rustc_monomorphize/partitioning.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
//! Partitioning Codegen Units for Incremental Compilation
//! ======================================================
//!
//! The task of this module is to take the complete set of monomorphizations of
//! a crate and produce a set of codegen units from it, where a codegen unit
//! is a named set of (mono-item, linkage) pairs. That is, this module
//! decides which monomorphization appears in which codegen units with which
//! linkage. The following paragraphs describe some of the background on the
//! partitioning scheme.
//!
//! The most important opportunity for saving on compilation time with
//! incremental compilation is to avoid re-codegenning and re-optimizing code.
//! Since the unit of codegen and optimization for LLVM is "modules" or, how
//! we call them "codegen units", the particulars of how much time can be saved
//! by incremental compilation are tightly linked to how the output program is
//! partitioned into these codegen units prior to passing it to LLVM --
//! especially because we have to treat codegen units as opaque entities once
//! they are created: There is no way for us to incrementally update an existing
//! LLVM module and so we have to build any such module from scratch if it was
//! affected by some change in the source code.
//!
//! From that point of view it would make sense to maximize the number of
//! codegen units by, for example, putting each function into its own module.
//! That way only those modules would have to be re-compiled that were actually
//! affected by some change, minimizing the number of functions that could have
//! been re-used but just happened to be located in a module that is
//! re-compiled.
//!
//! However, since LLVM optimization does not work across module boundaries,
//! using such a highly granular partitioning would lead to very slow runtime
//! code since it would effectively prohibit inlining and other inter-procedure
//! optimizations. We want to avoid that as much as possible.
//!
//! Thus we end up with a trade-off: The bigger the codegen units, the better
//! LLVM's optimizer can do its work, but also the smaller the compilation time
//! reduction we get from incremental compilation.
//!
//! Ideally, we would create a partitioning such that there are few big codegen
//! units with few interdependencies between them. For now though, we use the
//! following heuristic to determine the partitioning:
//!
//! - There are two codegen units for every source-level module:
//! - One for "stable", that is non-generic, code
//! - One for more "volatile" code, i.e., monomorphized instances of functions
//! defined in that module
//!
//! In order to see why this heuristic makes sense, let's take a look at when a
//! codegen unit can get invalidated:
//!
//! 1. The most straightforward case is when the BODY of a function or global
//! changes. Then any codegen unit containing the code for that item has to be
//! re-compiled. Note that this includes all codegen units where the function
//! has been inlined.
//!
//! 2. The next case is when the SIGNATURE of a function or global changes. In
//! this case, all codegen units containing a REFERENCE to that item have to be
//! re-compiled. This is a superset of case 1.
//!
//! 3. The final and most subtle case is when a REFERENCE to a generic function
//! is added or removed somewhere. Even though the definition of the function
//! might be unchanged, a new REFERENCE might introduce a new monomorphized
//! instance of this function which has to be placed and compiled somewhere.
//! Conversely, when removing a REFERENCE, it might have been the last one with
//! that particular set of generic arguments and thus we have to remove it.
//!
//! From the above we see that just using one codegen unit per source-level
//! module is not such a good idea, since just adding a REFERENCE to some
//! generic item somewhere else would invalidate everything within the module
//! containing the generic item. The heuristic above reduces this detrimental
//! side-effect of references a little by at least not touching the non-generic
//! code of the module.
//!
//! A Note on Inlining
//! ------------------
//! As briefly mentioned above, in order for LLVM to be able to inline a
//! function call, the body of the function has to be available in the LLVM
//! module where the call is made. This has a few consequences for partitioning:
//!
//! - The partitioning algorithm has to take care of placing functions into all
//! codegen units where they should be available for inlining. It also has to
//! decide on the correct linkage for these functions.
//!
//! - The partitioning algorithm has to know which functions are likely to get
//! inlined, so it can distribute function instantiations accordingly. Since
//! there is no way of knowing for sure which functions LLVM will decide to
//! inline in the end, we apply a heuristic here: Only functions marked with
//! `#[inline]` are considered for inlining by the partitioner. The current
//! implementation will not try to determine if a function is likely to be
//! inlined by looking at the functions definition.
//!
//! Note though that as a side-effect of creating a codegen units per
//! source-level module, functions from the same module will be available for
//! inlining, even when they are not marked `#[inline]`.
use std::cmp;
use std::collections::hash_map::Entry;
use std::fs::{self, File};
use std::io::Write;
use std::path::{Path, PathBuf};
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_data_structures::sync;
use rustc_data_structures::unord::{UnordMap, UnordSet};
use rustc_hir::LangItem;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE};
use rustc_hir::definitions::DefPathDataName;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
use rustc_middle::mir::mono::{
CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, Linkage, MonoItem, MonoItemData,
Visibility,
};
use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths};
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, InstanceKind, TyCtxt};
use rustc_middle::util::Providers;
use rustc_session::CodegenUnits;
use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath};
use rustc_span::symbol::Symbol;
use rustc_target::spec::SymbolVisibility;
use tracing::debug;
use crate::collector::{self, MonoItemCollectionStrategy, UsageMap};
use crate::errors::{CouldntDumpMonoStats, SymbolAlreadyDefined, UnknownCguCollectionMode};
struct PartitioningCx<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
usage_map: &'a UsageMap<'tcx>,
}
struct PlacedMonoItems<'tcx> {
/// The codegen units, sorted by name to make things deterministic.
codegen_units: Vec<CodegenUnit<'tcx>>,
internalization_candidates: UnordSet<MonoItem<'tcx>>,
}
// The output CGUs are sorted by name.
fn partition<'tcx, I>(
tcx: TyCtxt<'tcx>,
mono_items: I,
usage_map: &UsageMap<'tcx>,
) -> Vec<CodegenUnit<'tcx>>
where
I: Iterator<Item = MonoItem<'tcx>>,
{
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning");
let cx = &PartitioningCx { tcx, usage_map };
// Place all mono items into a codegen unit. `place_mono_items` is
// responsible for initializing the CGU size estimates.
let PlacedMonoItems { mut codegen_units, internalization_candidates } = {
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_items");
let placed = place_mono_items(cx, mono_items);
debug_dump(tcx, "PLACE", &placed.codegen_units);
placed
};
// Merge until we don't exceed the max CGU count.
