1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
use crate::dep_graph::dep_kinds;
use crate::query::plumbing::CyclePlaceholder;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{codes::*, pluralize, struct_span_code_err, Applicability, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_middle::ty::Representability;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_query_system::query::{report_cycle, CycleError};
use rustc_query_system::Value;
use rustc_span::def_id::LocalDefId;
use rustc_span::{ErrorGuaranteed, Span};

use std::collections::VecDeque;
use std::fmt::Write;
use std::ops::ControlFlow;

impl<'tcx> Value<TyCtxt<'tcx>> for Ty<'_> {
    fn from_cycle_error(tcx: TyCtxt<'tcx>, _: &CycleError, guar: ErrorGuaranteed) -> Self {
        // SAFETY: This is never called when `Self` is not `Ty<'tcx>`.
        // FIXME: Represent the above fact in the trait system somehow.
        unsafe { std::mem::transmute::<Ty<'tcx>, Ty<'_>>(Ty::new_error(tcx, guar)) }
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for Result<ty::EarlyBinder<Ty<'_>>, CyclePlaceholder> {
    fn from_cycle_error(_tcx: TyCtxt<'tcx>, _: &CycleError, guar: ErrorGuaranteed) -> Self {
        Err(CyclePlaceholder(guar))
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for ty::SymbolName<'_> {
    fn from_cycle_error(tcx: TyCtxt<'tcx>, _: &CycleError, _guar: ErrorGuaranteed) -> Self {
        // SAFETY: This is never called when `Self` is not `SymbolName<'tcx>`.
        // FIXME: Represent the above fact in the trait system somehow.
        unsafe {
            std::mem::transmute::<ty::SymbolName<'tcx>, ty::SymbolName<'_>>(ty::SymbolName::new(
                tcx, "<error>",
            ))
        }
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for ty::Binder<'_, ty::FnSig<'_>> {
    fn from_cycle_error(
        tcx: TyCtxt<'tcx>,
        cycle_error: &CycleError,
        guar: ErrorGuaranteed,
    ) -> Self {
        let err = Ty::new_error(tcx, guar);

        let arity = if let Some(frame) = cycle_error.cycle.get(0)
            && frame.query.dep_kind == dep_kinds::fn_sig
            && let Some(def_id) = frame.query.def_id
            && let Some(node) = tcx.hir().get_if_local(def_id)
            && let Some(sig) = node.fn_sig()
        {
            sig.decl.inputs.len() + sig.decl.implicit_self.has_implicit_self() as usize
        } else {
            tcx.dcx().abort_if_errors();
            unreachable!()
        };

        let fn_sig = ty::Binder::dummy(tcx.mk_fn_sig(
            std::iter::repeat(err).take(arity),
            err,
            false,
            rustc_hir::Unsafety::Normal,
            rustc_target::spec::abi::Abi::Rust,
        ));

        // SAFETY: This is never called when `Self` is not `ty::Binder<'tcx, ty::FnSig<'tcx>>`.
        // FIXME: Represent the above fact in the trait system somehow.
        unsafe { std::mem::transmute::<ty::PolyFnSig<'tcx>, ty::Binder<'_, ty::FnSig<'_>>>(fn_sig) }
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for Representability {
    fn from_cycle_error(
        tcx: TyCtxt<'tcx>,
        cycle_error: &CycleError,
        _guar: ErrorGuaranteed,
    ) -> Self {
        let mut item_and_field_ids = Vec::new();
        let mut representable_ids = FxHashSet::default();
        for info in &cycle_error.cycle {
            if info.query.dep_kind == dep_kinds::representability
                && let Some(field_id) = info.query.def_id
                && let Some(field_id) = field_id.as_local()
                && let Some(DefKind::Field) = info.query.def_kind
            {
                let parent_id = tcx.parent(field_id.to_def_id());
                let item_id = match tcx.def_kind(parent_id) {
                    DefKind::Variant => tcx.parent(parent_id),
                    _ => parent_id,
                };
                item_and_field_ids.push((item_id.expect_local(), field_id));
            }
        }
        for info in &cycle_error.cycle {
            if info.query.dep_kind == dep_kinds::representability_adt_ty
                && let Some(def_id) = info.query.ty_def_id
                && let Some(def_id) = def_id.as_local()
                && !item_and_field_ids.iter().any(|&(id, _)| id == def_id)
            {
                representable_ids.insert(def_id);
            }
        }
        let guar = recursive_type_error(tcx, item_and_field_ids, &representable_ids);
        Representability::Infinite(guar)
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for ty::EarlyBinder<Ty<'_>> {
    fn from_cycle_error(
        tcx: TyCtxt<'tcx>,
        cycle_error: &CycleError,
        guar: ErrorGuaranteed,
    ) -> Self {
        ty::EarlyBinder::bind(Ty::from_cycle_error(tcx, cycle_error, guar))
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for ty::EarlyBinder<ty::Binder<'_, ty::FnSig<'_>>> {
    fn from_cycle_error(
        tcx: TyCtxt<'tcx>,
        cycle_error: &CycleError,
        guar: ErrorGuaranteed,
    ) -> Self {
        ty::EarlyBinder::bind(ty::Binder::from_cycle_error(tcx, cycle_error, guar))
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for &[ty::Variance] {
    fn from_cycle_error(
        tcx: TyCtxt<'tcx>,
        cycle_error: &CycleError,
        _guar: ErrorGuaranteed,
    ) -> Self {
        if let Some(frame) = cycle_error.cycle.get(0)
            && frame.query.dep_kind == dep_kinds::variances_of
            && let Some(def_id) = frame.query.def_id
        {
            let n = tcx.generics_of(def_id).params.len();
            vec![ty::Variance::Bivariant; n].leak()
        } else {
            span_bug!(
                cycle_error.usage.as_ref().unwrap().0,
                "only `variances_of` returns `&[ty::Variance]`"
            );
        }
    }
}

