
        let mut err = self.err_ctxt().report_mismatched_types(&cause, expected, expr_ty, e);

        self.emit_coerce_suggestions(&mut err, expr, expr_ty, expected, expected_ty_expr, Some(e));

        (expected, Some(err))
    }

    /// Notes the point at which a variable is constrained to some type incompatible
    /// with some expectation given by `source`.
    pub fn note_source_of_type_mismatch_constraint(
        &self,
        err: &mut Diag<'_>,
        expr: &hir::Expr<'_>,
        source: TypeMismatchSource<'tcx>,
    ) -> bool {
        let hir = self.tcx.hir();

        let hir::ExprKind::Path(hir::QPath::Resolved(None, p)) = expr.kind else {
            return false;
        };
        let [hir::PathSegment { ident, args: None, .. }] = p.segments else {
            return false;
        };
        let hir::def::Res::Local(local_hir_id) = p.res else {
            return false;
        };
        let hir::Node::Pat(pat) = self.tcx.hir_node(local_hir_id) else {
            return false;
        };
        let (init_ty_hir_id, init) = match self.tcx.parent_hir_node(pat.hir_id) {
            hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), init, .. }) => (ty.hir_id, *init),
            hir::Node::LetStmt(hir::LetStmt { init: Some(init), .. }) => (init.hir_id, Some(*init)),
            _ => return false,
        };
        let Some(init_ty) = self.node_ty_opt(init_ty_hir_id) else {
            return false;
        };

        // Locate all the usages of the relevant binding.
        struct FindExprs<'tcx> {
            hir_id: hir::HirId,
            uses: Vec<&'tcx hir::Expr<'tcx>>,
        }
        impl<'tcx> Visitor<'tcx> for FindExprs<'tcx> {
            fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
                if let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = ex.kind
                    && let hir::def::Res::Local(hir_id) = path.res
                    && hir_id == self.hir_id
                {
                    self.uses.push(ex);
                }
                hir::intravisit::walk_expr(self, ex);
            }
        }

        let mut expr_finder = FindExprs { hir_id: local_hir_id, uses: init.into_iter().collect() };
        let body =
            hir.body(hir.maybe_body_owned_by(self.body_id).expect("expected item to have body"));
        expr_finder.visit_expr(body.value);

        use rustc_infer::infer::type_variable::*;
        use rustc_middle::infer::unify_key::*;
        // Replaces all of the variables in the given type with a fresh inference variable.
        let mut fudger = BottomUpFolder {
            tcx: self.tcx,
            ty_op: |ty| {
                if let ty::Infer(infer) = ty.kind() {
                    match infer {
                        ty::TyVar(_) => self
                            .next_ty_var(TypeVariableOrigin { param_def_id: None, span: DUMMY_SP }),
                        ty::IntVar(_) => self.next_int_var(),
                        ty::FloatVar(_) => self.next_float_var(),
                        ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => {
                            bug!("unexpected fresh ty outside of the trait solver")
                        }
                    }
                } else {
                    ty
                }
            },
            lt_op: |_| self.tcx.lifetimes.re_erased,
            ct_op: |ct| {
                if let ty::ConstKind::Infer(_) = ct.kind() {
                    self.next_const_var(
                        ct.ty(),
                        ConstVariableOrigin { param_def_id: None, span: DUMMY_SP },
                    )
                } else {
                    ct
                }
            },
        };