// `merge_codegen_units` is responsible for updating the CGU size
// estimates.
{
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
merge_codegen_units(cx, &mut codegen_units);
debug_dump(tcx, "MERGE", &codegen_units);
}
// Make as many symbols "internal" as possible, so LLVM has more freedom to
// optimize.
if !tcx.sess.link_dead_code() {
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
internalize_symbols(cx, &mut codegen_units, internalization_candidates);
debug_dump(tcx, "INTERNALIZE", &codegen_units);
}
// Mark one CGU for dead code, if necessary.
if tcx.sess.instrument_coverage() {
mark_code_coverage_dead_code_cgu(&mut codegen_units);
}
// Ensure CGUs are sorted by name, so that we get deterministic results.
if !codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()) {
let mut names = String::new();
for cgu in codegen_units.iter() {
names += &format!("- {}\n", cgu.name());
}
bug!("unsorted CGUs:\n{names}");
}
codegen_units
}
fn place_mono_items<'tcx, I>(cx: &PartitioningCx<'_, 'tcx>, mono_items: I) -> PlacedMonoItems<'tcx>
where
I: Iterator<Item = MonoItem<'tcx>>,
{
let mut codegen_units = UnordMap::default();
let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
let mut internalization_candidates = UnordSet::default();
// Determine if monomorphizations instantiated in this crate will be made
// available to downstream crates. This depends on whether we are in
// share-generics mode and whether the current crate can even have
// downstream crates.
let export_generics =
cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics();
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
let cgu_name_cache = &mut UnordMap::default();
for mono_item in mono_items {
// Handle only root (GloballyShared) items directly here. Inlined (LocalCopy) items
// are handled at the bottom of the loop based on reachability, with one exception.
// The #[lang = "start"] item is the program entrypoint, so there are no calls to it in MIR.
// So even if its mode is LocalCopy, we need to treat it like a root.
match mono_item.instantiation_mode(cx.tcx) {
InstantiationMode::GloballyShared { .. } => {}
InstantiationMode::LocalCopy => {
if Some(mono_item.def_id()) != cx.tcx.lang_items().start_fn() {
continue;
}
}
}
let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
let is_volatile = is_incremental_build && mono_item.is_generic_fn();
let cgu_name = match characteristic_def_id {
Some(def_id) => compute_codegen_unit_name(
cx.tcx,
cgu_name_builder,
def_id,
is_volatile,
cgu_name_cache,
),
None => fallback_cgu_name(cgu_name_builder),
};
let cgu = codegen_units.entry(cgu_name).or_insert_with(|| CodegenUnit::new(cgu_name));
let mut can_be_internalized = true;
let (linkage, visibility) = mono_item_linkage_and_visibility(
cx.tcx,
&mono_item,
&mut can_be_internalized,
export_generics,
);
if visibility == Visibility::Hidden && can_be_internalized {
internalization_candidates.insert(mono_item);
}
let size_estimate = mono_item.size_estimate(cx.tcx);
cgu.items_mut().insert(mono_item, MonoItemData {
inlined: false,
linkage,
visibility,
size_estimate,
});
// Get all inlined items that are reachable from `mono_item` without
// going via another root item. This includes drop-glue, functions from
// external crates, and local functions the definition of which is
// marked with `#[inline]`.
let mut reachable_inlined_items = FxIndexSet::default();
get_reachable_inlined_items(cx.tcx, mono_item, cx.usage_map, &mut reachable_inlined_items);
// Add those inlined items. It's possible an inlined item is reachable
// from multiple root items within a CGU, which is fine, it just means
// the `insert` will be a no-op.
for inlined_item in reachable_inlined_items {
// This is a CGU-private copy.
cgu.items_mut().entry(inlined_item).or_insert_with(|| MonoItemData {
inlined: true,
linkage: Linkage::Internal,
visibility: Visibility::Default,
size_estimate: inlined_item.size_estimate(cx.tcx),
});
}
}
// Always ensure we have at least one CGU; otherwise, if we have a
// crate with just types (for example), we could wind up with no CGU.
if codegen_units.is_empty() {
let cgu_name = fallback_cgu_name(cgu_name_builder);
codegen_units.insert(cgu_name, CodegenUnit::new(cgu_name));
}
let mut codegen_units: Vec<_> = cx.tcx.with_stable_hashing_context(|ref hcx| {
codegen_units.into_items().map(|(_, cgu)| cgu).collect_sorted(hcx, true)
});
for cgu in codegen_units.iter_mut() {
cgu.compute_size_estimate();
}
return PlacedMonoItems { codegen_units, internalization_candidates };
fn get_reachable_inlined_items<'tcx>(
tcx: TyCtxt<'tcx>,
item: MonoItem<'tcx>,
usage_map: &UsageMap<'tcx>,
visited: &mut FxIndexSet<MonoItem<'tcx>>,
) {
usage_map.for_each_inlined_used_item(tcx, item, |inlined_item| {
let is_new = visited.insert(inlined_item);
if is_new {
get_reachable_inlined_items(tcx, inlined_item, usage_map, visited);
}
});
}
}
// This function requires the CGUs to be sorted by name on input, and ensures
// they are sorted by name on return, for deterministic behaviour.
