1use std::cell::LazyCell;
2use std::ops::ControlFlow;
3
4use rustc_abi::{ExternAbi, FieldIdx, ScalableElt};
5use rustc_data_structures::unord::{UnordMap, UnordSet};
6use rustc_errors::codes::*;
7use rustc_errors::{EmissionGuarantee, MultiSpan};
8use rustc_hir as hir;
9use rustc_hir::attrs::AttributeKind;
10use rustc_hir::attrs::ReprAttr::ReprPacked;
11use rustc_hir::def::{CtorKind, DefKind};
12use rustc_hir::{LangItem, Node, attrs, find_attr, intravisit};
13use rustc_infer::infer::{RegionVariableOrigin, TyCtxtInferExt};
14use rustc_infer::traits::{Obligation, ObligationCauseCode, WellFormedLoc};
15use rustc_lint_defs::builtin::{REPR_TRANSPARENT_NON_ZST_FIELDS, UNSUPPORTED_CALLING_CONVENTIONS};
16use rustc_middle::hir::nested_filter;
17use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
18use rustc_middle::middle::stability::EvalResult;
19use rustc_middle::ty::error::TypeErrorToStringExt;
20use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES};
21use rustc_middle::ty::util::Discr;
22use rustc_middle::ty::{
23 AdtDef, BottomUpFolder, FnSig, GenericArgKind, RegionKind, TypeFoldable, TypeSuperVisitable,
24 TypeVisitable, TypeVisitableExt, fold_regions,
25};
26use rustc_session::lint::builtin::UNINHABITED_STATIC;
27use rustc_target::spec::{AbiMap, AbiMapping};
28use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
29use rustc_trait_selection::error_reporting::traits::on_unimplemented::OnUnimplementedDirective;
30use rustc_trait_selection::traits;
31use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
32use tracing::{debug, instrument};
33use ty::TypingMode;
34
35use super::compare_impl_item::check_type_bounds;
36use super::*;
37use crate::check::wfcheck::{
38 check_associated_item, check_trait_item, check_variances_for_type_defn, check_where_clauses,
39 enter_wf_checking_ctxt,
40};
41
42fn add_abi_diag_help<T: EmissionGuarantee>(abi: ExternAbi, diag: &mut Diag<'_, T>) {
43 if let ExternAbi::Cdecl { unwind } = abi {
44 let c_abi = ExternAbi::C { unwind };
45 diag.help(format!("use `extern {c_abi}` instead",));
46 } else if let ExternAbi::Stdcall { unwind } = abi {
47 let c_abi = ExternAbi::C { unwind };
48 let system_abi = ExternAbi::System { unwind };
49 diag.help(format!(
50 "if you need `extern {abi}` on win32 and `extern {c_abi}` everywhere else, \
51 use `extern {system_abi}`"
52 ));
53 }
54}
55
56pub fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: ExternAbi) {
57 match AbiMap::from_target(&tcx.sess.target).canonize_abi(abi, false) {
62 AbiMapping::Direct(..) => (),
63 AbiMapping::Invalid => {
65 tcx.dcx().span_delayed_bug(span, format!("{abi} should be rejected in ast_lowering"));
66 }
67 AbiMapping::Deprecated(..) => {
68 tcx.node_span_lint(UNSUPPORTED_CALLING_CONVENTIONS, hir_id, span, |lint| {
69 lint.primary_message(format!(
70 "{abi} is not a supported ABI for the current target"
71 ));
72 add_abi_diag_help(abi, lint);
73 });
74 }
75 }
76}
77
78pub fn check_custom_abi(tcx: TyCtxt<'_>, def_id: LocalDefId, fn_sig: FnSig<'_>, fn_sig_span: Span) {
79 if fn_sig.abi == ExternAbi::Custom {
80 if !find_attr!(tcx.get_all_attrs(def_id), AttributeKind::Naked(_)) {
82 tcx.dcx().emit_err(crate::errors::AbiCustomClothedFunction {
83 span: fn_sig_span,
84 naked_span: tcx.def_span(def_id).shrink_to_lo(),
85 });
86 }
87 }
88}
89
90fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) {
91 let def = tcx.adt_def(def_id);
92 let span = tcx.def_span(def_id);
93 def.destructor(tcx); if let Some(scalable) = def.repr().scalable {
96 check_scalable_vector(tcx, span, def_id, scalable);
97 } else if def.repr().simd() {
98 check_simd(tcx, span, def_id);
99 }
100
101 check_transparent(tcx, def);
102 check_packed(tcx, span, def);
103}
104
105fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) {
106 let def = tcx.adt_def(def_id);
107 let span = tcx.def_span(def_id);
108 def.destructor(tcx); check_transparent(tcx, def);
110 check_union_fields(tcx, span, def_id);
111 check_packed(tcx, span, def);
112}
113
114fn allowed_union_or_unsafe_field<'tcx>(
115 tcx: TyCtxt<'tcx>,
116 ty: Ty<'tcx>,
117 typing_env: ty::TypingEnv<'tcx>,
118 span: Span,
119) -> bool {
120 if ty.is_trivially_pure_clone_copy() {
125 return true;
126 }
127 let def_id = tcx
130 .lang_items()
131 .get(LangItem::BikeshedGuaranteedNoDrop)
132 .unwrap_or_else(|| tcx.require_lang_item(LangItem::Copy, span));
133 let Ok(ty) = tcx.try_normalize_erasing_regions(typing_env, ty) else {
134 tcx.dcx().span_delayed_bug(span, "could not normalize field type");
135 return true;
136 };
137 let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
138 infcx.predicate_must_hold_modulo_regions(&Obligation::new(
139 tcx,
140 ObligationCause::dummy_with_span(span),
141 param_env,
142 ty::TraitRef::new(tcx, def_id, [ty]),
143 ))
144}
145
146fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
148 let def = tcx.adt_def(item_def_id);
149 assert!(def.is_union());
150
151 let typing_env = ty::TypingEnv::non_body_analysis(tcx, item_def_id);
152 let args = ty::GenericArgs::identity_for_item(tcx, item_def_id);
153
154 for field in &def.non_enum_variant().fields {
155 if !allowed_union_or_unsafe_field(tcx, field.ty(tcx, args), typing_env, span) {
156 let (field_span, ty_span) = match tcx.hir_get_if_local(field.did) {
157 Some(Node::Field(field)) => (field.span, field.ty.span),
159 _ => unreachable!("mir field has to correspond to hir field"),
160 };
161 tcx.dcx().emit_err(errors::InvalidUnionField {
162 field_span,
163 sugg: errors::InvalidUnionFieldSuggestion {
164 lo: ty_span.shrink_to_lo(),
165 hi: ty_span.shrink_to_hi(),
166 },
167 note: (),
168 });
169 return false;
170 }
171 }
172
173 true
174}
175
176fn check_static_inhabited(tcx: TyCtxt<'_>, def_id: LocalDefId) {
178 let ty = tcx.type_of(def_id).instantiate_identity();
184 let span = tcx.def_span(def_id);
185 let layout = match tcx.layout_of(ty::TypingEnv::fully_monomorphized().as_query_input(ty)) {
186 Ok(l) => l,
187 Err(LayoutError::SizeOverflow(_))
189 if matches!(tcx.def_kind(def_id), DefKind::Static{ .. }
190 if tcx.def_kind(tcx.local_parent(def_id)) == DefKind::ForeignMod) =>
191 {
192 tcx.dcx().emit_err(errors::TooLargeStatic { span });
193 return;
194 }
195 Err(e) => {
197 tcx.dcx().span_delayed_bug(span, format!("{e:?}"));
198 return;
199 }
200 };
201 if layout.is_uninhabited() {
202 tcx.node_span_lint(
203 UNINHABITED_STATIC,
204 tcx.local_def_id_to_hir_id(def_id),
205 span,
206 |lint| {
207 lint.primary_message("static of uninhabited type");
208 lint
209 .note("uninhabited statics cannot be initialized, and any access would be an immediate error");
210 },
211 );
212 }
213}
214
215fn check_opaque(tcx: TyCtxt<'_>, def_id: LocalDefId) {
218 let hir::OpaqueTy { origin, .. } = *tcx.hir_expect_opaque_ty(def_id);
219
220 if tcx.sess.opts.actually_rustdoc {
225 return;
226 }
227
228 if tcx.type_of(def_id).instantiate_identity().references_error() {
229 return;
230 }
231 if check_opaque_for_cycles(tcx, def_id).is_err() {
232 return;
233 }
234
235 let _ = check_opaque_meets_bounds(tcx, def_id, origin);
236}
237
238pub(super) fn check_opaque_for_cycles<'tcx>(
240 tcx: TyCtxt<'tcx>,
241 def_id: LocalDefId,
242) -> Result<(), ErrorGuaranteed> {
243 let args = GenericArgs::identity_for_item(tcx, def_id);
244
245 if tcx.try_expand_impl_trait_type(def_id.to_def_id(), args).is_err() {
248 let reported = opaque_type_cycle_error(tcx, def_id);
249 return Err(reported);
250 }
251
252 Ok(())
253}
254
255#[instrument(level = "debug", skip(tcx))]
271fn check_opaque_meets_bounds<'tcx>(
272 tcx: TyCtxt<'tcx>,
273 def_id: LocalDefId,
274 origin: hir::OpaqueTyOrigin<LocalDefId>,
275) -> Result<(), ErrorGuaranteed> {
276 let (span, definition_def_id) =
277 if let Some((span, def_id)) = best_definition_site_of_opaque(tcx, def_id, origin) {
278 (span, Some(def_id))
279 } else {
280 (tcx.def_span(def_id), None)
