rustc_monomorphize/
partitioning.rs

1//! Partitioning Codegen Units for Incremental Compilation
2//! ======================================================
3//!
4//! The task of this module is to take the complete set of monomorphizations of
5//! a crate and produce a set of codegen units from it, where a codegen unit
6//! is a named set of (mono-item, linkage) pairs. That is, this module
7//! decides which monomorphization appears in which codegen units with which
8//! linkage. The following paragraphs describe some of the background on the
9//! partitioning scheme.
10//!
11//! The most important opportunity for saving on compilation time with
12//! incremental compilation is to avoid re-codegenning and re-optimizing code.
13//! Since the unit of codegen and optimization for LLVM is "modules" or, how
14//! we call them "codegen units", the particulars of how much time can be saved
15//! by incremental compilation are tightly linked to how the output program is
16//! partitioned into these codegen units prior to passing it to LLVM --
17//! especially because we have to treat codegen units as opaque entities once
18//! they are created: There is no way for us to incrementally update an existing
19//! LLVM module and so we have to build any such module from scratch if it was
20//! affected by some change in the source code.
21//!
22//! From that point of view it would make sense to maximize the number of
23//! codegen units by, for example, putting each function into its own module.
24//! That way only those modules would have to be re-compiled that were actually
25//! affected by some change, minimizing the number of functions that could have
26//! been re-used but just happened to be located in a module that is
27//! re-compiled.
28//!
29//! However, since LLVM optimization does not work across module boundaries,
30//! using such a highly granular partitioning would lead to very slow runtime
31//! code since it would effectively prohibit inlining and other inter-procedure
32//! optimizations. We want to avoid that as much as possible.
33//!
34//! Thus we end up with a trade-off: The bigger the codegen units, the better
35//! LLVM's optimizer can do its work, but also the smaller the compilation time
36//! reduction we get from incremental compilation.
37//!
38//! Ideally, we would create a partitioning such that there are few big codegen
39//! units with few interdependencies between them. For now though, we use the
40//! following heuristic to determine the partitioning:
41//!
42//! - There are two codegen units for every source-level module:
43//! - One for "stable", that is non-generic, code
44//! - One for more "volatile" code, i.e., monomorphized instances of functions
45//!   defined in that module
46//!
47//! In order to see why this heuristic makes sense, let's take a look at when a
48//! codegen unit can get invalidated:
49//!
50//! 1. The most straightforward case is when the BODY of a function or global
51//! changes. Then any codegen unit containing the code for that item has to be
52//! re-compiled. Note that this includes all codegen units where the function
53//! has been inlined.
54//!
55//! 2. The next case is when the SIGNATURE of a function or global changes. In
56//! this case, all codegen units containing a REFERENCE to that item have to be
57//! re-compiled. This is a superset of case 1.
58//!
59//! 3. The final and most subtle case is when a REFERENCE to a generic function
60//! is added or removed somewhere. Even though the definition of the function
61//! might be unchanged, a new REFERENCE might introduce a new monomorphized
62//! instance of this function which has to be placed and compiled somewhere.
63//! Conversely, when removing a REFERENCE, it might have been the last one with
64//! that particular set of generic arguments and thus we have to remove it.
65//!
66//! From the above we see that just using one codegen unit per source-level
67//! module is not such a good idea, since just adding a REFERENCE to some
68//! generic item somewhere else would invalidate everything within the module
69//! containing the generic item. The heuristic above reduces this detrimental
70//! side-effect of references a little by at least not touching the non-generic
71//! code of the module.
72//!
73//! A Note on Inlining
74//! ------------------
75//! As briefly mentioned above, in order for LLVM to be able to inline a
76//! function call, the body of the function has to be available in the LLVM
77//! module where the call is made. This has a few consequences for partitioning:
78//!
79//! - The partitioning algorithm has to take care of placing functions into all
80//!   codegen units where they should be available for inlining. It also has to
81//!   decide on the correct linkage for these functions.
82//!
83//! - The partitioning algorithm has to know which functions are likely to get
84//!   inlined, so it can distribute function instantiations accordingly. Since
85//!   there is no way of knowing for sure which functions LLVM will decide to
86//!   inline in the end, we apply a heuristic here: Only functions marked with
87//!   `#[inline]` are considered for inlining by the partitioner. The current
88//!   implementation will not try to determine if a function is likely to be
89//!   inlined by looking at the functions definition.
90//!
91//! Note though that as a side-effect of creating a codegen units per
92//! source-level module, functions from the same module will be available for
93//! inlining, even when they are not marked `#[inline]`.
94
95use std::cmp;
96use std::collections::hash_map::Entry;
97use std::fs::{self, File};
98use std::io::Write;
99use std::path::{Path, PathBuf};
100
101use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
102use rustc_data_structures::sync;
103use rustc_data_structures::unord::{UnordMap, UnordSet};
104use rustc_hir::LangItem;
105use rustc_hir::attrs::{InlineAttr, Linkage};
106use rustc_hir::def::DefKind;
107use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE};
108use rustc_hir::definitions::DefPathDataName;
109use rustc_middle::bug;
110use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
111use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
112use rustc_middle::mir::mono::{
113    CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, MonoItem, MonoItemData,
114    MonoItemPartitions, Visibility,
115};
116use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths};
117use rustc_middle::ty::{self, InstanceKind, TyCtxt};
118use rustc_middle::util::Providers;
119use rustc_session::CodegenUnits;
120use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath};
121use rustc_span::Symbol;
122use rustc_target::spec::SymbolVisibility;
123use tracing::debug;
124
125use crate::collector::{self, MonoItemCollectionStrategy, UsageMap};
126use crate::errors::{CouldntDumpMonoStats, SymbolAlreadyDefined};
127use crate::graph_checks::target_specific_checks;
128
129struct PartitioningCx<'a, 'tcx> {
130    tcx: TyCtxt<'tcx>,
131    usage_map: &'a UsageMap<'tcx>,
132}
133
134struct PlacedMonoItems<'tcx> {
135    /// The codegen units, sorted by name to make things deterministic.
136    codegen_units: Vec<CodegenUnit<'tcx>>,
137
138    internalization_candidates: UnordSet<MonoItem<'tcx>>,
139}
140
141// The output CGUs are sorted by name.
142fn partition<'tcx, I>(
143    tcx: TyCtxt<'tcx>,
144    mono_items: I,
145    usage_map: &UsageMap<'tcx>,
146) -> Vec<CodegenUnit<'tcx>>
147where
148    I: Iterator<Item = MonoItem<'tcx>>,
149{
150    let _prof_timer = tcx.prof.generic_activity("cgu_partitioning");
151
152    let cx = &PartitioningCx { tcx, usage_map };
153
154    // Place all mono items into a codegen unit. `place_mono_items` is
155    // responsible for initializing the CGU size estimates.