fn merge_codegen_units<'tcx>(
cx: &PartitioningCx<'_, 'tcx>,
codegen_units: &mut Vec<CodegenUnit<'tcx>>,
) {
assert!(cx.tcx.sess.codegen_units().as_usize() >= 1);
// A sorted order here ensures merging is deterministic.
assert!(codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()));
// This map keeps track of what got merged into what.
let mut cgu_contents: UnordMap<Symbol, Vec<Symbol>> =
codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
// If N is the maximum number of CGUs, and the CGUs are sorted from largest
// to smallest, we repeatedly find which CGU in codegen_units[N..] has the
// greatest overlap of inlined items with codegen_units[N-1], merge that
// CGU into codegen_units[N-1], then re-sort by size and repeat.
//
// We use inlined item overlap to guide this merging because it minimizes
// duplication of inlined items, which makes LLVM be faster and generate
// better and smaller machine code.
//
// Why merge into codegen_units[N-1]? We want CGUs to have similar sizes,
// which means we don't want codegen_units[0..N] (the already big ones)
// getting any bigger, if we can avoid it. When we have more than N CGUs
// then at least one of the biggest N will have to grow. codegen_units[N-1]
// is the smallest of those, and so has the most room to grow.
let max_codegen_units = cx.tcx.sess.codegen_units().as_usize();
while codegen_units.len() > max_codegen_units {
// Sort small CGUs to the back.
codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
let cgu_dst = &codegen_units[max_codegen_units - 1];
// Find the CGU that overlaps the most with `cgu_dst`. In the case of a
// tie, favour the earlier (bigger) CGU.
let mut max_overlap = 0;
let mut max_overlap_i = max_codegen_units;
for (i, cgu_src) in codegen_units.iter().enumerate().skip(max_codegen_units) {
if cgu_src.size_estimate() <= max_overlap {
// None of the remaining overlaps can exceed `max_overlap`, so
// stop looking.
break;
}
let overlap = compute_inlined_overlap(cgu_dst, cgu_src);
if overlap > max_overlap {
max_overlap = overlap;
max_overlap_i = i;
}
}
let mut cgu_src = codegen_units.swap_remove(max_overlap_i);
let cgu_dst = &mut codegen_units[max_codegen_units - 1];
// Move the items from `cgu_src` to `cgu_dst`. Some of them may be
// duplicate inlined items, in which case the destination CGU is
// unaffected. Recalculate size estimates afterwards.
cgu_dst.items_mut().append(cgu_src.items_mut());
cgu_dst.compute_size_estimate();
// Record that `cgu_dst` now contains all the stuff that was in
// `cgu_src` before.
let mut consumed_cgu_names = cgu_contents.remove(&cgu_src.name()).unwrap();
cgu_contents.get_mut(&cgu_dst.name()).unwrap().append(&mut consumed_cgu_names);
}
// Having multiple CGUs can drastically speed up compilation. But for
// non-incremental builds, tiny CGUs slow down compilation *and* result in
// worse generated code. So we don't allow CGUs smaller than this (unless
// there is just one CGU, of course). Note that CGU sizes of 100,000+ are
// common in larger programs, so this isn't all that large.
const NON_INCR_MIN_CGU_SIZE: usize = 1800;
// Repeatedly merge the two smallest codegen units as long as: it's a
// non-incremental build, and the user didn't specify a CGU count, and
// there are multiple CGUs, and some are below the minimum size.
//
// The "didn't specify a CGU count" condition is because when an explicit
// count is requested we observe it as closely as possible. For example,
// the `compiler_builtins` crate sets `codegen-units = 10000` and it's
// critical they aren't merged. Also, some tests use explicit small values
// and likewise won't work if small CGUs are merged.
while cx.tcx.sess.opts.incremental.is_none()
&& matches!(cx.tcx.sess.codegen_units(), CodegenUnits::Default(_))
&& codegen_units.len() > 1
&& codegen_units.iter().any(|cgu| cgu.size_estimate() < NON_INCR_MIN_CGU_SIZE)
{
// Sort small cgus to the back.
codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
let mut smallest = codegen_units.pop().unwrap();
let second_smallest = codegen_units.last_mut().unwrap();
// Move the items from `smallest` to `second_smallest`. Some of them
// may be duplicate inlined items, in which case the destination CGU is
// unaffected. Recalculate size estimates afterwards.
second_smallest.items_mut().append(smallest.items_mut());
second_smallest.compute_size_estimate();
// Don't update `cgu_contents`, that's only for incremental builds.
}
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
// Rename the newly merged CGUs.
if cx.tcx.sess.opts.incremental.is_some() {
// If we are doing incremental compilation, we want CGU names to
// reflect the path of the source level module they correspond to.
// For CGUs that contain the code of multiple modules because of the
// merging done above, we use a concatenation of the names of all
// contained CGUs.
let new_cgu_names = UnordMap::from(
cgu_contents
.items()
// This `filter` makes sure we only update the name of CGUs that
// were actually modified by merging.