        let expected_ty = match source {
            TypeMismatchSource::Ty(expected_ty) => expected_ty,
            // Try to deduce what the possible value of `expr` would be if the
            // incompatible arg were compatible. For example, given `Vec<i32>`
            // and `vec.push(1u32)`, we ideally want to deduce that the type of
            // `vec` *should* have been `Vec<u32>`. This will allow us to then
            // run the subsequent code with this expectation, finding out exactly
            // when this type diverged from our expectation.
            TypeMismatchSource::Arg { call_expr, incompatible_arg: idx } => {
                let hir::ExprKind::MethodCall(segment, _, args, _) = call_expr.kind else {
                    return false;
                };
                let Some(arg_ty) = self.node_ty_opt(args[idx].hir_id) else {
                    return false;
                };
                let possible_rcvr_ty = expr_finder.uses.iter().find_map(|binding| {
                    let possible_rcvr_ty = self.node_ty_opt(binding.hir_id)?;
                    // Fudge the receiver, so we can do new inference on it.
                    let possible_rcvr_ty = possible_rcvr_ty.fold_with(&mut fudger);
                    let method = self
                        .lookup_method_for_diagnostic(
                            possible_rcvr_ty,
                            segment,
                            DUMMY_SP,
                            call_expr,
                            binding,
                        )
                        .ok()?;
                    // Unify the method signature with our incompatible arg, to
                    // do inference in the *opposite* direction and to find out
                    // what our ideal rcvr ty would look like.
                    let _ = self
                        .at(&ObligationCause::dummy(), self.param_env)
                        .eq(DefineOpaqueTypes::Yes, method.sig.inputs()[idx + 1], arg_ty)
                        .ok()?;
                    self.select_obligations_where_possible(|errs| {
                        // Yeet the errors, we're already reporting errors.
                        errs.clear();
                    });
                    Some(self.resolve_vars_if_possible(possible_rcvr_ty))
                });
                if let Some(rcvr_ty) = possible_rcvr_ty {
                    rcvr_ty
                } else {
                    return false;
                }
            }
        };

        // If our expected_ty does not equal init_ty, then it *began* as incompatible.
        // No need to note in this case...
        if !self.can_eq(self.param_env, expected_ty, init_ty.fold_with(&mut fudger)) {
            return false;
        }

        for window in expr_finder.uses.windows(2) {
            // Bindings always update their recorded type after the fact, so we
            // need to look at the *following* usage's type to see when the
            // binding became incompatible.
            let [binding, next_usage] = *window else {
                continue;
            };

            // Don't go past the binding (always gonna be a nonsense label if so)
            if binding.hir_id == expr.hir_id {
                break;
            }

            let Some(next_use_ty) = self.node_ty_opt(next_usage.hir_id) else {
                continue;
            };

            // If the type is not constrained in a way making it not possible to
            // equate with `expected_ty` by this point, skip.
            if self.can_eq(self.param_env, expected_ty, next_use_ty.fold_with(&mut fudger)) {
                continue;
            }

            if let hir::Node::Expr(parent_expr) = self.tcx.parent_hir_node(binding.hir_id)
                && let hir::ExprKind::MethodCall(segment, rcvr, args, _) = parent_expr.kind
                && rcvr.hir_id == binding.hir_id
            {
                // If our binding became incompatible while it was a receiver
                // to a method call, we may be able to make a better guess to
                // the source of a type mismatch.
                let Some(rcvr_ty) = self.node_ty_opt(rcvr.hir_id) else {
                    continue;
                };
                let rcvr_ty = rcvr_ty.fold_with(&mut fudger);
                let Ok(method) = self.lookup_method_for_diagnostic(
                    rcvr_ty,
                    segment,
                    DUMMY_SP,
                    parent_expr,
                    rcvr,
                ) else {
                    continue;
                };

                let ideal_rcvr_ty = rcvr_ty.fold_with(&mut fudger);
                let ideal_method = self
                    .lookup_method_for_diagnostic(
                        ideal_rcvr_ty,
                        segment,
                        DUMMY_SP,
                        parent_expr,
                        rcvr,
                    )
                    .ok()
                    .and_then(|method| {
                        let _ = self
                            .at(&ObligationCause::dummy(), self.param_env)
                            .eq(DefineOpaqueTypes::Yes, ideal_rcvr_ty, expected_ty)
                            .ok()?;
                        Some(method)
                    });