156    let PlacedMonoItems { mut codegen_units, internalization_candidates } = {
157        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_items");
158        let placed = place_mono_items(cx, mono_items);
159
160        debug_dump(tcx, "PLACE", &placed.codegen_units);
161
162        placed
163    };
164
165    // Merge until we don't exceed the max CGU count.
166    // `merge_codegen_units` is responsible for updating the CGU size
167    // estimates.
168    {
169        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
170        merge_codegen_units(cx, &mut codegen_units);
171        debug_dump(tcx, "MERGE", &codegen_units);
172    }
173
174    // Make as many symbols "internal" as possible, so LLVM has more freedom to
175    // optimize.
176    if !tcx.sess.link_dead_code() {
177        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
178        internalize_symbols(cx, &mut codegen_units, internalization_candidates);
179
180        debug_dump(tcx, "INTERNALIZE", &codegen_units);
181    }
182
183    // Mark one CGU for dead code, if necessary.
184    if tcx.sess.instrument_coverage() {
185        mark_code_coverage_dead_code_cgu(&mut codegen_units);
186    }
187
188    // Ensure CGUs are sorted by name, so that we get deterministic results.
189    if !codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()) {
190        let mut names = String::new();
191        for cgu in codegen_units.iter() {
192            names += &format!("- {}\n", cgu.name());
193        }
194        bug!("unsorted CGUs:\n{names}");
195    }
196
197    codegen_units
198}
199
200fn place_mono_items<'tcx, I>(cx: &PartitioningCx<'_, 'tcx>, mono_items: I) -> PlacedMonoItems<'tcx>
201where
202    I: Iterator<Item = MonoItem<'tcx>>,
203{
204    let mut codegen_units = UnordMap::default();
205    let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
206    let mut internalization_candidates = UnordSet::default();
207
208    // Determine if monomorphizations instantiated in this crate will be made
209    // available to downstream crates. This depends on whether we are in
210    // share-generics mode and whether the current crate can even have
211    // downstream crates.
212    let can_export_generics = cx.tcx.local_crate_exports_generics();
213    let always_export_generics = can_export_generics && cx.tcx.sess.opts.share_generics();
214
215    let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
216    let cgu_name_cache = &mut UnordMap::default();
217
218    for mono_item in mono_items {
219        // Handle only root (GloballyShared) items directly here. Inlined (LocalCopy) items
220        // are handled at the bottom of the loop based on reachability, with one exception.
221        // The #[lang = "start"] item is the program entrypoint, so there are no calls to it in MIR.
222        // So even if its mode is LocalCopy, we need to treat it like a root.
223        match mono_item.instantiation_mode(cx.tcx) {
224            InstantiationMode::GloballyShared { .. } => {}
225            InstantiationMode::LocalCopy => continue,
226        }
227
228        let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
229        let is_volatile = is_incremental_build && mono_item.is_generic_fn();
230
231        let cgu_name = match characteristic_def_id {
232            Some(def_id) => compute_codegen_unit_name(
233                cx.tcx,
234                cgu_name_builder,
235                def_id,
236                is_volatile,
237                cgu_name_cache,
238            ),
239            None => fallback_cgu_name(cgu_name_builder),
240        };
241
242        let cgu = codegen_units.entry(cgu_name).or_insert_with(|| CodegenUnit::new(cgu_name));
243
244        let mut can_be_internalized = true;
245        let (linkage, visibility) = mono_item_linkage_and_visibility(
246            cx.tcx,
247            &mono_item,
248            &mut can_be_internalized,
249            can_export_generics,
250            always_export_generics,
251        );
252
253        if visibility == Visibility::Hidden && can_be_internalized {
254            internalization_candidates.insert(mono_item);
255        }
256        let size_estimate = mono_item.size_estimate(cx.tcx);
257
258        cgu.items_mut()
259            .insert(mono_item, MonoItemData { inlined: false, linkage, visibility, size_estimate });
260
261        // Get all inlined items that are reachable from `mono_item` without
262        // going via another root item. This includes drop-glue, functions from
263        // external crates, and local functions the definition of which is
264        // marked with `#[inline]`.
265        let mut reachable_inlined_items = FxIndexSet::default();
266        get_reachable_inlined_items(cx.tcx, mono_item, cx.usage_map, &mut reachable_inlined_items);
267
268        // Add those inlined items. It's possible an inlined item is reachable
269        // from multiple root items within a CGU, which is fine, it just means
270        // the `insert` will be a no-op.
271        for inlined_item in reachable_inlined_items {
272            // This is a CGU-private copy.
273            cgu.items_mut().entry(inlined_item).or_insert_with(|| MonoItemData {
274                inlined: true,
275                linkage: Linkage::Internal,
276                visibility: Visibility::Default,
277                size_estimate: inlined_item.size_estimate(cx.tcx),
278            });
279        }
280    }
281
282    // Always ensure we have at least one CGU; otherwise, if we have a
283    // crate with just types (for example), we could wind up with no CGU.
284    if codegen_units.is_empty() {
285        let cgu_name = fallback_cgu_name(cgu_name_builder);
286        codegen_units.insert(cgu_name, CodegenUnit::new(cgu_name));
287    }
288
289    let mut codegen_units: Vec<_> = cx.tcx.with_stable_hashing_context(|ref hcx| {
290        codegen_units.into_items().map(|(_, cgu)| cgu).collect_sorted(hcx, true)
291    });
292
293    for cgu in codegen_units.iter_mut() {
294        cgu.compute_size_estimate();
295    }
296
297    return PlacedMonoItems { codegen_units, internalization_candidates };
298
299    fn get_reachable_inlined_items<'tcx>(
300        tcx: TyCtxt<'tcx>,
301        item: MonoItem<'tcx>,
302        usage_map: &UsageMap<'tcx>,
303        visited: &mut FxIndexSet<MonoItem<'tcx>>,
304    ) {
305        usage_map.for_each_inlined_used_item(tcx, item, |inlined_item| {
306            let is_new = visited.insert(inlined_item);
307            if is_new {
308                get_reachable_inlined_items(tcx, inlined_item, usage_map, visited);
309            }
310        });
311    }
312}
313
314// This function requires the CGUs to be sorted by name on input, and ensures
315// they are sorted by name on return, for deterministic behaviour.
