1//! Partitioning Codegen Units for Incremental Compilation
2//! ======================================================
3//!
4//! The task of this module is to take the complete set of monomorphizations of
5//! a crate and produce a set of codegen units from it, where a codegen unit
6//! is a named set of (mono-item, linkage) pairs. That is, this module
7//! decides which monomorphization appears in which codegen units with which
8//! linkage. The following paragraphs describe some of the background on the
9//! partitioning scheme.
10//!
11//! The most important opportunity for saving on compilation time with
12//! incremental compilation is to avoid re-codegenning and re-optimizing code.
13//! Since the unit of codegen and optimization for LLVM is "modules" or, how
14//! we call them "codegen units", the particulars of how much time can be saved
15//! by incremental compilation are tightly linked to how the output program is
16//! partitioned into these codegen units prior to passing it to LLVM --
17//! especially because we have to treat codegen units as opaque entities once
18//! they are created: There is no way for us to incrementally update an existing
19//! LLVM module and so we have to build any such module from scratch if it was
20//! affected by some change in the source code.
21//!
22//! From that point of view it would make sense to maximize the number of
23//! codegen units by, for example, putting each function into its own module.
24//! That way only those modules would have to be re-compiled that were actually
25//! affected by some change, minimizing the number of functions that could have
26//! been re-used but just happened to be located in a module that is
27//! re-compiled.
28//!
29//! However, since LLVM optimization does not work across module boundaries,
30//! using such a highly granular partitioning would lead to very slow runtime
31//! code since it would effectively prohibit inlining and other inter-procedure
32//! optimizations. We want to avoid that as much as possible.
33//!
34//! Thus we end up with a trade-off: The bigger the codegen units, the better
35//! LLVM's optimizer can do its work, but also the smaller the compilation time
36//! reduction we get from incremental compilation.
37//!
38//! Ideally, we would create a partitioning such that there are few big codegen
39//! units with few interdependencies between them. For now though, we use the
40//! following heuristic to determine the partitioning:
41//!
42//! - There are two codegen units for every source-level module:
43//! - One for "stable", that is non-generic, code
44//! - One for more "volatile" code, i.e., monomorphized instances of functions
45//! defined in that module
46//!
47//! In order to see why this heuristic makes sense, let's take a look at when a
48//! codegen unit can get invalidated:
49//!
50//! 1. The most straightforward case is when the BODY of a function or global
51//! changes. Then any codegen unit containing the code for that item has to be
52//! re-compiled. Note that this includes all codegen units where the function
53//! has been inlined.
54//!
55//! 2. The next case is when the SIGNATURE of a function or global changes. In
56//! this case, all codegen units containing a REFERENCE to that item have to be
57//! re-compiled. This is a superset of case 1.
58//!
59//! 3. The final and most subtle case is when a REFERENCE to a generic function
60//! is added or removed somewhere. Even though the definition of the function
61//! might be unchanged, a new REFERENCE might introduce a new monomorphized
62//! instance of this function which has to be placed and compiled somewhere.
63//! Conversely, when removing a REFERENCE, it might have been the last one with
64//! that particular set of generic arguments and thus we have to remove it.
65//!
66//! From the above we see that just using one codegen unit per source-level
67//! module is not such a good idea, since just adding a REFERENCE to some
68//! generic item somewhere else would invalidate everything within the module
69//! containing the generic item. The heuristic above reduces this detrimental
70//! side-effect of references a little by at least not touching the non-generic
71//! code of the module.
72//!
73//! A Note on Inlining
74//! ------------------
75//! As briefly mentioned above, in order for LLVM to be able to inline a
76//! function call, the body of the function has to be available in the LLVM
77//! module where the call is made. This has a few consequences for partitioning:
78//!
79//! - The partitioning algorithm has to take care of placing functions into all
80//! codegen units where they should be available for inlining. It also has to
81//! decide on the correct linkage for these functions.
82//!
83//! - The partitioning algorithm has to know which functions are likely to get
84//! inlined, so it can distribute function instantiations accordingly. Since
85//! there is no way of knowing for sure which functions LLVM will decide to
86//! inline in the end, we apply a heuristic here: Only functions marked with
87//! `#[inline]` are considered for inlining by the partitioner. The current
88//! implementation will not try to determine if a function is likely to be
89//! inlined by looking at the functions definition.
90//!
91//! Note though that as a side-effect of creating a codegen units per
92//! source-level module, functions from the same module will be available for
93//! inlining, even when they are not marked `#[inline]`.
9495use std::cmp;
96use std::collections::hash_map::Entry;
97use std::fs::{self, File};
98use std::io::Write;
99use std::path::{Path, PathBuf};
100101use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
102use rustc_data_structures::sync;
103use rustc_data_structures::unord::{UnordMap, UnordSet};
104use rustc_hir::LangItem;
105use rustc_hir::attrs::{InlineAttr, Linkage};
106use rustc_hir::def::DefKind;
107use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE};
108use rustc_hir::definitions::DefPathDataName;
109use rustc_middle::bug;
110use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
111use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
112use rustc_middle::mir::mono::{
113 CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, MonoItem, MonoItemData,
114 MonoItemPartitions, Visibility,
115};
116use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths};
117use rustc_middle::ty::{self, InstanceKind, TyCtxt};
118use rustc_middle::util::Providers;
119use rustc_session::CodegenUnits;
120use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath};
121use rustc_span::Symbol;
122use rustc_target::spec::SymbolVisibility;
123use tracing::debug;
124125use crate::collector::{self, MonoItemCollectionStrategy, UsageMap};
126use crate::errors::{CouldntDumpMonoStats, SymbolAlreadyDefined};
127use crate::graph_checks::target_specific_checks;
128129struct PartitioningCx<'a, 'tcx> {
130 tcx: TyCtxt<'tcx>,
131 usage_map: &'a UsageMap<'tcx>,
132}
133134struct PlacedMonoItems<'tcx> {
135/// The codegen units, sorted by name to make things deterministic.
136codegen_units: Vec<CodegenUnit<'tcx>>,
137138 internalization_candidates: UnordSet<MonoItem<'tcx>>,
139}
140141// The output CGUs are sorted by name.
142fn partition<'tcx, I>(
143 tcx: TyCtxt<'tcx>,
144 mono_items: I,
145 usage_map: &UsageMap<'tcx>,
146) -> Vec<CodegenUnit<'tcx>>
147where
148I: Iterator<Item = MonoItem<'tcx>>,
149{
150let _prof_timer = tcx.prof.generic_activity("cgu_partitioning");
151152let cx = &PartitioningCx { tcx, usage_map };
153154// Place all mono items into a codegen unit. `place_mono_items` is
155 // responsible for initializing the CGU size estimates.
156let PlacedMonoItems { mut codegen_units, internalization_candidates } = {
157let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_items");
158let placed = place_mono_items(cx, mono_items);
159160debug_dump(tcx, "PLACE", &placed.codegen_units);
161162placed163 };
164165// Merge until we don't exceed the max CGU count.
166 // `merge_codegen_units` is responsible for updating the CGU size
167 // estimates.
168{
169let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
170merge_codegen_units(cx, &mut codegen_units);
171debug_dump(tcx, "MERGE", &codegen_units);
172 }
173174// Make as many symbols "internal" as possible, so LLVM has more freedom to
175 // optimize.