                // Find what argument caused our rcvr to become incompatible
                // with the expected ty.
                for (idx, (expected_arg_ty, arg_expr)) in
                    std::iter::zip(&method.sig.inputs()[1..], args).enumerate()
                {
                    let Some(arg_ty) = self.node_ty_opt(arg_expr.hir_id) else {
                        continue;
                    };
                    let arg_ty = arg_ty.fold_with(&mut fudger);
                    let _ =
                        self.coerce(arg_expr, arg_ty, *expected_arg_ty, AllowTwoPhase::No, None);
                    self.select_obligations_where_possible(|errs| {
                        // Yeet the errors, we're already reporting errors.
                        errs.clear();
                    });
                    // If our rcvr, after inference due to unifying the signature
                    // with the expected argument type, is still compatible with
                    // the rcvr, then it must've not been the source of blame.
                    if self.can_eq(self.param_env, rcvr_ty, expected_ty) {
                        continue;
                    }
                    err.span_label(arg_expr.span, format!("this argument has type `{arg_ty}`..."));
                    err.span_label(
                        binding.span,
                        format!("... which causes `{ident}` to have type `{next_use_ty}`"),
                    );
                    // Using our "ideal" method signature, suggest a fix to this
                    // blame arg, if possible. Don't do this if we're coming from
                    // arg mismatch code, because we'll possibly suggest a mutually
                    // incompatible fix at the original mismatch site.
                    if matches!(source, TypeMismatchSource::Ty(_))
                        && let Some(ideal_method) = ideal_method
                        && let ideal_arg_ty = self.resolve_vars_if_possible(ideal_method.sig.inputs()[idx + 1])
                        // HACK(compiler-errors): We don't actually consider the implications
                        // of our inference guesses in `emit_type_mismatch_suggestions`, so
                        // only suggest things when we know our type error is precisely due to
                        // a type mismatch, and not via some projection or something. See #116155.
                        && !ideal_arg_ty.has_non_region_infer()
                    {
                        self.emit_type_mismatch_suggestions(
                            err,
                            arg_expr,
                            arg_ty,
                            ideal_arg_ty,
                            None,
                            None,
                        );
                    }
                    return true;
                }
            }
            err.span_label(
                binding.span,
                format!("here the type of `{ident}` is inferred to be `{next_use_ty}`"),
            );
            return true;
        }