316fn merge_codegen_units<'tcx>(
317    cx: &PartitioningCx<'_, 'tcx>,
318    codegen_units: &mut Vec<CodegenUnit<'tcx>>,
319) {
320    assert!(cx.tcx.sess.codegen_units().as_usize() >= 1);
321
322    // A sorted order here ensures merging is deterministic.
323    assert!(codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()));
324
325    // This map keeps track of what got merged into what.
326    let mut cgu_contents: UnordMap<Symbol, Vec<Symbol>> =
327        codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
328
329    // If N is the maximum number of CGUs, and the CGUs are sorted from largest
330    // to smallest, we repeatedly find which CGU in codegen_units[N..] has the
331    // greatest overlap of inlined items with codegen_units[N-1], merge that
332    // CGU into codegen_units[N-1], then re-sort by size and repeat.
333    //
334    // We use inlined item overlap to guide this merging because it minimizes
335    // duplication of inlined items, which makes LLVM be faster and generate
336    // better and smaller machine code.
337    //
338    // Why merge into codegen_units[N-1]? We want CGUs to have similar sizes,
339    // which means we don't want codegen_units[0..N] (the already big ones)
340    // getting any bigger, if we can avoid it. When we have more than N CGUs
341    // then at least one of the biggest N will have to grow. codegen_units[N-1]
342    // is the smallest of those, and so has the most room to grow.
343    let max_codegen_units = cx.tcx.sess.codegen_units().as_usize();
344    while codegen_units.len() > max_codegen_units {
345        // Sort small CGUs to the back.
346        codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
347
348        let cgu_dst = &codegen_units[max_codegen_units - 1];
349
350        // Find the CGU that overlaps the most with `cgu_dst`. In the case of a
351        // tie, favour the earlier (bigger) CGU.
352        let mut max_overlap = 0;
353        let mut max_overlap_i = max_codegen_units;
354        for (i, cgu_src) in codegen_units.iter().enumerate().skip(max_codegen_units) {
355            if cgu_src.size_estimate() <= max_overlap {
356                // None of the remaining overlaps can exceed `max_overlap`, so
357                // stop looking.
358                break;
359            }
360
361            let overlap = compute_inlined_overlap(cgu_dst, cgu_src);
362            if overlap > max_overlap {
363                max_overlap = overlap;
364                max_overlap_i = i;
365            }
366        }
367
368        let mut cgu_src = codegen_units.swap_remove(max_overlap_i);
369        let cgu_dst = &mut codegen_units[max_codegen_units - 1];
370
371        // Move the items from `cgu_src` to `cgu_dst`. Some of them may be
372        // duplicate inlined items, in which case the destination CGU is
373        // unaffected. Recalculate size estimates afterwards.
374        cgu_dst.items_mut().append(cgu_src.items_mut());
375        cgu_dst.compute_size_estimate();
376
377        // Record that `cgu_dst` now contains all the stuff that was in
378        // `cgu_src` before.
379        let mut consumed_cgu_names = cgu_contents.remove(&cgu_src.name()).unwrap();
380        cgu_contents.get_mut(&cgu_dst.name()).unwrap().append(&mut consumed_cgu_names);
381    }
382
383    // Having multiple CGUs can drastically speed up compilation. But for
384    // non-incremental builds, tiny CGUs slow down compilation *and* result in
385    // worse generated code. So we don't allow CGUs smaller than this (unless
386    // there is just one CGU, of course). Note that CGU sizes of 100,000+ are
387    // common in larger programs, so this isn't all that large.
388    const NON_INCR_MIN_CGU_SIZE: usize = 1800;
389
390    // Repeatedly merge the two smallest codegen units as long as: it's a
391    // non-incremental build, and the user didn't specify a CGU count, and
392    // there are multiple CGUs, and some are below the minimum size.
393    //
394    // The "didn't specify a CGU count" condition is because when an explicit
395    // count is requested we observe it as closely as possible. For example,
396    // the `compiler_builtins` crate sets `codegen-units = 10000` and it's
397    // critical they aren't merged. Also, some tests use explicit small values
398    // and likewise won't work if small CGUs are merged.
399    while cx.tcx.sess.opts.incremental.is_none()
400        && matches!(cx.tcx.sess.codegen_units(), CodegenUnits::Default(_))
401        && codegen_units.len() > 1
402        && codegen_units.iter().any(|cgu| cgu.size_estimate() < NON_INCR_MIN_CGU_SIZE)
403    {
404        // Sort small cgus to the back.
405        codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
406
407        let mut smallest = codegen_units.pop().unwrap();
408        let second_smallest = codegen_units.last_mut().unwrap();
409
410        // Move the items from `smallest` to `second_smallest`. Some of them
411        // may be duplicate inlined items, in which case the destination CGU is
412        // unaffected. Recalculate size estimates afterwards.
413        second_smallest.items_mut().append(smallest.items_mut());
414        second_smallest.compute_size_estimate();
415
416        // Don't update `cgu_contents`, that's only for incremental builds.
417    }
418
419    let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
420
421    // Rename the newly merged CGUs.
422    if cx.tcx.sess.opts.incremental.is_some() {
423        // If we are doing incremental compilation, we want CGU names to
424        // reflect the path of the source level module they correspond to.
425        // For CGUs that contain the code of multiple modules because of the
426        // merging done above, we use a concatenation of the names of all
427        // contained CGUs.
428        let new_cgu_names = UnordMap::from(
429            cgu_contents
430                .items()
431                // This `filter` makes sure we only update the name of CGUs that
432                // were actually modified by merging.
433                .filter(|(_, cgu_contents)| cgu_contents.len() > 1)
434                .map(|(current_cgu_name, cgu_contents)| {
435                    let mut cgu_contents: Vec<&str> =
436                        cgu_contents.iter().map(|s| s.as_str()).collect();
437
438                    // Sort the names, so things are deterministic and easy to
439                    // predict. We are sorting primitive `&str`s here so we can
440                    // use unstable sort.
441                    cgu_contents.sort_unstable();
442
443                    (*current_cgu_name, cgu_contents.join("--"))
444                }),
445        );
446
447        for cgu in codegen_units.iter_mut() {
448            if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
449                let new_cgu_name = if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
450                    Symbol::intern(&CodegenUnit::shorten_name(new_cgu_name))
451                } else {
452                    // If we don't require CGU names to be human-readable,
453                    // we use a fixed length hash of the composite CGU name
454                    // instead.
455                    Symbol::intern(&CodegenUnit::mangle_name(new_cgu_name))
456                };
457                cgu.set_name(new_cgu_name);
458            }
459        }
460
461        // A sorted order here ensures what follows can be deterministic.