176if !tcx.sess.link_dead_code() {
177let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
178internalize_symbols(cx, &mut codegen_units, internalization_candidates);
179180debug_dump(tcx, "INTERNALIZE", &codegen_units);
181 }
182183// Mark one CGU for dead code, if necessary.
184if tcx.sess.instrument_coverage() {
185mark_code_coverage_dead_code_cgu(&mut codegen_units);
186 }
187188// Ensure CGUs are sorted by name, so that we get deterministic results.
189if !codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()) {
190let mut names = String::new();
191for cgu in codegen_units.iter() {
192 names += &::alloc::__export::must_use({
::alloc::fmt::format(format_args!("- {0}\n", cgu.name()))
})format!("- {}\n", cgu.name());
193 }
194::rustc_middle::util::bug::bug_fmt(format_args!("unsorted CGUs:\n{0}",
names));bug!("unsorted CGUs:\n{names}");
195 }
196197codegen_units198}
199200fn place_mono_items<'tcx, I>(cx: &PartitioningCx<'_, 'tcx>, mono_items: I) -> PlacedMonoItems<'tcx>
201where
202I: Iterator<Item = MonoItem<'tcx>>,
203{
204let mut codegen_units = UnordMap::default();
205let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
206let mut internalization_candidates = UnordSet::default();
207208// Determine if monomorphizations instantiated in this crate will be made
209 // available to downstream crates. This depends on whether we are in
210 // share-generics mode and whether the current crate can even have
211 // downstream crates.
212let can_export_generics = cx.tcx.local_crate_exports_generics();
213let always_export_generics = can_export_generics && cx.tcx.sess.opts.share_generics();
214215let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
216let cgu_name_cache = &mut UnordMap::default();
217218for mono_item in mono_items {
219// Handle only root (GloballyShared) items directly here. Inlined (LocalCopy) items
220 // are handled at the bottom of the loop based on reachability, with one exception.
221 // The #[lang = "start"] item is the program entrypoint, so there are no calls to it in MIR.
222 // So even if its mode is LocalCopy, we need to treat it like a root.
223match mono_item.instantiation_mode(cx.tcx) {
224 InstantiationMode::GloballyShared { .. } => {}
225 InstantiationMode::LocalCopy => continue,
226 }
227228let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
229let is_volatile = is_incremental_build && mono_item.is_generic_fn();
230231let cgu_name = match characteristic_def_id {
232Some(def_id) => compute_codegen_unit_name(
233 cx.tcx,
234 cgu_name_builder,
235 def_id,
236 is_volatile,
237 cgu_name_cache,
238 ),
239None => fallback_cgu_name(cgu_name_builder),
240 };
241242let cgu = codegen_units.entry(cgu_name).or_insert_with(|| CodegenUnit::new(cgu_name));
243244let mut can_be_internalized = true;
245let (linkage, visibility) = mono_item_linkage_and_visibility(
246 cx.tcx,
247&mono_item,
248&mut can_be_internalized,
249 can_export_generics,
250 always_export_generics,
251 );
252253if visibility == Visibility::Hidden && can_be_internalized {
254 internalization_candidates.insert(mono_item);
255 }
256let size_estimate = mono_item.size_estimate(cx.tcx);
257258 cgu.items_mut()
259 .insert(mono_item, MonoItemData { inlined: false, linkage, visibility, size_estimate });
260261// Get all inlined items that are reachable from `mono_item` without
262 // going via another root item. This includes drop-glue, functions from
263 // external crates, and local functions the definition of which is
264 // marked with `#[inline]`.
265let mut reachable_inlined_items = FxIndexSet::default();
266 get_reachable_inlined_items(cx.tcx, mono_item, cx.usage_map, &mut reachable_inlined_items);
267268// Add those inlined items. It's possible an inlined item is reachable
269 // from multiple root items within a CGU, which is fine, it just means
270 // the `insert` will be a no-op.
271for inlined_item in reachable_inlined_items {
272// This is a CGU-private copy.
273cgu.items_mut().entry(inlined_item).or_insert_with(|| MonoItemData {
274 inlined: true,
275 linkage: Linkage::Internal,
276 visibility: Visibility::Default,
277 size_estimate: inlined_item.size_estimate(cx.tcx),
278 });
279 }
280 }
281282// Always ensure we have at least one CGU; otherwise, if we have a
283 // crate with just types (for example), we could wind up with no CGU.
284if codegen_units.is_empty() {
285let cgu_name = fallback_cgu_name(cgu_name_builder);
286codegen_units.insert(cgu_name, CodegenUnit::new(cgu_name));
287 }
288289let mut codegen_units: Vec<_> = cx.tcx.with_stable_hashing_context(|ref hcx| {
290codegen_units.into_items().map(|(_, cgu)| cgu).collect_sorted(hcx, true)
291 });
292293for cgu in codegen_units.iter_mut() {
294 cgu.compute_size_estimate();
295 }
296297return PlacedMonoItems { codegen_units, internalization_candidates };
298299fn get_reachable_inlined_items<'tcx>(
300 tcx: TyCtxt<'tcx>,
301 item: MonoItem<'tcx>,
302 usage_map: &UsageMap<'tcx>,
303 visited: &mut FxIndexSet<MonoItem<'tcx>>,
304 ) {
305usage_map.for_each_inlined_used_item(tcx, item, |inlined_item| {
306let is_new = visited.insert(inlined_item);
307if is_new {
308get_reachable_inlined_items(tcx, inlined_item, usage_map, visited);
309 }
310 });
311 }
312}
313314// This function requires the CGUs to be sorted by name on input, and ensures
315// they are sorted by name on return, for deterministic behaviour.
316fn merge_codegen_units<'tcx>(
317 cx: &PartitioningCx<'_, 'tcx>,
318 codegen_units: &mut Vec<CodegenUnit<'tcx>>,
319) {
320if !(cx.tcx.sess.codegen_units().as_usize() >= 1) {
::core::panicking::panic("assertion failed: cx.tcx.sess.codegen_units().as_usize() >= 1")
};assert!(cx.tcx.sess.codegen_units().as_usize() >= 1);
321322// A sorted order here ensures merging is deterministic.
323if !codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str())
{
::core::panicking::panic("assertion failed: codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str())")
};assert!(codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()));
324325// This map keeps track of what got merged into what.
326let mut cgu_contents: UnordMap<Symbol, Vec<Symbol>> =
327codegen_units.iter().map(|cgu| (cgu.name(), <[_]>::into_vec(::alloc::boxed::box_new([cgu.name()]))vec![cgu.name()])).collect();
328329// If N is the maximum number of CGUs, and the CGUs are sorted from largest
330 // to smallest, we repeatedly find which CGU in codegen_units[N..] has the
331 // greatest overlap of inlined items with codegen_units[N-1], merge that
332 // CGU into codegen_units[N-1], then re-sort by size and repeat.
333 //
334 // We use inlined item overlap to guide this merging because it minimizes
335 // duplication of inlined items, which makes LLVM be faster and generate
336 // better and smaller machine code.
337 //
338 // Why merge into codegen_units[N-1]? We want CGUs to have similar sizes,
339 // which means we don't want codegen_units[0..N] (the already big ones)
340 // getting any bigger, if we can avoid it. When we have more than N CGUs
341 // then at least one of the biggest N will have to grow. codegen_units[N-1]
342 // is the smallest of those, and so has the most room to grow.