// Take a cycle of `Q` and try `try_cycle` on every permutation, falling back to `otherwise`.
fn search_for_cycle_permutation<Q, T>(
    cycle: &[Q],
    try_cycle: impl Fn(&mut VecDeque<&Q>) -> ControlFlow<T, ()>,
    otherwise: impl FnOnce() -> T,
) -> T {
    let mut cycle: VecDeque<_> = cycle.iter().collect();
    for _ in 0..cycle.len() {
        match try_cycle(&mut cycle) {
            ControlFlow::Continue(_) => {
                cycle.rotate_left(1);
            }
            ControlFlow::Break(t) => return t,
        }
    }

    otherwise()
}

impl<'tcx, T> Value<TyCtxt<'tcx>> for Result<T, &'_ ty::layout::LayoutError<'_>> {
    fn from_cycle_error(
        tcx: TyCtxt<'tcx>,
        cycle_error: &CycleError,
        _guar: ErrorGuaranteed,
    ) -> Self {
        let diag = search_for_cycle_permutation(
            &cycle_error.cycle,
            |cycle| {
                if cycle[0].query.dep_kind == dep_kinds::layout_of
                    && let Some(def_id) = cycle[0].query.ty_def_id
                    && let Some(def_id) = def_id.as_local()
                    && let def_kind = tcx.def_kind(def_id)
                    && matches!(def_kind, DefKind::Closure)
                    && let Some(coroutine_kind) = tcx.coroutine_kind(def_id)
                {
                    // FIXME: `def_span` for an fn-like coroutine will point to the fn's body
                    // due to interactions between the desugaring into a closure expr and the
                    // def_span code. I'm not motivated to fix it, because I tried and it was
                    // not working, so just hack around it by grabbing the parent fn's span.
                    let span = if coroutine_kind.is_fn_like() {
                        tcx.def_span(tcx.local_parent(def_id))
                    } else {
                        tcx.def_span(def_id)
                    };
                    let mut diag = struct_span_code_err!(
                        tcx.sess.dcx(),
                        span,
                        E0733,
                        "recursion in {} {} requires boxing",
                        tcx.def_kind_descr_article(def_kind, def_id.to_def_id()),
                        tcx.def_kind_descr(def_kind, def_id.to_def_id()),
                    );
                    for (i, frame) in cycle.iter().enumerate() {
                        if frame.query.dep_kind != dep_kinds::layout_of {
                            continue;
                        }
                        let Some(frame_def_id) = frame.query.ty_def_id else {
                            continue;
                        };
                        let Some(frame_coroutine_kind) = tcx.coroutine_kind(frame_def_id) else {
                            continue;
                        };
                        let frame_span =
                            frame.query.default_span(cycle[(i + 1) % cycle.len()].span);
                        if frame_span.is_dummy() {
                            continue;
                        }
                        if i == 0 {
                            diag.span_label(frame_span, "recursive call here");
                        } else {
                            let coroutine_span: Span = if frame_coroutine_kind.is_fn_like() {
                                tcx.def_span(tcx.parent(frame_def_id))
                            } else {
                                tcx.def_span(frame_def_id)
                            };
                            let mut multispan = MultiSpan::from_span(coroutine_span);
                            multispan
                                .push_span_label(frame_span, "...leading to this recursive call");
                            diag.span_note(
                                multispan,
                                format!("which leads to this {}", tcx.def_descr(frame_def_id)),
                            );
                        }
                    }
                    // FIXME: We could report a structured suggestion if we had
                    // enough info here... Maybe we can use a hacky HIR walker.
                    if matches!(
                        coroutine_kind,
                        hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _)
                    ) {
                        diag.note("a recursive `async fn` call must introduce indirection such as `Box::pin` to avoid an infinitely sized future");
                    }

                    ControlFlow::Break(diag)
                } else {
                    ControlFlow::Continue(())
                }
            },
            || report_cycle(tcx.sess, cycle_error),
        );

        let guar = diag.emit();