462        codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
463    } else {
464        // When compiling non-incrementally, we rename the CGUS so they have
465        // identical names except for the numeric suffix, something like
466        // `regex.f10ba03eb5ec7975-cgu.N`, where `N` varies.
467        //
468        // It is useful for debugging and profiling purposes if the resulting
469        // CGUs are sorted by name *and* reverse sorted by size. (CGU 0 is the
470        // biggest, CGU 1 is the second biggest, etc.)
471        //
472        // So first we reverse sort by size. Then we generate the names with
473        // zero-padded suffixes, which means they are automatically sorted by
474        // names. The numeric suffix width depends on the number of CGUs, which
475        // is always greater than zero:
476        // - [1,9]     CGUs: `0`, `1`, `2`, ...
477        // - [10,99]   CGUs: `00`, `01`, `02`, ...
478        // - [100,999] CGUs: `000`, `001`, `002`, ...
479        // - etc.
480        //
481        // If we didn't zero-pad the sorted-by-name order would be `XYZ-cgu.0`,
482        // `XYZ-cgu.1`, `XYZ-cgu.10`, `XYZ-cgu.11`, ..., `XYZ-cgu.2`, etc.
483        codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
484        let num_digits = codegen_units.len().ilog10() as usize + 1;
485        for (index, cgu) in codegen_units.iter_mut().enumerate() {
486            // Note: `WorkItem::short_description` depends on this name ending
487            // with `-cgu.` followed by a numeric suffix. Please keep it in
488            // sync with this code.
489            let suffix = format!("{index:0num_digits$}");
490            let numbered_codegen_unit_name =
491                cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(suffix));
492            cgu.set_name(numbered_codegen_unit_name);
493        }
494    }
495}
496
497/// Compute the combined size of all inlined items that appear in both `cgu1`
498/// and `cgu2`.
499fn compute_inlined_overlap<'tcx>(cgu1: &CodegenUnit<'tcx>, cgu2: &CodegenUnit<'tcx>) -> usize {
500    // Either order works. We pick the one that involves iterating over fewer
501    // items.
502    let (src_cgu, dst_cgu) =
503        if cgu1.items().len() <= cgu2.items().len() { (cgu1, cgu2) } else { (cgu2, cgu1) };
504
505    let mut overlap = 0;
506    for (item, data) in src_cgu.items().iter() {
507        if data.inlined && dst_cgu.items().contains_key(item) {
508            overlap += data.size_estimate;
509        }
510    }
511    overlap
512}
513
514fn internalize_symbols<'tcx>(
515    cx: &PartitioningCx<'_, 'tcx>,
516    codegen_units: &mut [CodegenUnit<'tcx>],
517    internalization_candidates: UnordSet<MonoItem<'tcx>>,
518) {
519    /// For symbol internalization, we need to know whether a symbol/mono-item
520    /// is used from outside the codegen unit it is defined in. This type is
521    /// used to keep track of that.
522    #[derive(Clone, PartialEq, Eq, Debug)]
523    enum MonoItemPlacement {
524        SingleCgu(Symbol),
525        MultipleCgus,
526    }
527
528    let mut mono_item_placements = UnordMap::default();
529    let single_codegen_unit = codegen_units.len() == 1;
530
531    if !single_codegen_unit {
532        for cgu in codegen_units.iter() {
533            for item in cgu.items().keys() {
534                // If there is more than one codegen unit, we need to keep track
535                // in which codegen units each monomorphization is placed.
536                match mono_item_placements.entry(*item) {
537                    Entry::Occupied(e) => {
538                        let placement = e.into_mut();
539                        debug_assert!(match *placement {
540                            MonoItemPlacement::SingleCgu(cgu_name) => cgu_name != cgu.name(),
541                            MonoItemPlacement::MultipleCgus => true,
542                        });
543                        *placement = MonoItemPlacement::MultipleCgus;
544                    }
545                    Entry::Vacant(e) => {
546                        e.insert(MonoItemPlacement::SingleCgu(cgu.name()));
547                    }
548                }
549            }
550        }
551    }
552
553    // For each internalization candidates in each codegen unit, check if it is
554    // used from outside its defining codegen unit.
555    for cgu in codegen_units {
556        let home_cgu = MonoItemPlacement::SingleCgu(cgu.name());
557
558        for (item, data) in cgu.items_mut() {
559            if !internalization_candidates.contains(item) {
560                // This item is no candidate for internalizing, so skip it.
561                continue;
562            }
563
564            if !single_codegen_unit {
565                debug_assert_eq!(mono_item_placements[item], home_cgu);
566
567                if cx
568                    .usage_map
569                    .get_user_items(*item)
570                    .iter()
571                    .filter_map(|user_item| {
572                        // Some user mono items might not have been
573                        // instantiated. We can safely ignore those.
574                        mono_item_placements.get(user_item)
575                    })
576                    .any(|placement| *placement != home_cgu)
577                {
578                    // Found a user from another CGU, so skip to the next item
579                    // without marking this one as internal.
580                    continue;
581                }
582            }
583
584            // When LTO inlines the caller of a naked function, it will attempt but fail to make the
585            // naked function symbol visible. To ensure that LTO works correctly, do not default
586            // naked functions to internal linkage and default visibility.
587            if let MonoItem::Fn(instance) = item {
588                let flags = cx.tcx.codegen_instance_attrs(instance.def).flags;
589                if flags.contains(CodegenFnAttrFlags::NAKED) {
590                    continue;
591                }
592            }
593
594            // If we got here, we did not find any uses from other CGUs, so
595            // it's fine to make this monomorphization internal.
596            data.linkage = Linkage::Internal;
597            data.visibility = Visibility::Default;
598        }
599    }
600}
601
602fn mark_code_coverage_dead_code_cgu<'tcx>(codegen_units: &mut [CodegenUnit<'tcx>]) {
603    assert!(!codegen_units.is_empty());
604
605    // Find the smallest CGU that has exported symbols and put the dead
606    // function stubs in that CGU. We look for exported symbols to increase
607    // the likelihood the linker won't throw away the dead functions.
608    // FIXME(#92165): In order to truly resolve this, we need to make sure
609    // the object file (CGU) containing the dead function stubs is included
610    // in the final binary. This will probably require forcing these
611    // function symbols to be included via `-u` or `/include` linker args.
