rustc_hir_analysis/check/
check.rs

1use std::cell::LazyCell;
2use std::ops::ControlFlow;
3
4use rustc_abi::{ExternAbi, FieldIdx, ScalableElt};
5use rustc_data_structures::unord::{UnordMap, UnordSet};
6use rustc_errors::codes::*;
7use rustc_errors::{EmissionGuarantee, MultiSpan};
8use rustc_hir as hir;
9use rustc_hir::attrs::AttributeKind;
10use rustc_hir::attrs::ReprAttr::ReprPacked;
11use rustc_hir::def::{CtorKind, DefKind};
12use rustc_hir::{LangItem, Node, attrs, find_attr, intravisit};
13use rustc_infer::infer::{RegionVariableOrigin, TyCtxtInferExt};
14use rustc_infer::traits::{Obligation, ObligationCauseCode, WellFormedLoc};
15use rustc_lint_defs::builtin::{REPR_TRANSPARENT_NON_ZST_FIELDS, UNSUPPORTED_CALLING_CONVENTIONS};
16use rustc_middle::hir::nested_filter;
17use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
18use rustc_middle::middle::stability::EvalResult;
19use rustc_middle::ty::error::TypeErrorToStringExt;
20use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES};
21use rustc_middle::ty::util::Discr;
22use rustc_middle::ty::{
23    AdtDef, BottomUpFolder, FnSig, GenericArgKind, RegionKind, TypeFoldable, TypeSuperVisitable,
24    TypeVisitable, TypeVisitableExt, fold_regions,
25};
26use rustc_session::lint::builtin::UNINHABITED_STATIC;
27use rustc_target::spec::{AbiMap, AbiMapping};
28use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
29use rustc_trait_selection::error_reporting::traits::on_unimplemented::OnUnimplementedDirective;
30use rustc_trait_selection::traits;
31use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
32use tracing::{debug, instrument};
33use ty::TypingMode;
34
35use super::compare_impl_item::check_type_bounds;
36use super::*;
37use crate::check::wfcheck::{
38    check_associated_item, check_trait_item, check_variances_for_type_defn, check_where_clauses,
39    enter_wf_checking_ctxt,
40};
41
42fn add_abi_diag_help<T: EmissionGuarantee>(abi: ExternAbi, diag: &mut Diag<'_, T>) {
43    if let ExternAbi::Cdecl { unwind } = abi {
44        let c_abi = ExternAbi::C { unwind };
45        diag.help(format!("use `extern {c_abi}` instead",));
46    } else if let ExternAbi::Stdcall { unwind } = abi {
47        let c_abi = ExternAbi::C { unwind };
48        let system_abi = ExternAbi::System { unwind };
49        diag.help(format!(
50            "if you need `extern {abi}` on win32 and `extern {c_abi}` everywhere else, \
51                use `extern {system_abi}`"
52        ));
53    }
54}
55
56pub fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: ExternAbi) {
57    // FIXME: This should be checked earlier, e.g. in `rustc_ast_lowering`, as this
58    // currently only guards function imports, function definitions, and function pointer types.
59    // Functions in trait declarations can still use "deprecated" ABIs without any warning.
60
61    match AbiMap::from_target(&tcx.sess.target).canonize_abi(abi, false) {
62        AbiMapping::Direct(..) => (),
63        // already erred in rustc_ast_lowering
64        AbiMapping::Invalid => {
65            tcx.dcx().span_delayed_bug(span, format!("{abi} should be rejected in ast_lowering"));
66        }
67        AbiMapping::Deprecated(..) => {
68            tcx.node_span_lint(UNSUPPORTED_CALLING_CONVENTIONS, hir_id, span, |lint| {
69                lint.primary_message(format!(
70                    "{abi} is not a supported ABI for the current target"
71                ));
72                add_abi_diag_help(abi, lint);
73            });
74        }
75    }
76}
77
78pub fn check_custom_abi(tcx: TyCtxt<'_>, def_id: LocalDefId, fn_sig: FnSig<'_>, fn_sig_span: Span) {
79    if fn_sig.abi == ExternAbi::Custom {
80        // Function definitions that use `extern "custom"` must be naked functions.
81        if !find_attr!(tcx.get_all_attrs(def_id), AttributeKind::Naked(_)) {
82            tcx.dcx().emit_err(crate::errors::AbiCustomClothedFunction {
83                span: fn_sig_span,
84                naked_span: tcx.def_span(def_id).shrink_to_lo(),
85            });
86        }
87    }
88}
89
90fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) {
91    let def = tcx.adt_def(def_id);
92    let span = tcx.def_span(def_id);
93    def.destructor(tcx); // force the destructor to be evaluated
94
95    if let Some(scalable) = def.repr().scalable {
96        check_scalable_vector(tcx, span, def_id, scalable);
97    } else if def.repr().simd() {
98        check_simd(tcx, span, def_id);
99    }
100
101    check_transparent(tcx, def);
102    check_packed(tcx, span, def);
103}
104
105fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) {
106    let def = tcx.adt_def(def_id);
107    let span = tcx.def_span(def_id);
108    def.destructor(tcx); // force the destructor to be evaluated
109    check_transparent(tcx, def);
110    check_union_fields(tcx, span, def_id);
111    check_packed(tcx, span, def);
112}
113
114fn allowed_union_or_unsafe_field<'tcx>(
115    tcx: TyCtxt<'tcx>,
116    ty: Ty<'tcx>,
117    typing_env: ty::TypingEnv<'tcx>,
118    span: Span,
119) -> bool {
120    // HACK (not that bad of a hack don't worry): Some codegen tests don't even define proper
121    // impls for `Copy`. Let's short-circuit here for this validity check, since a lot of them
122    // use unions. We should eventually fix all the tests to define that lang item or use
123    // minicore stubs.
124    if ty.is_trivially_pure_clone_copy() {
125        return true;
126    }
127    // If `BikeshedGuaranteedNoDrop` is not defined in a `#[no_core]` test, fall back to `Copy`.
128    // This is an underapproximation of `BikeshedGuaranteedNoDrop`,
129    let def_id = tcx
130        .lang_items()
131        .get(LangItem::BikeshedGuaranteedNoDrop)
132        .unwrap_or_else(|| tcx.require_lang_item(LangItem::Copy, span));
133    let Ok(ty) = tcx.try_normalize_erasing_regions(typing_env, ty) else {
134        tcx.dcx().span_delayed_bug(span, "could not normalize field type");
135        return true;
136    };
137    let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
138    infcx.predicate_must_hold_modulo_regions(&Obligation::new(
139        tcx,
140        ObligationCause::dummy_with_span(span),
141        param_env,
142        ty::TraitRef::new(tcx, def_id, [ty]),
143    ))
144}
145
146/// Check that the fields of the `union` do not need dropping.
147fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
148    let def = tcx.adt_def(item_def_id);
149    assert!(def.is_union());
150
151    let typing_env = ty::TypingEnv::non_body_analysis(tcx, item_def_id);
152    let args = ty::GenericArgs::identity_for_item(tcx, item_def_id);
153
154    for field in &def.non_enum_variant().fields {
155        if !allowed_union_or_unsafe_field(tcx, field.ty(tcx, args), typing_env, span) {
156            let (field_span, ty_span) = match tcx.hir_get_if_local(field.did) {
157                // We are currently checking the type this field came from, so it must be local.
158                Some(Node::Field(field)) => (field.span, field.ty.span),
159                _ => unreachable!("mir field has to correspond to hir field"),
160            };
161            tcx.dcx().emit_err(errors::InvalidUnionField {
162                field_span,
163                sugg: errors::InvalidUnionFieldSuggestion {
164                    lo: ty_span.shrink_to_lo(),
165                    hi: ty_span.shrink_to_hi(),
166                },
167                note: (),
168            });
169            return false;
170        }
171    }
172
173    true
174}
175
176/// Check that a `static` is inhabited.
177fn check_static_inhabited(tcx: TyCtxt<'_>, def_id: LocalDefId) {
178    // Make sure statics are inhabited.
179    // Other parts of the compiler assume that there are no uninhabited places. In principle it
180    // would be enough to check this for `extern` statics, as statics with an initializer will
181    // have UB during initialization if they are uninhabited, but there also seems to be no good
182    // reason to allow any statics to be uninhabited.
183    let ty = tcx.type_of(def_id).instantiate_identity();
184    let span = tcx.def_span(def_id);
185    let layout = match tcx.layout_of(ty::TypingEnv::fully_monomorphized().as_query_input(ty)) {
186        Ok(l) => l,
187        // Foreign statics that overflow their allowed size should emit an error
188        Err(LayoutError::SizeOverflow(_))
189            if matches!(tcx.def_kind(def_id), DefKind::Static{ .. }
190                if tcx.def_kind(tcx.local_parent(def_id)) == DefKind::ForeignMod) =>
191        {
192            tcx.dcx().emit_err(errors::TooLargeStatic { span });
193            return;
194        }
195        // Generic statics are rejected, but we still reach this case.
196        Err(e) => {
197            tcx.dcx().span_delayed_bug(span, format!("{e:?}"));
198            return;
199        }
200    };
201    if layout.is_uninhabited() {
202        tcx.node_span_lint(
203            UNINHABITED_STATIC,
204            tcx.local_def_id_to_hir_id(def_id),
205            span,
206            |lint| {
207                lint.primary_message("static of uninhabited type");
208                lint
209                .note("uninhabited statics cannot be initialized, and any access would be an immediate error");
210            },
211        );
212    }
213}
214
215/// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo`
216/// projections that would result in "inheriting lifetimes".
217fn check_opaque(tcx: TyCtxt<'_>, def_id: LocalDefId) {
218    let hir::OpaqueTy { origin, .. } = *tcx.hir_expect_opaque_ty(def_id);
219
220    // HACK(jynelson): trying to infer the type of `impl trait` breaks documenting
221    // `async-std` (and `pub async fn` in general).
222    // Since rustdoc doesn't care about the hidden type behind `impl Trait`, just don't look at it!
223    // See https://github.com/rust-lang/rust/issues/75100
224    if tcx.sess.opts.actually_rustdoc {
225        return;
226    }
227
228    if tcx.type_of(def_id).instantiate_identity().references_error() {
229        return;
230    }
231    if check_opaque_for_cycles(tcx, def_id).is_err() {
232        return;
233    }
234
235    let _ = check_opaque_meets_bounds(tcx, def_id, origin);
236}
237
238/// Checks that an opaque type does not contain cycles.
239pub(super) fn check_opaque_for_cycles<'tcx>(
240    tcx: TyCtxt<'tcx>,
241    def_id: LocalDefId,
242) -> Result<(), ErrorGuaranteed> {
243    let args = GenericArgs::identity_for_item(tcx, def_id);
244
245    // First, try to look at any opaque expansion cycles, considering coroutine fields
246    // (even though these aren't necessarily true errors).
247    if tcx.try_expand_impl_trait_type(def_id.to_def_id(), args).is_err() {
248        let reported = opaque_type_cycle_error(tcx, def_id);
249        return Err(reported);
250    }
251
252    Ok(())
253}
254
255/// Check that the hidden type behind `impl Trait` actually implements `Trait`.
256///
257/// This is mostly checked at the places that specify the opaque type, but we
258/// check those cases in the `param_env` of that function, which may have
259/// bounds not on this opaque type:
260///
261/// ```ignore (illustrative)
262/// type X<T> = impl Clone;
263/// fn f<T: Clone>(t: T) -> X<T> {
264///     t
265/// }
266/// ```
267///
268/// Without this check the above code is incorrectly accepted: we would ICE if
269/// some tried, for example, to clone an `Option<X<&mut ()>>`.