281 };
282
283 let defining_use_anchor = match origin {
284 hir::OpaqueTyOrigin::FnReturn { parent, .. }
285 | hir::OpaqueTyOrigin::AsyncFn { parent, .. }
286 | hir::OpaqueTyOrigin::TyAlias { parent, .. } => parent,
287 };
288 let param_env = tcx.param_env(defining_use_anchor);
289
290 let infcx = tcx.infer_ctxt().build(if tcx.next_trait_solver_globally() {
292 TypingMode::post_borrowck_analysis(tcx, defining_use_anchor)
293 } else {
294 TypingMode::analysis_in_body(tcx, defining_use_anchor)
295 });
296 let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
297
298 let args = match origin {
299 hir::OpaqueTyOrigin::FnReturn { parent, .. }
300 | hir::OpaqueTyOrigin::AsyncFn { parent, .. }
301 | hir::OpaqueTyOrigin::TyAlias { parent, .. } => GenericArgs::identity_for_item(
302 tcx, parent,
303 )
304 .extend_to(tcx, def_id.to_def_id(), |param, _| {
305 tcx.map_opaque_lifetime_to_parent_lifetime(param.def_id.expect_local()).into()
306 }),
307 };
308
309 let opaque_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args);
310
311 let hidden_ty = tcx.type_of(def_id.to_def_id()).instantiate(tcx, args);
318 let hidden_ty = fold_regions(tcx, hidden_ty, |re, _dbi| match re.kind() {
319 ty::ReErased => infcx.next_region_var(RegionVariableOrigin::Misc(span)),
320 _ => re,
321 });
322
323 for (predicate, pred_span) in
327 tcx.explicit_item_bounds(def_id).iter_instantiated_copied(tcx, args)
328 {
329 let predicate = predicate.fold_with(&mut BottomUpFolder {
330 tcx,
331 ty_op: |ty| if ty == opaque_ty { hidden_ty } else { ty },
332 lt_op: |lt| lt,
333 ct_op: |ct| ct,
334 });
335
336 ocx.register_obligation(Obligation::new(
337 tcx,
338 ObligationCause::new(
339 span,
340 def_id,
341 ObligationCauseCode::OpaqueTypeBound(pred_span, definition_def_id),
342 ),
343 param_env,
344 predicate,
345 ));
346 }
347
348 let misc_cause = ObligationCause::misc(span, def_id);
349 match ocx.eq(&misc_cause, param_env, opaque_ty, hidden_ty) {
353 Ok(()) => {}
354 Err(ty_err) => {
355 let ty_err = ty_err.to_string(tcx);
361 let guar = tcx.dcx().span_delayed_bug(
362 span,
363 format!("could not unify `{hidden_ty}` with revealed type:\n{ty_err}"),
364 );
365 return Err(guar);
366 }
367 }
368
369 let predicate =
373 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(hidden_ty.into())));
374 ocx.register_obligation(Obligation::new(tcx, misc_cause.clone(), param_env, predicate));
375
376 let errors = ocx.evaluate_obligations_error_on_ambiguity();
379 if !errors.is_empty() {
380 let guar = infcx.err_ctxt().report_fulfillment_errors(errors);
381 return Err(guar);
382 }
383
384 let wf_tys = ocx.assumed_wf_types_and_report_errors(param_env, defining_use_anchor)?;
385 ocx.resolve_regions_and_report_errors(defining_use_anchor, param_env, wf_tys)?;
386
387 if infcx.next_trait_solver() {
388 Ok(())
389 } else if let hir::OpaqueTyOrigin::FnReturn { .. } | hir::OpaqueTyOrigin::AsyncFn { .. } =
390 origin
391 {
392 let _ = infcx.take_opaque_types();
398 Ok(())
399 } else {
400 for (mut key, mut ty) in infcx.take_opaque_types() {
402 ty.ty = infcx.resolve_vars_if_possible(ty.ty);
403 key = infcx.resolve_vars_if_possible(key);
404 sanity_check_found_hidden_type(tcx, key, ty)?;
405 }
406 Ok(())
407 }
408}
409
410fn best_definition_site_of_opaque<'tcx>(
411 tcx: TyCtxt<'tcx>,
412 opaque_def_id: LocalDefId,
413 origin: hir::OpaqueTyOrigin<LocalDefId>,
414) -> Option<(Span, LocalDefId)> {
415 struct TaitConstraintLocator<'tcx> {
416 opaque_def_id: LocalDefId,
417 tcx: TyCtxt<'tcx>,
418 }
419 impl<'tcx> TaitConstraintLocator<'tcx> {
420 fn check(&self, item_def_id: LocalDefId) -> ControlFlow<(Span, LocalDefId)> {
421 if !self.tcx.has_typeck_results(item_def_id) {
422 return ControlFlow::Continue(());
423 }
424
425 let opaque_types_defined_by = self.tcx.opaque_types_defined_by(item_def_id);
426 if !opaque_types_defined_by.contains(&self.opaque_def_id) {
428 return ControlFlow::Continue(());
429 }
430
431 if let Some(hidden_ty) = self
432 .tcx
433 .mir_borrowck(item_def_id)
434 .ok()
435 .and_then(|opaque_types| opaque_types.get(&self.opaque_def_id))
436 {
437 ControlFlow::Break((hidden_ty.span, item_def_id))
438 } else {
439 ControlFlow::Continue(())
440 }
441 }
442 }
443 impl<'tcx> intravisit::Visitor<'tcx> for TaitConstraintLocator<'tcx> {
444 type NestedFilter = nested_filter::All;
445 type Result = ControlFlow<(Span, LocalDefId)>;
446 fn maybe_tcx(&mut self) -> Self::MaybeTyCtxt {
447 self.tcx
448 }
449 fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) -> Self::Result {
450 intravisit::walk_expr(self, ex)
451 }
452 fn visit_item(&mut self, it: &'tcx hir::Item<'tcx>) -> Self::Result {
453 self.check(it.owner_id.def_id)?;
454 intravisit::walk_item(self, it)
455 }
456 fn visit_impl_item(&mut self, it: &'tcx hir::ImplItem<'tcx>) -> Self::Result {
457 self.check(it.owner_id.def_id)?;
458 intravisit::walk_impl_item(self, it)
459 }
460 fn visit_trait_item(&mut self, it: &'tcx hir::TraitItem<'tcx>) -> Self::Result {
461 self.check(it.owner_id.def_id)?;
462 intravisit::walk_trait_item(self, it)
463 }
464 fn visit_foreign_item(&mut self, it: &'tcx hir::ForeignItem<'tcx>) -> Self::Result {
465 intravisit::walk_foreign_item(self, it)
466 }
467 }
468
469 let mut locator = TaitConstraintLocator { tcx, opaque_def_id };
470 match origin {
471 hir::OpaqueTyOrigin::FnReturn { parent, .. }
472 | hir::OpaqueTyOrigin::AsyncFn { parent, .. } => locator.check(parent).break_value(),
473 hir::OpaqueTyOrigin::TyAlias { parent, in_assoc_ty: true } => {
474 let impl_def_id = tcx.local_parent(parent);
475 for assoc in tcx.associated_items(impl_def_id).in_definition_order() {
476 match assoc.kind {
477 ty::AssocKind::Const { .. } | ty::AssocKind::Fn { .. } => {
478 if let ControlFlow::Break(span) = locator.check(assoc.def_id.expect_local())
479 {
480 return Some(span);
481 }
482 }
483 ty::AssocKind::Type { .. } => {}
484 }
485 }
486
487 None
488 }
489 hir::OpaqueTyOrigin::TyAlias { in_assoc_ty: false, .. } => {
490 tcx.hir_walk_toplevel_module(&mut locator).break_value()
491 }
492 }
493}
494
495fn sanity_check_found_hidden_type<'tcx>(
496 tcx: TyCtxt<'tcx>,
497 key: ty::OpaqueTypeKey<'tcx>,
498 mut ty: ty::ProvisionalHiddenType<'tcx>,
499) -> Result<(), ErrorGuaranteed> {
500 if ty.ty.is_ty_var() {
501 return Ok(());
503 }
504 if let ty::Alias(ty::Opaque, alias) = ty.ty.kind() {
505 if alias.def_id == key.def_id.to_def_id() && alias.args == key.args {
506 return Ok(());
509 }
510 }
511 let strip_vars = |ty: Ty<'tcx>| {
512 ty.fold_with(&mut BottomUpFolder {
513 tcx,
514 ty_op: |t| t,
515 ct_op: |c| c,
516 lt_op: |l| match l.kind() {
517 RegionKind::ReVar(_) => tcx.lifetimes.re_erased,
518 _ => l,
519 },
520 })
521 };
522 ty.ty = strip_vars(ty.ty);
525 let hidden_ty = tcx.type_of(key.def_id).instantiate(tcx, key.args);
527 let hidden_ty = strip_vars(hidden_ty);
528
529 if hidden_ty == ty.ty {
531 Ok(())
532 } else {
533 let span = tcx.def_span(key.def_id);
534 let other = ty::ProvisionalHiddenType { ty: hidden_ty, span };
535 Err(ty.build_mismatch_error(&other, tcx)?.emit())
536 }
537}
538
539fn check_opaque_precise_captures<'tcx>(tcx: TyCtxt<'tcx>, opaque_def_id: LocalDefId) {
548 let hir::OpaqueTy { bounds, .. } = *tcx.hir_node_by_def_id(opaque_def_id).expect_opaque_ty();
549 let Some(precise_capturing_args) = bounds.iter().find_map(|bound| match *bound {
550 hir::GenericBound::Use(bounds, ..) => Some(bounds),
551 _ => None,
552 }) else {
553 return;
555 };
556
557 let mut expected_captures = UnordSet::default();
558 let mut shadowed_captures = UnordSet::default();
559 let mut seen_params = UnordMap::default();
560 let mut prev_non_lifetime_param = None;
561 for arg in precise_capturing_args {
562 let (hir_id, ident) = match *arg {
563 hir::PreciseCapturingArg::Param(hir::PreciseCapturingNonLifetimeArg {
564 hir_id,
565 ident,
566 ..