.filter(|(_, cgu_contents)| cgu_contents.len() > 1)
.map(|(current_cgu_name, cgu_contents)| {
let mut cgu_contents: Vec<&str> =
cgu_contents.iter().map(|s| s.as_str()).collect();
// Sort the names, so things are deterministic and easy to
// predict. We are sorting primitive `&str`s here so we can
// use unstable sort.
cgu_contents.sort_unstable();
(*current_cgu_name, cgu_contents.join("--"))
}),
);
for cgu in codegen_units.iter_mut() {
if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
cgu.set_name(Symbol::intern(new_cgu_name));
} else {
// If we don't require CGU names to be human-readable,
// we use a fixed length hash of the composite CGU name
// instead.
let new_cgu_name = CodegenUnit::mangle_name(new_cgu_name);
cgu.set_name(Symbol::intern(&new_cgu_name));
}
}
}
// A sorted order here ensures what follows can be deterministic.
codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
} else {
// When compiling non-incrementally, we rename the CGUS so they have
// identical names except for the numeric suffix, something like
// `regex.f10ba03eb5ec7975-cgu.N`, where `N` varies.
//
// It is useful for debugging and profiling purposes if the resulting
// CGUs are sorted by name *and* reverse sorted by size. (CGU 0 is the
// biggest, CGU 1 is the second biggest, etc.)
//
// So first we reverse sort by size. Then we generate the names with
// zero-padded suffixes, which means they are automatically sorted by
// names. The numeric suffix width depends on the number of CGUs, which
// is always greater than zero:
// - [1,9] CGUs: `0`, `1`, `2`, ...
// - [10,99] CGUs: `00`, `01`, `02`, ...
// - [100,999] CGUs: `000`, `001`, `002`, ...
// - etc.
//
// If we didn't zero-pad the sorted-by-name order would be `XYZ-cgu.0`,
// `XYZ-cgu.1`, `XYZ-cgu.10`, `XYZ-cgu.11`, ..., `XYZ-cgu.2`, etc.
codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
let num_digits = codegen_units.len().ilog10() as usize + 1;
for (index, cgu) in codegen_units.iter_mut().enumerate() {
// Note: `WorkItem::short_description` depends on this name ending
// with `-cgu.` followed by a numeric suffix. Please keep it in
// sync with this code.
let suffix = format!("{index:0num_digits$}");
let numbered_codegen_unit_name =
cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(suffix));
cgu.set_name(numbered_codegen_unit_name);
}
}
}
/// Compute the combined size of all inlined items that appear in both `cgu1`
/// and `cgu2`.
fn compute_inlined_overlap<'tcx>(cgu1: &CodegenUnit<'tcx>, cgu2: &CodegenUnit<'tcx>) -> usize {
// Either order works. We pick the one that involves iterating over fewer
// items.
let (src_cgu, dst_cgu) =
if cgu1.items().len() <= cgu2.items().len() { (cgu1, cgu2) } else { (cgu2, cgu1) };
let mut overlap = 0;
for (item, data) in src_cgu.items().iter() {
if data.inlined && dst_cgu.items().contains_key(item) {
overlap += data.size_estimate;
}
}
overlap
}
fn internalize_symbols<'tcx>(
cx: &PartitioningCx<'_, 'tcx>,
codegen_units: &mut [CodegenUnit<'tcx>],
internalization_candidates: UnordSet<MonoItem<'tcx>>,
) {
/// For symbol internalization, we need to know whether a symbol/mono-item
/// is used from outside the codegen unit it is defined in. This type is
/// used to keep track of that.
#[derive(Clone, PartialEq, Eq, Debug)]
enum MonoItemPlacement {
SingleCgu(Symbol),
MultipleCgus,
}
let mut mono_item_placements = UnordMap::default();
let single_codegen_unit = codegen_units.len() == 1;
if !single_codegen_unit {
for cgu in codegen_units.iter() {
for item in cgu.items().keys() {
// If there is more than one codegen unit, we need to keep track
// in which codegen units each monomorphization is placed.
match mono_item_placements.entry(*item) {
Entry::Occupied(e) => {
let placement = e.into_mut();
debug_assert!(match *placement {
MonoItemPlacement::SingleCgu(cgu_name) => cgu_name != cgu.name(),
MonoItemPlacement::MultipleCgus => true,
});
*placement = MonoItemPlacement::MultipleCgus;
}
Entry::Vacant(e) => {
e.insert(MonoItemPlacement::SingleCgu(cgu.name()));
}
}
}
}
}
// For each internalization candidates in each codegen unit, check if it is
// used from outside its defining codegen unit.
for cgu in codegen_units {
let home_cgu = MonoItemPlacement::SingleCgu(cgu.name());
for (item, data) in cgu.items_mut() {
if !internalization_candidates.contains(item) {
// This item is no candidate for internalizing, so skip it.
continue;
}
if !single_codegen_unit {
debug_assert_eq!(mono_item_placements[item], home_cgu);
if cx
.usage_map
.get_user_items(*item)
.iter()
.filter_map(|user_item| {
// Some user mono items might not have been
// instantiated. We can safely ignore those.
mono_item_placements.get(user_item)
})
.any(|placement| *placement != home_cgu)
{
// Found a user from another CGU, so skip to the next item
// without marking this one as internal.
continue;
}
}
// If we got here, we did not find any uses from other CGUs, so
// it's fine to make this monomorphization internal.
data.linkage = Linkage::Internal;
data.visibility = Visibility::Default;
}
}
}
fn mark_code_coverage_dead_code_cgu<'tcx>(codegen_units: &mut [CodegenUnit<'tcx>]) {
assert!(!codegen_units.is_empty());
// Find the smallest CGU that has exported symbols and put the dead
// function stubs in that CGU. We look for exported symbols to increase
// the likelihood the linker won't throw away the dead functions.