270#[instrument(level = "debug", skip(tcx))]
271fn check_opaque_meets_bounds<'tcx>(
272    tcx: TyCtxt<'tcx>,
273    def_id: LocalDefId,
274    origin: hir::OpaqueTyOrigin<LocalDefId>,
275) -> Result<(), ErrorGuaranteed> {
276    let (span, definition_def_id) =
277        if let Some((span, def_id)) = best_definition_site_of_opaque(tcx, def_id, origin) {
278            (span, Some(def_id))
279        } else {
280            (tcx.def_span(def_id), None)
281        };
282
283    let defining_use_anchor = match origin {
284        hir::OpaqueTyOrigin::FnReturn { parent, .. }
285        | hir::OpaqueTyOrigin::AsyncFn { parent, .. }
286        | hir::OpaqueTyOrigin::TyAlias { parent, .. } => parent,
287    };
288    let param_env = tcx.param_env(defining_use_anchor);
289
290    // FIXME(#132279): Once `PostBorrowckAnalysis` is supported in the old solver, this branch should be removed.
291    let infcx = tcx.infer_ctxt().build(if tcx.next_trait_solver_globally() {
292        TypingMode::post_borrowck_analysis(tcx, defining_use_anchor)
293    } else {
294        TypingMode::analysis_in_body(tcx, defining_use_anchor)
295    });
296    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
297
298    let args = match origin {
299        hir::OpaqueTyOrigin::FnReturn { parent, .. }
300        | hir::OpaqueTyOrigin::AsyncFn { parent, .. }
301        | hir::OpaqueTyOrigin::TyAlias { parent, .. } => GenericArgs::identity_for_item(
302            tcx, parent,
303        )
304        .extend_to(tcx, def_id.to_def_id(), |param, _| {
305            tcx.map_opaque_lifetime_to_parent_lifetime(param.def_id.expect_local()).into()
306        }),
307    };
308
309    let opaque_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args);
310
311    // `ReErased` regions appear in the "parent_args" of closures/coroutines.
312    // We're ignoring them here and replacing them with fresh region variables.
313    // See tests in ui/type-alias-impl-trait/closure_{parent_args,wf_outlives}.rs.
314    //
315    // FIXME: Consider wrapping the hidden type in an existential `Binder` and instantiating it
316    // here rather than using ReErased.
317    let hidden_ty = tcx.type_of(def_id.to_def_id()).instantiate(tcx, args);
318    let hidden_ty = fold_regions(tcx, hidden_ty, |re, _dbi| match re.kind() {
319        ty::ReErased => infcx.next_region_var(RegionVariableOrigin::Misc(span)),
320        _ => re,
321    });
322
323    // HACK: We eagerly instantiate some bounds to report better errors for them...
324    // This isn't necessary for correctness, since we register these bounds when
325    // equating the opaque below, but we should clean this up in the new solver.
326    for (predicate, pred_span) in
327        tcx.explicit_item_bounds(def_id).iter_instantiated_copied(tcx, args)
328    {
329        let predicate = predicate.fold_with(&mut BottomUpFolder {
330            tcx,
331            ty_op: |ty| if ty == opaque_ty { hidden_ty } else { ty },
332            lt_op: |lt| lt,
333            ct_op: |ct| ct,
334        });
335
336        ocx.register_obligation(Obligation::new(
337            tcx,
338            ObligationCause::new(
339                span,
340                def_id,
341                ObligationCauseCode::OpaqueTypeBound(pred_span, definition_def_id),
342            ),
343            param_env,
344            predicate,
345        ));
346    }
347
348    let misc_cause = ObligationCause::misc(span, def_id);
349    // FIXME: We should just register the item bounds here, rather than equating.
350    // FIXME(const_trait_impl): When we do that, please make sure to also register
351    // the `[const]` bounds.
352    match ocx.eq(&misc_cause, param_env, opaque_ty, hidden_ty) {
353        Ok(()) => {}
354        Err(ty_err) => {
355            // Some types may be left "stranded" if they can't be reached
356            // from a lowered rustc_middle bound but they're mentioned in the HIR.
357            // This will happen, e.g., when a nested opaque is inside of a non-
358            // existent associated type, like `impl Trait<Missing = impl Trait>`.
359            // See <tests/ui/impl-trait/stranded-opaque.rs>.
360            let ty_err = ty_err.to_string(tcx);
361            let guar = tcx.dcx().span_delayed_bug(
362                span,
363                format!("could not unify `{hidden_ty}` with revealed type:\n{ty_err}"),
364            );
365            return Err(guar);
366        }
367    }
368
369    // Additionally require the hidden type to be well-formed with only the generics of the opaque type.
370    // Defining use functions may have more bounds than the opaque type, which is ok, as long as the
371    // hidden type is well formed even without those bounds.
372    let predicate =
373        ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(hidden_ty.into())));
374    ocx.register_obligation(Obligation::new(tcx, misc_cause.clone(), param_env, predicate));
375
376    // Check that all obligations are satisfied by the implementation's
377    // version.
378    let errors = ocx.evaluate_obligations_error_on_ambiguity();
379    if !errors.is_empty() {
380        let guar = infcx.err_ctxt().report_fulfillment_errors(errors);
381        return Err(guar);
382    }
383
384    let wf_tys = ocx.assumed_wf_types_and_report_errors(param_env, defining_use_anchor)?;
385    ocx.resolve_regions_and_report_errors(defining_use_anchor, param_env, wf_tys)?;
386
387    if infcx.next_trait_solver() {
388        Ok(())
389    } else if let hir::OpaqueTyOrigin::FnReturn { .. } | hir::OpaqueTyOrigin::AsyncFn { .. } =
390        origin
391    {
392        // HACK: this should also fall through to the hidden type check below, but the original
393        // implementation had a bug where equivalent lifetimes are not identical. This caused us
394        // to reject existing stable code that is otherwise completely fine. The real fix is to
395        // compare the hidden types via our type equivalence/relation infra instead of doing an
396        // identity check.
397        let _ = infcx.take_opaque_types();
398        Ok(())
399    } else {
400        // Check that any hidden types found during wf checking match the hidden types that `type_of` sees.
401        for (mut key, mut ty) in infcx.take_opaque_types() {
402            ty.ty = infcx.resolve_vars_if_possible(ty.ty);
403            key = infcx.resolve_vars_if_possible(key);
404            sanity_check_found_hidden_type(tcx, key, ty)?;
405        }
406        Ok(())
407    }
408}
409
410fn best_definition_site_of_opaque<'tcx>(
411    tcx: TyCtxt<'tcx>,
412    opaque_def_id: LocalDefId,
413    origin: hir::OpaqueTyOrigin<LocalDefId>,
414) -> Option<(Span, LocalDefId)> {
415    struct TaitConstraintLocator<'tcx> {
416        opaque_def_id: LocalDefId,
417        tcx: TyCtxt<'tcx>,
418    }
419    impl<'tcx> TaitConstraintLocator<'tcx> {
420        fn check(&self, item_def_id: LocalDefId) -> ControlFlow<(Span, LocalDefId)> {
421            if !self.tcx.has_typeck_results(item_def_id) {
422                return ControlFlow::Continue(());
423            }
424
425            let opaque_types_defined_by = self.tcx.opaque_types_defined_by(item_def_id);
426            // Don't try to check items that cannot possibly constrain the type.
427            if !opaque_types_defined_by.contains(&self.opaque_def_id) {
428                return ControlFlow::Continue(());
429            }
430
431            if let Some(hidden_ty) = self
432                .tcx
433                .mir_borrowck(item_def_id)
434                .ok()
435                .and_then(|opaque_types| opaque_types.get(&self.opaque_def_id))
436            {
437                ControlFlow::Break((hidden_ty.span, item_def_id))
438            } else {
439                ControlFlow::Continue(())
440            }
441        }
442    }
443    impl<'tcx> intravisit::Visitor<'tcx> for TaitConstraintLocator<'tcx> {
444        type NestedFilter = nested_filter::All;
445        type Result = ControlFlow<(Span, LocalDefId)>;
446        fn maybe_tcx(&mut self) -> Self::MaybeTyCtxt {
447            self.tcx
448        }
449        fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) -> Self::Result {
450            intravisit::walk_expr(self, ex)
451        }
452        fn visit_item(&mut self, it: &'tcx hir::Item<'tcx>) -> Self::Result {
453            self.check(it.owner_id.def_id)?;
454            intravisit::walk_item(self, it)
455        }
456        fn visit_impl_item(&mut self, it: &'tcx hir::ImplItem<'tcx>) -> Self::Result {
457            self.check(it.owner_id.def_id)?;
458            intravisit::walk_impl_item(self, it)
459        }
460        fn visit_trait_item(&mut self, it: &'tcx hir::TraitItem<'tcx>) -> Self::Result {
461            self.check(it.owner_id.def_id)?;
462            intravisit::walk_trait_item(self, it)
463        }
464        fn visit_foreign_item(&mut self, it: &'tcx hir::ForeignItem<'tcx>) -> Self::Result {
465            intravisit::walk_foreign_item(self, it)
466        }
467    }
468
469    let mut locator = TaitConstraintLocator { tcx, opaque_def_id };
470    match origin {
471        hir::OpaqueTyOrigin::FnReturn { parent, .. }
472        | hir::OpaqueTyOrigin::AsyncFn { parent, .. } => locator.check(parent).break_value(),
473        hir::OpaqueTyOrigin::TyAlias { parent, in_assoc_ty: true } => {
474            let impl_def_id = tcx.local_parent(parent);
475            for assoc in tcx.associated_items(impl_def_id).in_definition_order() {
476                match assoc.kind {
477                    ty::AssocKind::Const { .. } | ty::AssocKind::Fn { .. } => {
478                        if let ControlFlow::Break(span) = locator.check(assoc.def_id.expect_local())
479                        {
480                            return Some(span);
481                        }
482                    }
483                    ty::AssocKind::Type { .. } => {}
484                }
485            }
486
487            None
488        }
489        hir::OpaqueTyOrigin::TyAlias { in_assoc_ty: false, .. } => {
490            tcx.hir_walk_toplevel_module(&mut locator).break_value()
491        }
492    }
493}
494
495fn sanity_check_found_hidden_type<'tcx>(
496    tcx: TyCtxt<'tcx>,
497    key: ty::OpaqueTypeKey<'tcx>,
498    mut ty: ty::ProvisionalHiddenType<'tcx>,
499) -> Result<(), ErrorGuaranteed> {
500    if ty.ty.is_ty_var() {
501        // Nothing was actually constrained.
502        return Ok(());
503    }
504    if let ty::Alias(ty::Opaque, alias) = ty.ty.kind() {
505        if alias.def_id == key.def_id.to_def_id() && alias.args == key.args {
506            // Nothing was actually constrained, this is an opaque usage that was
507            // only discovered to be opaque after inference vars resolved.
508            return Ok(());
509        }
510    }
511    let strip_vars = |ty: Ty<'tcx>| {
512        ty.fold_with(&mut BottomUpFolder {
513            tcx,
514            ty_op: |t| t,
515            ct_op: |c| c,
516            lt_op: |l| match l.kind() {
517                RegionKind::ReVar(_) => tcx.lifetimes.re_erased,
518                _ => l,
519            },
520        })
521    };
522    // Closures frequently end up containing erased lifetimes in their final representation.
523    // These correspond to lifetime variables that never got resolved, so we patch this up here.