567 }) => {
568 if prev_non_lifetime_param.is_none() {
569 prev_non_lifetime_param = Some(ident);
570 }
571 (hir_id, ident)
572 }
573 hir::PreciseCapturingArg::Lifetime(&hir::Lifetime { hir_id, ident, .. }) => {
574 if let Some(prev_non_lifetime_param) = prev_non_lifetime_param {
575 tcx.dcx().emit_err(errors::LifetimesMustBeFirst {
576 lifetime_span: ident.span,
577 name: ident.name,
578 other_span: prev_non_lifetime_param.span,
579 });
580 }
581 (hir_id, ident)
582 }
583 };
584
585 let ident = ident.normalize_to_macros_2_0();
586 if let Some(span) = seen_params.insert(ident, ident.span) {
587 tcx.dcx().emit_err(errors::DuplicatePreciseCapture {
588 name: ident.name,
589 first_span: span,
590 second_span: ident.span,
591 });
592 }
593
594 match tcx.named_bound_var(hir_id) {
595 Some(ResolvedArg::EarlyBound(def_id)) => {
596 expected_captures.insert(def_id.to_def_id());
597
598 if let DefKind::LifetimeParam = tcx.def_kind(def_id)
604 && let Some(def_id) = tcx
605 .map_opaque_lifetime_to_parent_lifetime(def_id)
606 .opt_param_def_id(tcx, tcx.parent(opaque_def_id.to_def_id()))
607 {
608 shadowed_captures.insert(def_id);
609 }
610 }
611 _ => {
612 tcx.dcx()
613 .span_delayed_bug(tcx.hir_span(hir_id), "parameter should have been resolved");
614 }
615 }
616 }
617
618 let variances = tcx.variances_of(opaque_def_id);
619 let mut def_id = Some(opaque_def_id.to_def_id());
620 while let Some(generics) = def_id {
621 let generics = tcx.generics_of(generics);
622 def_id = generics.parent;
623
624 for param in &generics.own_params {
625 if expected_captures.contains(¶m.def_id) {
626 assert_eq!(
627 variances[param.index as usize],
628 ty::Invariant,
629 "precise captured param should be invariant"
630 );
631 continue;
632 }
633 if shadowed_captures.contains(¶m.def_id) {
637 continue;
638 }
639
640 match param.kind {
641 ty::GenericParamDefKind::Lifetime => {
642 let use_span = tcx.def_span(param.def_id);
643 let opaque_span = tcx.def_span(opaque_def_id);
644 if variances[param.index as usize] == ty::Invariant {
646 if let DefKind::OpaqueTy = tcx.def_kind(tcx.parent(param.def_id))
647 && let Some(def_id) = tcx
648 .map_opaque_lifetime_to_parent_lifetime(param.def_id.expect_local())
649 .opt_param_def_id(tcx, tcx.parent(opaque_def_id.to_def_id()))
650 {
651 tcx.dcx().emit_err(errors::LifetimeNotCaptured {
652 opaque_span,
653 use_span,
654 param_span: tcx.def_span(def_id),
655 });
656 } else {
657 if tcx.def_kind(tcx.parent(param.def_id)) == DefKind::Trait {
658 tcx.dcx().emit_err(errors::LifetimeImplicitlyCaptured {
659 opaque_span,
660 param_span: tcx.def_span(param.def_id),
661 });
662 } else {
663 tcx.dcx().emit_err(errors::LifetimeNotCaptured {
668 opaque_span,
669 use_span: opaque_span,
670 param_span: use_span,
671 });
672 }
673 }
674 continue;
675 }
676 }
677 ty::GenericParamDefKind::Type { .. } => {
678 if matches!(tcx.def_kind(param.def_id), DefKind::Trait | DefKind::TraitAlias) {
679 tcx.dcx().emit_err(errors::SelfTyNotCaptured {
681 trait_span: tcx.def_span(param.def_id),
682 opaque_span: tcx.def_span(opaque_def_id),
683 });
684 } else {
685 tcx.dcx().emit_err(errors::ParamNotCaptured {
687 param_span: tcx.def_span(param.def_id),
688 opaque_span: tcx.def_span(opaque_def_id),
689 kind: "type",
690 });
691 }
692 }
693 ty::GenericParamDefKind::Const { .. } => {
694 tcx.dcx().emit_err(errors::ParamNotCaptured {
696 param_span: tcx.def_span(param.def_id),
697 opaque_span: tcx.def_span(opaque_def_id),
698 kind: "const",
699 });
700 }
701 }
702 }
703 }
704}
705
706fn is_enum_of_nonnullable_ptr<'tcx>(
707 tcx: TyCtxt<'tcx>,
708 adt_def: AdtDef<'tcx>,
709 args: GenericArgsRef<'tcx>,
710) -> bool {
711 if adt_def.repr().inhibit_enum_layout_opt() {
712 return false;
713 }
714
715 let [var_one, var_two] = &adt_def.variants().raw[..] else {
716 return false;
717 };
718 let (([], [field]) | ([field], [])) = (&var_one.fields.raw[..], &var_two.fields.raw[..]) else {
719 return false;
720 };
721 matches!(field.ty(tcx, args).kind(), ty::FnPtr(..) | ty::Ref(..))
722}
723
724fn check_static_linkage(tcx: TyCtxt<'_>, def_id: LocalDefId) {
725 if tcx.codegen_fn_attrs(def_id).import_linkage.is_some() {
726 if match tcx.type_of(def_id).instantiate_identity().kind() {
727 ty::RawPtr(_, _) => false,
728 ty::Adt(adt_def, args) => !is_enum_of_nonnullable_ptr(tcx, *adt_def, *args),
729 _ => true,
730 } {
731 tcx.dcx().emit_err(errors::LinkageType { span: tcx.def_span(def_id) });
732 }
733 }
734}
735
736pub(crate) fn check_item_type(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Result<(), ErrorGuaranteed> {
737 let mut res = Ok(());
738 let generics = tcx.generics_of(def_id);
739
740 for param in &generics.own_params {
741 match param.kind {
742 ty::GenericParamDefKind::Lifetime { .. } => {}
743 ty::GenericParamDefKind::Type { has_default, .. } => {
744 if has_default {
745 tcx.ensure_ok().type_of(param.def_id);
746 }
747 }
748 ty::GenericParamDefKind::Const { has_default, .. } => {
749 tcx.ensure_ok().type_of(param.def_id);
750 if has_default {
751 let ct = tcx.const_param_default(param.def_id).skip_binder();
753 if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
754 tcx.ensure_ok().type_of(uv.def);
755 }
756 }
757 }
758 }
759 }
760
761 match tcx.def_kind(def_id) {
762 DefKind::Static { .. } => {
763 tcx.ensure_ok().generics_of(def_id);
764 tcx.ensure_ok().type_of(def_id);
765 tcx.ensure_ok().predicates_of(def_id);
766
767 check_static_inhabited(tcx, def_id);
768 check_static_linkage(tcx, def_id);
769 let ty = tcx.type_of(def_id).instantiate_identity();
770 res = res.and(wfcheck::check_static_item(
771 tcx, def_id, ty, true,
772 ));
773
774 return res;
778 }
779 DefKind::Enum => {
780 tcx.ensure_ok().generics_of(def_id);
781 tcx.ensure_ok().type_of(def_id);
782 tcx.ensure_ok().predicates_of(def_id);
783 crate::collect::lower_enum_variant_types(tcx, def_id);
784 check_enum(tcx, def_id);
785 check_variances_for_type_defn(tcx, def_id);
786 }
787 DefKind::Fn => {
788 tcx.ensure_ok().generics_of(def_id);
789 tcx.ensure_ok().type_of(def_id);
790 tcx.ensure_ok().predicates_of(def_id);
791 tcx.ensure_ok().fn_sig(def_id);
792 tcx.ensure_ok().codegen_fn_attrs(def_id);
793 if let Some(i) = tcx.intrinsic(def_id) {
794 intrinsic::check_intrinsic_type(
795 tcx,
796 def_id,
797 tcx.def_ident_span(def_id).unwrap(),
798 i.name,
799 )
800 }
801 }
802 DefKind::Impl { of_trait } => {
803 tcx.ensure_ok().generics_of(def_id);
804 tcx.ensure_ok().type_of(def_id);
805 tcx.ensure_ok().predicates_of(def_id);
806 tcx.ensure_ok().associated_items(def_id);
807 check_diagnostic_attrs(tcx, def_id);
808 if of_trait {
809 let impl_trait_header = tcx.impl_trait_header(def_id);
810 res = res.and(
811 tcx.ensure_ok()
812 .coherent_trait(impl_trait_header.trait_ref.instantiate_identity().def_id),
813 );
814
815 if res.is_ok() {
816 check_impl_items_against_trait(tcx, def_id, impl_trait_header);
820 }
821 }
822 }
823 DefKind::Trait => {
824 tcx.ensure_ok().generics_of(def_id);
825 tcx.ensure_ok().trait_def(def_id);
826 tcx.ensure_ok().explicit_super_predicates_of(def_id);
827 tcx.ensure_ok().predicates_of(def_id);
828 tcx.ensure_ok().associated_items(def_id);
829 let assoc_items = tcx.associated_items(def_id);
830 check_diagnostic_attrs(tcx, def_id);
831
832 for &assoc_item in assoc_items.in_definition_order() {
833 match assoc_item.kind {
834 ty::AssocKind::Type { .. } if assoc_item.defaultness(tcx).has_value() => {
835 let trait_args = GenericArgs::identity_for_item(tcx, def_id);
836 let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds(
837 tcx,
838 assoc_item,
839 assoc_item,
840 ty::TraitRef::new_from_args(tcx, def_id.to_def_id(), trait_args),
841 );
842 }
843 _ => {}