// FIXME(#92165): In order to truly resolve this, we need to make sure
// the object file (CGU) containing the dead function stubs is included
// in the final binary. This will probably require forcing these
// function symbols to be included via `-u` or `/include` linker args.
let dead_code_cgu = codegen_units
.iter_mut()
.filter(|cgu| cgu.items().iter().any(|(_, data)| data.linkage == Linkage::External))
.min_by_key(|cgu| cgu.size_estimate());
// If there are no CGUs that have externally linked items, then we just
// pick the first CGU as a fallback.
let dead_code_cgu = if let Some(cgu) = dead_code_cgu { cgu } else { &mut codegen_units[0] };
dead_code_cgu.make_code_coverage_dead_code_cgu();
}
fn characteristic_def_id_of_mono_item<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: MonoItem<'tcx>,
) -> Option<DefId> {
match mono_item {
MonoItem::Fn(instance) => {
let def_id = match instance.def {
ty::InstanceKind::Item(def) => def,
ty::InstanceKind::VTableShim(..)
| ty::InstanceKind::ReifyShim(..)
| ty::InstanceKind::FnPtrShim(..)
| ty::InstanceKind::ClosureOnceShim { .. }
| ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
| ty::InstanceKind::Intrinsic(..)
| ty::InstanceKind::DropGlue(..)
| ty::InstanceKind::Virtual(..)
| ty::InstanceKind::CloneShim(..)
| ty::InstanceKind::ThreadLocalShim(..)
| ty::InstanceKind::FnPtrAddrShim(..)
| ty::InstanceKind::AsyncDropGlueCtorShim(..) => return None,
};
// If this is a method, we want to put it into the same module as
// its self-type. If the self-type does not provide a characteristic
// DefId, we use the location of the impl after all.
if tcx.trait_of_item(def_id).is_some() {
let self_ty = instance.args.type_at(0);
// This is a default implementation of a trait method.
return characteristic_def_id_of_type(self_ty).or(Some(def_id));
}
if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
if tcx.sess.opts.incremental.is_some()
&& tcx
.trait_id_of_impl(impl_def_id)
.is_some_and(|def_id| tcx.is_lang_item(def_id, LangItem::Drop))
{
// Put `Drop::drop` into the same cgu as `drop_in_place`
// since `drop_in_place` is the only thing that can
// call it.
return None;
}
// When polymorphization is enabled, methods which do not depend on their generic
// parameters, but the self-type of their impl block do will fail to normalize.
if !tcx.sess.opts.unstable_opts.polymorphize || !instance.has_param() {
// This is a method within an impl, find out what the self-type is:
let impl_self_ty = tcx.instantiate_and_normalize_erasing_regions(
instance.args,
ty::TypingEnv::fully_monomorphized(),
tcx.type_of(impl_def_id),
);
if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
return Some(def_id);
}
}
}
Some(def_id)
}
MonoItem::Static(def_id) => Some(def_id),
MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
}
}
fn compute_codegen_unit_name(
tcx: TyCtxt<'_>,
name_builder: &mut CodegenUnitNameBuilder<'_>,
def_id: DefId,
volatile: bool,
cache: &mut CguNameCache,
) -> Symbol {
// Find the innermost module that is not nested within a function.
let mut current_def_id = def_id;
let mut cgu_def_id = None;
// Walk backwards from the item we want to find the module for.
loop {
if current_def_id.is_crate_root() {
if cgu_def_id.is_none() {
// If we have not found a module yet, take the crate root.
cgu_def_id = Some(def_id.krate.as_def_id());
}
break;
} else if tcx.def_kind(current_def_id) == DefKind::Mod {
if cgu_def_id.is_none() {
cgu_def_id = Some(current_def_id);
}
} else {
// If we encounter something that is not a module, throw away
// any module that we've found so far because we now know that
// it is nested within something else.
cgu_def_id = None;
}
current_def_id = tcx.parent(current_def_id);
}
let cgu_def_id = cgu_def_id.unwrap();
*cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
let def_path = tcx.def_path(cgu_def_id);
let components = def_path.data.iter().map(|part| match part.data.name() {
DefPathDataName::Named(name) => name,
DefPathDataName::Anon { .. } => unreachable!(),
});
let volatile_suffix = volatile.then_some("volatile");
name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
})
}
// Anything we can't find a proper codegen unit for goes into this.
fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
}
fn mono_item_linkage_and_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: &MonoItem<'tcx>,
can_be_internalized: &mut bool,
export_generics: bool,
) -> (Linkage, Visibility) {
if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
return (explicit_linkage, Visibility::Default);
}
let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
(Linkage::External, vis)
}
type CguNameCache = UnordMap<(DefId, bool), Symbol>;
fn static_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
can_be_internalized: &mut bool,
def_id: DefId,
) -> Visibility {
if tcx.is_reachable_non_generic(def_id) {
*can_be_internalized = false;
default_visibility(tcx, def_id, false)
} else {
Visibility::Hidden
}
}
fn mono_item_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: &MonoItem<'tcx>,
can_be_internalized: &mut bool,
export_generics: bool,
) -> Visibility {
let instance = match mono_item {
// This is pretty complicated; see below.
MonoItem::Fn(instance) => instance,
// Misc handling for generics and such, but otherwise:
MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
MonoItem::GlobalAsm(item_id) => {
return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
}
};
let def_id = match instance.def {
InstanceKind::Item(def_id)
| InstanceKind::DropGlue(def_id, Some(_))
| InstanceKind::AsyncDropGlueCtorShim(def_id, Some(_)) => def_id,
// We match the visibility of statics here
InstanceKind::ThreadLocalShim(def_id) => {
return static_visibility(tcx, can_be_internalized, def_id);
}
// These are all compiler glue and such, never exported, always hidden.