524    ty.ty = strip_vars(ty.ty);
525    // Get the hidden type.
526    let hidden_ty = tcx.type_of(key.def_id).instantiate(tcx, key.args);
527    let hidden_ty = strip_vars(hidden_ty);
528
529    // If the hidden types differ, emit a type mismatch diagnostic.
530    if hidden_ty == ty.ty {
531        Ok(())
532    } else {
533        let span = tcx.def_span(key.def_id);
534        let other = ty::ProvisionalHiddenType { ty: hidden_ty, span };
535        Err(ty.build_mismatch_error(&other, tcx)?.emit())
536    }
537}
538
539/// Check that the opaque's precise captures list is valid (if present).
540/// We check this for regular `impl Trait`s and also RPITITs, even though the latter
541/// are technically GATs.
542///
543/// This function is responsible for:
544/// 1. Checking that all type/const params are mention in the captures list.
545/// 2. Checking that all lifetimes that are implicitly captured are mentioned.
546/// 3. Asserting that all parameters mentioned in the captures list are invariant.
547fn check_opaque_precise_captures<'tcx>(tcx: TyCtxt<'tcx>, opaque_def_id: LocalDefId) {
548    let hir::OpaqueTy { bounds, .. } = *tcx.hir_node_by_def_id(opaque_def_id).expect_opaque_ty();
549    let Some(precise_capturing_args) = bounds.iter().find_map(|bound| match *bound {
550        hir::GenericBound::Use(bounds, ..) => Some(bounds),
551        _ => None,
552    }) else {
553        // No precise capturing args; nothing to validate
554        return;
555    };
556
557    let mut expected_captures = UnordSet::default();
558    let mut shadowed_captures = UnordSet::default();
559    let mut seen_params = UnordMap::default();
560    let mut prev_non_lifetime_param = None;
561    for arg in precise_capturing_args {
562        let (hir_id, ident) = match *arg {
563            hir::PreciseCapturingArg::Param(hir::PreciseCapturingNonLifetimeArg {
564                hir_id,
565                ident,
566                ..
567            }) => {
568                if prev_non_lifetime_param.is_none() {
569                    prev_non_lifetime_param = Some(ident);
570                }
571                (hir_id, ident)
572            }
573            hir::PreciseCapturingArg::Lifetime(&hir::Lifetime { hir_id, ident, .. }) => {
574                if let Some(prev_non_lifetime_param) = prev_non_lifetime_param {
575                    tcx.dcx().emit_err(errors::LifetimesMustBeFirst {
576                        lifetime_span: ident.span,
577                        name: ident.name,
578                        other_span: prev_non_lifetime_param.span,
579                    });
580                }
581                (hir_id, ident)
582            }
583        };
584
585        let ident = ident.normalize_to_macros_2_0();
586        if let Some(span) = seen_params.insert(ident, ident.span) {
587            tcx.dcx().emit_err(errors::DuplicatePreciseCapture {
588                name: ident.name,
589                first_span: span,
590                second_span: ident.span,
591            });
592        }
593
594        match tcx.named_bound_var(hir_id) {
595            Some(ResolvedArg::EarlyBound(def_id)) => {
596                expected_captures.insert(def_id.to_def_id());
597
598                // Make sure we allow capturing these lifetimes through `Self` and
599                // `T::Assoc` projection syntax, too. These will occur when we only
600                // see lifetimes are captured after hir-lowering -- this aligns with
601                // the cases that were stabilized with the `impl_trait_projection`
602                // feature -- see <https://github.com/rust-lang/rust/pull/115659>.
603                if let DefKind::LifetimeParam = tcx.def_kind(def_id)
604                    && let Some(def_id) = tcx
605                        .map_opaque_lifetime_to_parent_lifetime(def_id)
606                        .opt_param_def_id(tcx, tcx.parent(opaque_def_id.to_def_id()))
607                {
608                    shadowed_captures.insert(def_id);
609                }
610            }
611            _ => {
612                tcx.dcx()
613                    .span_delayed_bug(tcx.hir_span(hir_id), "parameter should have been resolved");
614            }
615        }
616    }
617
618    let variances = tcx.variances_of(opaque_def_id);
619    let mut def_id = Some(opaque_def_id.to_def_id());
620    while let Some(generics) = def_id {
621        let generics = tcx.generics_of(generics);
622        def_id = generics.parent;
623
624        for param in &generics.own_params {
625            if expected_captures.contains(&param.def_id) {
626                assert_eq!(
627                    variances[param.index as usize],
628                    ty::Invariant,
629                    "precise captured param should be invariant"
630                );
631                continue;
632            }
633            // If a param is shadowed by a early-bound (duplicated) lifetime, then
634            // it may or may not be captured as invariant, depending on if it shows
635            // up through `Self` or `T::Assoc` syntax.
636            if shadowed_captures.contains(&param.def_id) {
637                continue;
638            }
639
640            match param.kind {
641                ty::GenericParamDefKind::Lifetime => {
642                    let use_span = tcx.def_span(param.def_id);
643                    let opaque_span = tcx.def_span(opaque_def_id);
644                    // Check if the lifetime param was captured but isn't named in the precise captures list.
645                    if variances[param.index as usize] == ty::Invariant {
646                        if let DefKind::OpaqueTy = tcx.def_kind(tcx.parent(param.def_id))
647                            && let Some(def_id) = tcx
648                                .map_opaque_lifetime_to_parent_lifetime(param.def_id.expect_local())
649                                .opt_param_def_id(tcx, tcx.parent(opaque_def_id.to_def_id()))
650                        {
651                            tcx.dcx().emit_err(errors::LifetimeNotCaptured {
652                                opaque_span,
653                                use_span,
654                                param_span: tcx.def_span(def_id),
655                            });
656                        } else {
657                            if tcx.def_kind(tcx.parent(param.def_id)) == DefKind::Trait {
658                                tcx.dcx().emit_err(errors::LifetimeImplicitlyCaptured {
659                                    opaque_span,
660                                    param_span: tcx.def_span(param.def_id),
661                                });
662                            } else {
663                                // If the `use_span` is actually just the param itself, then we must
664                                // have not duplicated the lifetime but captured the original.
665                                // The "effective" `use_span` will be the span of the opaque itself,
666                                // and the param span will be the def span of the param.
667                                tcx.dcx().emit_err(errors::LifetimeNotCaptured {
668                                    opaque_span,
669                                    use_span: opaque_span,
670                                    param_span: use_span,
671                                });
672                            }
673                        }
674                        continue;
675                    }
676                }
677                ty::GenericParamDefKind::Type { .. } => {
678                    if matches!(tcx.def_kind(param.def_id), DefKind::Trait | DefKind::TraitAlias) {
679                        // FIXME(precise_capturing): Structured suggestion for this would be useful
680                        tcx.dcx().emit_err(errors::SelfTyNotCaptured {
681                            trait_span: tcx.def_span(param.def_id),
682                            opaque_span: tcx.def_span(opaque_def_id),
683                        });
684                    } else {
685                        // FIXME(precise_capturing): Structured suggestion for this would be useful
686                        tcx.dcx().emit_err(errors::ParamNotCaptured {
687                            param_span: tcx.def_span(param.def_id),
688                            opaque_span: tcx.def_span(opaque_def_id),
689                            kind: "type",
690                        });
691                    }
692                }
693                ty::GenericParamDefKind::Const { .. } => {
694                    // FIXME(precise_capturing): Structured suggestion for this would be useful
695                    tcx.dcx().emit_err(errors::ParamNotCaptured {
696                        param_span: tcx.def_span(param.def_id),
697                        opaque_span: tcx.def_span(opaque_def_id),
698                        kind: "const",
699                    });
700                }
701            }
702        }
703    }
704}
705
706fn is_enum_of_nonnullable_ptr<'tcx>(
707    tcx: TyCtxt<'tcx>,
708    adt_def: AdtDef<'tcx>,
709    args: GenericArgsRef<'tcx>,
710) -> bool {
711    if adt_def.repr().inhibit_enum_layout_opt() {
712        return false;
713    }
714
715    let [var_one, var_two] = &adt_def.variants().raw[..] else {
716        return false;
717    };
718    let (([], [field]) | ([field], [])) = (&var_one.fields.raw[..], &var_two.fields.raw[..]) else {
719        return false;
720    };
721    matches!(field.ty(tcx, args).kind(), ty::FnPtr(..) | ty::Ref(..))
722}
723
724fn check_static_linkage(tcx: TyCtxt<'_>, def_id: LocalDefId) {
725    if tcx.codegen_fn_attrs(def_id).import_linkage.is_some() {
726        if match tcx.type_of(def_id).instantiate_identity().kind() {
727            ty::RawPtr(_, _) => false,
728            ty::Adt(adt_def, args) => !is_enum_of_nonnullable_ptr(tcx, *adt_def, *args),
729            _ => true,
730        } {
731            tcx.dcx().emit_err(errors::LinkageType { span: tcx.def_span(def_id) });
732        }
733    }
734}
735
736pub(crate) fn check_item_type(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Result<(), ErrorGuaranteed> {
737    let mut res = Ok(());
738    let generics = tcx.generics_of(def_id);
739
740    for param in &generics.own_params {
741        match param.kind {
742            ty::GenericParamDefKind::Lifetime { .. } => {}
743            ty::GenericParamDefKind::Type { has_default, .. } => {
744                if has_default {
745                    tcx.ensure_ok().type_of(param.def_id);
746                }
747            }
748            ty::GenericParamDefKind::Const { has_default, .. } => {
749                tcx.ensure_ok().type_of(param.def_id);
750                if has_default {
751                    // need to store default and type of default
752                    let ct = tcx.const_param_default(param.def_id).skip_binder();
753                    if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
754                        tcx.ensure_ok().type_of(uv.def);
755                    }
756                }
757            }
758        }
759    }
760
761    match tcx.def_kind(def_id) {
762        DefKind::Static { .. } => {
763            tcx.ensure_ok().generics_of(def_id);
764            tcx.ensure_ok().type_of(def_id);
765            tcx.ensure_ok().predicates_of(def_id);
766
767            check_static_inhabited(tcx, def_id);
768            check_static_linkage(tcx, def_id);
769            let ty = tcx.type_of(def_id).instantiate_identity();
770            res = res.and(wfcheck::check_static_item(
771                tcx, def_id, ty, /* should_check_for_sync */ true,
772            ));
773
774            // Only `Node::Item` and `Node::ForeignItem` still have HIR based
775            // checks. Returning early here does not miss any checks and
776            // avoids this query from having a direct dependency edge on the HIR
777            return res;
778        }
779        DefKind::Enum => {
780            tcx.ensure_ok().generics_of(def_id);
781            tcx.ensure_ok().type_of(def_id);
782            tcx.ensure_ok().predicates_of(def_id);
783            crate::collect::lower_enum_variant_types(tcx, def_id);
784            check_enum(tcx, def_id);
785            check_variances_for_type_defn(tcx, def_id);
786        }
787        DefKind::Fn => {
788            tcx.ensure_ok().generics_of(def_id);
789            tcx.ensure_ok().type_of(def_id);
790            tcx.ensure_ok().predicates_of(def_id);
791            tcx.ensure_ok().fn_sig(def_id);
792            tcx.ensure_ok().codegen_fn_attrs(def_id);
793            if let Some(i) = tcx.intrinsic(def_id) {
794                intrinsic::check_intrinsic_type(
795                    tcx,
796                    def_id,
797                    tcx.def_ident_span(def_id).unwrap(),
798                    i.name,
799                )
800            }
801        }
802        DefKind::Impl { of_trait } => {
803            tcx.ensure_ok().generics_of(def_id);
804            tcx.ensure_ok().type_of(def_id);
805            tcx.ensure_ok().predicates_of(def_id);
806            tcx.ensure_ok().associated_items(def_id);
807            check_diagnostic_attrs(tcx, def_id);
808            if of_trait {
809                let impl_trait_header = tcx.impl_trait_header(def_id);
810                res = res.and(
811                    tcx.ensure_ok()
812                        .coherent_trait(impl_trait_header.trait_ref.instantiate_identity().def_id),
813                );
814
815                if res.is_ok() {
816                    // Checking this only makes sense if the all trait impls satisfy basic
817                    // requirements (see `coherent_trait` query), otherwise
818                    // we run into infinite recursions a lot.