844 }
845 }
846 }
847 DefKind::TraitAlias => {
848 tcx.ensure_ok().generics_of(def_id);
849 tcx.ensure_ok().explicit_implied_predicates_of(def_id);
850 tcx.ensure_ok().explicit_super_predicates_of(def_id);
851 tcx.ensure_ok().predicates_of(def_id);
852 }
853 def_kind @ (DefKind::Struct | DefKind::Union) => {
854 tcx.ensure_ok().generics_of(def_id);
855 tcx.ensure_ok().type_of(def_id);
856 tcx.ensure_ok().predicates_of(def_id);
857
858 let adt = tcx.adt_def(def_id).non_enum_variant();
859 for f in adt.fields.iter() {
860 tcx.ensure_ok().generics_of(f.did);
861 tcx.ensure_ok().type_of(f.did);
862 tcx.ensure_ok().predicates_of(f.did);
863 }
864
865 if let Some((_, ctor_def_id)) = adt.ctor {
866 crate::collect::lower_variant_ctor(tcx, ctor_def_id.expect_local());
867 }
868 match def_kind {
869 DefKind::Struct => check_struct(tcx, def_id),
870 DefKind::Union => check_union(tcx, def_id),
871 _ => unreachable!(),
872 }
873 check_variances_for_type_defn(tcx, def_id);
874 }
875 DefKind::OpaqueTy => {
876 check_opaque_precise_captures(tcx, def_id);
877
878 let origin = tcx.local_opaque_ty_origin(def_id);
879 if let hir::OpaqueTyOrigin::FnReturn { parent: fn_def_id, .. }
880 | hir::OpaqueTyOrigin::AsyncFn { parent: fn_def_id, .. } = origin
881 && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(fn_def_id)
882 && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn()
883 {
884 } else {
886 check_opaque(tcx, def_id);
887 }
888
889 tcx.ensure_ok().predicates_of(def_id);
890 tcx.ensure_ok().explicit_item_bounds(def_id);
891 tcx.ensure_ok().explicit_item_self_bounds(def_id);
892 if tcx.is_conditionally_const(def_id) {
893 tcx.ensure_ok().explicit_implied_const_bounds(def_id);
894 tcx.ensure_ok().const_conditions(def_id);
895 }
896
897 return res;
901 }
902 DefKind::Const => {
903 tcx.ensure_ok().generics_of(def_id);
904 tcx.ensure_ok().type_of(def_id);
905 tcx.ensure_ok().predicates_of(def_id);
906
907 res = res.and(enter_wf_checking_ctxt(tcx, def_id, |wfcx| {
908 let ty = tcx.type_of(def_id).instantiate_identity();
909 let ty_span = tcx.ty_span(def_id);
910 let ty = wfcx.deeply_normalize(ty_span, Some(WellFormedLoc::Ty(def_id)), ty);
911 wfcx.register_wf_obligation(ty_span, Some(WellFormedLoc::Ty(def_id)), ty.into());
912 wfcx.register_bound(
913 traits::ObligationCause::new(
914 ty_span,
915 def_id,
916 ObligationCauseCode::SizedConstOrStatic,
917 ),
918 tcx.param_env(def_id),
919 ty,
920 tcx.require_lang_item(LangItem::Sized, ty_span),
921 );
922 check_where_clauses(wfcx, def_id);
923
924 if find_attr!(tcx.get_all_attrs(def_id), AttributeKind::TypeConst(_)) {
925 wfcheck::check_type_const(wfcx, def_id, ty, true)?;
926 }
927 Ok(())
928 }));
929
930 return res;
934 }
935 DefKind::TyAlias => {
936 tcx.ensure_ok().generics_of(def_id);
937 tcx.ensure_ok().type_of(def_id);
938 tcx.ensure_ok().predicates_of(def_id);
939 check_type_alias_type_params_are_used(tcx, def_id);
940 if tcx.type_alias_is_lazy(def_id) {
941 res = res.and(enter_wf_checking_ctxt(tcx, def_id, |wfcx| {
942 let ty = tcx.type_of(def_id).instantiate_identity();
943 let span = tcx.def_span(def_id);
944 let item_ty = wfcx.deeply_normalize(span, Some(WellFormedLoc::Ty(def_id)), ty);
945 wfcx.register_wf_obligation(
946 span,
947 Some(WellFormedLoc::Ty(def_id)),
948 item_ty.into(),
949 );
950 check_where_clauses(wfcx, def_id);
951 Ok(())
952 }));
953 check_variances_for_type_defn(tcx, def_id);
954 }
955
956 return res;
960 }
961 DefKind::ForeignMod => {
962 let it = tcx.hir_expect_item(def_id);
963 let hir::ItemKind::ForeignMod { abi, items } = it.kind else {
964 return Ok(());
965 };
966
967 check_abi(tcx, it.hir_id(), it.span, abi);
968
969 for &item in items {
970 let def_id = item.owner_id.def_id;
971
972 let generics = tcx.generics_of(def_id);
973 let own_counts = generics.own_counts();
974 if generics.own_params.len() - own_counts.lifetimes != 0 {
975 let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) {
976 (_, 0) => ("type", "types", Some("u32")),
977 (0, _) => ("const", "consts", None),
980 _ => ("type or const", "types or consts", None),
981 };
982 let span = tcx.def_span(def_id);
983 struct_span_code_err!(
984 tcx.dcx(),
985 span,
986 E0044,
987 "foreign items may not have {kinds} parameters",
988 )
989 .with_span_label(span, format!("can't have {kinds} parameters"))
990 .with_help(
991 format!(
994 "replace the {} parameters with concrete {}{}",
995 kinds,
996 kinds_pl,
997 egs.map(|egs| format!(" like `{egs}`")).unwrap_or_default(),
998 ),
999 )
1000 .emit();
1001 }
1002
1003 tcx.ensure_ok().generics_of(def_id);
1004 tcx.ensure_ok().type_of(def_id);
1005 tcx.ensure_ok().predicates_of(def_id);
1006 if tcx.is_conditionally_const(def_id) {
1007 tcx.ensure_ok().explicit_implied_const_bounds(def_id);
1008 tcx.ensure_ok().const_conditions(def_id);
1009 }
1010 match tcx.def_kind(def_id) {
1011 DefKind::Fn => {
1012 tcx.ensure_ok().codegen_fn_attrs(def_id);
1013 tcx.ensure_ok().fn_sig(def_id);
1014 let item = tcx.hir_foreign_item(item);
1015 let hir::ForeignItemKind::Fn(sig, ..) = item.kind else { bug!() };
1016 check_c_variadic_abi(tcx, sig.decl, abi, item.span);
1017 }
1018 DefKind::Static { .. } => {
1019 tcx.ensure_ok().codegen_fn_attrs(def_id);
1020 }
1021 _ => (),
1022 }
1023 }
1024 }
1025 DefKind::Closure => {
1026 tcx.ensure_ok().codegen_fn_attrs(def_id);
1030 return res;
1038 }
1039 DefKind::AssocFn => {
1040 tcx.ensure_ok().codegen_fn_attrs(def_id);
1041 tcx.ensure_ok().type_of(def_id);
1042 tcx.ensure_ok().fn_sig(def_id);
1043 tcx.ensure_ok().predicates_of(def_id);
1044 res = res.and(check_associated_item(tcx, def_id));
1045 let assoc_item = tcx.associated_item(def_id);
1046 match assoc_item.container {
1047 ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {}
1048 ty::AssocContainer::Trait => {
1049 res = res.and(check_trait_item(tcx, def_id));
1050 }
1051 }
1052
1053 return res;
1057 }
1058 DefKind::AssocConst => {
1059 tcx.ensure_ok().type_of(def_id);
1060 tcx.ensure_ok().predicates_of(def_id);
1061 res = res.and(check_associated_item(tcx, def_id));
1062 let assoc_item = tcx.associated_item(def_id);
1063 match assoc_item.container {
1064 ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {}
1065 ty::AssocContainer::Trait => {
1066 res = res.and(check_trait_item(tcx, def_id));
1067 }
1068 }
1069
1070 return res;
1074 }
1075 DefKind::AssocTy => {
1076 tcx.ensure_ok().predicates_of(def_id);
1077 res = res.and(check_associated_item(tcx, def_id));
1078
1079 let assoc_item = tcx.associated_item(def_id);
1080 let has_type = match assoc_item.container {
1081 ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1082 ty::AssocContainer::Trait => {
1083 tcx.ensure_ok().explicit_item_bounds(def_id);
1084 tcx.ensure_ok().explicit_item_self_bounds(def_id);
1085 if tcx.is_conditionally_const(def_id) {
1086 tcx.ensure_ok().explicit_implied_const_bounds(def_id);
1087 tcx.ensure_ok().const_conditions(def_id);
1088 }
1089 res = res.and(check_trait_item(tcx, def_id));
1090 assoc_item.defaultness(tcx).has_value()
1091 }
1092 };
1093 if has_type {
1094 tcx.ensure_ok().type_of(def_id);
1095 }
1096
1097 return res;
1101 }
1102
1103 DefKind::AnonConst | DefKind::InlineConst => return res,
1107 _ => {}
1108 }
1109 let node = tcx.hir_node_by_def_id(def_id);
1110 res.and(match node {
1111 hir::Node::Crate(_) => bug!("check_well_formed cannot be applied to the crate root"),
1112 hir::Node::Item(item) => wfcheck::check_item(tcx, item),
1113 hir::Node::ForeignItem(item) => wfcheck::check_foreign_item(tcx, item),
1114 _ => unreachable!("{node:?}"),
1115 })
1116}
1117
1118pub(super) fn check_diagnostic_attrs(tcx: TyCtxt<'_>, def_id: LocalDefId) {