612    let dead_code_cgu = codegen_units
613        .iter_mut()
614        .filter(|cgu| cgu.items().iter().any(|(_, data)| data.linkage == Linkage::External))
615        .min_by_key(|cgu| cgu.size_estimate());
616
617    // If there are no CGUs that have externally linked items, then we just
618    // pick the first CGU as a fallback.
619    let dead_code_cgu = if let Some(cgu) = dead_code_cgu { cgu } else { &mut codegen_units[0] };
620
621    dead_code_cgu.make_code_coverage_dead_code_cgu();
622}
623
624fn characteristic_def_id_of_mono_item<'tcx>(
625    tcx: TyCtxt<'tcx>,
626    mono_item: MonoItem<'tcx>,
627) -> Option<DefId> {
628    match mono_item {
629        MonoItem::Fn(instance) => {
630            let def_id = match instance.def {
631                ty::InstanceKind::Item(def) => def,
632                ty::InstanceKind::VTableShim(..)
633                | ty::InstanceKind::ReifyShim(..)
634                | ty::InstanceKind::FnPtrShim(..)
635                | ty::InstanceKind::ClosureOnceShim { .. }
636                | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
637                | ty::InstanceKind::Intrinsic(..)
638                | ty::InstanceKind::DropGlue(..)
639                | ty::InstanceKind::Virtual(..)
640                | ty::InstanceKind::CloneShim(..)
641                | ty::InstanceKind::ThreadLocalShim(..)
642                | ty::InstanceKind::FnPtrAddrShim(..)
643                | ty::InstanceKind::FutureDropPollShim(..)
644                | ty::InstanceKind::AsyncDropGlue(..)
645                | ty::InstanceKind::AsyncDropGlueCtorShim(..) => return None,
646            };
647
648            // If this is a method, we want to put it into the same module as
649            // its self-type. If the self-type does not provide a characteristic
650            // DefId, we use the location of the impl after all.
651
652            let assoc_parent = tcx.assoc_parent(def_id);
653
654            if let Some((_, DefKind::Trait)) = assoc_parent {
655                let self_ty = instance.args.type_at(0);
656                // This is a default implementation of a trait method.
657                return characteristic_def_id_of_type(self_ty).or(Some(def_id));
658            }
659
660            if let Some((impl_def_id, DefKind::Impl { of_trait })) = assoc_parent {
661                if of_trait
662                    && tcx.sess.opts.incremental.is_some()
663                    && tcx.is_lang_item(tcx.impl_trait_id(impl_def_id), LangItem::Drop)
664                {
665                    // Put `Drop::drop` into the same cgu as `drop_in_place`
666                    // since `drop_in_place` is the only thing that can
667                    // call it.
668                    return None;
669                }
670
671                // This is a method within an impl, find out what the self-type is:
672                let impl_self_ty = tcx.instantiate_and_normalize_erasing_regions(
673                    instance.args,
674                    ty::TypingEnv::fully_monomorphized(),
675                    tcx.type_of(impl_def_id),
676                );
677                if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
678                    return Some(def_id);
679                }
680            }
681
682            Some(def_id)
683        }
684        MonoItem::Static(def_id) => Some(def_id),
685        MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
686    }
687}
688
689fn compute_codegen_unit_name(
690    tcx: TyCtxt<'_>,
691    name_builder: &mut CodegenUnitNameBuilder<'_>,
692    def_id: DefId,
693    volatile: bool,
694    cache: &mut CguNameCache,
695) -> Symbol {
696    // Find the innermost module that is not nested within a function.
697    let mut current_def_id = def_id;
698    let mut cgu_def_id = None;
699    // Walk backwards from the item we want to find the module for.
700    loop {
701        if current_def_id.is_crate_root() {
702            if cgu_def_id.is_none() {
703                // If we have not found a module yet, take the crate root.
704                cgu_def_id = Some(def_id.krate.as_def_id());
705            }
706            break;
707        } else if tcx.def_kind(current_def_id) == DefKind::Mod {
708            if cgu_def_id.is_none() {
709                cgu_def_id = Some(current_def_id);
710            }
711        } else {
712            // If we encounter something that is not a module, throw away
713            // any module that we've found so far because we now know that
714            // it is nested within something else.
715            cgu_def_id = None;
716        }
717
718        current_def_id = tcx.parent(current_def_id);
719    }
720
721    let cgu_def_id = cgu_def_id.unwrap();
722
723    *cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
724        let def_path = tcx.def_path(cgu_def_id);
725
726        let components = def_path.data.iter().map(|part| match part.data.name() {
727            DefPathDataName::Named(name) => name,
728            DefPathDataName::Anon { .. } => unreachable!(),
729        });
730
731        let volatile_suffix = volatile.then_some("volatile");
732
733        name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
734    })
735}
736
737// Anything we can't find a proper codegen unit for goes into this.
738fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
739    name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
740}
741
742fn mono_item_linkage_and_visibility<'tcx>(
743    tcx: TyCtxt<'tcx>,
744    mono_item: &MonoItem<'tcx>,
745    can_be_internalized: &mut bool,
746    can_export_generics: bool,
747    always_export_generics: bool,
748) -> (Linkage, Visibility) {
749    if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
750        return (explicit_linkage, Visibility::Default);
751    }
752    let vis = mono_item_visibility(
753        tcx,
754        mono_item,
755        can_be_internalized,
756        can_export_generics,
757        always_export_generics,
758    );
759    (Linkage::External, vis)
760}
761
762type CguNameCache = UnordMap<(DefId, bool), Symbol>;
763
764fn static_visibility<'tcx>(
765    tcx: TyCtxt<'tcx>,
766    can_be_internalized: &mut bool,
767    def_id: DefId,
768) -> Visibility {
769    if tcx.is_reachable_non_generic(def_id) {
770        *can_be_internalized = false;
771        default_visibility(tcx, def_id, false)
772    } else {
773        Visibility::Hidden
774    }
775}
776
777fn mono_item_visibility<'tcx>(
778    tcx: TyCtxt<'tcx>,
779    mono_item: &MonoItem<'tcx>,
780    can_be_internalized: &mut bool,
781    can_export_generics: bool,
782    always_export_generics: bool,
783) -> Visibility {
784    let instance = match mono_item {
785        // This is pretty complicated; see below.