InstanceKind::VTableShim(..)
| InstanceKind::ReifyShim(..)
| InstanceKind::FnPtrShim(..)
| InstanceKind::Virtual(..)
| InstanceKind::Intrinsic(..)
| InstanceKind::ClosureOnceShim { .. }
| InstanceKind::ConstructCoroutineInClosureShim { .. }
| InstanceKind::DropGlue(..)
| InstanceKind::AsyncDropGlueCtorShim(..)
| InstanceKind::CloneShim(..)
| InstanceKind::FnPtrAddrShim(..) => return Visibility::Hidden,
};
// The `start_fn` lang item is actually a monomorphized instance of a
// function in the standard library, used for the `main` function. We don't
// want to export it so we tag it with `Hidden` visibility but this symbol
// is only referenced from the actual `main` symbol which we unfortunately
// don't know anything about during partitioning/collection. As a result we
// forcibly keep this symbol out of the `internalization_candidates` set.
//
// FIXME: eventually we don't want to always force this symbol to have
// hidden visibility, it should indeed be a candidate for
// internalization, but we have to understand that it's referenced
// from the `main` symbol we'll generate later.
//
// This may be fixable with a new `InstanceKind` perhaps? Unsure!
if tcx.is_lang_item(def_id, LangItem::Start) {
*can_be_internalized = false;
return Visibility::Hidden;
}
let is_generic = instance.args.non_erasable_generics().next().is_some();
// Upstream `DefId` instances get different handling than local ones.
let Some(def_id) = def_id.as_local() else {
return if export_generics && is_generic {
// If it is an upstream monomorphization and we export generics, we must make
// it available to downstream crates.
*can_be_internalized = false;
default_visibility(tcx, def_id, true)
} else {
Visibility::Hidden
};
};
if is_generic {
if export_generics {
if tcx.is_unreachable_local_definition(def_id) {
// This instance cannot be used from another crate.
Visibility::Hidden
} else {
// This instance might be useful in a downstream crate.
*can_be_internalized = false;
default_visibility(tcx, def_id.to_def_id(), true)
}
} else {
// We are not exporting generics or the definition is not reachable
// for downstream crates, we can internalize its instantiations.
Visibility::Hidden
}
} else {
// If this isn't a generic function then we mark this a `Default` if
// this is a reachable item, meaning that it's a symbol other crates may
// use when they link to us.
if tcx.is_reachable_non_generic(def_id.to_def_id()) {
*can_be_internalized = false;
debug_assert!(!is_generic);
return default_visibility(tcx, def_id.to_def_id(), false);
}
// If this isn't reachable then we're gonna tag this with `Hidden`
// visibility. In some situations though we'll want to prevent this
// symbol from being internalized.
//
// There's two categories of items here:
//
// * First is weak lang items. These are basically mechanisms for
// libcore to forward-reference symbols defined later in crates like
// the standard library or `#[panic_handler]` definitions. The
// definition of these weak lang items needs to be referencable by
// libcore, so we're no longer a candidate for internalization.
// Removal of these functions can't be done by LLVM but rather must be
// done by the linker as it's a non-local decision.
//
// * Second is "std internal symbols". Currently this is primarily used
// for allocator symbols. Allocators are a little weird in their
// implementation, but the idea is that the compiler, at the last
// minute, defines an allocator with an injected object file. The
// `alloc` crate references these symbols (`__rust_alloc`) and the
// definition doesn't get hooked up until a linked crate artifact is
// generated.
//
// The symbols synthesized by the compiler (`__rust_alloc`) are thin
// veneers around the actual implementation, some other symbol which
// implements the same ABI. These symbols (things like `__rg_alloc`,
// `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
// internal symbols".
//
// The std-internal symbols here **should not show up in a dll as an
// exported interface**, so they return `false` from
// `is_reachable_non_generic` above and we'll give them `Hidden`
// visibility below. Like the weak lang items, though, we can't let
// LLVM internalize them as this decision is left up to the linker to
// omit them, so prevent them from being internalized.
let attrs = tcx.codegen_fn_attrs(def_id);
if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
*can_be_internalized = false;
}
Visibility::Hidden
}
}
fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
// Fast-path to avoid expensive query call below
if tcx.sess.default_visibility() == SymbolVisibility::Interposable {
return Visibility::Default;
}
let export_level = if is_generic {
// Generic functions never have export-level C.
SymbolExportLevel::Rust
} else {
match tcx.reachable_non_generics(id.krate).get(&id) {
Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => SymbolExportLevel::C,
_ => SymbolExportLevel::Rust,
}
};
match export_level {
// C-export level items remain at `Default` to allow C code to
// access and interpose them.
SymbolExportLevel::C => Visibility::Default,
// For all other symbols, `default_visibility` determines which visibility to use.
SymbolExportLevel::Rust => tcx.sess.default_visibility().into(),
}
}
fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) {
let dump = move || {
use std::fmt::Write;
let mut num_cgus = 0;
let mut all_cgu_sizes = Vec::new();
// Note: every unique root item is placed exactly once, so the number
// of unique root items always equals the number of placed root items.
//
// Also, unreached inlined items won't be counted here. This is fine.