343let max_codegen_units = cx.tcx.sess.codegen_units().as_usize();
344while codegen_units.len() > max_codegen_units {
345// Sort small CGUs to the back.
346codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
347348let cgu_dst = &codegen_units[max_codegen_units - 1];
349350// Find the CGU that overlaps the most with `cgu_dst`. In the case of a
351 // tie, favour the earlier (bigger) CGU.
352let mut max_overlap = 0;
353let mut max_overlap_i = max_codegen_units;
354for (i, cgu_src) in codegen_units.iter().enumerate().skip(max_codegen_units) {
355if cgu_src.size_estimate() <= max_overlap {
356// None of the remaining overlaps can exceed `max_overlap`, so
357 // stop looking.
358break;
359 }
360361let overlap = compute_inlined_overlap(cgu_dst, cgu_src);
362if overlap > max_overlap {
363 max_overlap = overlap;
364 max_overlap_i = i;
365 }
366 }
367368let mut cgu_src = codegen_units.swap_remove(max_overlap_i);
369let cgu_dst = &mut codegen_units[max_codegen_units - 1];
370371// Move the items from `cgu_src` to `cgu_dst`. Some of them may be
372 // duplicate inlined items, in which case the destination CGU is
373 // unaffected. Recalculate size estimates afterwards.
374cgu_dst.items_mut().append(cgu_src.items_mut());
375 cgu_dst.compute_size_estimate();
376377// Record that `cgu_dst` now contains all the stuff that was in
378 // `cgu_src` before.
379let mut consumed_cgu_names = cgu_contents.remove(&cgu_src.name()).unwrap();
380 cgu_contents.get_mut(&cgu_dst.name()).unwrap().append(&mut consumed_cgu_names);
381 }
382383// Having multiple CGUs can drastically speed up compilation. But for
384 // non-incremental builds, tiny CGUs slow down compilation *and* result in
385 // worse generated code. So we don't allow CGUs smaller than this (unless
386 // there is just one CGU, of course). Note that CGU sizes of 100,000+ are
387 // common in larger programs, so this isn't all that large.
388const NON_INCR_MIN_CGU_SIZE: usize = 1800;
389390// Repeatedly merge the two smallest codegen units as long as: it's a
391 // non-incremental build, and the user didn't specify a CGU count, and
392 // there are multiple CGUs, and some are below the minimum size.
393 //
394 // The "didn't specify a CGU count" condition is because when an explicit
395 // count is requested we observe it as closely as possible. For example,
396 // the `compiler_builtins` crate sets `codegen-units = 10000` and it's
397 // critical they aren't merged. Also, some tests use explicit small values
398 // and likewise won't work if small CGUs are merged.
399while cx.tcx.sess.opts.incremental.is_none()
400 && #[allow(non_exhaustive_omitted_patterns)] match cx.tcx.sess.codegen_units() {
CodegenUnits::Default(_) => true,
_ => false,
}matches!(cx.tcx.sess.codegen_units(), CodegenUnits::Default(_))401 && codegen_units.len() > 1
402&& codegen_units.iter().any(|cgu| cgu.size_estimate() < NON_INCR_MIN_CGU_SIZE)
403 {
404// Sort small cgus to the back.
405codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
406407let mut smallest = codegen_units.pop().unwrap();
408let second_smallest = codegen_units.last_mut().unwrap();
409410// Move the items from `smallest` to `second_smallest`. Some of them
411 // may be duplicate inlined items, in which case the destination CGU is
412 // unaffected. Recalculate size estimates afterwards.
413second_smallest.items_mut().append(smallest.items_mut());
414 second_smallest.compute_size_estimate();
415416// Don't update `cgu_contents`, that's only for incremental builds.
417}
418419let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
420421// Rename the newly merged CGUs.
422if cx.tcx.sess.opts.incremental.is_some() {
423// If we are doing incremental compilation, we want CGU names to
424 // reflect the path of the source level module they correspond to.
425 // For CGUs that contain the code of multiple modules because of the
426 // merging done above, we use a concatenation of the names of all
427 // contained CGUs.
428let new_cgu_names = UnordMap::from(
429cgu_contents430 .items()
431// This `filter` makes sure we only update the name of CGUs that
432 // were actually modified by merging.
433.filter(|(_, cgu_contents)| cgu_contents.len() > 1)
434 .map(|(current_cgu_name, cgu_contents)| {
435let mut cgu_contents: Vec<&str> =
436cgu_contents.iter().map(|s| s.as_str()).collect();
437438// Sort the names, so things are deterministic and easy to
439 // predict. We are sorting primitive `&str`s here so we can
440 // use unstable sort.
441cgu_contents.sort_unstable();
442443 (*current_cgu_name, cgu_contents.join("--"))
444 }),
445 );
446447for cgu in codegen_units.iter_mut() {
448if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
449let new_cgu_name = if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
450 Symbol::intern(&CodegenUnit::shorten_name(new_cgu_name))
451 } else {
452// If we don't require CGU names to be human-readable,
453 // we use a fixed length hash of the composite CGU name
454 // instead.
455Symbol::intern(&CodegenUnit::mangle_name(new_cgu_name))
456 };
457 cgu.set_name(new_cgu_name);
458 }
459 }
460461// A sorted order here ensures what follows can be deterministic.
462codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
463 } else {
464// When compiling non-incrementally, we rename the CGUS so they have
465 // identical names except for the numeric suffix, something like
466 // `regex.f10ba03eb5ec7975-cgu.N`, where `N` varies.
467 //
468 // It is useful for debugging and profiling purposes if the resulting
469 // CGUs are sorted by name *and* reverse sorted by size. (CGU 0 is the
470 // biggest, CGU 1 is the second biggest, etc.)
471 //
472 // So first we reverse sort by size. Then we generate the names with
473 // zero-padded suffixes, which means they are automatically sorted by
474 // names. The numeric suffix width depends on the number of CGUs, which
475 // is always greater than zero:
476 // - [1,9] CGUs: `0`, `1`, `2`, ...
477 // - [10,99] CGUs: `00`, `01`, `02`, ...
478 // - [100,999] CGUs: `000`, `001`, `002`, ...
479 // - etc.
480 //
481 // If we didn't zero-pad the sorted-by-name order would be `XYZ-cgu.0`,
482 // `XYZ-cgu.1`, `XYZ-cgu.10`, `XYZ-cgu.11`, ..., `XYZ-cgu.2`, etc.
483codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
484let num_digits = codegen_units.len().ilog10() as usize + 1;
485for (index, cgu) in codegen_units.iter_mut().enumerate() {
486// Note: `WorkItem::short_description` depends on this name ending
487 // with `-cgu.` followed by a numeric suffix. Please keep it in
488 // sync with this code.
489let suffix = ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("{0:01$}", index, num_digits))
})format!("{index:0num_digits$}");
490let numbered_codegen_unit_name =
491 cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(suffix));
492 cgu.set_name(numbered_codegen_unit_name);
493 }
494 }
495}
496497/// Compute the combined size of all inlined items that appear in both `cgu1`
498/// and `cgu2`.
499fn compute_inlined_overlap<'tcx>(cgu1: &CodegenUnit<'tcx>, cgu2: &CodegenUnit<'tcx>) -> usize {
500// Either order works. We pick the one that involves iterating over fewer
501 // items.