1119 let _ = OnUnimplementedDirective::of_item(tcx, def_id.to_def_id());
1121}
1122
1123pub(super) fn check_specialization_validity<'tcx>(
1124 tcx: TyCtxt<'tcx>,
1125 trait_def: &ty::TraitDef,
1126 trait_item: ty::AssocItem,
1127 impl_id: DefId,
1128 impl_item: DefId,
1129) {
1130 let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return };
1131 let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
1132 if parent.is_from_trait() {
1133 None
1134 } else {
1135 Some((parent, parent.item(tcx, trait_item.def_id)))
1136 }
1137 });
1138
1139 let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
1140 match parent_item {
1141 Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
1144 Some(Err(parent_impl.def_id()))
1145 }
1146
1147 Some(_) => Some(Ok(())),
1149
1150 None => {
1154 if tcx.defaultness(parent_impl.def_id()).is_default() {
1155 None
1156 } else {
1157 Some(Err(parent_impl.def_id()))
1158 }
1159 }
1160 }
1161 });
1162
1163 let result = opt_result.unwrap_or(Ok(()));
1166
1167 if let Err(parent_impl) = result {
1168 if !tcx.is_impl_trait_in_trait(impl_item) {
1169 report_forbidden_specialization(tcx, impl_item, parent_impl);
1170 } else {
1171 tcx.dcx().delayed_bug(format!("parent item: {parent_impl:?} not marked as default"));
1172 }
1173 }
1174}
1175
1176fn check_impl_items_against_trait<'tcx>(
1177 tcx: TyCtxt<'tcx>,
1178 impl_id: LocalDefId,
1179 impl_trait_header: ty::ImplTraitHeader<'tcx>,
1180) {
1181 let trait_ref = impl_trait_header.trait_ref.instantiate_identity();
1182 if trait_ref.references_error() {
1186 return;
1187 }
1188
1189 let impl_item_refs = tcx.associated_item_def_ids(impl_id);
1190
1191 match impl_trait_header.polarity {
1193 ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
1194 ty::ImplPolarity::Negative => {
1195 if let [first_item_ref, ..] = impl_item_refs {
1196 let first_item_span = tcx.def_span(first_item_ref);
1197 struct_span_code_err!(
1198 tcx.dcx(),
1199 first_item_span,
1200 E0749,
1201 "negative impls cannot have any items"
1202 )
1203 .emit();
1204 }
1205 return;
1206 }
1207 }
1208
1209 let trait_def = tcx.trait_def(trait_ref.def_id);
1210
1211 let self_is_guaranteed_unsize_self = tcx.impl_self_is_guaranteed_unsized(impl_id);
1212
1213 for &impl_item in impl_item_refs {
1214 let ty_impl_item = tcx.associated_item(impl_item);
1215 let ty_trait_item = match ty_impl_item.expect_trait_impl() {
1216 Ok(trait_item_id) => tcx.associated_item(trait_item_id),
1217 Err(ErrorGuaranteed { .. }) => continue,
1218 };
1219
1220 let res = tcx.ensure_ok().compare_impl_item(impl_item.expect_local());
1221
1222 if res.is_ok() {
1223 match ty_impl_item.kind {
1224 ty::AssocKind::Fn { .. } => {
1225 compare_impl_item::refine::check_refining_return_position_impl_trait_in_trait(
1226 tcx,
1227 ty_impl_item,
1228 ty_trait_item,
1229 tcx.impl_trait_ref(ty_impl_item.container_id(tcx)).instantiate_identity(),
1230 );
1231 }
1232 ty::AssocKind::Const { .. } => {}
1233 ty::AssocKind::Type { .. } => {}
1234 }
1235 }
1236
1237 if self_is_guaranteed_unsize_self && tcx.generics_require_sized_self(ty_trait_item.def_id) {
1238 tcx.emit_node_span_lint(
1239 rustc_lint_defs::builtin::DEAD_CODE,
1240 tcx.local_def_id_to_hir_id(ty_impl_item.def_id.expect_local()),
1241 tcx.def_span(ty_impl_item.def_id),
1242 errors::UselessImplItem,
1243 )
1244 }
1245
1246 check_specialization_validity(
1247 tcx,
1248 trait_def,
1249 ty_trait_item,
1250 impl_id.to_def_id(),
1251 impl_item,
1252 );
1253 }
1254
1255 if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
1256 let mut missing_items = Vec::new();
1258
1259 let mut must_implement_one_of: Option<&[Ident]> =
1260 trait_def.must_implement_one_of.as_deref();
1261
1262 for &trait_item_id in tcx.associated_item_def_ids(trait_ref.def_id) {
1263 let leaf_def = ancestors.leaf_def(tcx, trait_item_id);
1264
1265 let is_implemented = leaf_def
1266 .as_ref()
1267 .is_some_and(|node_item| node_item.item.defaultness(tcx).has_value());
1268
1269 if !is_implemented
1270 && tcx.defaultness(impl_id).is_final()
1271 && !(self_is_guaranteed_unsize_self && tcx.generics_require_sized_self(trait_item_id))
1273 {
1274 missing_items.push(tcx.associated_item(trait_item_id));
1275 }
1276
1277 let is_implemented_here =
1279 leaf_def.as_ref().is_some_and(|node_item| !node_item.defining_node.is_from_trait());
1280
1281 if !is_implemented_here {
1282 let full_impl_span = tcx.hir_span_with_body(tcx.local_def_id_to_hir_id(impl_id));
1283 match tcx.eval_default_body_stability(trait_item_id, full_impl_span) {
1284 EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable(
1285 tcx,
1286 full_impl_span,
1287 trait_item_id,
1288 feature,
1289 reason,
1290 issue,
1291 ),
1292
1293 EvalResult::Allow | EvalResult::Unmarked => {}
1295 }
1296 }
1297
1298 if let Some(required_items) = &must_implement_one_of {
1299 if is_implemented_here {
1300 let trait_item = tcx.associated_item(trait_item_id);
1301 if required_items.contains(&trait_item.ident(tcx)) {
1302 must_implement_one_of = None;
1303 }
1304 }
1305 }
1306
1307 if let Some(leaf_def) = &leaf_def
1308 && !leaf_def.is_final()
1309 && let def_id = leaf_def.item.def_id
1310 && tcx.impl_method_has_trait_impl_trait_tys(def_id)
1311 {
1312 let def_kind = tcx.def_kind(def_id);
1313 let descr = tcx.def_kind_descr(def_kind, def_id);
1314 let (msg, feature) = if tcx.asyncness(def_id).is_async() {
1315 (
1316 format!("async {descr} in trait cannot be specialized"),
1317 "async functions in traits",
1318 )
1319 } else {
1320 (
1321 format!(
1322 "{descr} with return-position `impl Trait` in trait cannot be specialized"
1323 ),
1324 "return position `impl Trait` in traits",
1325 )
1326 };
1327 tcx.dcx()
1328 .struct_span_err(tcx.def_span(def_id), msg)
1329 .with_note(format!(
1330 "specialization behaves in inconsistent and surprising ways with \
1331 {feature}, and for now is disallowed"
1332 ))
1333 .emit();
1334 }
1335 }
1336
1337 if !missing_items.is_empty() {
1338 let full_impl_span = tcx.hir_span_with_body(tcx.local_def_id_to_hir_id(impl_id));
1339 missing_items_err(tcx, impl_id, &missing_items, full_impl_span);
1340 }
1341
1342 if let Some(missing_items) = must_implement_one_of {
1343 let attr_span = find_attr!(tcx.get_all_attrs(trait_ref.def_id), AttributeKind::RustcMustImplementOneOf {attr_span, ..} => *attr_span);
1344
1345 missing_items_must_implement_one_of_err(
1346 tcx,
1347 tcx.def_span(impl_id),
1348 missing_items,
1349 attr_span,
1350 );
1351 }
1352 }
1353}
1354
1355fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
1356 let t = tcx.type_of(def_id).instantiate_identity();
1357 if let ty::Adt(def, args) = t.kind()
1358 && def.is_struct()
1359 {
1360 let fields = &def.non_enum_variant().fields;
1361 if fields.is_empty() {
1362 struct_span_code_err!(tcx.dcx(), sp, E0075, "SIMD vector cannot be empty").emit();
1363 return;
1364 }
1365
1366 let array_field = &fields[FieldIdx::ZERO];
1367 let array_ty = array_field.ty(tcx, args);
1368 let ty::Array(element_ty, len_const) = array_ty.kind() else {
1369 struct_span_code_err!(
1370 tcx.dcx(),
1371 sp,
1372 E0076,
1373 "SIMD vector's only field must be an array"
1374 )
1375 .with_span_label(tcx.def_span(array_field.did), "not an array")
1376 .emit();
1377 return;
1378 };
1379
1380 if let Some(second_field) = fields.get(FieldIdx::ONE) {
1381 struct_span_code_err!(tcx.dcx(), sp, E0075, "SIMD vector cannot have multiple fields")
1382 .with_span_label(tcx.def_span(second_field.did), "excess field")
1383 .emit();
1384 return;
1385 }
1386
1387 if let Some(len) = len_const.try_to_target_usize(tcx) {
1392 if len == 0 {
1393 struct_span_code_err!(tcx.dcx(), sp, E0075, "SIMD vector cannot be empty").emit();
1394 return;