819                    check_impl_items_against_trait(tcx, def_id, impl_trait_header);
820                }
821            }
822        }
823        DefKind::Trait => {
824            tcx.ensure_ok().generics_of(def_id);
825            tcx.ensure_ok().trait_def(def_id);
826            tcx.ensure_ok().explicit_super_predicates_of(def_id);
827            tcx.ensure_ok().predicates_of(def_id);
828            tcx.ensure_ok().associated_items(def_id);
829            let assoc_items = tcx.associated_items(def_id);
830            check_diagnostic_attrs(tcx, def_id);
831
832            for &assoc_item in assoc_items.in_definition_order() {
833                match assoc_item.kind {
834                    ty::AssocKind::Type { .. } if assoc_item.defaultness(tcx).has_value() => {
835                        let trait_args = GenericArgs::identity_for_item(tcx, def_id);
836                        let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds(
837                            tcx,
838                            assoc_item,
839                            assoc_item,
840                            ty::TraitRef::new_from_args(tcx, def_id.to_def_id(), trait_args),
841                        );
842                    }
843                    _ => {}
844                }
845            }
846        }
847        DefKind::TraitAlias => {
848            tcx.ensure_ok().generics_of(def_id);
849            tcx.ensure_ok().explicit_implied_predicates_of(def_id);
850            tcx.ensure_ok().explicit_super_predicates_of(def_id);
851            tcx.ensure_ok().predicates_of(def_id);
852        }
853        def_kind @ (DefKind::Struct | DefKind::Union) => {
854            tcx.ensure_ok().generics_of(def_id);
855            tcx.ensure_ok().type_of(def_id);
856            tcx.ensure_ok().predicates_of(def_id);
857
858            let adt = tcx.adt_def(def_id).non_enum_variant();
859            for f in adt.fields.iter() {
860                tcx.ensure_ok().generics_of(f.did);
861                tcx.ensure_ok().type_of(f.did);
862                tcx.ensure_ok().predicates_of(f.did);
863            }
864
865            if let Some((_, ctor_def_id)) = adt.ctor {
866                crate::collect::lower_variant_ctor(tcx, ctor_def_id.expect_local());
867            }
868            match def_kind {
869                DefKind::Struct => check_struct(tcx, def_id),
870                DefKind::Union => check_union(tcx, def_id),
871                _ => unreachable!(),
872            }
873            check_variances_for_type_defn(tcx, def_id);
874        }
875        DefKind::OpaqueTy => {
876            check_opaque_precise_captures(tcx, def_id);
877
878            let origin = tcx.local_opaque_ty_origin(def_id);
879            if let hir::OpaqueTyOrigin::FnReturn { parent: fn_def_id, .. }
880            | hir::OpaqueTyOrigin::AsyncFn { parent: fn_def_id, .. } = origin
881                && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(fn_def_id)
882                && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn()
883            {
884                // Skip opaques from RPIT in traits with no default body.
885            } else {
886                check_opaque(tcx, def_id);
887            }
888
889            tcx.ensure_ok().predicates_of(def_id);
890            tcx.ensure_ok().explicit_item_bounds(def_id);
891            tcx.ensure_ok().explicit_item_self_bounds(def_id);
892            if tcx.is_conditionally_const(def_id) {
893                tcx.ensure_ok().explicit_implied_const_bounds(def_id);
894                tcx.ensure_ok().const_conditions(def_id);
895            }
896
897            // Only `Node::Item` and `Node::ForeignItem` still have HIR based
898            // checks. Returning early here does not miss any checks and
899            // avoids this query from having a direct dependency edge on the HIR
900            return res;
901        }
902        DefKind::Const => {
903            tcx.ensure_ok().generics_of(def_id);
904            tcx.ensure_ok().type_of(def_id);
905            tcx.ensure_ok().predicates_of(def_id);
906
907            res = res.and(enter_wf_checking_ctxt(tcx, def_id, |wfcx| {
908                let ty = tcx.type_of(def_id).instantiate_identity();
909                let ty_span = tcx.ty_span(def_id);
910                let ty = wfcx.deeply_normalize(ty_span, Some(WellFormedLoc::Ty(def_id)), ty);
911                wfcx.register_wf_obligation(ty_span, Some(WellFormedLoc::Ty(def_id)), ty.into());
912                wfcx.register_bound(
913                    traits::ObligationCause::new(
914                        ty_span,
915                        def_id,
916                        ObligationCauseCode::SizedConstOrStatic,
917                    ),
918                    tcx.param_env(def_id),
919                    ty,
920                    tcx.require_lang_item(LangItem::Sized, ty_span),
921                );
922                check_where_clauses(wfcx, def_id);
923
924                if find_attr!(tcx.get_all_attrs(def_id), AttributeKind::TypeConst(_)) {
925                    wfcheck::check_type_const(wfcx, def_id, ty, true)?;
926                }
927                Ok(())
928            }));
929
930            // Only `Node::Item` and `Node::ForeignItem` still have HIR based
931            // checks. Returning early here does not miss any checks and
932            // avoids this query from having a direct dependency edge on the HIR
933            return res;
934        }
935        DefKind::TyAlias => {
936            tcx.ensure_ok().generics_of(def_id);
937            tcx.ensure_ok().type_of(def_id);
938            tcx.ensure_ok().predicates_of(def_id);
939            check_type_alias_type_params_are_used(tcx, def_id);
940            if tcx.type_alias_is_lazy(def_id) {
941                res = res.and(enter_wf_checking_ctxt(tcx, def_id, |wfcx| {
942                    let ty = tcx.type_of(def_id).instantiate_identity();
943                    let span = tcx.def_span(def_id);
944                    let item_ty = wfcx.deeply_normalize(span, Some(WellFormedLoc::Ty(def_id)), ty);
945                    wfcx.register_wf_obligation(
946                        span,
947                        Some(WellFormedLoc::Ty(def_id)),
948                        item_ty.into(),
949                    );
950                    check_where_clauses(wfcx, def_id);
951                    Ok(())
952                }));
953                check_variances_for_type_defn(tcx, def_id);
954            }
955
956            // Only `Node::Item` and `Node::ForeignItem` still have HIR based
957            // checks. Returning early here does not miss any checks and
958            // avoids this query from having a direct dependency edge on the HIR
959            return res;
960        }
961        DefKind::ForeignMod => {
962            let it = tcx.hir_expect_item(def_id);
963            let hir::ItemKind::ForeignMod { abi, items } = it.kind else {
964                return Ok(());
965            };
966
967            check_abi(tcx, it.hir_id(), it.span, abi);
968
969            for &item in items {
970                let def_id = item.owner_id.def_id;
971
972                let generics = tcx.generics_of(def_id);
973                let own_counts = generics.own_counts();
974                if generics.own_params.len() - own_counts.lifetimes != 0 {
975                    let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) {
976                        (_, 0) => ("type", "types", Some("u32")),
977                        // We don't specify an example value, because we can't generate
978                        // a valid value for any type.
979                        (0, _) => ("const", "consts", None),
980                        _ => ("type or const", "types or consts", None),
981                    };
982                    let span = tcx.def_span(def_id);
983                    struct_span_code_err!(
984                        tcx.dcx(),
985                        span,
986                        E0044,
987                        "foreign items may not have {kinds} parameters",
988                    )
989                    .with_span_label(span, format!("can't have {kinds} parameters"))
990                    .with_help(
991                        // FIXME: once we start storing spans for type arguments, turn this
992                        // into a suggestion.
993                        format!(
994                            "replace the {} parameters with concrete {}{}",
995                            kinds,
996                            kinds_pl,
997                            egs.map(|egs| format!(" like `{egs}`")).unwrap_or_default(),
998                        ),
999                    )
1000                    .emit();
1001                }
1002
1003                tcx.ensure_ok().generics_of(def_id);
1004                tcx.ensure_ok().type_of(def_id);
1005                tcx.ensure_ok().predicates_of(def_id);
1006                if tcx.is_conditionally_const(def_id) {
1007                    tcx.ensure_ok().explicit_implied_const_bounds(def_id);
1008                    tcx.ensure_ok().const_conditions(def_id);
1009                }
1010                match tcx.def_kind(def_id) {
1011                    DefKind::Fn => {
1012                        tcx.ensure_ok().codegen_fn_attrs(def_id);
1013                        tcx.ensure_ok().fn_sig(def_id);
1014                        let item = tcx.hir_foreign_item(item);
1015                        let hir::ForeignItemKind::Fn(sig, ..) = item.kind else { bug!() };
1016                        check_c_variadic_abi(tcx, sig.decl, abi, item.span);
1017                    }
1018                    DefKind::Static { .. } => {
1019                        tcx.ensure_ok().codegen_fn_attrs(def_id);
1020                    }
1021                    _ => (),
1022                }
1023            }
1024        }
1025        DefKind::Closure => {
1026            // This is guaranteed to be called by metadata encoding,
1027            // we still call it in wfcheck eagerly to ensure errors in codegen
1028            // attrs prevent lints from spamming the output.
1029            tcx.ensure_ok().codegen_fn_attrs(def_id);
1030            // We do not call `type_of` for closures here as that
1031            // depends on typecheck and would therefore hide
1032            // any further errors in case one typeck fails.