502let (src_cgu, dst_cgu) =
503if cgu1.items().len() <= cgu2.items().len() { (cgu1, cgu2) } else { (cgu2, cgu1) };
504505let mut overlap = 0;
506for (item, data) in src_cgu.items().iter() {
507if data.inlined && dst_cgu.items().contains_key(item) {
508 overlap += data.size_estimate;
509 }
510 }
511overlap512}
513514fn internalize_symbols<'tcx>(
515 cx: &PartitioningCx<'_, 'tcx>,
516 codegen_units: &mut [CodegenUnit<'tcx>],
517 internalization_candidates: UnordSet<MonoItem<'tcx>>,
518) {
519/// For symbol internalization, we need to know whether a symbol/mono-item
520 /// is used from outside the codegen unit it is defined in. This type is
521 /// used to keep track of that.
522#[derive(#[automatically_derived]
impl ::core::clone::Clone for MonoItemPlacement {
#[inline]
fn clone(&self) -> MonoItemPlacement {
match self {
MonoItemPlacement::SingleCgu(__self_0) =>
MonoItemPlacement::SingleCgu(::core::clone::Clone::clone(__self_0)),
MonoItemPlacement::MultipleCgus =>
MonoItemPlacement::MultipleCgus,
}
}
}Clone, #[automatically_derived]
impl ::core::cmp::PartialEq for MonoItemPlacement {
#[inline]
fn eq(&self, other: &MonoItemPlacement) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr &&
match (self, other) {
(MonoItemPlacement::SingleCgu(__self_0),
MonoItemPlacement::SingleCgu(__arg1_0)) =>
__self_0 == __arg1_0,
_ => true,
}
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for MonoItemPlacement {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) {
let _: ::core::cmp::AssertParamIsEq<Symbol>;
}
}Eq, #[automatically_derived]
impl ::core::fmt::Debug for MonoItemPlacement {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
MonoItemPlacement::SingleCgu(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f,
"SingleCgu", &__self_0),
MonoItemPlacement::MultipleCgus =>
::core::fmt::Formatter::write_str(f, "MultipleCgus"),
}
}
}Debug)]
523enum MonoItemPlacement {
524 SingleCgu(Symbol),
525 MultipleCgus,
526 }
527528let mut mono_item_placements = UnordMap::default();
529let single_codegen_unit = codegen_units.len() == 1;
530531if !single_codegen_unit {
532for cgu in codegen_units.iter() {
533for item in cgu.items().keys() {
534// If there is more than one codegen unit, we need to keep track
535 // in which codegen units each monomorphization is placed.
536match mono_item_placements.entry(*item) {
537 Entry::Occupied(e) => {
538let placement = e.into_mut();
539if true {
if !match *placement {
MonoItemPlacement::SingleCgu(cgu_name) =>
cgu_name != cgu.name(),
MonoItemPlacement::MultipleCgus => true,
} {
::core::panicking::panic("assertion failed: match *placement {\n MonoItemPlacement::SingleCgu(cgu_name) => cgu_name != cgu.name(),\n MonoItemPlacement::MultipleCgus => true,\n}")
};
};debug_assert!(match *placement {
540 MonoItemPlacement::SingleCgu(cgu_name) => cgu_name != cgu.name(),
541 MonoItemPlacement::MultipleCgus => true,
542 });
543*placement = MonoItemPlacement::MultipleCgus;
544 }
545 Entry::Vacant(e) => {
546 e.insert(MonoItemPlacement::SingleCgu(cgu.name()));
547 }
548 }
549 }
550 }
551 }
552553// For each internalization candidates in each codegen unit, check if it is
554 // used from outside its defining codegen unit.
555for cgu in codegen_units {
556let home_cgu = MonoItemPlacement::SingleCgu(cgu.name());
557558for (item, data) in cgu.items_mut() {
559if !internalization_candidates.contains(item) {
560// This item is no candidate for internalizing, so skip it.
561continue;
562 }
563564if !single_codegen_unit {
565if true {
match (&mono_item_placements[item], &home_cgu) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val,
&*right_val, ::core::option::Option::None);
}
}
};
};debug_assert_eq!(mono_item_placements[item], home_cgu);
566567if cx
568 .usage_map
569 .get_user_items(*item)
570 .iter()
571 .filter_map(|user_item| {
572// Some user mono items might not have been
573 // instantiated. We can safely ignore those.
574mono_item_placements.get(user_item)
575 })
576 .any(|placement| *placement != home_cgu)
577 {
578// Found a user from another CGU, so skip to the next item
579 // without marking this one as internal.
580continue;
581 }
582 }
583584// When LTO inlines the caller of a naked function, it will attempt but fail to make the
585 // naked function symbol visible. To ensure that LTO works correctly, do not default
586 // naked functions to internal linkage and default visibility.
587if let MonoItem::Fn(instance) = item {
588let flags = cx.tcx.codegen_instance_attrs(instance.def).flags;
589if flags.contains(CodegenFnAttrFlags::NAKED) {
590continue;
591 }
592 }
593594// If we got here, we did not find any uses from other CGUs, so
595 // it's fine to make this monomorphization internal.
596data.linkage = Linkage::Internal;
597 data.visibility = Visibility::Default;
598 }
599 }
600}
601602fn mark_code_coverage_dead_code_cgu<'tcx>(codegen_units: &mut [CodegenUnit<'tcx>]) {
603if !!codegen_units.is_empty() {
::core::panicking::panic("assertion failed: !codegen_units.is_empty()")
};assert!(!codegen_units.is_empty());
604605// Find the smallest CGU that has exported symbols and put the dead
606 // function stubs in that CGU. We look for exported symbols to increase
607 // the likelihood the linker won't throw away the dead functions.
608 // FIXME(#92165): In order to truly resolve this, we need to make sure
609 // the object file (CGU) containing the dead function stubs is included
610 // in the final binary. This will probably require forcing these
611 // function symbols to be included via `-u` or `/include` linker args.
612let dead_code_cgu = codegen_units613 .iter_mut()
614 .filter(|cgu| cgu.items().iter().any(|(_, data)| data.linkage == Linkage::External))
615 .min_by_key(|cgu| cgu.size_estimate());
616617// If there are no CGUs that have externally linked items, then we just
618 // pick the first CGU as a fallback.
619let dead_code_cgu = if let Some(cgu) = dead_code_cgu { cgu } else { &mut codegen_units[0] };
620621dead_code_cgu.make_code_coverage_dead_code_cgu();
622}
623624fn characteristic_def_id_of_mono_item<'tcx>(
625 tcx: TyCtxt<'tcx>,
626 mono_item: MonoItem<'tcx>,
627) -> Option<DefId> {
628match mono_item {
629 MonoItem::Fn(instance) => {
630let def_id = match instance.def {
631 ty::InstanceKind::Item(def) => def,
632 ty::InstanceKind::VTableShim(..)
633 | ty::InstanceKind::ReifyShim(..)
634 | ty::InstanceKind::FnPtrShim(..)
635 | ty::InstanceKind::ClosureOnceShim { .. }
636 | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
637 | ty::InstanceKind::Intrinsic(..)
638 | ty::InstanceKind::DropGlue(..)
639 | ty::InstanceKind::Virtual(..)
640 | ty::InstanceKind::CloneShim(..)
641 | ty::InstanceKind::ThreadLocalShim(..)
642 | ty::InstanceKind::FnPtrAddrShim(..)