        // We must've not found something that constrained the expr.
        false
    }

    // When encountering a type error on the value of a `break`, try to point at the reason for the
    // expected type.
    pub fn annotate_loop_expected_due_to_inference(
        &self,
        err: &mut Diag<'_>,
        expr: &hir::Expr<'_>,
        error: Option<TypeError<'tcx>>,
    ) {
        let Some(TypeError::Sorts(ExpectedFound { expected, .. })) = error else {
            return;
        };
        let mut parent_id = self.tcx.parent_hir_id(expr.hir_id);
        let mut parent;
        'outer: loop {
            // Climb the HIR tree to see if the current `Expr` is part of a `break;` statement.
            let (hir::Node::Stmt(hir::Stmt { kind: hir::StmtKind::Semi(&ref p), .. })
            | hir::Node::Block(hir::Block { expr: Some(&ref p), .. })
            | hir::Node::Expr(&ref p)) = self.tcx.hir_node(parent_id)
            else {
                break;
            };
            parent = p;
            parent_id = self.tcx.parent_hir_id(parent_id);
            let hir::ExprKind::Break(destination, _) = parent.kind else {
                continue;
            };
            let mut parent_id = parent_id;
            let mut direct = false;
            loop {
                // Climb the HIR tree to find the (desugared) `loop` this `break` corresponds to.
                let parent = match self.tcx.hir_node(parent_id) {
                    hir::Node::Expr(&ref parent) => {
                        parent_id = self.tcx.parent_hir_id(parent.hir_id);
                        parent
                    }
                    hir::Node::Stmt(hir::Stmt {
                        hir_id,
                        kind: hir::StmtKind::Semi(&ref parent) | hir::StmtKind::Expr(&ref parent),
                        ..
                    }) => {
                        parent_id = self.tcx.parent_hir_id(*hir_id);
                        parent
                    }
                    hir::Node::Block(_) => {
                        parent_id = self.tcx.parent_hir_id(parent_id);
                        parent
                    }
                    _ => break,
                };
                if let hir::ExprKind::Loop(..) = parent.kind {
                    // When you have `'a: loop { break; }`, the `break` corresponds to the labeled
                    // loop, so we need to account for that.
                    direct = !direct;
                }
                if let hir::ExprKind::Loop(block, label, _, span) = parent.kind
                    && (destination.label == label || direct)
                {
                    if let Some((reason_span, message)) =
                        self.maybe_get_coercion_reason(parent_id, parent.span)
                    {
                        err.span_label(reason_span, message);
                        err.span_label(
                            span,
                            format!("this loop is expected to be of type `{expected}`"),
                        );
                        break 'outer;
                    } else {
                        // Locate all other `break` statements within the same `loop` that might
                        // have affected inference.
                        struct FindBreaks<'tcx> {
                            label: Option<rustc_ast::Label>,
                            uses: Vec<&'tcx hir::Expr<'tcx>>,
                            nest_depth: usize,
                        }
                        impl<'tcx> Visitor<'tcx> for FindBreaks<'tcx> {
                            fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
                                let nest_depth = self.nest_depth;
                                if let hir::ExprKind::Loop(_, label, _, _) = ex.kind {
                                    if label == self.label {
                                        // Account for `'a: loop { 'a: loop {...} }`.
                                        return;
                                    }
                                    self.nest_depth += 1;
                                }
                                if let hir::ExprKind::Break(destination, _) = ex.kind
                                    && (self.label == destination.label
                                        // Account for `loop { 'a: loop { loop { break; } } }`.
                                        || destination.label.is_none() && self.nest_depth == 0)
                                {
                                    self.uses.push(ex);
                                }
                                hir::intravisit::walk_expr(self, ex);
                                self.nest_depth = nest_depth;
                            }
                        }
                        let mut expr_finder = FindBreaks { label, uses: vec![], nest_depth: 0 };
                        expr_finder.visit_block(block);
                        let mut exit = false;
                        for ex in expr_finder.uses {
                            let hir::ExprKind::Break(_, val) = ex.kind else {
                                continue;
                            };
                            let ty = match val {
                                Some(val) => {
                                    match self.typeck_results.borrow().expr_ty_adjusted_opt(val) {
                                        None => continue,
                                        Some(ty) => ty,
                                    }
                                }
                                None => self.tcx.types.unit,
                            };
                            if self.can_eq(self.param_env, ty, expected) {
                                err.span_label(ex.span, "expected because of this `break`");
                                exit = true;
                            }
                        }
                        if exit {
                            break 'outer;
                        }
                    }
                }
            }
        }
    }