1395 } else if len > MAX_SIMD_LANES {
1396 struct_span_code_err!(
1397 tcx.dcx(),
1398 sp,
1399 E0075,
1400 "SIMD vector cannot have more than {MAX_SIMD_LANES} elements",
1401 )
1402 .emit();
1403 return;
1404 }
1405 }
1406
1407 match element_ty.kind() {
1412 ty::Param(_) => (), ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_, _) => (), _ => {
1415 struct_span_code_err!(
1416 tcx.dcx(),
1417 sp,
1418 E0077,
1419 "SIMD vector element type should be a \
1420 primitive scalar (integer/float/pointer) type"
1421 )
1422 .emit();
1423 return;
1424 }
1425 }
1426 }
1427}
1428
1429#[tracing::instrument(skip(tcx), level = "debug")]
1430fn check_scalable_vector(tcx: TyCtxt<'_>, span: Span, def_id: LocalDefId, scalable: ScalableElt) {
1431 let ty = tcx.type_of(def_id).instantiate_identity();
1432 let ty::Adt(def, args) = ty.kind() else { return };
1433 if !def.is_struct() {
1434 tcx.dcx().delayed_bug("`rustc_scalable_vector` applied to non-struct");
1435 return;
1436 }
1437
1438 let fields = &def.non_enum_variant().fields;
1439 match scalable {
1440 ScalableElt::ElementCount(..) if fields.is_empty() => {
1441 let mut err =
1442 tcx.dcx().struct_span_err(span, "scalable vectors must have a single field");
1443 err.help("scalable vector types' only field must be a primitive scalar type");
1444 err.emit();
1445 return;
1446 }
1447 ScalableElt::ElementCount(..) if fields.len() >= 2 => {
1448 tcx.dcx().struct_span_err(span, "scalable vectors cannot have multiple fields").emit();
1449 return;
1450 }
1451 ScalableElt::Container if fields.is_empty() => {
1452 let mut err =
1453 tcx.dcx().struct_span_err(span, "scalable vectors must have a single field");
1454 err.help("tuples of scalable vectors can only contain multiple of the same scalable vector type");
1455 err.emit();
1456 return;
1457 }
1458 _ => {}
1459 }
1460
1461 match scalable {
1462 ScalableElt::ElementCount(..) => {
1463 let element_ty = &fields[FieldIdx::ZERO].ty(tcx, args);
1464
1465 match element_ty.kind() {
1469 ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Bool => (),
1470 _ => {
1471 let mut err = tcx.dcx().struct_span_err(
1472 span,
1473 "element type of a scalable vector must be a primitive scalar",
1474 );
1475 err.help("only `u*`, `i*`, `f*` and `bool` types are accepted");
1476 err.emit();
1477 }
1478 }
1479 }
1480 ScalableElt::Container => {
1481 let mut prev_field_ty = None;
1482 for field in fields.iter() {
1483 let element_ty = field.ty(tcx, args);
1484 if let ty::Adt(def, _) = element_ty.kind()
1485 && def.repr().scalable()
1486 {
1487 match def
1488 .repr()
1489 .scalable
1490 .expect("`repr().scalable.is_some()` != `repr().scalable()`")
1491 {
1492 ScalableElt::ElementCount(_) => { }
1493 ScalableElt::Container => {
1494 tcx.dcx().span_err(
1495 tcx.def_span(field.did),
1496 "scalable vector structs cannot contain other scalable vector structs",
1497 );
1498 break;
1499 }
1500 }
1501 } else {
1502 tcx.dcx().span_err(
1503 tcx.def_span(field.did),
1504 "scalable vector structs can only have scalable vector fields",
1505 );
1506 break;
1507 }
1508
1509 if let Some(prev_ty) = prev_field_ty.replace(element_ty)
1510 && prev_ty != element_ty
1511 {
1512 tcx.dcx().span_err(
1513 tcx.def_span(field.did),
1514 "all fields in a scalable vector struct must be the same type",
1515 );
1516 break;
1517 }
1518 }
1519 }
1520 }
1521}
1522
1523pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) {
1524 let repr = def.repr();
1525 if repr.packed() {
1526 if let Some(reprs) = find_attr!(tcx.get_all_attrs(def.did()), attrs::AttributeKind::Repr { reprs, .. } => reprs)
1527 {
1528 for (r, _) in reprs {
1529 if let ReprPacked(pack) = r
1530 && let Some(repr_pack) = repr.pack
1531 && pack != &repr_pack
1532 {
1533 struct_span_code_err!(
1534 tcx.dcx(),
1535 sp,
1536 E0634,
1537 "type has conflicting packed representation hints"
1538 )
1539 .emit();
1540 }
1541 }
1542 }
1543 if repr.align.is_some() {
1544 struct_span_code_err!(
1545 tcx.dcx(),
1546 sp,
1547 E0587,
1548 "type has conflicting packed and align representation hints"
1549 )
1550 .emit();
1551 } else if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) {
1552 let mut err = struct_span_code_err!(
1553 tcx.dcx(),
1554 sp,
1555 E0588,
1556 "packed type cannot transitively contain a `#[repr(align)]` type"
1557 );
1558
1559 err.span_note(
1560 tcx.def_span(def_spans[0].0),
1561 format!("`{}` has a `#[repr(align)]` attribute", tcx.item_name(def_spans[0].0)),
1562 );
1563
1564 if def_spans.len() > 2 {
1565 let mut first = true;
1566 for (adt_def, span) in def_spans.iter().skip(1).rev() {
1567 let ident = tcx.item_name(*adt_def);
1568 err.span_note(
1569 *span,
1570 if first {
1571 format!(
1572 "`{}` contains a field of type `{}`",
1573 tcx.type_of(def.did()).instantiate_identity(),
1574 ident
1575 )
1576 } else {
1577 format!("...which contains a field of type `{ident}`")
1578 },
1579 );
1580 first = false;
1581 }
1582 }
1583
1584 err.emit();
1585 }
1586 }
1587}
1588
1589pub(super) fn check_packed_inner(
1590 tcx: TyCtxt<'_>,
1591 def_id: DefId,
1592 stack: &mut Vec<DefId>,
1593) -> Option<Vec<(DefId, Span)>> {
1594 if let ty::Adt(def, args) = tcx.type_of(def_id).instantiate_identity().kind() {
1595 if def.is_struct() || def.is_union() {
1596 if def.repr().align.is_some() {
1597 return Some(vec![(def.did(), DUMMY_SP)]);
1598 }
1599
1600 stack.push(def_id);
1601 for field in &def.non_enum_variant().fields {
1602 if let ty::Adt(def, _) = field.ty(tcx, args).kind()
1603 && !stack.contains(&def.did())
1604 && let Some(mut defs) = check_packed_inner(tcx, def.did(), stack)
1605 {
1606 defs.push((def.did(), field.ident(tcx).span));
1607 return Some(defs);
1608 }
1609 }
1610 stack.pop();
1611 }
1612 }
1613
1614 None
1615}
1616
1617pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>) {
1618 if !adt.repr().transparent() {
1619 return;
1620 }
1621
1622 if adt.is_union() && !tcx.features().transparent_unions() {
1623 feature_err(
1624 &tcx.sess,
1625 sym::transparent_unions,
1626 tcx.def_span(adt.did()),
1627 "transparent unions are unstable",
1628 )
1629 .emit();
1630 }
1631
1632 if adt.variants().len() != 1 {
1633 bad_variant_count(tcx, adt, tcx.def_span(adt.did()), adt.did());
1634 return;
1636 }
1637
1638 let typing_env = ty::TypingEnv::non_body_analysis(tcx, adt.did());
1639 struct FieldInfo<'tcx> {
1641 span: Span,
1642 trivial: bool,
1643 ty: Ty<'tcx>,
1644 }
1645
1646 let field_infos = adt.all_fields().map(|field| {
1647 let ty = field.ty(tcx, GenericArgs::identity_for_item(tcx, field.did));
1648 let layout = tcx.layout_of(typing_env.as_query_input(ty));
1649 let span = tcx.hir_span_if_local(field.did).unwrap();
1651 let trivial = layout.is_ok_and(|layout| layout.is_1zst());
1652 FieldInfo { span, trivial, ty }
1653 });
1654
1655 let non_trivial_fields = field_infos
1656 .clone()
1657 .filter_map(|field| if !field.trivial { Some(field.span) } else { None });
1658 let non_trivial_count = non_trivial_fields.clone().count();
1659 if non_trivial_count >= 2 {
1660 bad_non_zero_sized_fields(
1661 tcx,
1662 adt,
1663 non_trivial_count,
1664 non_trivial_fields,
1665 tcx.def_span(adt.did()),
1666 );
1667 return;
1668 }
1669
1670 struct UnsuitedInfo<'tcx> {
1673 ty: Ty<'tcx>,
1675 reason: UnsuitedReason,
1676 }
1677 enum UnsuitedReason {
1678 NonExhaustive,
1679 PrivateField,
1680 ReprC,
1681 }
1682
1683 fn check_unsuited<'tcx>(
1684 tcx: TyCtxt<'tcx>,
1685 typing_env: ty::TypingEnv<'tcx>,
1686 ty: Ty<'tcx>,
1687 ) -> ControlFlow<UnsuitedInfo<'tcx>> {
1688 let ty = tcx.try_normalize_erasing_regions(typing_env, ty).unwrap_or(ty);
1690 match ty.kind() {
1691 ty::Tuple(list) => list.iter().try_for_each(|t| check_unsuited(tcx, typing_env, t)),