786        MonoItem::Fn(instance) => instance,
787
788        // Misc handling for generics and such, but otherwise:
789        MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
790        MonoItem::GlobalAsm(item_id) => {
791            return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
792        }
793    };
794
795    let def_id = match instance.def {
796        InstanceKind::Item(def_id)
797        | InstanceKind::DropGlue(def_id, Some(_))
798        | InstanceKind::FutureDropPollShim(def_id, _, _)
799        | InstanceKind::AsyncDropGlue(def_id, _)
800        | InstanceKind::AsyncDropGlueCtorShim(def_id, _) => def_id,
801
802        // We match the visibility of statics here
803        InstanceKind::ThreadLocalShim(def_id) => {
804            return static_visibility(tcx, can_be_internalized, def_id);
805        }
806
807        // These are all compiler glue and such, never exported, always hidden.
808        InstanceKind::VTableShim(..)
809        | InstanceKind::ReifyShim(..)
810        | InstanceKind::FnPtrShim(..)
811        | InstanceKind::Virtual(..)
812        | InstanceKind::Intrinsic(..)
813        | InstanceKind::ClosureOnceShim { .. }
814        | InstanceKind::ConstructCoroutineInClosureShim { .. }
815        | InstanceKind::DropGlue(..)
816        | InstanceKind::CloneShim(..)
817        | InstanceKind::FnPtrAddrShim(..) => return Visibility::Hidden,
818    };
819
820    // Both the `start_fn` lang item and `main` itself should not be exported,
821    // so we give them with `Hidden` visibility but these symbols are
822    // only referenced from the actual `main` symbol which we unfortunately
823    // don't know anything about during partitioning/collection. As a result we
824    // forcibly keep this symbol out of the `internalization_candidates` set.
825    //
826    // FIXME: eventually we don't want to always force this symbol to have
827    //        hidden visibility, it should indeed be a candidate for
828    //        internalization, but we have to understand that it's referenced
829    //        from the `main` symbol we'll generate later.
830    //
831    //        This may be fixable with a new `InstanceKind` perhaps? Unsure!
832    if tcx.is_entrypoint(def_id) {
833        *can_be_internalized = false;
834        return Visibility::Hidden;
835    }
836
837    let is_generic = instance.args.non_erasable_generics().next().is_some();
838
839    // Upstream `DefId` instances get different handling than local ones.
840    let Some(def_id) = def_id.as_local() else {
841        return if is_generic
842            && (always_export_generics
843                || (can_export_generics
844                    && tcx.codegen_fn_attrs(def_id).inline == InlineAttr::Never))
845        {
846            // If it is an upstream monomorphization and we export generics, we must make
847            // it available to downstream crates.
848            *can_be_internalized = false;
849            default_visibility(tcx, def_id, true)
850        } else {
851            Visibility::Hidden
852        };
853    };
854
855    if is_generic {
856        if always_export_generics
857            || (can_export_generics && tcx.codegen_fn_attrs(def_id).inline == InlineAttr::Never)
858        {
859            if tcx.is_unreachable_local_definition(def_id) {
860                // This instance cannot be used from another crate.
861                Visibility::Hidden
862            } else {
863                // This instance might be useful in a downstream crate.
864                *can_be_internalized = false;
865                default_visibility(tcx, def_id.to_def_id(), true)
866            }
867        } else {
868            // We are not exporting generics or the definition is not reachable
869            // for downstream crates, we can internalize its instantiations.
870            Visibility::Hidden
871        }
872    } else {
873        // If this isn't a generic function then we mark this a `Default` if
874        // this is a reachable item, meaning that it's a symbol other crates may
875        // use when they link to us.
876        if tcx.is_reachable_non_generic(def_id.to_def_id()) {
877            *can_be_internalized = false;
878            debug_assert!(!is_generic);
879            return default_visibility(tcx, def_id.to_def_id(), false);
880        }
881
882        // If this isn't reachable then we're gonna tag this with `Hidden`
883        // visibility. In some situations though we'll want to prevent this
884        // symbol from being internalized.
885        //
886        // There's three categories of items here:
887        //
888        // * First is weak lang items. These are basically mechanisms for
889        //   libcore to forward-reference symbols defined later in crates like
890        //   the standard library or `#[panic_handler]` definitions. The
891        //   definition of these weak lang items needs to be referenceable by
892        //   libcore, so we're no longer a candidate for internalization.
893        //   Removal of these functions can't be done by LLVM but rather must be
894        //   done by the linker as it's a non-local decision.
895        //
896        // * Second is "std internal symbols". Currently this is primarily used
897        //   for allocator symbols. Allocators are a little weird in their
898        //   implementation, but the idea is that the compiler, at the last
899        //   minute, defines an allocator with an injected object file. The
900        //   `alloc` crate references these symbols (`__rust_alloc`) and the
901        //   definition doesn't get hooked up until a linked crate artifact is
902        //   generated.
903        //
904        //   The symbols synthesized by the compiler (`__rust_alloc`) are thin
905        //   veneers around the actual implementation, some other symbol which
906        //   implements the same ABI. These symbols (things like `__rg_alloc`,
907        //   `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
908        //   internal symbols".
909        //
910        //   The std-internal symbols here **should not show up in a dll as an
911        //   exported interface**, so they return `false` from
912        //   `is_reachable_non_generic` above and we'll give them `Hidden`
913        //   visibility below. Like the weak lang items, though, we can't let
914        //   LLVM internalize them as this decision is left up to the linker to
915        //   omit them, so prevent them from being internalized.
916        //
917        // * Externally implementable items. They work (in this case) pretty much the same as
918        //   RUSTC_STD_INTERNAL_SYMBOL in that their implementation is also chosen later in
919        //   the compilation process and we can't let them be internalized and they can't
920        //   show up as an external interface.
921        let attrs = tcx.codegen_fn_attrs(def_id);
922        if attrs.flags.intersects(
923            CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL
924                | CodegenFnAttrFlags::EXTERNALLY_IMPLEMENTABLE_ITEM,
925        ) {
926            *can_be_internalized = false;
927        }
928
929        Visibility::Hidden
930    }
931}
932
933fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
934    // Fast-path to avoid expensive query call below
935    if tcx.sess.default_visibility() == SymbolVisibility::Interposable {
936        return Visibility::Default;
937    }
938
939    let export_level = if is_generic {
940        // Generic functions never have export-level C.
941        SymbolExportLevel::Rust
942    } else {
943        match tcx.reachable_non_generics(id.krate).get(&id) {
944            Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => SymbolExportLevel::C,
945            _ => SymbolExportLevel::Rust,
946        }
947    };
948
949    match export_level {
950        // C-export level items remain at `Default` to allow C code to
951        // access and interpose them.
952        SymbolExportLevel::C => Visibility::Default,
953
954        // For all other symbols, `default_visibility` determines which visibility to use.