let mut inlined_items = UnordSet::default();
let mut root_items = 0;
let mut unique_inlined_items = 0;
let mut placed_inlined_items = 0;
let mut root_size = 0;
let mut unique_inlined_size = 0;
let mut placed_inlined_size = 0;
for cgu in cgus.iter() {
num_cgus += 1;
all_cgu_sizes.push(cgu.size_estimate());
for (item, data) in cgu.items() {
if !data.inlined {
root_items += 1;
root_size += data.size_estimate;
} else {
if inlined_items.insert(item) {
unique_inlined_items += 1;
unique_inlined_size += data.size_estimate;
}
placed_inlined_items += 1;
placed_inlined_size += data.size_estimate;
}
}
}
all_cgu_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
let unique_items = root_items + unique_inlined_items;
let placed_items = root_items + placed_inlined_items;
let items_ratio = placed_items as f64 / unique_items as f64;
let unique_size = root_size + unique_inlined_size;
let placed_size = root_size + placed_inlined_size;
let size_ratio = placed_size as f64 / unique_size as f64;
let mean_cgu_size = placed_size as f64 / num_cgus as f64;
assert_eq!(placed_size, all_cgu_sizes.iter().sum::<usize>());
let s = &mut String::new();
let _ = writeln!(s, "{label}");
let _ = writeln!(
s,
"- unique items: {unique_items} ({root_items} root + {unique_inlined_items} inlined), \
unique size: {unique_size} ({root_size} root + {unique_inlined_size} inlined)\n\
- placed items: {placed_items} ({root_items} root + {placed_inlined_items} inlined), \
placed size: {placed_size} ({root_size} root + {placed_inlined_size} inlined)\n\
- placed/unique items ratio: {items_ratio:.2}, \
placed/unique size ratio: {size_ratio:.2}\n\
- CGUs: {num_cgus}, mean size: {mean_cgu_size:.1}, sizes: {}",
list(&all_cgu_sizes),
);
let _ = writeln!(s);
for (i, cgu) in cgus.iter().enumerate() {
let name = cgu.name();
let size = cgu.size_estimate();
let num_items = cgu.items().len();
let mean_size = size as f64 / num_items as f64;
let mut placed_item_sizes: Vec<_> =
cgu.items().values().map(|data| data.size_estimate).collect();
placed_item_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
let sizes = list(&placed_item_sizes);
let _ = writeln!(s, "- CGU[{i}]");
let _ = writeln!(s, " - {name}, size: {size}");
let _ =
writeln!(s, " - items: {num_items}, mean size: {mean_size:.1}, sizes: {sizes}",);
for (item, data) in cgu.items_in_deterministic_order(tcx) {
let linkage = data.linkage;
let symbol_name = item.symbol_name(tcx).name;
let symbol_hash_start = symbol_name.rfind('h');
let symbol_hash = symbol_hash_start.map_or("<no hash>", |i| &symbol_name[i..]);
let kind = if !data.inlined { "root" } else { "inlined" };
let size = data.size_estimate;
let _ = with_no_trimmed_paths!(writeln!(
s,
" - {item} [{linkage:?}] [{symbol_hash}] ({kind}, size: {size})"
));
}
let _ = writeln!(s);
}
return std::mem::take(s);
// Converts a slice to a string, capturing repetitions to save space.
// E.g. `[4, 4, 4, 3, 2, 1, 1, 1, 1, 1]` -> "[4 (x3), 3, 2, 1 (x5)]".
fn list(ns: &[usize]) -> String {
let mut v = Vec::new();
if ns.is_empty() {
return "[]".to_string();
}
let mut elem = |curr, curr_count| {
if curr_count == 1 {
v.push(format!("{curr}"));
} else {
v.push(format!("{curr} (x{curr_count})"));
}
};
let mut curr = ns[0];
let mut curr_count = 1;
for &n in &ns[1..] {
if n != curr {
elem(curr, curr_count);
curr = n;
curr_count = 1;
} else {
curr_count += 1;
}
}
elem(curr, curr_count);
format!("[{}]", v.join(", "))
}
};
debug!("{}", dump());
}
#[inline(never)] // give this a place in the profiler
fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I)
where
I: Iterator<Item = &'a MonoItem<'tcx>>,
'tcx: 'a,
{
let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct");
let mut symbols: Vec<_> =
mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect();
symbols.sort_by_key(|sym| sym.1);
for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() {
if sym1 == sym2 {
let span1 = mono_item1.local_span(tcx);
let span2 = mono_item2.local_span(tcx);
// Deterministically select one of the spans for error reporting
let span = match (span1, span2) {
(Some(span1), Some(span2)) => {
Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 })
}
(span1, span2) => span1.or(span2),
};
tcx.dcx().emit_fatal(SymbolAlreadyDefined { span, symbol: sym1.to_string() });
}
}
}
fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> (&DefIdSet, &[CodegenUnit<'_>]) {
let collection_strategy = match tcx.sess.opts.unstable_opts.print_mono_items {
Some(ref s) => {
let mode = s.to_lowercase();
let mode = mode.trim();
if mode == "eager" {
MonoItemCollectionStrategy::Eager
} else {
if mode != "lazy" {
tcx.dcx().emit_warn(UnknownCguCollectionMode { mode });
}
MonoItemCollectionStrategy::Lazy
}
}
None => {
if tcx.sess.link_dead_code() {
MonoItemCollectionStrategy::Eager
} else {
MonoItemCollectionStrategy::Lazy
}
}
};
let (items, usage_map) = collector::collect_crate_mono_items(tcx, collection_strategy);
// If there was an error during collection (e.g. from one of the constants we evaluated),
// then we stop here. This way codegen does not have to worry about failing constants.
