1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
use std::collections::hash_map::Entry;

use rustc_data_structures::fx::FxHashMap;
use rustc_middle::ty::TypeVisitableExt;
use rustc_middle::ty::{
    self,
    error::TypeError,
    relate::{self, Relate, RelateResult, TypeRelation},
    Ty, TyCtxt,
};

use crate::infer::region_constraints::VerifyIfEq;

/// Given a "verify-if-eq" type test like:
///
/// ```rust,ignore (pseudo-Rust)
/// exists<'a...> {
///     verify_if_eq(some_type, bound_region)
/// }
/// ```
///
/// and the type `test_ty` that the type test is being tested against,
/// returns:
///
/// * `None` if `some_type` cannot be made equal to `test_ty`,
///   no matter the values of the variables in `exists`.
/// * `Some(r)` with a suitable bound (typically the value of `bound_region`, modulo
///   any bound existential variables, which will be instantiated) for the
///   type under test.
///
/// NB: This function uses a simplistic, syntactic version of type equality.
/// In other words, it may spuriously return `None` even if the type-under-test
/// is in fact equal to `some_type`. In practice, though, this is used on types
/// that are either projections like `T::Item` or `T` and it works fine, but it
/// could have trouble when complex types with higher-ranked binders and the
/// like are used. This is a particular challenge since this function is invoked
/// very late in inference and hence cannot make use of the normal inference
/// machinery.
#[instrument(level = "debug", skip(tcx))]
pub fn extract_verify_if_eq<'tcx>(
    tcx: TyCtxt<'tcx>,
    verify_if_eq_b: &ty::Binder<'tcx, VerifyIfEq<'tcx>>,
    test_ty: Ty<'tcx>,
) -> Option<ty::Region<'tcx>> {
    assert!(!verify_if_eq_b.has_escaping_bound_vars());
    let mut m = MatchAgainstHigherRankedOutlives::new(tcx);
    let verify_if_eq = verify_if_eq_b.skip_binder();
    m.relate(verify_if_eq.ty, test_ty).ok()?;

    if let ty::RegionKind::ReBound(depth, br) = verify_if_eq.bound.kind() {
        assert!(depth == ty::INNERMOST);
        match m.map.get(&br) {
            Some(&r) => Some(r),
            None => {
                // If there is no mapping, then this region is unconstrained.
                // In that case, we escalate to `'static`.
                Some(tcx.lifetimes.re_static)
            }
        }
    } else {
        // The region does not contain any bound variables, so we don't need
        // to do any instantiation.
        //
        // Example:
        //
        // for<'a> <T as Foo<'a>>::Item: 'b
        //
        // In this case, we've now matched and found a value for
        // `'a`, but it doesn't affect the bound `'b`.
        Some(verify_if_eq.bound)
    }
}

/// True if a (potentially higher-ranked) outlives
#[instrument(level = "debug", skip(tcx))]
pub(super) fn can_match_erased_ty<'tcx>(
    tcx: TyCtxt<'tcx>,
    outlives_predicate: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
    erased_ty: Ty<'tcx>,
) -> bool {
    assert!(!outlives_predicate.has_escaping_bound_vars());
    let erased_outlives_predicate = tcx.erase_regions(outlives_predicate);
    let outlives_ty = erased_outlives_predicate.skip_binder().0;
    if outlives_ty == erased_ty {
        // pointless micro-optimization
        true
    } else {
        MatchAgainstHigherRankedOutlives::new(tcx).relate(outlives_ty, erased_ty).is_ok()
    }
}

struct MatchAgainstHigherRankedOutlives<'tcx> {
    tcx: TyCtxt<'tcx>,
    pattern_depth: ty::DebruijnIndex,
    map: FxHashMap<ty::BoundRegion, ty::Region<'tcx>>,
}

impl<'tcx> MatchAgainstHigherRankedOutlives<'tcx> {
    fn new(tcx: TyCtxt<'tcx>) -> MatchAgainstHigherRankedOutlives<'tcx> {
        MatchAgainstHigherRankedOutlives {
            tcx,
            pattern_depth: ty::INNERMOST,
            map: FxHashMap::default(),
        }
    }
}

impl<'tcx> MatchAgainstHigherRankedOutlives<'tcx> {
    /// Creates the "Error" variant that signals "no match".
    fn no_match<T>(&self) -> RelateResult<'tcx, T> {
        Err(TypeError::Mismatch)
    }

    /// Binds the pattern variable `br` to `value`; returns an `Err` if the pattern
    /// is already bound to a different value.
    #[instrument(level = "debug", skip(self))]
    fn bind(
        &mut self,
        br: ty::BoundRegion,
        value: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        match self.map.entry(br) {
            Entry::Occupied(entry) => {
                if *entry.get() == value {
                    Ok(value)
                } else {
                    self.no_match()
                }
            }
            Entry::Vacant(entry) => {
                entry.insert(value);
                Ok(value)
            }
        }
    }
}

impl<'tcx> TypeRelation<'tcx> for MatchAgainstHigherRankedOutlives<'tcx> {
    fn tag(&self) -> &'static str {
        "MatchAgainstHigherRankedOutlives"
    }

    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn a_is_expected(&self) -> bool {
        true
    } // irrelevant

    #[instrument(level = "trace", skip(self))]
    fn relate_with_variance<T: Relate<'tcx>>(
        &mut self,
        variance: ty::Variance,
        _: ty::VarianceDiagInfo<'tcx>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        // Opaque types args have lifetime parameters.
        // We must not check them to be equal, as we never insert anything to make them so.
        if variance != ty::Bivariant { self.relate(a, b) } else { Ok(a) }
    }

    #[instrument(skip(self), level = "debug")]
    fn regions(
        &mut self,
        pattern: ty::Region<'tcx>,
        value: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        debug!("self.pattern_depth = {:?}", self.pattern_depth);
        if let ty::RegionKind::ReBound(depth, br) = pattern.kind()
            && depth == self.pattern_depth
        {
            self.bind(br, value)
        } else if pattern == value {
            Ok(pattern)
        } else {
            self.no_match()
        }
    }

    #[instrument(skip(self), level = "debug")]
    fn tys(&mut self, pattern: Ty<'tcx>, value: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        // FIXME(non_lifetime_binders): What to do here?
        if matches!(pattern.kind(), ty::Error(_) | ty::Bound(..)) {
            // Unlike normal `TypeRelation` rules, `ty::Error` does not equal any type.
            self.no_match()
        } else if pattern == value {
            Ok(pattern)
        } else {
            relate::structurally_relate_tys(self, pattern, value)
        }
    }

    #[instrument(skip(self), level = "debug")]
    fn consts(
        &mut self,
        pattern: ty::Const<'tcx>,
        value: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ty::Const<'tcx>> {
        debug!("{}.consts({:?}, {:?})", self.tag(), pattern, value);
        if pattern == value {
            Ok(pattern)
        } else {
            relate::structurally_relate_consts(self, pattern, value)
        }
    }

    fn binders<T>(
        &mut self,
        pattern: ty::Binder<'tcx, T>,
        value: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<'tcx>,
    {
        self.pattern_depth.shift_in(1);
        let result = Ok(pattern.rebind(self.relate(pattern.skip_binder(), value.skip_binder())?));
        self.pattern_depth.shift_out(1);
        result
    }
}