955        SymbolExportLevel::Rust => tcx.sess.default_visibility().into(),
956    }
957}
958
959fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) {
960    let dump = move || {
961        use std::fmt::Write;
962
963        let mut num_cgus = 0;
964        let mut all_cgu_sizes = Vec::new();
965
966        // Note: every unique root item is placed exactly once, so the number
967        // of unique root items always equals the number of placed root items.
968        //
969        // Also, unreached inlined items won't be counted here. This is fine.
970
971        let mut inlined_items = UnordSet::default();
972
973        let mut root_items = 0;
974        let mut unique_inlined_items = 0;
975        let mut placed_inlined_items = 0;
976
977        let mut root_size = 0;
978        let mut unique_inlined_size = 0;
979        let mut placed_inlined_size = 0;
980
981        for cgu in cgus.iter() {
982            num_cgus += 1;
983            all_cgu_sizes.push(cgu.size_estimate());
984
985            for (item, data) in cgu.items() {
986                if !data.inlined {
987                    root_items += 1;
988                    root_size += data.size_estimate;
989                } else {
990                    if inlined_items.insert(item) {
991                        unique_inlined_items += 1;
992                        unique_inlined_size += data.size_estimate;
993                    }
994                    placed_inlined_items += 1;
995                    placed_inlined_size += data.size_estimate;
996                }
997            }
998        }
999
1000        all_cgu_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
1001
1002        let unique_items = root_items + unique_inlined_items;
1003        let placed_items = root_items + placed_inlined_items;
1004        let items_ratio = placed_items as f64 / unique_items as f64;
1005
1006        let unique_size = root_size + unique_inlined_size;
1007        let placed_size = root_size + placed_inlined_size;
1008        let size_ratio = placed_size as f64 / unique_size as f64;
1009
1010        let mean_cgu_size = placed_size as f64 / num_cgus as f64;
1011
1012        assert_eq!(placed_size, all_cgu_sizes.iter().sum::<usize>());
1013
1014        let s = &mut String::new();
1015        let _ = writeln!(s, "{label}");
1016        let _ = writeln!(
1017            s,
1018            "- unique items: {unique_items} ({root_items} root + {unique_inlined_items} inlined), \
1019               unique size: {unique_size} ({root_size} root + {unique_inlined_size} inlined)\n\
1020             - placed items: {placed_items} ({root_items} root + {placed_inlined_items} inlined), \
1021               placed size: {placed_size} ({root_size} root + {placed_inlined_size} inlined)\n\
1022             - placed/unique items ratio: {items_ratio:.2}, \
1023               placed/unique size ratio: {size_ratio:.2}\n\
1024             - CGUs: {num_cgus}, mean size: {mean_cgu_size:.1}, sizes: {}",
1025            list(&all_cgu_sizes),
1026        );
1027        let _ = writeln!(s);
1028
1029        for (i, cgu) in cgus.iter().enumerate() {
1030            let name = cgu.name();
1031            let size = cgu.size_estimate();
1032            let num_items = cgu.items().len();
1033            let mean_size = size as f64 / num_items as f64;
1034
1035            let mut placed_item_sizes: Vec<_> =
1036                cgu.items().values().map(|data| data.size_estimate).collect();
1037            placed_item_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
1038            let sizes = list(&placed_item_sizes);
1039
1040            let _ = writeln!(s, "- CGU[{i}]");
1041            let _ = writeln!(s, "  - {name}, size: {size}");
1042            let _ =
1043                writeln!(s, "  - items: {num_items}, mean size: {mean_size:.1}, sizes: {sizes}",);
1044
1045            for (item, data) in cgu.items_in_deterministic_order(tcx) {
1046                let linkage = data.linkage;
1047                let symbol_name = item.symbol_name(tcx).name;
1048                let symbol_hash_start = symbol_name.rfind('h');
1049                let symbol_hash = symbol_hash_start.map_or("<no hash>", |i| &symbol_name[i..]);
1050                let kind = if !data.inlined { "root" } else { "inlined" };
1051                let size = data.size_estimate;
1052                let _ = with_no_trimmed_paths!(writeln!(
1053                    s,
1054                    "  - {item} [{linkage:?}] [{symbol_hash}] ({kind}, size: {size})"
1055                ));
1056            }
1057
1058            let _ = writeln!(s);
1059        }
1060
1061        return std::mem::take(s);
1062
1063        // Converts a slice to a string, capturing repetitions to save space.
1064        // E.g. `[4, 4, 4, 3, 2, 1, 1, 1, 1, 1]` -> "[4 (x3), 3, 2, 1 (x5)]".
1065        fn list(ns: &[usize]) -> String {
1066            let mut v = Vec::new();
1067            if ns.is_empty() {
1068                return "[]".to_string();
1069            }
1070
1071            let mut elem = |curr, curr_count| {
1072                if curr_count == 1 {
1073                    v.push(format!("{curr}"));
1074                } else {
1075                    v.push(format!("{curr} (x{curr_count})"));
1076                }
1077            };
1078
1079            let mut curr = ns[0];
1080            let mut curr_count = 1;
1081
1082            for &n in &ns[1..] {
1083                if n != curr {
1084                    elem(curr, curr_count);
1085                    curr = n;
1086                    curr_count = 1;
1087                } else {
1088                    curr_count += 1;
1089                }
1090            }
1091            elem(curr, curr_count);
1092
1093            format!("[{}]", v.join(", "))
1094        }
1095    };
1096
1097    debug!("{}", dump());
1098}
1099
1100#[inline(never)] // give this a place in the profiler
1101fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I)
1102where
1103    I: Iterator<Item = &'a MonoItem<'tcx>>,
1104    'tcx: 'a,
1105{
1106    let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct");
1107
1108    let mut symbols: Vec<_> =
1109        mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect();
1110
1111    symbols.sort_by_key(|sym| sym.1);
1112
1113    for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() {
1114        if sym1 == sym2 {
1115            let span1 = mono_item1.local_span(tcx);
1116            let span2 = mono_item2.local_span(tcx);
1117
1118            // Deterministically select one of the spans for error reporting
1119            let span = match (span1, span2) {
1120                (Some(span1), Some(span2)) => {
1121                    Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 })
1122                }
1123                (span1, span2) => span1.or(span2),
1124            };
1125
1126            tcx.dcx().emit_fatal(SymbolAlreadyDefined { span, symbol: sym1.to_string() });
1127        }
1128    }
1129}
1130
1131fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> MonoItemPartitions<'_> {
1132    let collection_strategy = if tcx.sess.link_dead_code() {
1133        MonoItemCollectionStrategy::Eager
1134    } else {
1135        MonoItemCollectionStrategy::Lazy
1136    };
1137
1138    let (items, usage_map) = collector::collect_crate_mono_items(tcx, collection_strategy);
1139    // Perform checks that need to operate on the entire mono item graph
1140    target_specific_checks(tcx, &items, &usage_map);
1141
1142    // If there was an error during collection (e.g. from one of the constants we evaluated),
1143    // then we stop here. This way codegen does not have to worry about failing constants.