1033
1034            // Only `Node::Item` and `Node::ForeignItem` still have HIR based
1035            // checks. Returning early here does not miss any checks and
1036            // avoids this query from having a direct dependency edge on the HIR
1037            return res;
1038        }
1039        DefKind::AssocFn => {
1040            tcx.ensure_ok().codegen_fn_attrs(def_id);
1041            tcx.ensure_ok().type_of(def_id);
1042            tcx.ensure_ok().fn_sig(def_id);
1043            tcx.ensure_ok().predicates_of(def_id);
1044            res = res.and(check_associated_item(tcx, def_id));
1045            let assoc_item = tcx.associated_item(def_id);
1046            match assoc_item.container {
1047                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {}
1048                ty::AssocContainer::Trait => {
1049                    res = res.and(check_trait_item(tcx, def_id));
1050                }
1051            }
1052
1053            // Only `Node::Item` and `Node::ForeignItem` still have HIR based
1054            // checks. Returning early here does not miss any checks and
1055            // avoids this query from having a direct dependency edge on the HIR
1056            return res;
1057        }
1058        DefKind::AssocConst => {
1059            tcx.ensure_ok().type_of(def_id);
1060            tcx.ensure_ok().predicates_of(def_id);
1061            res = res.and(check_associated_item(tcx, def_id));
1062            let assoc_item = tcx.associated_item(def_id);
1063            match assoc_item.container {
1064                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {}
1065                ty::AssocContainer::Trait => {
1066                    res = res.and(check_trait_item(tcx, def_id));
1067                }
1068            }
1069
1070            // Only `Node::Item` and `Node::ForeignItem` still have HIR based
1071            // checks. Returning early here does not miss any checks and
1072            // avoids this query from having a direct dependency edge on the HIR
1073            return res;
1074        }
1075        DefKind::AssocTy => {
1076            tcx.ensure_ok().predicates_of(def_id);
1077            res = res.and(check_associated_item(tcx, def_id));
1078
1079            let assoc_item = tcx.associated_item(def_id);
1080            let has_type = match assoc_item.container {
1081                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1082                ty::AssocContainer::Trait => {
1083                    tcx.ensure_ok().explicit_item_bounds(def_id);
1084                    tcx.ensure_ok().explicit_item_self_bounds(def_id);
1085                    if tcx.is_conditionally_const(def_id) {
1086                        tcx.ensure_ok().explicit_implied_const_bounds(def_id);
1087                        tcx.ensure_ok().const_conditions(def_id);
1088                    }
1089                    res = res.and(check_trait_item(tcx, def_id));
1090                    assoc_item.defaultness(tcx).has_value()
1091                }
1092            };
1093            if has_type {
1094                tcx.ensure_ok().type_of(def_id);
1095            }
1096
1097            // Only `Node::Item` and `Node::ForeignItem` still have HIR based
1098            // checks. Returning early here does not miss any checks and
1099            // avoids this query from having a direct dependency edge on the HIR
1100            return res;
1101        }
1102
1103        // Only `Node::Item` and `Node::ForeignItem` still have HIR based
1104        // checks. Returning early here does not miss any checks and
1105        // avoids this query from having a direct dependency edge on the HIR
1106        DefKind::AnonConst | DefKind::InlineConst => return res,
1107        _ => {}
1108    }
1109    let node = tcx.hir_node_by_def_id(def_id);
1110    res.and(match node {
1111        hir::Node::Crate(_) => bug!("check_well_formed cannot be applied to the crate root"),
1112        hir::Node::Item(item) => wfcheck::check_item(tcx, item),
1113        hir::Node::ForeignItem(item) => wfcheck::check_foreign_item(tcx, item),
1114        _ => unreachable!("{node:?}"),
1115    })
1116}
1117
1118pub(super) fn check_diagnostic_attrs(tcx: TyCtxt<'_>, def_id: LocalDefId) {
1119    // an error would be reported if this fails.
1120    let _ = OnUnimplementedDirective::of_item(tcx, def_id.to_def_id());
1121}
1122
1123pub(super) fn check_specialization_validity<'tcx>(
1124    tcx: TyCtxt<'tcx>,
1125    trait_def: &ty::TraitDef,
1126    trait_item: ty::AssocItem,
1127    impl_id: DefId,
1128    impl_item: DefId,
1129) {
1130    let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return };
1131    let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
1132        if parent.is_from_trait() {
1133            None
1134        } else {
1135            Some((parent, parent.item(tcx, trait_item.def_id)))
1136        }
1137    });
1138
1139    let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
1140        match parent_item {
1141            // Parent impl exists, and contains the parent item we're trying to specialize, but
1142            // doesn't mark it `default`.
1143            Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
1144                Some(Err(parent_impl.def_id()))
1145            }
1146
1147            // Parent impl contains item and makes it specializable.
1148            Some(_) => Some(Ok(())),
1149
1150            // Parent impl doesn't mention the item. This means it's inherited from the
1151            // grandparent. In that case, if parent is a `default impl`, inherited items use the
1152            // "defaultness" from the grandparent, else they are final.
1153            None => {
1154                if tcx.defaultness(parent_impl.def_id()).is_default() {
1155                    None
1156                } else {
1157                    Some(Err(parent_impl.def_id()))
1158                }
1159            }
1160        }
1161    });
1162
1163    // If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the
1164    // item. This is allowed, the item isn't actually getting specialized here.
1165    let result = opt_result.unwrap_or(Ok(()));
1166
1167    if let Err(parent_impl) = result {
1168        if !tcx.is_impl_trait_in_trait(impl_item) {
1169            report_forbidden_specialization(tcx, impl_item, parent_impl);
1170        } else {
1171            tcx.dcx().delayed_bug(format!("parent item: {parent_impl:?} not marked as default"));
1172        }
1173    }
1174}
1175
1176fn check_impl_items_against_trait<'tcx>(
1177    tcx: TyCtxt<'tcx>,
1178    impl_id: LocalDefId,
1179    impl_trait_header: ty::ImplTraitHeader<'tcx>,
1180) {
1181    let trait_ref = impl_trait_header.trait_ref.instantiate_identity();
1182    // If the trait reference itself is erroneous (so the compilation is going
1183    // to fail), skip checking the items here -- the `impl_item` table in `tcx`
1184    // isn't populated for such impls.
1185    if trait_ref.references_error() {
1186        return;
1187    }
1188
1189    let impl_item_refs = tcx.associated_item_def_ids(impl_id);
1190
1191    // Negative impls are not expected to have any items
1192    match impl_trait_header.polarity {
1193        ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
1194        ty::ImplPolarity::Negative => {
1195            if let [first_item_ref, ..] = impl_item_refs {
1196                let first_item_span = tcx.def_span(first_item_ref);
1197                struct_span_code_err!(
1198                    tcx.dcx(),
1199                    first_item_span,
1200                    E0749,
1201                    "negative impls cannot have any items"
1202                )
1203                .emit();
1204            }
1205            return;
1206        }
1207    }
1208
1209    let trait_def = tcx.trait_def(trait_ref.def_id);
1210
1211    let self_is_guaranteed_unsize_self = tcx.impl_self_is_guaranteed_unsized(impl_id);
1212
1213    for &impl_item in impl_item_refs {
1214        let ty_impl_item = tcx.associated_item(impl_item);
1215        let ty_trait_item = match ty_impl_item.expect_trait_impl() {
1216            Ok(trait_item_id) => tcx.associated_item(trait_item_id),
1217            Err(ErrorGuaranteed { .. }) => continue,
1218        };
1219
1220        let res = tcx.ensure_ok().compare_impl_item(impl_item.expect_local());
1221
1222        if res.is_ok() {
1223            match ty_impl_item.kind {
1224                ty::AssocKind::Fn { .. } => {
1225                    compare_impl_item::refine::check_refining_return_position_impl_trait_in_trait(
1226                        tcx,
1227                        ty_impl_item,
1228                        ty_trait_item,
1229                        tcx.impl_trait_ref(ty_impl_item.container_id(tcx)).instantiate_identity(),
1230                    );
1231                }
1232                ty::AssocKind::Const { .. } => {}
1233                ty::AssocKind::Type { .. } => {}
1234            }
1235        }
1236
1237        if self_is_guaranteed_unsize_self && tcx.generics_require_sized_self(ty_trait_item.def_id) {
1238            tcx.emit_node_span_lint(
1239                rustc_lint_defs::builtin::DEAD_CODE,
1240                tcx.local_def_id_to_hir_id(ty_impl_item.def_id.expect_local()),
1241                tcx.def_span(ty_impl_item.def_id),
1242                errors::UselessImplItem,
1243            )
1244        }
1245
1246        check_specialization_validity(
1247            tcx,
1248            trait_def,
1249            ty_trait_item,
1250            impl_id.to_def_id(),
1251            impl_item,
1252        );
1253    }
1254
1255    if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
1256        // Check for missing items from trait
1257        let mut missing_items = Vec::new();
1258
1259        let mut must_implement_one_of: Option<&[Ident]> =
1260            trait_def.must_implement_one_of.as_deref();
1261
1262        for &trait_item_id in tcx.associated_item_def_ids(trait_ref.def_id) {
1263            let leaf_def = ancestors.leaf_def(tcx, trait_item_id);
1264
1265            let is_implemented = leaf_def
1266                .as_ref()
1267                .is_some_and(|node_item| node_item.item.defaultness(tcx).has_value());
1268
1269            if !is_implemented
1270                && tcx.defaultness(impl_id).is_final()
1271                // unsized types don't need to implement methods that have `Self: Sized` bounds.
1272                && !(self_is_guaranteed_unsize_self && tcx.generics_require_sized_self(trait_item_id))
1273            {
1274                missing_items.push(tcx.associated_item(trait_item_id));
1275            }
1276
1277            // true if this item is specifically implemented in this impl
1278            let is_implemented_here =
1279                leaf_def.as_ref().is_some_and(|node_item| !node_item.defining_node.is_from_trait());
1280
1281            if !is_implemented_here {
1282                let full_impl_span = tcx.hir_span_with_body(tcx.local_def_id_to_hir_id(impl_id));
1283                match tcx.eval_default_body_stability(trait_item_id, full_impl_span) {
1284                    EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable(
1285                        tcx,
1286                        full_impl_span,
1287                        trait_item_id,
1288                        feature,
1289                        reason,
1290                        issue,
1291                    ),
1292
1293                    // Unmarked default bodies are considered stable (at least for now).
1294                    EvalResult::Allow | EvalResult::Unmarked => {}
1295                }
1296            }
1297
1298            if let Some(required_items) = &must_implement_one_of {
1299                if is_implemented_here {
1300                    let trait_item = tcx.associated_item(trait_item_id);
1301                    if required_items.contains(&trait_item.ident(tcx)) {
1302                        must_implement_one_of = None;
1303                    }
1304                }
1305            }
1306
1307            if let Some(leaf_def) = &leaf_def
1308                && !leaf_def.is_final()
1309                && let def_id = leaf_def.item.def_id
1310                && tcx.impl_method_has_trait_impl_trait_tys(def_id)
1311            {
1312                let def_kind = tcx.def_kind(def_id);
1313                let descr = tcx.def_kind_descr(def_kind, def_id);
1314                let (msg, feature) = if tcx.asyncness(def_id).is_async() {
1315                    (
1316                        format!("async {descr} in trait cannot be specialized"),
1317                        "async functions in traits",
1318                    )
1319                } else {
1320                    (
1321                        format!(
1322                            "{descr} with return-position `impl Trait` in trait cannot be specialized"
1323                        ),
1324                        "return position `impl Trait` in traits",
1325                    )
1326                };
1327                tcx.dcx()
1328                    .struct_span_err(tcx.def_span(def_id), msg)
1329                    .with_note(format!(
1330                        "specialization behaves in inconsistent and surprising ways with \
1331                        {feature}, and for now is disallowed"
1332                    ))
1333                    .emit();
1334            }
1335        }
1336
1337        if !missing_items.is_empty() {
1338            let full_impl_span = tcx.hir_span_with_body(tcx.local_def_id_to_hir_id(impl_id));
1339            missing_items_err(tcx, impl_id, &missing_items, full_impl_span);
1340        }
1341
1342        if let Some(missing_items) = must_implement_one_of {
1343            let attr_span = find_attr!(tcx.get_all_attrs(trait_ref.def_id), AttributeKind::RustcMustImplementOneOf {attr_span, ..} => *attr_span);
1344
1345            missing_items_must_implement_one_of_err(
1346                tcx,
1347                tcx.def_span(impl_id),
1348                missing_items,
1349                attr_span,
1350            );
1351        }
1352    }
1353}
1354
1355fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
1356    let t = tcx.type_of(def_id).instantiate_identity();
1357    if let ty::Adt(def, args) = t.kind()
1358        && def.is_struct()
1359    {
1360        let fields = &def.non_enum_variant().fields;
1361        if fields.is_empty() {
1362            struct_span_code_err!(tcx.dcx(), sp, E0075, "SIMD vector cannot be empty").emit();
1363            return;
1364        }
1365
1366        let array_field = &fields[FieldIdx::ZERO];
1367        let array_ty = array_field.ty(tcx, args);
1368        let ty::Array(element_ty, len_const) = array_ty.kind() else {
1369            struct_span_code_err!(
1370                tcx.dcx(),
1371                sp,
1372                E0076,
1373                "SIMD vector's only field must be an array"
1374            )
1375            .with_span_label(tcx.def_span(array_field.did), "not an array")
1376            .emit();
1377            return;
1378        };
1379
1380        if let Some(second_field) = fields.get(FieldIdx::ONE) {
1381            struct_span_code_err!(tcx.dcx(), sp, E0075, "SIMD vector cannot have multiple fields")
1382                .with_span_label(tcx.def_span(second_field.did), "excess field")
1383                .emit();
1384            return;
1385        }
1386
1387        // FIXME(repr_simd): This check is nice, but perhaps unnecessary due to the fact
1388        // we do not expect users to implement their own `repr(simd)` types. If they could,
1389        // this check is easily side-steppable by hiding the const behind normalization.