643 | ty::InstanceKind::FutureDropPollShim(..)
644 | ty::InstanceKind::AsyncDropGlue(..)
645 | ty::InstanceKind::AsyncDropGlueCtorShim(..) => return None,
646 };
647648// If this is a method, we want to put it into the same module as
649 // its self-type. If the self-type does not provide a characteristic
650 // DefId, we use the location of the impl after all.
651652let assoc_parent = tcx.assoc_parent(def_id);
653654if let Some((_, DefKind::Trait)) = assoc_parent {
655let self_ty = instance.args.type_at(0);
656// This is a default implementation of a trait method.
657return characteristic_def_id_of_type(self_ty).or(Some(def_id));
658 }
659660if let Some((impl_def_id, DefKind::Impl { of_trait })) = assoc_parent {
661if of_trait662 && tcx.sess.opts.incremental.is_some()
663 && tcx.is_lang_item(tcx.impl_trait_id(impl_def_id), LangItem::Drop)
664 {
665// Put `Drop::drop` into the same cgu as `drop_in_place`
666 // since `drop_in_place` is the only thing that can
667 // call it.
668return None;
669 }
670671// This is a method within an impl, find out what the self-type is:
672let impl_self_ty = tcx.instantiate_and_normalize_erasing_regions(
673instance.args,
674 ty::TypingEnv::fully_monomorphized(),
675tcx.type_of(impl_def_id),
676 );
677if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
678return Some(def_id);
679 }
680 }
681682Some(def_id)
683 }
684 MonoItem::Static(def_id) => Some(def_id),
685 MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
686 }
687}
688689fn compute_codegen_unit_name(
690 tcx: TyCtxt<'_>,
691 name_builder: &mut CodegenUnitNameBuilder<'_>,
692 def_id: DefId,
693 volatile: bool,
694 cache: &mut CguNameCache,
695) -> Symbol {
696// Find the innermost module that is not nested within a function.
697let mut current_def_id = def_id;
698let mut cgu_def_id = None;
699// Walk backwards from the item we want to find the module for.
700loop {
701if current_def_id.is_crate_root() {
702if cgu_def_id.is_none() {
703// If we have not found a module yet, take the crate root.
704cgu_def_id = Some(def_id.krate.as_def_id());
705 }
706break;
707 } else if tcx.def_kind(current_def_id) == DefKind::Mod {
708if cgu_def_id.is_none() {
709cgu_def_id = Some(current_def_id);
710 }
711 } else {
712// If we encounter something that is not a module, throw away
713 // any module that we've found so far because we now know that
714 // it is nested within something else.
715cgu_def_id = None;
716 }
717718current_def_id = tcx.parent(current_def_id);
719 }
720721let cgu_def_id = cgu_def_id.unwrap();
722723*cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
724let def_path = tcx.def_path(cgu_def_id);
725726let components = def_path.data.iter().map(|part| match part.data.name() {
727 DefPathDataName::Named(name) => name,
728 DefPathDataName::Anon { .. } => ::core::panicking::panic("internal error: entered unreachable code")unreachable!(),
729 });
730731let volatile_suffix = volatile.then_some("volatile");
732733name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
734 })
735}
736737// Anything we can't find a proper codegen unit for goes into this.
738fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
739name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
740}
741742fn mono_item_linkage_and_visibility<'tcx>(
743 tcx: TyCtxt<'tcx>,
744 mono_item: &MonoItem<'tcx>,
745 can_be_internalized: &mut bool,
746 can_export_generics: bool,
747 always_export_generics: bool,
748) -> (Linkage, Visibility) {
749if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
750return (explicit_linkage, Visibility::Default);
751 }
752let vis = mono_item_visibility(
753tcx,
754mono_item,
755can_be_internalized,
756can_export_generics,
757always_export_generics,
758 );
759 (Linkage::External, vis)
760}
761762type CguNameCache = UnordMap<(DefId, bool), Symbol>;
763764fn static_visibility<'tcx>(
765 tcx: TyCtxt<'tcx>,
766 can_be_internalized: &mut bool,
767 def_id: DefId,
768) -> Visibility {
769if tcx.is_reachable_non_generic(def_id) {
770*can_be_internalized = false;
771default_visibility(tcx, def_id, false)
772 } else {
773 Visibility::Hidden
774 }
775}
776777fn mono_item_visibility<'tcx>(
778 tcx: TyCtxt<'tcx>,
779 mono_item: &MonoItem<'tcx>,
780 can_be_internalized: &mut bool,
781 can_export_generics: bool,
782 always_export_generics: bool,
783) -> Visibility {
784let instance = match mono_item {
785// This is pretty complicated; see below.
786MonoItem::Fn(instance) => instance,
787788// Misc handling for generics and such, but otherwise:
789MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
790 MonoItem::GlobalAsm(item_id) => {
791return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
792 }
793 };
794795let def_id = match instance.def {
796 InstanceKind::Item(def_id)
797 | InstanceKind::DropGlue(def_id, Some(_))
798 | InstanceKind::FutureDropPollShim(def_id, _, _)
799 | InstanceKind::AsyncDropGlue(def_id, _)
800 | InstanceKind::AsyncDropGlueCtorShim(def_id, _) => def_id,
801802// We match the visibility of statics here
803InstanceKind::ThreadLocalShim(def_id) => {
804return static_visibility(tcx, can_be_internalized, def_id);
805 }
806807// These are all compiler glue and such, never exported, always hidden.
808InstanceKind::VTableShim(..)
809 | InstanceKind::ReifyShim(..)
810 | InstanceKind::FnPtrShim(..)
811 | InstanceKind::Virtual(..)
812 | InstanceKind::Intrinsic(..)
813 | InstanceKind::ClosureOnceShim { .. }
814 | InstanceKind::ConstructCoroutineInClosureShim { .. }
815 | InstanceKind::DropGlue(..)
816 | InstanceKind::CloneShim(..)
817 | InstanceKind::FnPtrAddrShim(..) => return Visibility::Hidden,
818 };
819820// Both the `start_fn` lang item and `main` itself should not be exported,
821 // so we give them with `Hidden` visibility but these symbols are
822 // only referenced from the actual `main` symbol which we unfortunately
823 // don't know anything about during partitioning/collection. As a result we
824 // forcibly keep this symbol out of the `internalization_candidates` set.
825 //
826 // FIXME: eventually we don't want to always force this symbol to have
827 // hidden visibility, it should indeed be a candidate for
828 // internalization, but we have to understand that it's referenced
829 // from the `main` symbol we'll generate later.
830 //
831 // This may be fixable with a new `InstanceKind` perhaps? Unsure!
832if tcx.is_entrypoint(def_id) {
833*can_be_internalized = false;
834return Visibility::Hidden;
835 }
836837let is_generic = instance.args.non_erasable_generics().next().is_some();
838839// Upstream `DefId` instances get different handling than local ones.
840let Some(def_id) = def_id.as_local() else {
841return if is_generic842 && (always_export_generics843 || (can_export_generics844 && tcx.codegen_fn_attrs(def_id).inline == InlineAttr::Never))
845 {
846// If it is an upstream monomorphization and we export generics, we must make
847 // it available to downstream crates.