    fn annotate_expected_due_to_let_ty(
        &self,
        err: &mut Diag<'_>,
        expr: &hir::Expr<'_>,
        error: Option<TypeError<'tcx>>,
    ) {
        match (self.tcx.parent_hir_node(expr.hir_id), error) {
            (hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), init: Some(init), .. }), _)
                if init.hir_id == expr.hir_id =>
            {
                // Point at `let` assignment type.
                err.span_label(ty.span, "expected due to this");
            }
            (
                hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Assign(lhs, rhs, _), .. }),
                Some(TypeError::Sorts(ExpectedFound { expected, .. })),
            ) if rhs.hir_id == expr.hir_id && !expected.is_closure() => {
                // We ignore closures explicitly because we already point at them elsewhere.
                // Point at the assigned-to binding.
                let mut primary_span = lhs.span;
                let mut secondary_span = lhs.span;
                let mut post_message = "";
                match lhs.kind {
                    hir::ExprKind::Path(hir::QPath::Resolved(
                        None,
                        hir::Path {
                            res:
                                hir::def::Res::Def(
                                    hir::def::DefKind::Static { .. } | hir::def::DefKind::Const,
                                    def_id,
                                ),
                            ..
                        },
                    )) => {
                        if let Some(hir::Node::Item(hir::Item {
                            ident,
                            kind: hir::ItemKind::Static(ty, ..) | hir::ItemKind::Const(ty, ..),
                            ..
                        })) = self.tcx.hir().get_if_local(*def_id)
                        {
                            primary_span = ty.span;
                            secondary_span = ident.span;
                            post_message = " type";
                        }
                    }
                    hir::ExprKind::Path(hir::QPath::Resolved(
                        None,
                        hir::Path { res: hir::def::Res::Local(hir_id), .. },
                    )) => {
                        if let hir::Node::Pat(pat) = self.tcx.hir_node(*hir_id) {
                            primary_span = pat.span;
                            secondary_span = pat.span;
                            match self.tcx.parent_hir_node(pat.hir_id) {
                                hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), .. }) => {
                                    primary_span = ty.span;
                                    post_message = " type";
                                }
                                hir::Node::LetStmt(hir::LetStmt { init: Some(init), .. }) => {
                                    primary_span = init.span;
                                    post_message = " value";
                                }
                                hir::Node::Param(hir::Param { ty_span, .. }) => {
                                    primary_span = *ty_span;
                                    post_message = " parameter type";
                                }
                                _ => {}
                            }
                        }
                    }
                    _ => {}
                }

                if primary_span != secondary_span
                    && self
                        .tcx
                        .sess
                        .source_map()
                        .is_multiline(secondary_span.shrink_to_hi().until(primary_span))
                {
                    // We are pointing at the binding's type or initializer value, but it's pattern
                    // is in a different line, so we point at both.
                    err.span_label(secondary_span, "expected due to the type of this binding");
                    err.span_label(primary_span, format!("expected due to this{post_message}"));
                } else if post_message.is_empty() {
                    // We are pointing at either the assignment lhs or the binding def pattern.
                    err.span_label(primary_span, "expected due to the type of this binding");
                } else {
                    // We are pointing at the binding's type or initializer value.
                    err.span_label(primary_span, format!("expected due to this{post_message}"));
                }

                if !lhs.is_syntactic_place_expr() {
                    // We already emitted E0070 "invalid left-hand side of assignment", so we
                    // silence this.
                    err.downgrade_to_delayed_bug();
                }
            }
            (
                hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Binary(_, lhs, rhs), .. }),
                Some(TypeError::Sorts(ExpectedFound { expected, .. })),
            ) if rhs.hir_id == expr.hir_id
                && self.typeck_results.borrow().expr_ty_adjusted_opt(lhs) == Some(expected) =>
            {
                err.span_label(lhs.span, format!("expected because this is `{expected}`"));
            }
            _ => {}
        }
    }

    fn annotate_alternative_method_deref(
        &self,
        err: &mut Diag<'_>,
        expr: &hir::Expr<'_>,
        error: Option<TypeError<'tcx>>,
    ) {
        let Some(TypeError::Sorts(ExpectedFound { expected, .. })) = error else {
            return;
        };
        let hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Assign(lhs, rhs, _), .. }) =
            self.tcx.parent_hir_node(expr.hir_id)
        else {
            return;
        };
        if rhs.hir_id != expr.hir_id || expected.is_closure() {
            return;
        }
        let hir::ExprKind::Unary(hir::UnOp::Deref, deref) = lhs.kind else {
            return;
        };
        let hir::ExprKind::MethodCall(path, base, args, _) = deref.kind else {
            return;
        };
        let Some(self_ty) = self.typeck_results.borrow().expr_ty_adjusted_opt(base) else {
            return;
        };

        let Ok(pick) = self.lookup_probe_for_diagnostic(
            path.ident,
            self_ty,
            deref,
            probe::ProbeScope::TraitsInScope,
            None,
        ) else {
            return;
        };
        let in_scope_methods = self.probe_for_name_many(
            probe::Mode::MethodCall,
            path.ident,
            Some(expected),
            probe::IsSuggestion(true),
            self_ty,
            deref.hir_id,
            probe::ProbeScope::TraitsInScope,
        );
        let other_methods_in_scope: Vec<_> =
            in_scope_methods.iter().filter(|c| c.item.def_id != pick.item.def_id).collect();