1390        // The consequence is that the error is, in general, only observable post-mono.
1391        if let Some(len) = len_const.try_to_target_usize(tcx) {
1392            if len == 0 {
1393                struct_span_code_err!(tcx.dcx(), sp, E0075, "SIMD vector cannot be empty").emit();
1394                return;
1395            } else if len > MAX_SIMD_LANES {
1396                struct_span_code_err!(
1397                    tcx.dcx(),
1398                    sp,
1399                    E0075,
1400                    "SIMD vector cannot have more than {MAX_SIMD_LANES} elements",
1401                )
1402                .emit();
1403                return;
1404            }
1405        }
1406
1407        // Check that we use types valid for use in the lanes of a SIMD "vector register"
1408        // These are scalar types which directly match a "machine" type
1409        // Yes: Integers, floats, "thin" pointers
1410        // No: char, "wide" pointers, compound types
1411        match element_ty.kind() {
1412            ty::Param(_) => (), // pass struct<T>([T; 4]) through, let monomorphization catch errors
1413            ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_, _) => (), // struct([u8; 4]) is ok
1414            _ => {
1415                struct_span_code_err!(
1416                    tcx.dcx(),
1417                    sp,
1418                    E0077,
1419                    "SIMD vector element type should be a \
1420                        primitive scalar (integer/float/pointer) type"
1421                )
1422                .emit();
1423                return;
1424            }
1425        }
1426    }
1427}
1428
1429#[tracing::instrument(skip(tcx), level = "debug")]
1430fn check_scalable_vector(tcx: TyCtxt<'_>, span: Span, def_id: LocalDefId, scalable: ScalableElt) {
1431    let ty = tcx.type_of(def_id).instantiate_identity();
1432    let ty::Adt(def, args) = ty.kind() else { return };
1433    if !def.is_struct() {
1434        tcx.dcx().delayed_bug("`rustc_scalable_vector` applied to non-struct");
1435        return;
1436    }
1437
1438    let fields = &def.non_enum_variant().fields;
1439    match scalable {
1440        ScalableElt::ElementCount(..) if fields.is_empty() => {
1441            let mut err =
1442                tcx.dcx().struct_span_err(span, "scalable vectors must have a single field");
1443            err.help("scalable vector types' only field must be a primitive scalar type");
1444            err.emit();
1445            return;
1446        }
1447        ScalableElt::ElementCount(..) if fields.len() >= 2 => {
1448            tcx.dcx().struct_span_err(span, "scalable vectors cannot have multiple fields").emit();
1449            return;
1450        }
1451        ScalableElt::Container if fields.is_empty() => {
1452            let mut err =
1453                tcx.dcx().struct_span_err(span, "scalable vectors must have a single field");
1454            err.help("tuples of scalable vectors can only contain multiple of the same scalable vector type");
1455            err.emit();
1456            return;
1457        }
1458        _ => {}
1459    }
1460
1461    match scalable {
1462        ScalableElt::ElementCount(..) => {
1463            let element_ty = &fields[FieldIdx::ZERO].ty(tcx, args);
1464
1465            // Check that `element_ty` only uses types valid in the lanes of a scalable vector
1466            // register: scalar types which directly match a "machine" type - integers, floats and
1467            // bools
1468            match element_ty.kind() {
1469                ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Bool => (),
1470                _ => {
1471                    let mut err = tcx.dcx().struct_span_err(
1472                        span,
1473                        "element type of a scalable vector must be a primitive scalar",
1474                    );
1475                    err.help("only `u*`, `i*`, `f*` and `bool` types are accepted");
1476                    err.emit();
1477                }
1478            }
1479        }
1480        ScalableElt::Container => {
1481            let mut prev_field_ty = None;
1482            for field in fields.iter() {
1483                let element_ty = field.ty(tcx, args);
1484                if let ty::Adt(def, _) = element_ty.kind()
1485                    && def.repr().scalable()
1486                {
1487                    match def
1488                        .repr()
1489                        .scalable
1490                        .expect("`repr().scalable.is_some()` != `repr().scalable()`")
1491                    {
1492                        ScalableElt::ElementCount(_) => { /* expected field */ }
1493                        ScalableElt::Container => {
1494                            tcx.dcx().span_err(
1495                                tcx.def_span(field.did),
1496                                "scalable vector structs cannot contain other scalable vector structs",
1497                            );
1498                            break;
1499                        }
1500                    }
1501                } else {
1502                    tcx.dcx().span_err(
1503                        tcx.def_span(field.did),
1504                        "scalable vector structs can only have scalable vector fields",
1505                    );
1506                    break;
1507                }
1508
1509                if let Some(prev_ty) = prev_field_ty.replace(element_ty)
1510                    && prev_ty != element_ty
1511                {
1512                    tcx.dcx().span_err(
1513                        tcx.def_span(field.did),
1514                        "all fields in a scalable vector struct must be the same type",
1515                    );
1516                    break;
1517                }
1518            }
1519        }
1520    }
1521}
1522
1523pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) {
1524    let repr = def.repr();
1525    if repr.packed() {
1526        if let Some(reprs) = find_attr!(tcx.get_all_attrs(def.did()), attrs::AttributeKind::Repr { reprs, .. } => reprs)
1527        {
1528            for (r, _) in reprs {
1529                if let ReprPacked(pack) = r
1530                    && let Some(repr_pack) = repr.pack
1531                    && pack != &repr_pack
1532                {
1533                    struct_span_code_err!(
1534                        tcx.dcx(),
1535                        sp,
1536                        E0634,
1537                        "type has conflicting packed representation hints"
1538                    )
1539                    .emit();
1540                }
1541            }
1542        }
1543        if repr.align.is_some() {
1544            struct_span_code_err!(
1545                tcx.dcx(),
1546                sp,
1547                E0587,
1548                "type has conflicting packed and align representation hints"
1549            )
1550            .emit();
1551        } else if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) {
1552            let mut err = struct_span_code_err!(
1553                tcx.dcx(),
1554                sp,
1555                E0588,
1556                "packed type cannot transitively contain a `#[repr(align)]` type"
1557            );
1558
1559            err.span_note(
1560                tcx.def_span(def_spans[0].0),
1561                format!("`{}` has a `#[repr(align)]` attribute", tcx.item_name(def_spans[0].0)),
1562            );
1563
1564            if def_spans.len() > 2 {
1565                let mut first = true;
1566                for (adt_def, span) in def_spans.iter().skip(1).rev() {
1567                    let ident = tcx.item_name(*adt_def);
1568                    err.span_note(
1569                        *span,
1570                        if first {
1571                            format!(
1572                                "`{}` contains a field of type `{}`",
1573                                tcx.type_of(def.did()).instantiate_identity(),
1574                                ident
1575                            )
1576                        } else {
1577                            format!("...which contains a field of type `{ident}`")
1578                        },
1579                    );
1580                    first = false;
1581                }
1582            }
1583
1584            err.emit();
1585        }
1586    }
1587}
1588
1589pub(super) fn check_packed_inner(
1590    tcx: TyCtxt<'_>,
1591    def_id: DefId,
1592    stack: &mut Vec<DefId>,
1593) -> Option<Vec<(DefId, Span)>> {
1594    if let ty::Adt(def, args) = tcx.type_of(def_id).instantiate_identity().kind() {
1595        if def.is_struct() || def.is_union() {
1596            if def.repr().align.is_some() {
1597                return Some(vec![(def.did(), DUMMY_SP)]);
1598            }
1599
1600            stack.push(def_id);
1601            for field in &def.non_enum_variant().fields {
1602                if let ty::Adt(def, _) = field.ty(tcx, args).kind()
1603                    && !stack.contains(&def.did())
1604                    && let Some(mut defs) = check_packed_inner(tcx, def.did(), stack)
1605                {
1606                    defs.push((def.did(), field.ident(tcx).span));
1607                    return Some(defs);
1608                }
1609            }
1610            stack.pop();
1611        }
1612    }
1613
1614    None
1615}
1616
1617pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>) {
1618    if !adt.repr().transparent() {
1619        return;
1620    }
1621
1622    if adt.is_union() && !tcx.features().transparent_unions() {
1623        feature_err(
1624            &tcx.sess,
1625            sym::transparent_unions,
1626            tcx.def_span(adt.did()),
1627            "transparent unions are unstable",
1628        )
1629        .emit();
1630    }
1631
1632    if adt.variants().len() != 1 {
1633        bad_variant_count(tcx, adt, tcx.def_span(adt.did()), adt.did());
1634        // Don't bother checking the fields.
1635        return;
1636    }
1637
1638    let typing_env = ty::TypingEnv::non_body_analysis(tcx, adt.did());
1639    // For each field, figure out if it has "trivial" layout (i.e., is a 1-ZST).
1640    struct FieldInfo<'tcx> {
1641        span: Span,
1642        trivial: bool,
1643        ty: Ty<'tcx>,
1644    }
1645
1646    let field_infos = adt.all_fields().map(|field| {
1647        let ty = field.ty(tcx, GenericArgs::identity_for_item(tcx, field.did));
1648        let layout = tcx.layout_of(typing_env.as_query_input(ty));
1649        // We are currently checking the type this field came from, so it must be local
1650        let span = tcx.hir_span_if_local(field.did).unwrap();
1651        let trivial = layout.is_ok_and(|layout| layout.is_1zst());
1652        FieldInfo { span, trivial, ty }
1653    });
1654
1655    let non_trivial_fields = field_infos
1656        .clone()
1657        .filter_map(|field| if !field.trivial { Some(field.span) } else { None });
1658    let non_trivial_count = non_trivial_fields.clone().count();
1659    if non_trivial_count >= 2 {
1660        bad_non_zero_sized_fields(
1661            tcx,
1662            adt,
1663            non_trivial_count,
1664            non_trivial_fields,
1665            tcx.def_span(adt.did()),
1666        );
1667        return;
1668    }
1669
1670    // Even some 1-ZST fields are not allowed though, if they have `non_exhaustive` or private
1671    // fields or `repr(C)`. We call those fields "unsuited".
1672    struct UnsuitedInfo<'tcx> {
1673        /// The source of the problem, a type that is found somewhere within the field type.
