rustc_codegen_llvm/debuginfo/metadata/
type_map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
use std::cell::RefCell;

use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_macros::HashStable;
use rustc_middle::bug;
use rustc_middle::ty::{ParamEnv, PolyExistentialTraitRef, Ty, TyCtxt};
use rustc_target::abi::{Align, Size, VariantIdx};

use super::{SmallVec, UNKNOWN_LINE_NUMBER, unknown_file_metadata};
use crate::common::{AsCCharPtr, CodegenCx};
use crate::debuginfo::utils::{DIB, create_DIArray, debug_context};
use crate::llvm::debuginfo::{DIFlags, DIScope, DIType};
use crate::llvm::{self};

mod private {
    use rustc_macros::HashStable;

    // This type cannot be constructed outside of this module because
    // it has a private field. We make use of this in order to prevent
    // `UniqueTypeId` from being constructed directly, without asserting
    // the preconditions.
    #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, HashStable)]
    pub(crate) struct HiddenZst;
}

/// A unique identifier for anything that we create a debuginfo node for.
/// The types it contains are expected to already be normalized (which
/// is asserted in the constructors).
///
/// Note that there are some things that only show up in debuginfo, like
/// the separate type descriptions for each enum variant. These get an ID
/// too because they have their own debuginfo node in LLVM IR.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, HashStable)]
pub(super) enum UniqueTypeId<'tcx> {
    /// The ID of a regular type as it shows up at the language level.
    Ty(Ty<'tcx>, private::HiddenZst),
    /// The ID for the single DW_TAG_variant_part nested inside the top-level
    /// DW_TAG_structure_type that describes enums and coroutines.
    VariantPart(Ty<'tcx>, private::HiddenZst),
    /// The ID for the artificial struct type describing a single enum variant.
    VariantStructType(Ty<'tcx>, VariantIdx, private::HiddenZst),
    /// The ID for the additional wrapper struct type describing an enum variant in CPP-like mode.
    VariantStructTypeCppLikeWrapper(Ty<'tcx>, VariantIdx, private::HiddenZst),
    /// The ID of the artificial type we create for VTables.
    VTableTy(Ty<'tcx>, Option<PolyExistentialTraitRef<'tcx>>, private::HiddenZst),
}

impl<'tcx> UniqueTypeId<'tcx> {
    pub(crate) fn for_ty(tcx: TyCtxt<'tcx>, t: Ty<'tcx>) -> Self {
        assert_eq!(t, tcx.normalize_erasing_regions(ParamEnv::reveal_all(), t));
        UniqueTypeId::Ty(t, private::HiddenZst)
    }

    pub(crate) fn for_enum_variant_part(tcx: TyCtxt<'tcx>, enum_ty: Ty<'tcx>) -> Self {
        assert_eq!(enum_ty, tcx.normalize_erasing_regions(ParamEnv::reveal_all(), enum_ty));
        UniqueTypeId::VariantPart(enum_ty, private::HiddenZst)
    }

    pub(crate) fn for_enum_variant_struct_type(
        tcx: TyCtxt<'tcx>,
        enum_ty: Ty<'tcx>,
        variant_idx: VariantIdx,
    ) -> Self {
        assert_eq!(enum_ty, tcx.normalize_erasing_regions(ParamEnv::reveal_all(), enum_ty));
        UniqueTypeId::VariantStructType(enum_ty, variant_idx, private::HiddenZst)
    }

    pub(crate) fn for_enum_variant_struct_type_wrapper(
        tcx: TyCtxt<'tcx>,
        enum_ty: Ty<'tcx>,
        variant_idx: VariantIdx,
    ) -> Self {
        assert_eq!(enum_ty, tcx.normalize_erasing_regions(ParamEnv::reveal_all(), enum_ty));
        UniqueTypeId::VariantStructTypeCppLikeWrapper(enum_ty, variant_idx, private::HiddenZst)
    }