        let all_methods = self.probe_for_name_many(
            probe::Mode::MethodCall,
            path.ident,
            Some(expected),
            probe::IsSuggestion(true),
            self_ty,
            deref.hir_id,
            probe::ProbeScope::AllTraits,
        );
        let suggestions: Vec<_> = all_methods
            .into_iter()
            .filter(|c| c.item.def_id != pick.item.def_id)
            .map(|c| {
                let m = c.item;
                let generic_args = ty::GenericArgs::for_item(self.tcx, m.def_id, |param, _| {
                    self.var_for_def(deref.span, param)
                });
                let mutability =
                    match self.tcx.fn_sig(m.def_id).skip_binder().input(0).skip_binder().kind() {
                        ty::Ref(_, _, hir::Mutability::Mut) => "&mut ",
                        ty::Ref(_, _, _) => "&",
                        _ => "",
                    };
                vec![
                    (
                        deref.span.until(base.span),
                        format!(
                            "{}({}",
                            with_no_trimmed_paths!(
                                self.tcx.def_path_str_with_args(m.def_id, generic_args,)
                            ),
                            mutability,
                        ),
                    ),
                    match &args {
                        [] => (base.span.shrink_to_hi().with_hi(deref.span.hi()), ")".to_string()),
                        [first, ..] => (base.span.between(first.span), ", ".to_string()),
                    },
                ]
            })
            .collect();
        if suggestions.is_empty() {
            return;
        }
        let mut path_span: MultiSpan = path.ident.span.into();
        path_span.push_span_label(
            path.ident.span,
            with_no_trimmed_paths!(format!(
                "refers to `{}`",
                self.tcx.def_path_str(pick.item.def_id),
            )),
        );
        let container_id = pick.item.container_id(self.tcx);
        let container = with_no_trimmed_paths!(self.tcx.def_path_str(container_id));
        for def_id in pick.import_ids {
            let hir_id = self.tcx.local_def_id_to_hir_id(def_id);
            path_span.push_span_label(
                self.tcx.hir().span(hir_id),
                format!("`{container}` imported here"),
            );
        }
        let tail = with_no_trimmed_paths!(match &other_methods_in_scope[..] {
            [] => return,
            [candidate] => format!(
                "the method of the same name on {} `{}`",
                match candidate.kind {
                    probe::CandidateKind::InherentImplCandidate(..) => "the inherent impl for",
                    _ => "trait",
                },
                self.tcx.def_path_str(candidate.item.container_id(self.tcx))
            ),
            [.., last] if other_methods_in_scope.len() < 5 => {
                format!(
                    "the methods of the same name on {} and `{}`",
                    other_methods_in_scope[..other_methods_in_scope.len() - 1]
                        .iter()
                        .map(|c| format!(
                            "`{}`",
                            self.tcx.def_path_str(c.item.container_id(self.tcx))
                        ))
                        .collect::<Vec<String>>()
                        .join(", "),
                    self.tcx.def_path_str(last.item.container_id(self.tcx))
                )
            }
            _ => format!(
                "the methods of the same name on {} other traits",
                other_methods_in_scope.len()
            ),
        });
        err.span_note(
            path_span,
            format!(
                "the `{}` call is resolved to the method in `{container}`, shadowing {tail}",
                path.ident,
            ),
        );
        if suggestions.len() > other_methods_in_scope.len() {
            err.note(format!(
                "additionally, there are {} other available methods that aren't in scope",
                suggestions.len() - other_methods_in_scope.len()
            ));
        }
        err.multipart_suggestions(
            format!(
                "you might have meant to call {}; you can use the fully-qualified path to call {} \
                 explicitly",
                if suggestions.len() == 1 {
                    "the other method"
                } else {
                    "one of the other methods"
                },
                if suggestions.len() == 1 { "it" } else { "one of them" },
            ),
            suggestions,
            Applicability::MaybeIncorrect,
        );
    }