848*can_be_internalized = false;
849default_visibility(tcx, def_id, true)
850 } else {
851 Visibility::Hidden
852 };
853 };
854855if is_generic {
856if always_export_generics857 || (can_export_generics && tcx.codegen_fn_attrs(def_id).inline == InlineAttr::Never)
858 {
859if tcx.is_unreachable_local_definition(def_id) {
860// This instance cannot be used from another crate.
861Visibility::Hidden
862 } else {
863// This instance might be useful in a downstream crate.
864*can_be_internalized = false;
865default_visibility(tcx, def_id.to_def_id(), true)
866 }
867 } else {
868// We are not exporting generics or the definition is not reachable
869 // for downstream crates, we can internalize its instantiations.
870Visibility::Hidden
871 }
872 } else {
873// If this isn't a generic function then we mark this a `Default` if
874 // this is a reachable item, meaning that it's a symbol other crates may
875 // use when they link to us.
876if tcx.is_reachable_non_generic(def_id.to_def_id()) {
877*can_be_internalized = false;
878if true {
if !!is_generic {
::core::panicking::panic("assertion failed: !is_generic")
};
};debug_assert!(!is_generic);
879return default_visibility(tcx, def_id.to_def_id(), false);
880 }
881882// If this isn't reachable then we're gonna tag this with `Hidden`
883 // visibility. In some situations though we'll want to prevent this
884 // symbol from being internalized.
885 //
886 // There's three categories of items here:
887 //
888 // * First is weak lang items. These are basically mechanisms for
889 // libcore to forward-reference symbols defined later in crates like
890 // the standard library or `#[panic_handler]` definitions. The
891 // definition of these weak lang items needs to be referenceable by
892 // libcore, so we're no longer a candidate for internalization.
893 // Removal of these functions can't be done by LLVM but rather must be
894 // done by the linker as it's a non-local decision.
895 //
896 // * Second is "std internal symbols". Currently this is primarily used
897 // for allocator symbols. Allocators are a little weird in their
898 // implementation, but the idea is that the compiler, at the last
899 // minute, defines an allocator with an injected object file. The
900 // `alloc` crate references these symbols (`__rust_alloc`) and the
901 // definition doesn't get hooked up until a linked crate artifact is
902 // generated.
903 //
904 // The symbols synthesized by the compiler (`__rust_alloc`) are thin
905 // veneers around the actual implementation, some other symbol which
906 // implements the same ABI. These symbols (things like `__rg_alloc`,
907 // `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
908 // internal symbols".
909 //
910 // The std-internal symbols here **should not show up in a dll as an
911 // exported interface**, so they return `false` from
912 // `is_reachable_non_generic` above and we'll give them `Hidden`
913 // visibility below. Like the weak lang items, though, we can't let
914 // LLVM internalize them as this decision is left up to the linker to
915 // omit them, so prevent them from being internalized.
916 //
917 // * Externally implementable items. They work (in this case) pretty much the same as
918 // RUSTC_STD_INTERNAL_SYMBOL in that their implementation is also chosen later in
919 // the compilation process and we can't let them be internalized and they can't
920 // show up as an external interface.
921let attrs = tcx.codegen_fn_attrs(def_id);
922if attrs.flags.intersects(
923 CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL
924 | CodegenFnAttrFlags::EXTERNALLY_IMPLEMENTABLE_ITEM,
925 ) {
926*can_be_internalized = false;
927 }
928929 Visibility::Hidden
930 }
931}
932933fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
934// Fast-path to avoid expensive query call below
935if tcx.sess.default_visibility() == SymbolVisibility::Interposable {
936return Visibility::Default;
937 }
938939let export_level = if is_generic {
940// Generic functions never have export-level C.
941SymbolExportLevel::Rust
942 } else {
943match tcx.reachable_non_generics(id.krate).get(&id) {
944Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => SymbolExportLevel::C,
945_ => SymbolExportLevel::Rust,
946 }
947 };
948949match export_level {
950// C-export level items remain at `Default` to allow C code to
951 // access and interpose them.
952SymbolExportLevel::C => Visibility::Default,
953954// For all other symbols, `default_visibility` determines which visibility to use.
955SymbolExportLevel::Rust => tcx.sess.default_visibility().into(),
956 }
957}
958959fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) {
960let dump = move || {
961use std::fmt::Write;
962963let mut num_cgus = 0;
964let mut all_cgu_sizes = Vec::new();
965966// Note: every unique root item is placed exactly once, so the number
967 // of unique root items always equals the number of placed root items.
968 //
969 // Also, unreached inlined items won't be counted here. This is fine.
970971let mut inlined_items = UnordSet::default();
972973let mut root_items = 0;
974let mut unique_inlined_items = 0;
975let mut placed_inlined_items = 0;
976977let mut root_size = 0;
978let mut unique_inlined_size = 0;
979let mut placed_inlined_size = 0;
980981for cgu in cgus.iter() {
982 num_cgus += 1;
983 all_cgu_sizes.push(cgu.size_estimate());
984985for (item, data) in cgu.items() {
986if !data.inlined {
987 root_items += 1;
988 root_size += data.size_estimate;
989 } else {
990if inlined_items.insert(item) {
991 unique_inlined_items += 1;
992 unique_inlined_size += data.size_estimate;
993 }
994 placed_inlined_items += 1;
995 placed_inlined_size += data.size_estimate;
996 }
997 }
998 }
9991000all_cgu_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
10011002let unique_items = root_items + unique_inlined_items;
1003let placed_items = root_items + placed_inlined_items;
1004let items_ratio = placed_itemsas f64 / unique_itemsas f64;
10051006let unique_size = root_size + unique_inlined_size;
1007let placed_size = root_size + placed_inlined_size;
1008let size_ratio = placed_sizeas f64 / unique_sizeas f64;
10091010let mean_cgu_size = placed_sizeas f64 / num_cgusas f64;
10111012match (&placed_size, &all_cgu_sizes.iter().sum::<usize>()) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_eq!(placed_size, all_cgu_sizes.iter().sum::<usize>());
10131014let s = &mut String::new();
1015let _ = s.write_fmt(format_args!("{0}\n", label))writeln!(s, "{label}");
1016let _ = s.write_fmt(format_args!("- unique items: {1} ({2} root + {3} inlined), unique size: {4} ({5} root + {6} inlined)\n- placed items: {7} ({2} root + {8} inlined), placed size: {9} ({5} root + {10} inlined)\n- placed/unique items ratio: {11:.2}, placed/unique size ratio: {12:.2}\n- CGUs: {13}, mean size: {14:.1}, sizes: {0}\n",
list(&all_cgu_sizes), unique_items, root_items, unique_inlined_items,
unique_size, root_size, unique_inlined_size, placed_items,
placed_inlined_items, placed_size, placed_inlined_size, items_ratio,
size_ratio, num_cgus, mean_cgu_size))writeln!(
1017s,
1018"- unique items: {unique_items} ({root_items} root + {unique_inlined_items} inlined), \
1019 unique size: {unique_size} ({root_size} root + {unique_inlined_size} inlined)\n\
1020 - placed items: {placed_items} ({root_items} root + {placed_inlined_items} inlined), \
1021 placed size: {placed_size} ({root_size} root + {placed_inlined_size} inlined)\n\
1022 - placed/unique items ratio: {items_ratio:.2}, \
1023 placed/unique size ratio: {size_ratio:.2}\n\
1024 - CGUs: {num_cgus}, mean size: {mean_cgu_size:.1}, sizes: {}",
1025 list(&all_cgu_sizes),
1026 );
1027let _ = s.write_fmt(format_args!("\n"))writeln!(s);
10281029for (i, cgu) in cgus.iter().enumerate() {
1030let name = cgu.name();
1031let size = cgu.size_estimate();
1032let num_items = cgu.items().len();
1033let mean_size = size as f64 / num_items as f64;
10341035let mut placed_item_sizes: Vec<_> =
1036 cgu.items().values().map(|data| data.size_estimate).collect();
1037 placed_item_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
1038let sizes = list(&placed_item_sizes);
10391040let _ = s.write_fmt(format_args!("- CGU[{0}]\n", i))writeln!(s, "- CGU[{i}]");
1041let _ = s.write_fmt(format_args!(" - {0}, size: {1}\n", name, size))writeln!(s, " - {name}, size: {size}");
1042let _ =
1043s.write_fmt(format_args!(" - items: {0}, mean size: {1:.1}, sizes: {2}\n",
num_items, mean_size, sizes))writeln!(s, " - items: {num_items}, mean size: {mean_size:.1}, sizes: {sizes}",);
10441045for (item, data) in cgu.items_in_deterministic_order(tcx) {
1046let linkage = data.linkage;
1047let symbol_name = item.symbol_name(tcx).name;
1048let symbol_hash_start = symbol_name.rfind('h');
1049let symbol_hash = symbol_hash_start.map_or("<no hash>", |i| &symbol_name[i..]);
1050let kind = if !data.inlined { "root" } else { "inlined" };
1051let size = data.size_estimate;
1052let _ = {
let _guard = NoTrimmedGuard::new();
s.write_fmt(format_args!(" - {0} [{1:?}] [{2}] ({3}, size: {4})\n", item,
linkage, symbol_hash, kind, size))
}with_no_trimmed_paths!(writeln!(
1053 s,
1054" - {item} [{linkage:?}] [{symbol_hash}] ({kind}, size: {size})"
1055));
1056 }
10571058let _ = s.write_fmt(format_args!("\n"))writeln!(s);
1059 }
10601061return std::mem::take(s);
10621063// Converts a slice to a string, capturing repetitions to save space.