1692 ty::Array(ty, _) => check_unsuited(tcx, typing_env, *ty),
1693 ty::Adt(def, args) => {
1694 if !def.did().is_local()
1695 && !find_attr!(tcx.get_all_attrs(def.did()), AttributeKind::PubTransparent(_))
1696 {
1697 let non_exhaustive = def.is_variant_list_non_exhaustive()
1698 || def.variants().iter().any(ty::VariantDef::is_field_list_non_exhaustive);
1699 let has_priv = def.all_fields().any(|f| !f.vis.is_public());
1700 if non_exhaustive || has_priv {
1701 return ControlFlow::Break(UnsuitedInfo {
1702 ty,
1703 reason: if non_exhaustive {
1704 UnsuitedReason::NonExhaustive
1705 } else {
1706 UnsuitedReason::PrivateField
1707 },
1708 });
1709 }
1710 }
1711 if def.repr().c() {
1712 return ControlFlow::Break(UnsuitedInfo { ty, reason: UnsuitedReason::ReprC });
1713 }
1714 def.all_fields()
1715 .map(|field| field.ty(tcx, args))
1716 .try_for_each(|t| check_unsuited(tcx, typing_env, t))
1717 }
1718 _ => ControlFlow::Continue(()),
1719 }
1720 }
1721
1722 let mut prev_unsuited_1zst = false;
1723 for field in field_infos {
1724 if field.trivial
1725 && let Some(unsuited) = check_unsuited(tcx, typing_env, field.ty).break_value()
1726 {
1727 if non_trivial_count > 0 || prev_unsuited_1zst {
1730 tcx.node_span_lint(
1731 REPR_TRANSPARENT_NON_ZST_FIELDS,
1732 tcx.local_def_id_to_hir_id(adt.did().expect_local()),
1733 field.span,
1734 |lint| {
1735 let title = match unsuited.reason {
1736 UnsuitedReason::NonExhaustive => "external non-exhaustive types",
1737 UnsuitedReason::PrivateField => "external types with private fields",
1738 UnsuitedReason::ReprC => "`repr(C)` types",
1739 };
1740 lint.primary_message(
1741 format!("zero-sized fields in `repr(transparent)` cannot contain {title}"),
1742 );
1743 let note = match unsuited.reason {
1744 UnsuitedReason::NonExhaustive => "is marked with `#[non_exhaustive]`, so it could become non-zero-sized in the future.",
1745 UnsuitedReason::PrivateField => "contains private fields, so it could become non-zero-sized in the future.",
1746 UnsuitedReason::ReprC => "is a `#[repr(C)]` type, so it is not guaranteed to be zero-sized on all targets.",
1747 };
1748 lint.note(format!(
1749 "this field contains `{field_ty}`, which {note}",
1750 field_ty = unsuited.ty,
1751 ));
1752 },
1753 );
1754 } else {
1755 prev_unsuited_1zst = true;
1756 }
1757 }
1758 }
1759}
1760
1761#[allow(trivial_numeric_casts)]
1762fn check_enum(tcx: TyCtxt<'_>, def_id: LocalDefId) {
1763 let def = tcx.adt_def(def_id);
1764 def.destructor(tcx); if def.variants().is_empty() {
1767 find_attr!(
1768 tcx.get_all_attrs(def_id),
1769 attrs::AttributeKind::Repr { reprs, first_span } => {
1770 struct_span_code_err!(
1771 tcx.dcx(),
1772 reprs.first().map(|repr| repr.1).unwrap_or(*first_span),
1773 E0084,
1774 "unsupported representation for zero-variant enum"
1775 )
1776 .with_span_label(tcx.def_span(def_id), "zero-variant enum")
1777 .emit();
1778 }
1779 );
1780 }
1781
1782 for v in def.variants() {
1783 if let ty::VariantDiscr::Explicit(discr_def_id) = v.discr {
1784 tcx.ensure_ok().typeck(discr_def_id.expect_local());
1785 }
1786 }
1787
1788 if def.repr().int.is_none() {
1789 let is_unit = |var: &ty::VariantDef| matches!(var.ctor_kind(), Some(CtorKind::Const));
1790 let get_disr = |var: &ty::VariantDef| match var.discr {
1791 ty::VariantDiscr::Explicit(disr) => Some(disr),
1792 ty::VariantDiscr::Relative(_) => None,
1793 };
1794
1795 let non_unit = def.variants().iter().find(|var| !is_unit(var));
1796 let disr_unit =
1797 def.variants().iter().filter(|var| is_unit(var)).find_map(|var| get_disr(var));
1798 let disr_non_unit =
1799 def.variants().iter().filter(|var| !is_unit(var)).find_map(|var| get_disr(var));
1800
1801 if disr_non_unit.is_some() || (disr_unit.is_some() && non_unit.is_some()) {
1802 let mut err = struct_span_code_err!(
1803 tcx.dcx(),
1804 tcx.def_span(def_id),
1805 E0732,
1806 "`#[repr(inttype)]` must be specified for enums with explicit discriminants and non-unit variants"
1807 );
1808 if let Some(disr_non_unit) = disr_non_unit {
1809 err.span_label(
1810 tcx.def_span(disr_non_unit),
1811 "explicit discriminant on non-unit variant specified here",
1812 );
1813 } else {
1814 err.span_label(
1815 tcx.def_span(disr_unit.unwrap()),
1816 "explicit discriminant specified here",
1817 );
1818 err.span_label(
1819 tcx.def_span(non_unit.unwrap().def_id),
1820 "non-unit discriminant declared here",
1821 );
1822 }
1823 err.emit();
1824 }
1825 }
1826
1827 detect_discriminant_duplicate(tcx, def);
1828 check_transparent(tcx, def);
1829}
1830
1831fn detect_discriminant_duplicate<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>) {
1833 let report = |dis: Discr<'tcx>, idx, err: &mut Diag<'_>| {
1836 let var = adt.variant(idx); let (span, display_discr) = match var.discr {
1838 ty::VariantDiscr::Explicit(discr_def_id) => {
1839 if let hir::Node::AnonConst(expr) =
1841 tcx.hir_node_by_def_id(discr_def_id.expect_local())
1842 && let hir::ExprKind::Lit(lit) = &tcx.hir_body(expr.body).value.kind
1843 && let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node
1844 && *lit_value != dis.val
1845 {
1846 (tcx.def_span(discr_def_id), format!("`{dis}` (overflowed from `{lit_value}`)"))
1847 } else {
1848 (tcx.def_span(discr_def_id), format!("`{dis}`"))
1850 }
1851 }
1852 ty::VariantDiscr::Relative(0) => (tcx.def_span(var.def_id), format!("`{dis}`")),
1854 ty::VariantDiscr::Relative(distance_to_explicit) => {
1855 if let Some(explicit_idx) =
1860 idx.as_u32().checked_sub(distance_to_explicit).map(VariantIdx::from_u32)
1861 {
1862 let explicit_variant = adt.variant(explicit_idx);
1863 let ve_ident = var.name;
1864 let ex_ident = explicit_variant.name;
1865 let sp = if distance_to_explicit > 1 { "variants" } else { "variant" };
1866
1867 err.span_label(
1868 tcx.def_span(explicit_variant.def_id),
1869 format!(
1870 "discriminant for `{ve_ident}` incremented from this startpoint \
1871 (`{ex_ident}` + {distance_to_explicit} {sp} later \
1872 => `{ve_ident}` = {dis})"
1873 ),
1874 );
1875 }
1876
1877 (tcx.def_span(var.def_id), format!("`{dis}`"))
1878 }
1879 };
1880
1881 err.span_label(span, format!("{display_discr} assigned here"));
1882 };
1883
1884 let mut discrs = adt.discriminants(tcx).collect::<Vec<_>>();
1885
1886 let mut i = 0;
1893 while i < discrs.len() {
1894 let var_i_idx = discrs[i].0;
1895 let mut error: Option<Diag<'_, _>> = None;
1896
1897 let mut o = i + 1;
1898 while o < discrs.len() {
1899 let var_o_idx = discrs[o].0;
1900
1901 if discrs[i].1.val == discrs[o].1.val {
1902 let err = error.get_or_insert_with(|| {
1903 let mut ret = struct_span_code_err!(
1904 tcx.dcx(),
1905 tcx.def_span(adt.did()),
1906 E0081,
1907 "discriminant value `{}` assigned more than once",
1908 discrs[i].1,
1909 );
1910
1911 report(discrs[i].1, var_i_idx, &mut ret);
1912
1913 ret
1914 });
1915
1916 report(discrs[o].1, var_o_idx, err);
1917
1918 discrs[o] = *discrs.last().unwrap();
1920 discrs.pop();
1921 } else {
1922 o += 1;
1923 }
1924 }
1925
1926 if let Some(e) = error {
1927 e.emit();
1928 }
1929
1930 i += 1;
1931 }
1932}
1933
1934fn check_type_alias_type_params_are_used<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) {
1935 if tcx.type_alias_is_lazy(def_id) {
1936 return;
1939 }
1940
1941 let generics = tcx.generics_of(def_id);
1942 if generics.own_counts().types == 0 {
1943 return;
1944 }
1945
1946 let ty = tcx.type_of(def_id).instantiate_identity();
1947 if ty.references_error() {
1948 return;
1950 }
1951
1952 let bounded_params = LazyCell::new(|| {
1954 tcx.explicit_predicates_of(def_id)
1955 .predicates
1956 .iter()
1957 .filter_map(|(predicate, span)| {
1958 let bounded_ty = match predicate.kind().skip_binder() {