    pub fn get_conversion_methods(
        &self,
        span: Span,
        expected: Ty<'tcx>,
        checked_ty: Ty<'tcx>,
        hir_id: hir::HirId,
    ) -> Vec<AssocItem> {
        let methods = self.probe_for_return_type(
            span,
            probe::Mode::MethodCall,
            expected,
            checked_ty,
            hir_id,
            |m| {
                self.has_only_self_parameter(m)
                    && self
                        .tcx
                        // This special internal attribute is used to permit
                        // "identity-like" conversion methods to be suggested here.
                        //
                        // FIXME (#46459 and #46460): ideally
                        // `std::convert::Into::into` and `std::borrow:ToOwned` would
                        // also be `#[rustc_conversion_suggestion]`, if not for
                        // method-probing false-positives and -negatives (respectively).
                        //
                        // FIXME? Other potential candidate methods: `as_ref` and
                        // `as_mut`?
                        .has_attr(m.def_id, sym::rustc_conversion_suggestion)
            },
        );

        methods
    }

    /// This function checks whether the method is not static and does not accept other parameters than `self`.
    fn has_only_self_parameter(&self, method: &AssocItem) -> bool {
        match method.kind {
            ty::AssocKind::Fn => {
                method.fn_has_self_parameter
                    && self.tcx.fn_sig(method.def_id).skip_binder().inputs().skip_binder().len()
                        == 1
            }
            _ => false,
        }
    }

    /// If the given `HirId` corresponds to a block with a trailing expression, return that expression
    pub(crate) fn maybe_get_block_expr(
        &self,
        expr: &hir::Expr<'tcx>,
    ) -> Option<&'tcx hir::Expr<'tcx>> {
        match expr {
            hir::Expr { kind: hir::ExprKind::Block(block, ..), .. } => block.expr,
            _ => None,
        }
    }

    // Returns whether the given expression is a destruct assignment desugaring.
    // For example, `(a, b) = (1, &2);`
    // Here we try to find the pattern binding of the expression,
    // `default_binding_modes` is false only for destruct assignment desugaring.
    pub(crate) fn is_destruct_assignment_desugaring(&self, expr: &hir::Expr<'_>) -> bool {
        if let hir::ExprKind::Path(hir::QPath::Resolved(
            _,
            hir::Path { res: hir::def::Res::Local(bind_hir_id), .. },
        )) = expr.kind
        {
            let bind = self.tcx.hir_node(*bind_hir_id);
            let parent = self.tcx.parent_hir_node(*bind_hir_id);
            if let hir::Node::Pat(hir::Pat {
                kind: hir::PatKind::Binding(_, _hir_id, _, _), ..
            }) = bind
                && let hir::Node::Pat(hir::Pat { default_binding_modes: false, .. }) = parent
            {
                return true;
            }
        }
        return false;
    }

    fn explain_self_literal(
        &self,
        err: &mut Diag<'_>,
        expr: &hir::Expr<'tcx>,
        expected: Ty<'tcx>,
        found: Ty<'tcx>,
    ) {
        match expr.peel_drop_temps().kind {
            hir::ExprKind::Struct(
                hir::QPath::Resolved(
                    None,
                    hir::Path { res: hir::def::Res::SelfTyAlias { alias_to, .. }, span, .. },
                ),
                ..,
            )
            | hir::ExprKind::Call(
                hir::Expr {
                    kind:
                        hir::ExprKind::Path(hir::QPath::Resolved(
                            None,
                            hir::Path {
                                res: hir::def::Res::SelfTyAlias { alias_to, .. },
                                span,
                                ..
                            },
                        )),
                    ..
                },
                ..,
            ) => {
                if let Some(hir::Node::Item(hir::Item {
                    kind: hir::ItemKind::Impl(hir::Impl { self_ty, .. }),
                    ..
                })) = self.tcx.hir().get_if_local(*alias_to)
                {
                    err.span_label(self_ty.span, "this is the type of the `Self` literal");
                }
                if let ty::Adt(e_def, e_args) = expected.kind()
                    && let ty::Adt(f_def, _f_args) = found.kind()
                    && e_def == f_def
                {
                    err.span_suggestion_verbose(
                        *span,
                        "use the type name directly",
                        self.tcx.value_path_str_with_args(e_def.did(), e_args),
                        Applicability::MaybeIncorrect,
                    );
                }
            }
            _ => {}
        }
    }