1064 // E.g. `[4, 4, 4, 3, 2, 1, 1, 1, 1, 1]` -> "[4 (x3), 3, 2, 1 (x5)]".
1065fn list(ns: &[usize]) -> String {
1066let mut v = Vec::new();
1067if ns.is_empty() {
1068return "[]".to_string();
1069 }
10701071let mut elem = |curr, curr_count| {
1072if curr_count == 1 {
1073v.push(::alloc::__export::must_use({
::alloc::fmt::format(format_args!("{0}", curr))
})format!("{curr}"));
1074 } else {
1075v.push(::alloc::__export::must_use({
::alloc::fmt::format(format_args!("{0} (x{1})", curr, curr_count))
})format!("{curr} (x{curr_count})"));
1076 }
1077 };
10781079let mut curr = ns[0];
1080let mut curr_count = 1;
10811082for &n in &ns[1..] {
1083if n != curr {
1084 elem(curr, curr_count);
1085 curr = n;
1086 curr_count = 1;
1087 } else {
1088 curr_count += 1;
1089 }
1090 }
1091elem(curr, curr_count);
10921093::alloc::__export::must_use({
::alloc::fmt::format(format_args!("[{0}]", v.join(", ")))
})format!("[{}]", v.join(", "))1094 }
1095 };
10961097{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_monomorphize/src/partitioning.rs:1097",
"rustc_monomorphize::partitioning", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_monomorphize/src/partitioning.rs"),
::tracing_core::__macro_support::Option::Some(1097u32),
::tracing_core::__macro_support::Option::Some("rustc_monomorphize::partitioning"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("{0}",
dump()) as &dyn Value))])
});
} else { ; }
};debug!("{}", dump());
1098}
10991100#[inline(never)] // give this a place in the profiler
1101fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I)
1102where
1103I: Iterator<Item = &'a MonoItem<'tcx>>,
1104'tcx: 'a,
1105{
1106let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct");
11071108let mut symbols: Vec<_> =
1109mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect();
11101111symbols.sort_by_key(|sym| sym.1);
11121113for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() {
1114if sym1 == sym2 {
1115let span1 = mono_item1.local_span(tcx);
1116let span2 = mono_item2.local_span(tcx);
11171118// Deterministically select one of the spans for error reporting
1119let span = match (span1, span2) {
1120 (Some(span1), Some(span2)) => {
1121Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 })
1122 }
1123 (span1, span2) => span1.or(span2),
1124 };
11251126 tcx.dcx().emit_fatal(SymbolAlreadyDefined { span, symbol: sym1.to_string() });
1127 }
1128 }
1129}
11301131fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> MonoItemPartitions<'_> {
1132let collection_strategy = if tcx.sess.link_dead_code() {
1133 MonoItemCollectionStrategy::Eager1134 } else {
1135 MonoItemCollectionStrategy::Lazy1136 };
11371138let (items, usage_map) = collector::collect_crate_mono_items(tcx, collection_strategy);
1139// Perform checks that need to operate on the entire mono item graph
1140target_specific_checks(tcx, &items, &usage_map);
11411142// If there was an error during collection (e.g. from one of the constants we evaluated),
1143 // then we stop here. This way codegen does not have to worry about failing constants.
1144 // (codegen relies on this and ICEs will happen if this is violated.)
1145tcx.dcx().abort_if_errors();
11461147let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || {
1148 sync::join(
1149 || {
1150let mut codegen_units = partition(tcx, items.iter().copied(), &usage_map);
1151codegen_units[0].make_primary();
1152&*tcx.arena.alloc_from_iter(codegen_units)
1153 },
1154 || assert_symbols_are_distinct(tcx, items.iter()),
1155 )
1156 });
11571158if tcx.prof.enabled() {
1159// Record CGU size estimates for self-profiling.