        // tcx.arena.alloc cannot be used because we are not allowed to use &'tcx LayoutError under
        // min_specialization. Since this is an error path anyways, leaking doesn't matter (and really,
        // tcx.arena.alloc is pretty much equal to leaking).
        Err(Box::leak(Box::new(ty::layout::LayoutError::Cycle(guar))))
    }
}

// item_and_field_ids should form a cycle where each field contains the
// type in the next element in the list
pub fn recursive_type_error(
    tcx: TyCtxt<'_>,
    mut item_and_field_ids: Vec<(LocalDefId, LocalDefId)>,
    representable_ids: &FxHashSet<LocalDefId>,
) -> ErrorGuaranteed {
    const ITEM_LIMIT: usize = 5;

    // Rotate the cycle so that the item with the lowest span is first
    let start_index = item_and_field_ids
        .iter()
        .enumerate()
        .min_by_key(|&(_, &(id, _))| tcx.def_span(id))
        .unwrap()
        .0;
    item_and_field_ids.rotate_left(start_index);

    let cycle_len = item_and_field_ids.len();
    let show_cycle_len = cycle_len.min(ITEM_LIMIT);

    let mut err_span = MultiSpan::from_spans(
        item_and_field_ids[..show_cycle_len]
            .iter()
            .map(|(id, _)| tcx.def_span(id.to_def_id()))
            .collect(),
    );
    let mut suggestion = Vec::with_capacity(show_cycle_len * 2);
    for i in 0..show_cycle_len {
        let (_, field_id) = item_and_field_ids[i];
        let (next_item_id, _) = item_and_field_ids[(i + 1) % cycle_len];
        // Find the span(s) that contain the next item in the cycle
        let hir::Node::Field(field) = tcx.hir_node_by_def_id(field_id) else {
            bug!("expected field")
        };
        let mut found = Vec::new();
        find_item_ty_spans(tcx, field.ty, next_item_id, &mut found, representable_ids);

        // Couldn't find the type. Maybe it's behind a type alias?
        // In any case, we'll just suggest boxing the whole field.
        if found.is_empty() {
            found.push(field.ty.span);
        }

        for span in found {
            err_span.push_span_label(span, "recursive without indirection");
            // FIXME(compiler-errors): This suggestion might be erroneous if Box is shadowed
            suggestion.push((span.shrink_to_lo(), "Box<".to_string()));
            suggestion.push((span.shrink_to_hi(), ">".to_string()));
        }
    }
    let items_list = {
        let mut s = String::new();
        for (i, &(item_id, _)) in item_and_field_ids.iter().enumerate() {
            let path = tcx.def_path_str(item_id);
            write!(&mut s, "`{path}`").unwrap();
            if i == (ITEM_LIMIT - 1) && cycle_len > ITEM_LIMIT {
                write!(&mut s, " and {} more", cycle_len - 5).unwrap();
                break;
            }
            if cycle_len > 1 && i < cycle_len - 2 {
                s.push_str(", ");
            } else if cycle_len > 1 && i == cycle_len - 2 {
                s.push_str(" and ")
            }
        }
        s
    };
    struct_span_code_err!(
        tcx.dcx(),
        err_span,
        E0072,
        "recursive type{} {} {} infinite size",
        pluralize!(cycle_len),
        items_list,
        pluralize!("has", cycle_len),
    )
    .with_multipart_suggestion(
        "insert some indirection (e.g., a `Box`, `Rc`, or `&`) to break the cycle",
        suggestion,
        Applicability::HasPlaceholders,
    )
    .emit()
}

fn find_item_ty_spans(
    tcx: TyCtxt<'_>,
    ty: &hir::Ty<'_>,
    needle: LocalDefId,
    spans: &mut Vec<Span>,
    seen_representable: &FxHashSet<LocalDefId>,
) {
    match ty.kind {
        hir::TyKind::Path(hir::QPath::Resolved(_, path)) => {
            if let Res::Def(kind, def_id) = path.res
                && !matches!(kind, DefKind::TyAlias)
            {
                let check_params = def_id.as_local().map_or(true, |def_id| {
                    if def_id == needle {
                        spans.push(ty.span);
                    }
                    seen_representable.contains(&def_id)
                });
                if check_params && let Some(args) = path.segments.last().unwrap().args {
                    let params_in_repr = tcx.params_in_repr(def_id);
                    // the domain size check is needed because the HIR may not be well-formed at this point
                    for (i, arg) in args.args.iter().enumerate().take(params_in_repr.domain_size())
                    {
                        if let hir::GenericArg::Type(ty) = arg
                            && params_in_repr.contains(i as u32)
                        {
                            find_item_ty_spans(tcx, ty, needle, spans, seen_representable);
                        }
                    }
                }
            }
        }
        hir::TyKind::Array(ty, _) => find_item_ty_spans(tcx, ty, needle, spans, seen_representable),
        hir::TyKind::Tup(tys) => {
            tys.iter().for_each(|ty| find_item_ty_spans(tcx, ty, needle, spans, seen_representable))
        }
        _ => {}
    }
}