1674        ty: Ty<'tcx>,
1675        reason: UnsuitedReason,
1676    }
1677    enum UnsuitedReason {
1678        NonExhaustive,
1679        PrivateField,
1680        ReprC,
1681    }
1682
1683    fn check_unsuited<'tcx>(
1684        tcx: TyCtxt<'tcx>,
1685        typing_env: ty::TypingEnv<'tcx>,
1686        ty: Ty<'tcx>,
1687    ) -> ControlFlow<UnsuitedInfo<'tcx>> {
1688        // We can encounter projections during traversal, so ensure the type is normalized.
1689        let ty = tcx.try_normalize_erasing_regions(typing_env, ty).unwrap_or(ty);
1690        match ty.kind() {
1691            ty::Tuple(list) => list.iter().try_for_each(|t| check_unsuited(tcx, typing_env, t)),
1692            ty::Array(ty, _) => check_unsuited(tcx, typing_env, *ty),
1693            ty::Adt(def, args) => {
1694                if !def.did().is_local()
1695                    && !find_attr!(tcx.get_all_attrs(def.did()), AttributeKind::PubTransparent(_))
1696                {
1697                    let non_exhaustive = def.is_variant_list_non_exhaustive()
1698                        || def.variants().iter().any(ty::VariantDef::is_field_list_non_exhaustive);
1699                    let has_priv = def.all_fields().any(|f| !f.vis.is_public());
1700                    if non_exhaustive || has_priv {
1701                        return ControlFlow::Break(UnsuitedInfo {
1702                            ty,
1703                            reason: if non_exhaustive {
1704                                UnsuitedReason::NonExhaustive
1705                            } else {
1706                                UnsuitedReason::PrivateField
1707                            },
1708                        });
1709                    }
1710                }
1711                if def.repr().c() {
1712                    return ControlFlow::Break(UnsuitedInfo { ty, reason: UnsuitedReason::ReprC });
1713                }
1714                def.all_fields()
1715                    .map(|field| field.ty(tcx, args))
1716                    .try_for_each(|t| check_unsuited(tcx, typing_env, t))
1717            }
1718            _ => ControlFlow::Continue(()),
1719        }
1720    }
1721
1722    let mut prev_unsuited_1zst = false;
1723    for field in field_infos {
1724        if field.trivial
1725            && let Some(unsuited) = check_unsuited(tcx, typing_env, field.ty).break_value()
1726        {
1727            // If there are any non-trivial fields, then there can be no non-exhaustive 1-zsts.
1728            // Otherwise, it's only an issue if there's >1 non-exhaustive 1-zst.
1729            if non_trivial_count > 0 || prev_unsuited_1zst {
1730                tcx.node_span_lint(
1731                    REPR_TRANSPARENT_NON_ZST_FIELDS,
1732                    tcx.local_def_id_to_hir_id(adt.did().expect_local()),
1733                    field.span,
1734                    |lint| {
1735                        let title = match unsuited.reason {
1736                            UnsuitedReason::NonExhaustive => "external non-exhaustive types",
1737                            UnsuitedReason::PrivateField => "external types with private fields",
1738                            UnsuitedReason::ReprC => "`repr(C)` types",
1739                        };
1740                        lint.primary_message(
1741                            format!("zero-sized fields in `repr(transparent)` cannot contain {title}"),
1742                        );
1743                        let note = match unsuited.reason {
1744                            UnsuitedReason::NonExhaustive => "is marked with `#[non_exhaustive]`, so it could become non-zero-sized in the future.",
1745                            UnsuitedReason::PrivateField => "contains private fields, so it could become non-zero-sized in the future.",
1746                            UnsuitedReason::ReprC => "is a `#[repr(C)]` type, so it is not guaranteed to be zero-sized on all targets.",
1747                        };
1748                        lint.note(format!(
1749                            "this field contains `{field_ty}`, which {note}",
1750                            field_ty = unsuited.ty,
1751                        ));
1752                    },
1753                );
1754            } else {
1755                prev_unsuited_1zst = true;
1756            }
1757        }
1758    }
1759}
1760
1761#[allow(trivial_numeric_casts)]
1762fn check_enum(tcx: TyCtxt<'_>, def_id: LocalDefId) {
1763    let def = tcx.adt_def(def_id);
1764    def.destructor(tcx); // force the destructor to be evaluated
1765
1766    if def.variants().is_empty() {
1767        find_attr!(
1768            tcx.get_all_attrs(def_id),
1769            attrs::AttributeKind::Repr { reprs, first_span } => {
1770                struct_span_code_err!(
1771                    tcx.dcx(),
1772                    reprs.first().map(|repr| repr.1).unwrap_or(*first_span),
1773                    E0084,
1774                    "unsupported representation for zero-variant enum"
1775                )
1776                .with_span_label(tcx.def_span(def_id), "zero-variant enum")
1777                .emit();
1778            }
1779        );
1780    }
1781
1782    for v in def.variants() {
1783        if let ty::VariantDiscr::Explicit(discr_def_id) = v.discr {
1784            tcx.ensure_ok().typeck(discr_def_id.expect_local());
1785        }
1786    }
1787
1788    if def.repr().int.is_none() {
1789        let is_unit = |var: &ty::VariantDef| matches!(var.ctor_kind(), Some(CtorKind::Const));
1790        let get_disr = |var: &ty::VariantDef| match var.discr {
1791            ty::VariantDiscr::Explicit(disr) => Some(disr),
1792            ty::VariantDiscr::Relative(_) => None,
1793        };
1794
1795        let non_unit = def.variants().iter().find(|var| !is_unit(var));
1796        let disr_unit =
1797            def.variants().iter().filter(|var| is_unit(var)).find_map(|var| get_disr(var));
1798        let disr_non_unit =
1799            def.variants().iter().filter(|var| !is_unit(var)).find_map(|var| get_disr(var));
1800
1801        if disr_non_unit.is_some() || (disr_unit.is_some() && non_unit.is_some()) {
1802            let mut err = struct_span_code_err!(
1803                tcx.dcx(),
1804                tcx.def_span(def_id),
1805                E0732,
1806                "`#[repr(inttype)]` must be specified for enums with explicit discriminants and non-unit variants"
1807            );
1808            if let Some(disr_non_unit) = disr_non_unit {
1809                err.span_label(
1810                    tcx.def_span(disr_non_unit),
1811                    "explicit discriminant on non-unit variant specified here",
1812                );
1813            } else {
1814                err.span_label(
1815                    tcx.def_span(disr_unit.unwrap()),
1816                    "explicit discriminant specified here",
1817                );
1818                err.span_label(
1819                    tcx.def_span(non_unit.unwrap().def_id),
1820                    "non-unit discriminant declared here",
1821                );
1822            }
1823            err.emit();
1824        }
1825    }
1826
1827    detect_discriminant_duplicate(tcx, def);
1828    check_transparent(tcx, def);
1829}
1830
1831/// Part of enum check. Given the discriminants of an enum, errors if two or more discriminants are equal
1832fn detect_discriminant_duplicate<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>) {
1833    // Helper closure to reduce duplicate code. This gets called everytime we detect a duplicate.
1834    // Here `idx` refers to the order of which the discriminant appears, and its index in `vs`
1835    let report = |dis: Discr<'tcx>, idx, err: &mut Diag<'_>| {
1836        let var = adt.variant(idx); // HIR for the duplicate discriminant
1837        let (span, display_discr) = match var.discr {
1838            ty::VariantDiscr::Explicit(discr_def_id) => {
1839                // In the case the discriminant is both a duplicate and overflowed, let the user know
1840                if let hir::Node::AnonConst(expr) =
1841                    tcx.hir_node_by_def_id(discr_def_id.expect_local())
1842                    && let hir::ExprKind::Lit(lit) = &tcx.hir_body(expr.body).value.kind
1843                    && let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node
1844                    && *lit_value != dis.val
1845                {
1846                    (tcx.def_span(discr_def_id), format!("`{dis}` (overflowed from `{lit_value}`)"))
1847                } else {
1848                    // Otherwise, format the value as-is
1849                    (tcx.def_span(discr_def_id), format!("`{dis}`"))
1850                }
1851            }
1852            // This should not happen.
1853            ty::VariantDiscr::Relative(0) => (tcx.def_span(var.def_id), format!("`{dis}`")),
1854            ty::VariantDiscr::Relative(distance_to_explicit) => {
1855                // At this point we know this discriminant is a duplicate, and was not explicitly
1856                // assigned by the user. Here we iterate backwards to fetch the HIR for the last
1857                // explicitly assigned discriminant, and letting the user know that this was the
1858                // increment startpoint, and how many steps from there leading to the duplicate
1859                if let Some(explicit_idx) =
1860                    idx.as_u32().checked_sub(distance_to_explicit).map(VariantIdx::from_u32)
1861                {
1862                    let explicit_variant = adt.variant(explicit_idx);
1863                    let ve_ident = var.name;
1864                    let ex_ident = explicit_variant.name;
1865                    let sp = if distance_to_explicit > 1 { "variants" } else { "variant" };
1866
1867                    err.span_label(
1868                        tcx.def_span(explicit_variant.def_id),
1869                        format!(
1870                            "discriminant for `{ve_ident}` incremented from this startpoint \
1871                            (`{ex_ident}` + {distance_to_explicit} {sp} later \
1872                             => `{ve_ident}` = {dis})"
1873                        ),
1874                    );
1875                }
1876
1877                (tcx.def_span(var.def_id), format!("`{dis}`"))
1878            }
1879        };
1880
1881        err.span_label(span, format!("{display_discr} assigned here"));
1882    };
1883
1884    let mut discrs = adt.discriminants(tcx).collect::<Vec<_>>();
1885
1886    // Here we loop through the discriminants, comparing each discriminant to another.
1887    // When a duplicate is detected, we instantiate an error and point to both
1888    // initial and duplicate value. The duplicate discriminant is then discarded by swapping
1889    // it with the last element and decrementing the `vec.len` (which is why we have to evaluate
1890    // `discrs.len()` anew every iteration, and why this could be tricky to do in a functional
1891    // style as we are mutating `discrs` on the fly).
1892    let mut i = 0;
1893    while i < discrs.len() {
1894        let var_i_idx = discrs[i].0;
1895        let mut error: Option<Diag<'_, _>> = None;
1896
1897        let mut o = i + 1;
1898        while o < discrs.len() {
1899            let var_o_idx = discrs[o].0;
1900
1901            if discrs[i].1.val == discrs[o].1.val {
1902                let err = error.get_or_insert_with(|| {
1903                    let mut ret = struct_span_code_err!(
1904                        tcx.dcx(),
1905                        tcx.def_span(adt.did()),
1906                        E0081,
1907                        "discriminant value `{}` assigned more than once",
1908                        discrs[i].1,
1909                    );
1910
1911                    report(discrs[i].1, var_i_idx, &mut ret);
1912
1913                    ret
1914                });
1915
1916                report(discrs[o].1, var_o_idx, err);
1917
1918                // Safe to unwrap here, as we wouldn't reach this point if `discrs` was empty
1919                discrs[o] = *discrs.last().unwrap();
1920                discrs.pop();
1921            } else {
1922                o += 1;
1923            }
1924        }
1925
1926        if let Some(e) = error {
1927            e.emit();
1928        }
1929
1930        i += 1;
1931    }
1932}
1933
1934fn check_type_alias_type_params_are_used<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) {
1935    if tcx.type_alias_is_lazy(def_id) {
1936        // Since we compute the variances for lazy type aliases and already reject bivariant
1937        // parameters as unused, we can and should skip this check for lazy type aliases.
1938        return;
1939    }
1940
1941    let generics = tcx.generics_of(def_id);
1942    if generics.own_counts().types == 0 {
1943        return;
1944    }
1945
1946    let ty = tcx.type_of(def_id).instantiate_identity();
1947    if ty.references_error() {
1948        // If there is already another error, do not emit an error for not using a type parameter.