    fn note_wrong_return_ty_due_to_generic_arg(
        &self,
        err: &mut Diag<'_>,
        expr: &hir::Expr<'_>,
        checked_ty: Ty<'tcx>,
    ) {
        let hir::Node::Expr(parent_expr) = self.tcx.parent_hir_node(expr.hir_id) else {
            return;
        };
        enum CallableKind {
            Function,
            Method,
            Constructor,
        }
        let mut maybe_emit_help = |def_id: hir::def_id::DefId,
                                   callable: rustc_span::symbol::Ident,
                                   args: &[hir::Expr<'_>],
                                   kind: CallableKind| {
            let arg_idx = args.iter().position(|a| a.hir_id == expr.hir_id).unwrap();
            let fn_ty = self.tcx.type_of(def_id).skip_binder();
            if !fn_ty.is_fn() {
                return;
            }
            let fn_sig = fn_ty.fn_sig(self.tcx).skip_binder();
            let Some(&arg) = fn_sig
                .inputs()
                .get(arg_idx + if matches!(kind, CallableKind::Method) { 1 } else { 0 })
            else {
                return;
            };
            if matches!(arg.kind(), ty::Param(_))
                && fn_sig.output().contains(arg)
                && self.node_ty(args[arg_idx].hir_id) == checked_ty
            {
                let mut multi_span: MultiSpan = parent_expr.span.into();
                multi_span.push_span_label(
                    args[arg_idx].span,
                    format!(
                        "this argument influences the {} of `{}`",
                        if matches!(kind, CallableKind::Constructor) {
                            "type"
                        } else {
                            "return type"
                        },
                        callable
                    ),
                );
                err.span_help(
                    multi_span,
                    format!(
                        "the {} `{}` due to the type of the argument passed",
                        match kind {
                            CallableKind::Function => "return type of this call is",
                            CallableKind::Method => "return type of this call is",
                            CallableKind::Constructor => "type constructed contains",
                        },
                        checked_ty
                    ),
                );
            }
        };
        match parent_expr.kind {
            hir::ExprKind::Call(fun, args) => {
                let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = fun.kind else {
                    return;
                };
                let hir::def::Res::Def(kind, def_id) = path.res else {
                    return;
                };
                let callable_kind = if matches!(kind, hir::def::DefKind::Ctor(_, _)) {
                    CallableKind::Constructor
                } else {
                    CallableKind::Function
                };
                maybe_emit_help(def_id, path.segments[0].ident, args, callable_kind);
            }
            hir::ExprKind::MethodCall(method, _receiver, args, _span) => {
                let Some(def_id) =
                    self.typeck_results.borrow().type_dependent_def_id(parent_expr.hir_id)
                else {
                    return;
                };
                maybe_emit_help(def_id, method.ident, args, CallableKind::Method)
            }
            _ => return,
        }
    }
}

pub enum TypeMismatchSource<'tcx> {
    /// Expected the binding to have the given type, but it was found to have
    /// a different type. Find out when that type first became incompatible.
    Ty(Ty<'tcx>),
    /// When we fail during method argument checking, try to find out if a previous
    /// expression has constrained the method's receiver in a way that makes the
    /// argument's type incompatible.
    Arg { call_expr: &'tcx hir::Expr<'tcx>, incompatible_arg: usize },
}