1use std::iter;
2
3pub use rustc_type_ir::relate::*;
4
5use crate::ty::error::{ExpectedFound, TypeError};
6use crate::ty::{self as ty, Ty, TyCtxt};
7
8pub type RelateResult<'tcx, T> = rustc_type_ir::relate::RelateResult<TyCtxt<'tcx>, T>;
9
10impl<'tcx> Relate<TyCtxt<'tcx>> for Ty<'tcx> {
11 #[inline]
12 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
13 relation: &mut R,
14 a: Ty<'tcx>,
15 b: Ty<'tcx>,
16 ) -> RelateResult<'tcx, Ty<'tcx>> {
17 relation.tys(a, b)
18 }
19}
20
21impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Pattern<'tcx> {
22 #[inline]
23 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
24 relation: &mut R,
25 a: Self,
26 b: Self,
27 ) -> RelateResult<'tcx, Self> {
28 let tcx = relation.cx();
29 match (&*a, &*b) {
30 (
31 &ty::PatternKind::Range { start: start_a, end: end_a },
32 &ty::PatternKind::Range { start: start_b, end: end_b },
33 ) => {
34 let start = relation.relate(start_a, start_b)?;
35 let end = relation.relate(end_a, end_b)?;
36 Ok(tcx.mk_pat(ty::PatternKind::Range { start, end }))
37 }
38 (&ty::PatternKind::Or(a), &ty::PatternKind::Or(b)) => {
39 if a.len() != b.len() {
40 return Err(TypeError::Mismatch);
41 }
42 let v = iter::zip(a, b).map(|(a, b)| relation.relate(a, b));
43 let patterns = tcx.mk_patterns_from_iter(v)?;
44 Ok(tcx.mk_pat(ty::PatternKind::Or(patterns)))
45 }
46 (ty::PatternKind::Range { .. } | ty::PatternKind::Or(_), _) => Err(TypeError::Mismatch),
47 }
48 }
49}
50
51impl<'tcx> Relate<TyCtxt<'tcx>> for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>> {
52 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
53 relation: &mut R,
54 a: Self,
55 b: Self,
56 ) -> RelateResult<'tcx, Self> {
57 let tcx = relation.cx();
58 if a.len() != b.len() {
62 return Err(TypeError::ExistentialMismatch(ExpectedFound::new(a, b)));
63 }
64 let v =
65 iter::zip(a, b).map(|(ep_a, ep_b)| match (ep_a.skip_binder(), ep_b.skip_binder()) {
66 (ty::ExistentialPredicate::Trait(a), ty::ExistentialPredicate::Trait(b)) => {
67 Ok(ep_a.rebind(ty::ExistentialPredicate::Trait(
68 relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
69 )))
70 }
71 (
72 ty::ExistentialPredicate::Projection(a),
73 ty::ExistentialPredicate::Projection(b),
74 ) => Ok(ep_a.rebind(ty::ExistentialPredicate::Projection(
75 relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
76 ))),
77 (
78 ty::ExistentialPredicate::AutoTrait(a),
79 ty::ExistentialPredicate::AutoTrait(b),
80 ) if a == b => Ok(ep_a.rebind(ty::ExistentialPredicate::AutoTrait(a))),
81 _ => Err(TypeError::ExistentialMismatch(ExpectedFound::new(a, b))),
82 });
83 tcx.mk_poly_existential_predicates_from_iter(v)
84 }
85}
86
87impl<'tcx> Relate<TyCtxt<'tcx>> for ty::GenericArgsRef<'tcx> {
88 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
89 relation: &mut R,
90 a: ty::GenericArgsRef<'tcx>,
91 b: ty::GenericArgsRef<'tcx>,
92 ) -> RelateResult<'tcx, ty::GenericArgsRef<'tcx>> {
93 relate_args_invariantly(relation, a, b)
94 }
95}
96
97impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Region<'tcx> {
98 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
99 relation: &mut R,
100 a: ty::Region<'tcx>,
101 b: ty::Region<'tcx>,
102 ) -> RelateResult<'tcx, ty::Region<'tcx>> {
103 relation.regions(a, b)
104 }
105}
106
107impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Const<'tcx> {
108 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
109 relation: &mut R,
110 a: ty::Const<'tcx>,
111 b: ty::Const<'tcx>,
112 ) -> RelateResult<'tcx, ty::Const<'tcx>> {
113 relation.consts(a, b)
114 }
115}
116
117impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Expr<'tcx> {
118 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
119 relation: &mut R,
120 ae: ty::Expr<'tcx>,
121 be: ty::Expr<'tcx>,
122 ) -> RelateResult<'tcx, ty::Expr<'tcx>> {
123 match (ae.kind, be.kind) {
130 (ty::ExprKind::Binop(a_binop), ty::ExprKind::Binop(b_binop)) if a_binop == b_binop => {}
131 (ty::ExprKind::UnOp(a_unop), ty::ExprKind::UnOp(b_unop)) if a_unop == b_unop => {}
132 (ty::ExprKind::FunctionCall, ty::ExprKind::FunctionCall) => {}
133 (ty::ExprKind::Cast(a_kind), ty::ExprKind::Cast(b_kind)) if a_kind == b_kind => {}
134 _ => return Err(TypeError::Mismatch),
135 }
136
137 let args = relation.relate(ae.args(), be.args())?;
138 Ok(ty::Expr::new(ae.kind, args))
139 }
140}
141
142impl<'tcx> Relate<TyCtxt<'tcx>> for ty::GenericArg<'tcx> {
143 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
144 relation: &mut R,
145 a: ty::GenericArg<'tcx>,
146 b: ty::GenericArg<'tcx>,
147 ) -> RelateResult<'tcx, ty::GenericArg<'tcx>> {
148 match (a.kind(), b.kind()) {
149 (ty::GenericArgKind::Lifetime(a_lt), ty::GenericArgKind::Lifetime(b_lt)) => {
150 Ok(relation.relate(a_lt, b_lt)?.into())
151 }
152 (ty::GenericArgKind::Type(a_ty), ty::GenericArgKind::Type(b_ty)) => {
153 Ok(relation.relate(a_ty, b_ty)?.into())
154 }
155 (ty::GenericArgKind::Const(a_ct), ty::GenericArgKind::Const(b_ct)) => {
156 Ok(relation.relate(a_ct, b_ct)?.into())
157 }
158 _ => bug!("impossible case reached: can't relate: {a:?} with {b:?}"),
159 }
160 }
161}
162
163impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Term<'tcx> {
164 fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
165 relation: &mut R,
166 a: Self,
167 b: Self,
168 ) -> RelateResult<'tcx, Self> {
169 Ok(match (a.kind(), b.kind()) {
170 (ty::TermKind::Ty(a), ty::TermKind::Ty(b)) => relation.relate(a, b)?.into(),
171 (ty::TermKind::Const(a), ty::TermKind::Const(b)) => relation.relate(a, b)?.into(),
172 _ => return Err(TypeError::Mismatch),
173 })
174 }
175}