1160for cgu in codegen_units {
1161 tcx.prof.artifact_size(
1162"codegen_unit_size_estimate",
1163 cgu.name().as_str(),
1164 cgu.size_estimate() as u64,
1165 );
1166 }
1167 }
11681169let mono_items: DefIdSet = items1170 .iter()
1171 .filter_map(|mono_item| match *mono_item {
1172 MonoItem::Fn(ref instance) => Some(instance.def_id()),
1173 MonoItem::Static(def_id) => Some(def_id),
1174_ => None,
1175 })
1176 .collect();
11771178// Output monomorphization stats per def_id
1179if let SwitchWithOptPath::Enabled(ref path) = tcx.sess.opts.unstable_opts.dump_mono_stats
1180 && let Err(err) =
1181dump_mono_items_stats(tcx, codegen_units, path, tcx.crate_name(LOCAL_CRATE))
1182 {
1183tcx.dcx().emit_fatal(CouldntDumpMonoStats { error: err.to_string() });
1184 }
11851186if tcx.sess.opts.unstable_opts.print_mono_items {
1187let mut item_to_cgus: UnordMap<_, Vec<_>> = Default::default();
11881189for cgu in codegen_units {
1190for (&mono_item, &data) in cgu.items() {
1191 item_to_cgus.entry(mono_item).or_default().push((cgu.name(), data.linkage));
1192 }
1193 }
11941195let mut item_keys: Vec<_> = items1196 .iter()
1197 .map(|i| {
1198let mut output = { let _guard = NoTrimmedGuard::new(); i.to_string() }with_no_trimmed_paths!(i.to_string());
1199output.push_str(" @@");
1200let mut empty = Vec::new();
1201let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
1202cgus.sort_by_key(|(name, _)| *name);
1203cgus.dedup();
1204for &(ref cgu_name, linkage) in cgus.iter() {
1205 output.push(' ');
1206 output.push_str(cgu_name.as_str());
12071208let linkage_abbrev = match linkage {
1209 Linkage::External => "External",
1210 Linkage::AvailableExternally => "Available",
1211 Linkage::LinkOnceAny => "OnceAny",
1212 Linkage::LinkOnceODR => "OnceODR",
1213 Linkage::WeakAny => "WeakAny",
1214 Linkage::WeakODR => "WeakODR",
1215 Linkage::Internal => "Internal",
1216 Linkage::ExternalWeak => "ExternalWeak",
1217 Linkage::Common => "Common",
1218 };
12191220 output.push('[');
1221 output.push_str(linkage_abbrev);
1222 output.push(']');
1223 }
1224output1225 })
1226 .collect();
12271228item_keys.sort();
12291230for item in item_keys {
1231{ ::std::io::_print(format_args!("MONO_ITEM {0}\n", item)); };println!("MONO_ITEM {item}");
1232 }
1233 }
12341235 MonoItemPartitions { all_mono_items: tcx.arena.alloc(mono_items), codegen_units }
1236}
12371238/// Outputs stats about instantiation counts and estimated size, per `MonoItem`'s
1239/// def, to a file in the given output directory.
1240fn dump_mono_items_stats<'tcx>(
1241 tcx: TyCtxt<'tcx>,
1242 codegen_units: &[CodegenUnit<'tcx>],
1243 output_directory: &Option<PathBuf>,
1244 crate_name: Symbol,
1245) -> Result<(), Box<dyn std::error::Error>> {
1246let output_directory = if let Some(directory) = output_directory {
1247 fs::create_dir_all(directory)?;
1248directory1249 } else {
1250Path::new(".")
1251 };
12521253let format = tcx.sess.opts.unstable_opts.dump_mono_stats_format;
1254let ext = format.extension();
1255let filename = ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("{0}.mono_items.{1}", crate_name,
ext))
})format!("{crate_name}.mono_items.{ext}");
1256let output_path = output_directory.join(&filename);
1257let mut file = File::create_buffered(&output_path)?;
12581259// Gather instantiated mono items grouped by def_id
1260let mut items_per_def_id: FxIndexMap<_, Vec<_>> = Default::default();
1261for cgu in codegen_units {
1262 cgu.items()
1263 .keys()
1264// Avoid variable-sized compiler-generated shims
1265.filter(|mono_item| mono_item.is_user_defined())
1266 .for_each(|mono_item| {
1267 items_per_def_id.entry(mono_item.def_id()).or_default().push(mono_item);
1268 });
1269 }
12701271#[derive(#[doc(hidden)]
#[allow(non_upper_case_globals, unused_attributes, unused_qualifications,
clippy :: absolute_paths,)]
const _: () =
{
#[allow(unused_extern_crates, clippy :: useless_attribute)]
extern crate serde as _serde;
;
#[automatically_derived]
impl _serde::Serialize for MonoItem {
fn serialize<__S>(&self, __serializer: __S)
-> _serde::__private228::Result<__S::Ok, __S::Error> where
__S: _serde::Serializer {
let mut __serde_state =
_serde::Serializer::serialize_struct(__serializer,
"MonoItem", false as usize + 1 + 1 + 1 + 1)?;
_serde::ser::SerializeStruct::serialize_field(&mut __serde_state,
"name", &self.name)?;
_serde::ser::SerializeStruct::serialize_field(&mut __serde_state,
"instantiation_count", &self.instantiation_count)?;
_serde::ser::SerializeStruct::serialize_field(&mut __serde_state,
"size_estimate", &self.size_estimate)?;
_serde::ser::SerializeStruct::serialize_field(&mut __serde_state,
"total_estimate", &self.total_estimate)?;
_serde::ser::SerializeStruct::end(__serde_state)
}
}
};serde::Serialize)]
1272struct MonoItem {
1273 name: String,
1274 instantiation_count: usize,
1275 size_estimate: usize,
1276 total_estimate: usize,
1277 }
12781279// Output stats sorted by total instantiated size, from heaviest to lightest
1280let mut stats: Vec<_> = items_per_def_id1281 .into_iter()
1282 .map(|(def_id, items)| {
1283let name = { let _guard = NoTrimmedGuard::new(); tcx.def_path_str(def_id) }with_no_trimmed_paths!(tcx.def_path_str(def_id));
1284let instantiation_count = items.len();
1285let size_estimate = items[0].size_estimate(tcx);
1286let total_estimate = instantiation_count * size_estimate;
1287MonoItem { name, instantiation_count, size_estimate, total_estimate }
1288 })
1289 .collect();
1290stats.sort_unstable_by_key(|item| cmp::Reverse(item.total_estimate));
12911292if !stats.is_empty() {
1293match format {
1294 DumpMonoStatsFormat::Json => serde_json::to_writer(file, &stats)?,
1295 DumpMonoStatsFormat::Markdown => {
1296file.write_fmt(format_args!("| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |\n"))writeln!(
1297file,
1298"| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |"
1299)?;
1300file.write_fmt(format_args!("| --- | ---: | ---: | ---: |\n"))writeln!(file, "| --- | ---: | ---: | ---: |")?;
13011302for MonoItem { name, instantiation_count, size_estimate, total_estimate } in stats {
1303file.write_fmt(format_args!("| `{0}` | {1} | {2} | {3} |\n", name,
instantiation_count, size_estimate, total_estimate))writeln!(
1304 file,
1305"| `{name}` | {instantiation_count} | {size_estimate} | {total_estimate} |"
1306)?;
1307 }
1308 }
1309 }
1310 }
13111312Ok(())
1313}
13141315pub(crate) fn provide(providers: &mut Providers) {
1316providers.queries.collect_and_partition_mono_items = collect_and_partition_mono_items;
13171318providers.queries.is_codegened_item =
1319 |tcx, def_id| tcx.collect_and_partition_mono_items(()).all_mono_items.contains(&def_id);
13201321providers.queries.codegen_unit = |tcx, name| {
1322tcx.collect_and_partition_mono_items(())
1323 .codegen_units
1324 .iter()
1325 .find(|cgu| cgu.name() == name)
1326 .unwrap_or_else(|| {
::core::panicking::panic_fmt(format_args!("failed to find cgu with name {0:?}",
name));
}panic!("failed to find cgu with name {name:?}"))
1327 };
13281329providers.queries.size_estimate = |tcx, instance| {
1330match instance.def {
1331// "Normal" functions size estimate: the number of
1332 // statements, plus one for the terminator.
1333InstanceKind::Item(..)
1334 | InstanceKind::DropGlue(..)
1335 | InstanceKind::AsyncDropGlueCtorShim(..) => {
1336let mir = tcx.instance_mir(instance.def);
1337mir.basic_blocks.iter().map(|bb| bb.statements.len() + 1).sum()
1338 }
1339// Other compiler-generated shims size estimate: 1
1340_ => 1,
1341 }
1342 };
13431344 collector::provide(providers);
1345}