// (codegen relies on this and ICEs will happen if this is violated.)
tcx.dcx().abort_if_errors();
let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || {
sync::join(
|| {
let mut codegen_units = partition(tcx, items.iter().copied(), &usage_map);
codegen_units[0].make_primary();
&*tcx.arena.alloc_from_iter(codegen_units)
},
|| assert_symbols_are_distinct(tcx, items.iter()),
)
});
if tcx.prof.enabled() {
// Record CGU size estimates for self-profiling.
for cgu in codegen_units {
tcx.prof.artifact_size(
"codegen_unit_size_estimate",
cgu.name().as_str(),
cgu.size_estimate() as u64,
);
}
}
let mono_items: DefIdSet = items
.iter()
.filter_map(|mono_item| match *mono_item {
MonoItem::Fn(ref instance) => Some(instance.def_id()),
MonoItem::Static(def_id) => Some(def_id),
_ => None,
})
.collect();
// Output monomorphization stats per def_id
if let SwitchWithOptPath::Enabled(ref path) = tcx.sess.opts.unstable_opts.dump_mono_stats {
if let Err(err) =
dump_mono_items_stats(tcx, codegen_units, path, tcx.crate_name(LOCAL_CRATE))
{
tcx.dcx().emit_fatal(CouldntDumpMonoStats { error: err.to_string() });
}
}
if tcx.sess.opts.unstable_opts.print_mono_items.is_some() {
let mut item_to_cgus: UnordMap<_, Vec<_>> = Default::default();
for cgu in codegen_units {
for (&mono_item, &data) in cgu.items() {
item_to_cgus.entry(mono_item).or_default().push((cgu.name(), data.linkage));
}
}
let mut item_keys: Vec<_> = items
.iter()
.map(|i| {
let mut output = with_no_trimmed_paths!(i.to_string());
output.push_str(" @@");
let mut empty = Vec::new();
let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
cgus.sort_by_key(|(name, _)| *name);
cgus.dedup();
for &(ref cgu_name, linkage) in cgus.iter() {
output.push(' ');
output.push_str(cgu_name.as_str());
let linkage_abbrev = match linkage {
Linkage::External => "External",
Linkage::AvailableExternally => "Available",
Linkage::LinkOnceAny => "OnceAny",
Linkage::LinkOnceODR => "OnceODR",
Linkage::WeakAny => "WeakAny",
Linkage::WeakODR => "WeakODR",
Linkage::Appending => "Appending",
Linkage::Internal => "Internal",
Linkage::Private => "Private",
Linkage::ExternalWeak => "ExternalWeak",
Linkage::Common => "Common",
};
output.push('[');
output.push_str(linkage_abbrev);
output.push(']');
}
output
})
.collect();
item_keys.sort();
for item in item_keys {
println!("MONO_ITEM {item}");
}
}
(tcx.arena.alloc(mono_items), codegen_units)
}
/// Outputs stats about instantiation counts and estimated size, per `MonoItem`'s
/// def, to a file in the given output directory.
fn dump_mono_items_stats<'tcx>(
tcx: TyCtxt<'tcx>,
codegen_units: &[CodegenUnit<'tcx>],
output_directory: &Option<PathBuf>,
crate_name: Symbol,
) -> Result<(), Box<dyn std::error::Error>> {
let output_directory = if let Some(ref directory) = output_directory {
fs::create_dir_all(directory)?;
directory
} else {
Path::new(".")
};
let format = tcx.sess.opts.unstable_opts.dump_mono_stats_format;
let ext = format.extension();
let filename = format!("{crate_name}.mono_items.{ext}");
let output_path = output_directory.join(&filename);
let mut file = File::create_buffered(&output_path)?;
// Gather instantiated mono items grouped by def_id
let mut items_per_def_id: FxIndexMap<_, Vec<_>> = Default::default();
for cgu in codegen_units {
cgu.items()
.keys()
// Avoid variable-sized compiler-generated shims
.filter(|mono_item| mono_item.is_user_defined())
.for_each(|mono_item| {
items_per_def_id.entry(mono_item.def_id()).or_default().push(mono_item);
});
}
#[derive(serde::Serialize)]
struct MonoItem {
name: String,
instantiation_count: usize,
size_estimate: usize,
total_estimate: usize,
}
// Output stats sorted by total instantiated size, from heaviest to lightest
let mut stats: Vec<_> = items_per_def_id
.into_iter()
.map(|(def_id, items)| {
let name = with_no_trimmed_paths!(tcx.def_path_str(def_id));
let instantiation_count = items.len();
let size_estimate = items[0].size_estimate(tcx);
let total_estimate = instantiation_count * size_estimate;
MonoItem { name, instantiation_count, size_estimate, total_estimate }
})
.collect();
stats.sort_unstable_by_key(|item| cmp::Reverse(item.total_estimate));
if !stats.is_empty() {
match format {
DumpMonoStatsFormat::Json => serde_json::to_writer(file, &stats)?,
DumpMonoStatsFormat::Markdown => {
writeln!(
file,
"| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |"
)?;
writeln!(file, "| --- | ---: | ---: | ---: |")?;
for MonoItem { name, instantiation_count, size_estimate, total_estimate } in stats {
writeln!(
file,
"| `{name}` | {instantiation_count} | {size_estimate} | {total_estimate} |"
)?;
}
}
}
}
Ok(())
}
pub(crate) fn provide(providers: &mut Providers) {
providers.collect_and_partition_mono_items = collect_and_partition_mono_items;
providers.is_codegened_item = |tcx, def_id| {
let (all_mono_items, _) = tcx.collect_and_partition_mono_items(());
all_mono_items.contains(&def_id)
};
providers.codegen_unit = |tcx, name| {
let (_, all) = tcx.collect_and_partition_mono_items(());
all.iter()
.find(|cgu| cgu.name() == name)
.unwrap_or_else(|| panic!("failed to find cgu with name {name:?}"))
};
providers.size_estimate = |tcx, instance| {
match instance.def {
// "Normal" functions size estimate: the number of
// statements, plus one for the terminator.
InstanceKind::Item(..)
| InstanceKind::DropGlue(..)
| InstanceKind::AsyncDropGlueCtorShim(..) => {
let mir = tcx.instance_mir(instance.def);
mir.basic_blocks.iter().map(|bb| bb.statements.len() + 1).sum()
}
// Other compiler-generated shims size estimate: 1
_ => 1,
}
};
collector::provide(providers);
}