1949        return;
1950    }
1951
1952    // Lazily calculated because it is only needed in case of an error.
1953    let bounded_params = LazyCell::new(|| {
1954        tcx.explicit_predicates_of(def_id)
1955            .predicates
1956            .iter()
1957            .filter_map(|(predicate, span)| {
1958                let bounded_ty = match predicate.kind().skip_binder() {
1959                    ty::ClauseKind::Trait(pred) => pred.trait_ref.self_ty(),
1960                    ty::ClauseKind::TypeOutlives(pred) => pred.0,
1961                    _ => return None,
1962                };
1963                if let ty::Param(param) = bounded_ty.kind() {
1964                    Some((param.index, span))
1965                } else {
1966                    None
1967                }
1968            })
1969            // FIXME: This assumes that elaborated `Sized` bounds come first (which does hold at the
1970            // time of writing). This is a bit fragile since we later use the span to detect elaborated
1971            // `Sized` bounds. If they came last for example, this would break `Trait + /*elab*/Sized`
1972            // since it would overwrite the span of the user-written bound. This could be fixed by
1973            // folding the spans with `Span::to` which requires a bit of effort I think.
1974            .collect::<FxIndexMap<_, _>>()
1975    });
1976
1977    let mut params_used = DenseBitSet::new_empty(generics.own_params.len());
1978    for leaf in ty.walk() {
1979        if let GenericArgKind::Type(leaf_ty) = leaf.kind()
1980            && let ty::Param(param) = leaf_ty.kind()
1981        {
1982            debug!("found use of ty param {:?}", param);
1983            params_used.insert(param.index);
1984        }
1985    }
1986
1987    for param in &generics.own_params {
1988        if !params_used.contains(param.index)
1989            && let ty::GenericParamDefKind::Type { .. } = param.kind
1990        {
1991            let span = tcx.def_span(param.def_id);
1992            let param_name = Ident::new(param.name, span);
1993
1994            // The corresponding predicates are post-`Sized`-elaboration. Therefore we
1995            // * check for emptiness to detect lone user-written `?Sized` bounds
1996            // * compare the param span to the pred span to detect lone user-written `Sized` bounds
1997            let has_explicit_bounds = bounded_params.is_empty()
1998                || (*bounded_params).get(&param.index).is_some_and(|&&pred_sp| pred_sp != span);
1999            let const_param_help = !has_explicit_bounds;
2000
2001            let mut diag = tcx.dcx().create_err(errors::UnusedGenericParameter {
2002                span,
2003                param_name,
2004                param_def_kind: tcx.def_descr(param.def_id),
2005                help: errors::UnusedGenericParameterHelp::TyAlias { param_name },
2006                usage_spans: vec![],
2007                const_param_help,
2008            });
2009            diag.code(E0091);
2010            diag.emit();
2011        }
2012    }
2013}
2014
2015/// Emit an error for recursive opaque types.
2016///
2017/// If this is a return `impl Trait`, find the item's return expressions and point at them. For
2018/// direct recursion this is enough, but for indirect recursion also point at the last intermediary
2019/// `impl Trait`.
2020///
2021/// If all the return expressions evaluate to `!`, then we explain that the error will go away
2022/// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder.
2023fn opaque_type_cycle_error(tcx: TyCtxt<'_>, opaque_def_id: LocalDefId) -> ErrorGuaranteed {
2024    let span = tcx.def_span(opaque_def_id);
2025    let mut err = struct_span_code_err!(tcx.dcx(), span, E0720, "cannot resolve opaque type");
2026
2027    let mut label = false;
2028    if let Some((def_id, visitor)) = get_owner_return_paths(tcx, opaque_def_id) {
2029        let typeck_results = tcx.typeck(def_id);
2030        if visitor
2031            .returns
2032            .iter()
2033            .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
2034            .all(|ty| matches!(ty.kind(), ty::Never))
2035        {
2036            let spans = visitor
2037                .returns
2038                .iter()
2039                .filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
2040                .map(|expr| expr.span)
2041                .collect::<Vec<Span>>();
2042            let span_len = spans.len();
2043            if span_len == 1 {
2044                err.span_label(spans[0], "this returned value is of `!` type");
2045            } else {
2046                let mut multispan: MultiSpan = spans.clone().into();
2047                for span in spans {
2048                    multispan.push_span_label(span, "this returned value is of `!` type");
2049                }
2050                err.span_note(multispan, "these returned values have a concrete \"never\" type");
2051            }
2052            err.help("this error will resolve once the item's body returns a concrete type");
2053        } else {
2054            let mut seen = FxHashSet::default();
2055            seen.insert(span);
2056            err.span_label(span, "recursive opaque type");
2057            label = true;
2058            for (sp, ty) in visitor
2059                .returns
2060                .iter()
2061                .filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
2062                .filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
2063            {
2064                #[derive(Default)]
2065                struct OpaqueTypeCollector {
2066                    opaques: Vec<DefId>,
2067                    closures: Vec<DefId>,
2068                }
2069                impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for OpaqueTypeCollector {
2070                    fn visit_ty(&mut self, t: Ty<'tcx>) {
2071                        match *t.kind() {
2072                            ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
2073                                self.opaques.push(def);
2074                            }
2075                            ty::Closure(def_id, ..) | ty::Coroutine(def_id, ..) => {
2076                                self.closures.push(def_id);
2077                                t.super_visit_with(self);
2078                            }
2079                            _ => t.super_visit_with(self),
2080                        }
2081                    }
2082                }
2083
2084                let mut visitor = OpaqueTypeCollector::default();
2085                ty.visit_with(&mut visitor);
2086                for def_id in visitor.opaques {
2087                    let ty_span = tcx.def_span(def_id);
2088                    if !seen.contains(&ty_span) {
2089                        let descr = if ty.is_impl_trait() { "opaque " } else { "" };
2090                        err.span_label(ty_span, format!("returning this {descr}type `{ty}`"));
2091                        seen.insert(ty_span);
2092                    }
2093                    err.span_label(sp, format!("returning here with type `{ty}`"));
2094                }
2095
2096                for closure_def_id in visitor.closures {
2097                    let Some(closure_local_did) = closure_def_id.as_local() else {
2098                        continue;
2099                    };
2100                    let typeck_results = tcx.typeck(closure_local_did);
2101
2102                    let mut label_match = |ty: Ty<'_>, span| {
2103                        for arg in ty.walk() {
2104                            if let ty::GenericArgKind::Type(ty) = arg.kind()
2105                                && let ty::Alias(
2106                                    ty::Opaque,
2107                                    ty::AliasTy { def_id: captured_def_id, .. },
2108                                ) = *ty.kind()
2109                                && captured_def_id == opaque_def_id.to_def_id()
2110                            {
2111                                err.span_label(
2112                                    span,
2113                                    format!(
2114                                        "{} captures itself here",
2115                                        tcx.def_descr(closure_def_id)
2116                                    ),
2117                                );
2118                            }
2119                        }
2120                    };
2121
2122                    // Label any closure upvars that capture the opaque
2123                    for capture in typeck_results.closure_min_captures_flattened(closure_local_did)
2124                    {
2125                        label_match(capture.place.ty(), capture.get_path_span(tcx));
2126                    }
2127                    // Label any coroutine locals that capture the opaque
2128                    if tcx.is_coroutine(closure_def_id)
2129                        && let Some(coroutine_layout) = tcx.mir_coroutine_witnesses(closure_def_id)
2130                    {
2131                        for interior_ty in &coroutine_layout.field_tys {
2132                            label_match(interior_ty.ty, interior_ty.source_info.span);
2133                        }
2134                    }
2135                }
2136            }
2137        }
2138    }
2139    if !label {
2140        err.span_label(span, "cannot resolve opaque type");
2141    }
2142    err.emit()
2143}
2144
2145pub(super) fn check_coroutine_obligations(
2146    tcx: TyCtxt<'_>,
2147    def_id: LocalDefId,
2148) -> Result<(), ErrorGuaranteed> {
2149    debug_assert!(!tcx.is_typeck_child(def_id.to_def_id()));
2150
2151    let typeck_results = tcx.typeck(def_id);
2152    let param_env = tcx.param_env(def_id);
2153
2154    debug!(?typeck_results.coroutine_stalled_predicates);
2155
2156    let mode = if tcx.next_trait_solver_globally() {
2157        // This query is conceptually between HIR typeck and
2158        // MIR borrowck. We use the opaque types defined by HIR
2159        // and ignore region constraints.
2160        TypingMode::borrowck(tcx, def_id)
2161    } else {
2162        TypingMode::analysis_in_body(tcx, def_id)
2163    };
2164
2165    // Typeck writeback gives us predicates with their regions erased.
2166    // We only need to check the goals while ignoring lifetimes to give good
2167    // error message and to avoid breaking the assumption of `mir_borrowck`
2168    // that all obligations already hold modulo regions.
2169    let infcx = tcx.infer_ctxt().ignoring_regions().build(mode);
2170
2171    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
2172    for (predicate, cause) in &typeck_results.coroutine_stalled_predicates {
2173        ocx.register_obligation(Obligation::new(tcx, cause.clone(), param_env, *predicate));
2174    }
2175
2176    let errors = ocx.evaluate_obligations_error_on_ambiguity();
2177    debug!(?errors);
2178    if !errors.is_empty() {
2179        return Err(infcx.err_ctxt().report_fulfillment_errors(errors));
2180    }
2181
2182    if !tcx.next_trait_solver_globally() {
2183        // Check that any hidden types found when checking these stalled coroutine obligations
2184        // are valid.
2185        for (key, ty) in infcx.take_opaque_types() {
2186            let hidden_type = infcx.resolve_vars_if_possible(ty);
2187            let key = infcx.resolve_vars_if_possible(key);
2188            sanity_check_found_hidden_type(tcx, key, hidden_type)?;
2189        }
2190    } else {
2191        // We're not checking region constraints here, so we can simply drop the
2192        // added opaque type uses in `TypingMode::Borrowck`.
2193        let _ = infcx.take_opaque_types();
2194    }
2195
2196    Ok(())
2197}
2198
2199pub(super) fn check_potentially_region_dependent_goals<'tcx>(
2200    tcx: TyCtxt<'tcx>,
2201    def_id: LocalDefId,
2202) -> Result<(), ErrorGuaranteed> {
2203    if !tcx.next_trait_solver_globally() {
2204        return Ok(());
2205    }
2206    let typeck_results = tcx.typeck(def_id);
2207    let param_env = tcx.param_env(def_id);
2208
2209    // We use `TypingMode::Borrowck` as we want to use the opaque types computed by HIR typeck.
2210    let typing_mode = TypingMode::borrowck(tcx, def_id);
2211    let infcx = tcx.infer_ctxt().ignoring_regions().build(typing_mode);
2212    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
2213    for (predicate, cause) in &typeck_results.potentially_region_dependent_goals {
2214        let predicate = fold_regions(tcx, *predicate, |_, _| {
2215            infcx.next_region_var(RegionVariableOrigin::Misc(cause.span))
2216        });
2217        ocx.register_obligation(Obligation::new(tcx, cause.clone(), param_env, predicate));
2218    }
2219
2220    let errors = ocx.evaluate_obligations_error_on_ambiguity();
2221    debug!(?errors);
2222    if errors.is_empty() { Ok(()) } else { Err(infcx.err_ctxt().report_fulfillment_errors(errors)) }
2223}