1959 ty::ClauseKind::Trait(pred) => pred.trait_ref.self_ty(),
1960 ty::ClauseKind::TypeOutlives(pred) => pred.0,
1961 _ => return None,
1962 };
1963 if let ty::Param(param) = bounded_ty.kind() {
1964 Some((param.index, span))
1965 } else {
1966 None
1967 }
1968 })
1969 .collect::<FxIndexMap<_, _>>()
1975 });
1976
1977 let mut params_used = DenseBitSet::new_empty(generics.own_params.len());
1978 for leaf in ty.walk() {
1979 if let GenericArgKind::Type(leaf_ty) = leaf.kind()
1980 && let ty::Param(param) = leaf_ty.kind()
1981 {
1982 debug!("found use of ty param {:?}", param);
1983 params_used.insert(param.index);
1984 }
1985 }
1986
1987 for param in &generics.own_params {
1988 if !params_used.contains(param.index)
1989 && let ty::GenericParamDefKind::Type { .. } = param.kind
1990 {
1991 let span = tcx.def_span(param.def_id);
1992 let param_name = Ident::new(param.name, span);
1993
1994 let has_explicit_bounds = bounded_params.is_empty()
1998 || (*bounded_params).get(¶m.index).is_some_and(|&&pred_sp| pred_sp != span);
1999 let const_param_help = !has_explicit_bounds;
2000
2001 let mut diag = tcx.dcx().create_err(errors::UnusedGenericParameter {
2002 span,
2003 param_name,
2004 param_def_kind: tcx.def_descr(param.def_id),
2005 help: errors::UnusedGenericParameterHelp::TyAlias { param_name },
2006 usage_spans: vec![],
2007 const_param_help,
2008 });
2009 diag.code(E0091);
2010 diag.emit();
2011 }
2012 }
2013}
2014
2015fn opaque_type_cycle_error(tcx: TyCtxt<'_>, opaque_def_id: LocalDefId) -> ErrorGuaranteed {
2024 let span = tcx.def_span(opaque_def_id);
2025 let mut err = struct_span_code_err!(tcx.dcx(), span, E0720, "cannot resolve opaque type");
2026
2027 let mut label = false;
2028 if let Some((def_id, visitor)) = get_owner_return_paths(tcx, opaque_def_id) {
2029 let typeck_results = tcx.typeck(def_id);
2030 if visitor
2031 .returns
2032 .iter()
2033 .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
2034 .all(|ty| matches!(ty.kind(), ty::Never))
2035 {
2036 let spans = visitor
2037 .returns
2038 .iter()
2039 .filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
2040 .map(|expr| expr.span)
2041 .collect::<Vec<Span>>();
2042 let span_len = spans.len();
2043 if span_len == 1 {
2044 err.span_label(spans[0], "this returned value is of `!` type");
2045 } else {
2046 let mut multispan: MultiSpan = spans.clone().into();
2047 for span in spans {
2048 multispan.push_span_label(span, "this returned value is of `!` type");
2049 }
2050 err.span_note(multispan, "these returned values have a concrete \"never\" type");
2051 }
2052 err.help("this error will resolve once the item's body returns a concrete type");
2053 } else {
2054 let mut seen = FxHashSet::default();
2055 seen.insert(span);
2056 err.span_label(span, "recursive opaque type");
2057 label = true;
2058 for (sp, ty) in visitor
2059 .returns
2060 .iter()
2061 .filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
2062 .filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
2063 {
2064 #[derive(Default)]
2065 struct OpaqueTypeCollector {
2066 opaques: Vec<DefId>,
2067 closures: Vec<DefId>,
2068 }
2069 impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for OpaqueTypeCollector {
2070 fn visit_ty(&mut self, t: Ty<'tcx>) {
2071 match *t.kind() {
2072 ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
2073 self.opaques.push(def);
2074 }
2075 ty::Closure(def_id, ..) | ty::Coroutine(def_id, ..) => {
2076 self.closures.push(def_id);
2077 t.super_visit_with(self);
2078 }
2079 _ => t.super_visit_with(self),
2080 }
2081 }
2082 }
2083
2084 let mut visitor = OpaqueTypeCollector::default();
2085 ty.visit_with(&mut visitor);
2086 for def_id in visitor.opaques {
2087 let ty_span = tcx.def_span(def_id);
2088 if !seen.contains(&ty_span) {
2089 let descr = if ty.is_impl_trait() { "opaque " } else { "" };
2090 err.span_label(ty_span, format!("returning this {descr}type `{ty}`"));
2091 seen.insert(ty_span);
2092 }
2093 err.span_label(sp, format!("returning here with type `{ty}`"));
2094 }
2095
2096 for closure_def_id in visitor.closures {
2097 let Some(closure_local_did) = closure_def_id.as_local() else {
2098 continue;
2099 };
2100 let typeck_results = tcx.typeck(closure_local_did);
2101
2102 let mut label_match = |ty: Ty<'_>, span| {
2103 for arg in ty.walk() {
2104 if let ty::GenericArgKind::Type(ty) = arg.kind()
2105 && let ty::Alias(
2106 ty::Opaque,
2107 ty::AliasTy { def_id: captured_def_id, .. },
2108 ) = *ty.kind()
2109 && captured_def_id == opaque_def_id.to_def_id()
2110 {
2111 err.span_label(
2112 span,
2113 format!(
2114 "{} captures itself here",
2115 tcx.def_descr(closure_def_id)
2116 ),
2117 );
2118 }
2119 }
2120 };
2121
2122 for capture in typeck_results.closure_min_captures_flattened(closure_local_did)
2124 {
2125 label_match(capture.place.ty(), capture.get_path_span(tcx));
2126 }
2127 if tcx.is_coroutine(closure_def_id)
2129 && let Some(coroutine_layout) = tcx.mir_coroutine_witnesses(closure_def_id)
2130 {
2131 for interior_ty in &coroutine_layout.field_tys {
2132 label_match(interior_ty.ty, interior_ty.source_info.span);
2133 }
2134 }
2135 }
2136 }
2137 }
2138 }
2139 if !label {
2140 err.span_label(span, "cannot resolve opaque type");
2141 }
2142 err.emit()
2143}
2144
2145pub(super) fn check_coroutine_obligations(
2146 tcx: TyCtxt<'_>,
2147 def_id: LocalDefId,
2148) -> Result<(), ErrorGuaranteed> {
2149 debug_assert!(!tcx.is_typeck_child(def_id.to_def_id()));
2150
2151 let typeck_results = tcx.typeck(def_id);
2152 let param_env = tcx.param_env(def_id);
2153
2154 debug!(?typeck_results.coroutine_stalled_predicates);
2155
2156 let mode = if tcx.next_trait_solver_globally() {
2157 TypingMode::borrowck(tcx, def_id)
2161 } else {
2162 TypingMode::analysis_in_body(tcx, def_id)
2163 };
2164
2165 let infcx = tcx.infer_ctxt().ignoring_regions().build(mode);
2170
2171 let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
2172 for (predicate, cause) in &typeck_results.coroutine_stalled_predicates {
2173 ocx.register_obligation(Obligation::new(tcx, cause.clone(), param_env, *predicate));
2174 }
2175
2176 let errors = ocx.evaluate_obligations_error_on_ambiguity();
2177 debug!(?errors);
2178 if !errors.is_empty() {
2179 return Err(infcx.err_ctxt().report_fulfillment_errors(errors));
2180 }
2181
2182 if !tcx.next_trait_solver_globally() {
2183 for (key, ty) in infcx.take_opaque_types() {
2186 let hidden_type = infcx.resolve_vars_if_possible(ty);
2187 let key = infcx.resolve_vars_if_possible(key);
2188 sanity_check_found_hidden_type(tcx, key, hidden_type)?;
2189 }
2190 } else {
2191 let _ = infcx.take_opaque_types();
2194 }
2195
2196 Ok(())
2197}
2198
2199pub(super) fn check_potentially_region_dependent_goals<'tcx>(
2200 tcx: TyCtxt<'tcx>,
2201 def_id: LocalDefId,
2202) -> Result<(), ErrorGuaranteed> {
2203 if !tcx.next_trait_solver_globally() {
2204 return Ok(());
2205 }
2206 let typeck_results = tcx.typeck(def_id);
2207 let param_env = tcx.param_env(def_id);
2208
2209 let typing_mode = TypingMode::borrowck(tcx, def_id);
2211 let infcx = tcx.infer_ctxt().ignoring_regions().build(typing_mode);
2212 let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
2213 for (predicate, cause) in &typeck_results.potentially_region_dependent_goals {
2214 let predicate = fold_regions(tcx, *predicate, |_, _| {
2215 infcx.next_region_var(RegionVariableOrigin::Misc(cause.span))
2216 });
2217 ocx.register_obligation(Obligation::new(tcx, cause.clone(), param_env, predicate));
2218 }
2219
2220 let errors = ocx.evaluate_obligations_error_on_ambiguity();
2221 debug!(?errors);
2222 if errors.is_empty() { Ok(()) } else { Err(infcx.err_ctxt().report_fulfillment_errors(errors)) }
2223}