    pub(crate) fn for_vtable_ty(
        tcx: TyCtxt<'tcx>,
        self_type: Ty<'tcx>,
        implemented_trait: Option<PolyExistentialTraitRef<'tcx>>,
    ) -> Self {
        assert_eq!(self_type, tcx.normalize_erasing_regions(ParamEnv::reveal_all(), self_type));
        assert_eq!(
            implemented_trait,
            tcx.normalize_erasing_regions(ParamEnv::reveal_all(), implemented_trait)
        );
        UniqueTypeId::VTableTy(self_type, implemented_trait, private::HiddenZst)
    }

    /// Generates a string version of this [UniqueTypeId], which can be used as the `UniqueId`
    /// argument of the various `LLVMRustDIBuilderCreate*Type()` methods.
    ///
    /// Right now this takes the form of a hex-encoded opaque hash value.
    fn generate_unique_id_string(self, tcx: TyCtxt<'tcx>) -> String {
        let mut hasher = StableHasher::new();
        tcx.with_stable_hashing_context(|mut hcx| {
            hcx.while_hashing_spans(false, |hcx| self.hash_stable(hcx, &mut hasher))
        });
        hasher.finish::<Fingerprint>().to_hex()
    }

    pub(crate) fn expect_ty(self) -> Ty<'tcx> {
        match self {
            UniqueTypeId::Ty(ty, _) => ty,
            _ => bug!("Expected `UniqueTypeId::Ty` but found `{:?}`", self),
        }
    }
}

/// The `TypeMap` is where the debug context holds the type metadata nodes
/// created so far. The debuginfo nodes are identified by `UniqueTypeId`.
#[derive(Default)]
pub(crate) struct TypeMap<'ll, 'tcx> {
    pub(super) unique_id_to_di_node: RefCell<FxHashMap<UniqueTypeId<'tcx>, &'ll DIType>>,
}

impl<'ll, 'tcx> TypeMap<'ll, 'tcx> {
    /// Adds a `UniqueTypeId` to metadata mapping to the `TypeMap`. The method will
    /// fail if the mapping already exists.
    pub(super) fn insert(&self, unique_type_id: UniqueTypeId<'tcx>, metadata: &'ll DIType) {
        if self.unique_id_to_di_node.borrow_mut().insert(unique_type_id, metadata).is_some() {
            bug!("type metadata for unique ID '{:?}' is already in the `TypeMap`!", unique_type_id);
        }
    }

    pub(super) fn di_node_for_unique_id(
        &self,
        unique_type_id: UniqueTypeId<'tcx>,
    ) -> Option<&'ll DIType> {
        self.unique_id_to_di_node.borrow().get(&unique_type_id).cloned()
    }
}

pub(crate) struct DINodeCreationResult<'ll> {
    pub di_node: &'ll DIType,
    pub already_stored_in_typemap: bool,
}

impl<'ll> DINodeCreationResult<'ll> {
    pub(crate) fn new(di_node: &'ll DIType, already_stored_in_typemap: bool) -> Self {
        DINodeCreationResult { di_node, already_stored_in_typemap }
    }
}

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(crate) enum Stub<'ll> {
    Struct,
    Union,
    VTableTy { vtable_holder: &'ll DIType },
}

pub(crate) struct StubInfo<'ll, 'tcx> {
    metadata: &'ll DIType,
    unique_type_id: UniqueTypeId<'tcx>,
}

impl<'ll, 'tcx> StubInfo<'ll, 'tcx> {
    pub(super) fn new(
        cx: &CodegenCx<'ll, 'tcx>,
        unique_type_id: UniqueTypeId<'tcx>,
        build: impl FnOnce(&CodegenCx<'ll, 'tcx>, /* unique_type_id_str: */ &str) -> &'ll DIType,
    ) -> StubInfo<'ll, 'tcx> {
        let unique_type_id_str = unique_type_id.generate_unique_id_string(cx.tcx);
        let di_node = build(cx, &unique_type_id_str);
        StubInfo { metadata: di_node, unique_type_id }
    }
}

/// Create a stub debuginfo node onto which fields and nested types can be attached.
pub(super) fn stub<'ll, 'tcx>(
    cx: &CodegenCx<'ll, 'tcx>,
    kind: Stub<'ll>,
    unique_type_id: UniqueTypeId<'tcx>,
    name: &str,
    (size, align): (Size, Align),
    containing_scope: Option<&'ll DIScope>,
    flags: DIFlags,
) -> StubInfo<'ll, 'tcx> {
    let empty_array = create_DIArray(DIB(cx), &[]);
    let unique_type_id_str = unique_type_id.generate_unique_id_string(cx.tcx);

    let metadata = match kind {
        Stub::Struct | Stub::VTableTy { .. } => {
            let vtable_holder = match kind {
                Stub::VTableTy { vtable_holder } => Some(vtable_holder),
                _ => None,
            };
            unsafe {
                llvm::LLVMRustDIBuilderCreateStructType(
                    DIB(cx),
                    containing_scope,
                    name.as_c_char_ptr(),
                    name.len(),
                    unknown_file_metadata(cx),
                    UNKNOWN_LINE_NUMBER,
                    size.bits(),
                    align.bits() as u32,
                    flags,
                    None,
                    empty_array,
                    0,
                    vtable_holder,
                    unique_type_id_str.as_c_char_ptr(),
                    unique_type_id_str.len(),
                )
            }
        }
        Stub::Union => unsafe {
            llvm::LLVMRustDIBuilderCreateUnionType(
                DIB(cx),
                containing_scope,
                name.as_c_char_ptr(),
                name.len(),
                unknown_file_metadata(cx),
                UNKNOWN_LINE_NUMBER,
                size.bits(),
                align.bits() as u32,
                flags,
                Some(empty_array),
                0,
                unique_type_id_str.as_c_char_ptr(),
                unique_type_id_str.len(),
            )
        },
    };
    StubInfo { metadata, unique_type_id }
}

/// This function enables creating debuginfo nodes that can recursively refer to themselves.
/// It will first insert the given stub into the type map and only then execute the `members`
/// and `generics` closures passed in. These closures have access to the stub so they can
/// directly attach fields to them. If the type of a field transitively refers back
/// to the type currently being built, the stub will already be found in the type map,
/// which effectively breaks the recursion cycle.
pub(super) fn build_type_with_children<'ll, 'tcx>(
    cx: &CodegenCx<'ll, 'tcx>,
    stub_info: StubInfo<'ll, 'tcx>,
    members: impl FnOnce(&CodegenCx<'ll, 'tcx>, &'ll DIType) -> SmallVec<&'ll DIType>,
    generics: impl FnOnce(&CodegenCx<'ll, 'tcx>) -> SmallVec<&'ll DIType>,
) -> DINodeCreationResult<'ll> {
    assert_eq!(debug_context(cx).type_map.di_node_for_unique_id(stub_info.unique_type_id), None);

    debug_context(cx).type_map.insert(stub_info.unique_type_id, stub_info.metadata);

    let members: SmallVec<_> =
        members(cx, stub_info.metadata).into_iter().map(|node| Some(node)).collect();
    let generics: SmallVec<Option<&'ll DIType>> =
        generics(cx).into_iter().map(|node| Some(node)).collect();

    if !(members.is_empty() && generics.is_empty()) {
        unsafe {
            let members_array = create_DIArray(DIB(cx), &members[..]);
            let generics_array = create_DIArray(DIB(cx), &generics[..]);
            llvm::LLVMRustDICompositeTypeReplaceArrays(
                DIB(cx),
                stub_info.metadata,
                Some(members_array),
                Some(generics_array),
            );
        }
    }

    DINodeCreationResult { di_node: stub_info.metadata, already_stored_in_typemap: true }
}