1144    // (codegen relies on this and ICEs will happen if this is violated.)
1145    tcx.dcx().abort_if_errors();
1146
1147    let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || {
1148        sync::join(
1149            || {
1150                let mut codegen_units = partition(tcx, items.iter().copied(), &usage_map);
1151                codegen_units[0].make_primary();
1152                &*tcx.arena.alloc_from_iter(codegen_units)
1153            },
1154            || assert_symbols_are_distinct(tcx, items.iter()),
1155        )
1156    });
1157
1158    if tcx.prof.enabled() {
1159        // Record CGU size estimates for self-profiling.
1160        for cgu in codegen_units {
1161            tcx.prof.artifact_size(
1162                "codegen_unit_size_estimate",
1163                cgu.name().as_str(),
1164                cgu.size_estimate() as u64,
1165            );
1166        }
1167    }
1168
1169    let mono_items: DefIdSet = items
1170        .iter()
1171        .filter_map(|mono_item| match *mono_item {
1172            MonoItem::Fn(ref instance) => Some(instance.def_id()),
1173            MonoItem::Static(def_id) => Some(def_id),
1174            _ => None,
1175        })
1176        .collect();
1177
1178    // Output monomorphization stats per def_id
1179    if let SwitchWithOptPath::Enabled(ref path) = tcx.sess.opts.unstable_opts.dump_mono_stats
1180        && let Err(err) =
1181            dump_mono_items_stats(tcx, codegen_units, path, tcx.crate_name(LOCAL_CRATE))
1182    {
1183        tcx.dcx().emit_fatal(CouldntDumpMonoStats { error: err.to_string() });
1184    }
1185
1186    if tcx.sess.opts.unstable_opts.print_mono_items {
1187        let mut item_to_cgus: UnordMap<_, Vec<_>> = Default::default();
1188
1189        for cgu in codegen_units {
1190            for (&mono_item, &data) in cgu.items() {
1191                item_to_cgus.entry(mono_item).or_default().push((cgu.name(), data.linkage));
1192            }
1193        }
1194
1195        let mut item_keys: Vec<_> = items
1196            .iter()
1197            .map(|i| {
1198                let mut output = with_no_trimmed_paths!(i.to_string());
1199                output.push_str(" @@");
1200                let mut empty = Vec::new();
1201                let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
1202                cgus.sort_by_key(|(name, _)| *name);
1203                cgus.dedup();
1204                for &(ref cgu_name, linkage) in cgus.iter() {
1205                    output.push(' ');
1206                    output.push_str(cgu_name.as_str());
1207
1208                    let linkage_abbrev = match linkage {
1209                        Linkage::External => "External",
1210                        Linkage::AvailableExternally => "Available",
1211                        Linkage::LinkOnceAny => "OnceAny",
1212                        Linkage::LinkOnceODR => "OnceODR",
1213                        Linkage::WeakAny => "WeakAny",
1214                        Linkage::WeakODR => "WeakODR",
1215                        Linkage::Internal => "Internal",
1216                        Linkage::ExternalWeak => "ExternalWeak",
1217                        Linkage::Common => "Common",
1218                    };
1219
1220                    output.push('[');
1221                    output.push_str(linkage_abbrev);
1222                    output.push(']');
1223                }
1224                output
1225            })
1226            .collect();
1227
1228        item_keys.sort();
1229
1230        for item in item_keys {
1231            println!("MONO_ITEM {item}");
1232        }
1233    }
1234
1235    MonoItemPartitions { all_mono_items: tcx.arena.alloc(mono_items), codegen_units }
1236}
1237
1238/// Outputs stats about instantiation counts and estimated size, per `MonoItem`'s
1239/// def, to a file in the given output directory.
1240fn dump_mono_items_stats<'tcx>(
1241    tcx: TyCtxt<'tcx>,
1242    codegen_units: &[CodegenUnit<'tcx>],
1243    output_directory: &Option<PathBuf>,
1244    crate_name: Symbol,
1245) -> Result<(), Box<dyn std::error::Error>> {
1246    let output_directory = if let Some(directory) = output_directory {
1247        fs::create_dir_all(directory)?;
1248        directory
1249    } else {
1250        Path::new(".")
1251    };
1252
1253    let format = tcx.sess.opts.unstable_opts.dump_mono_stats_format;
1254    let ext = format.extension();
1255    let filename = format!("{crate_name}.mono_items.{ext}");
1256    let output_path = output_directory.join(&filename);
1257    let mut file = File::create_buffered(&output_path)?;
1258
1259    // Gather instantiated mono items grouped by def_id
1260    let mut items_per_def_id: FxIndexMap<_, Vec<_>> = Default::default();
1261    for cgu in codegen_units {
1262        cgu.items()
1263            .keys()
1264            // Avoid variable-sized compiler-generated shims
1265            .filter(|mono_item| mono_item.is_user_defined())
1266            .for_each(|mono_item| {
1267                items_per_def_id.entry(mono_item.def_id()).or_default().push(mono_item);
1268            });
1269    }
1270
1271    #[derive(serde::Serialize)]
1272    struct MonoItem {
1273        name: String,
1274        instantiation_count: usize,
1275        size_estimate: usize,
1276        total_estimate: usize,
1277    }
1278
1279    // Output stats sorted by total instantiated size, from heaviest to lightest
1280    let mut stats: Vec<_> = items_per_def_id
1281        .into_iter()
1282        .map(|(def_id, items)| {
1283            let name = with_no_trimmed_paths!(tcx.def_path_str(def_id));
1284            let instantiation_count = items.len();
1285            let size_estimate = items[0].size_estimate(tcx);
1286            let total_estimate = instantiation_count * size_estimate;
1287            MonoItem { name, instantiation_count, size_estimate, total_estimate }
1288        })
1289        .collect();
1290    stats.sort_unstable_by_key(|item| cmp::Reverse(item.total_estimate));
1291
1292    if !stats.is_empty() {
1293        match format {
1294            DumpMonoStatsFormat::Json => serde_json::to_writer(file, &stats)?,
1295            DumpMonoStatsFormat::Markdown => {
1296                writeln!(
1297                    file,
1298                    "| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |"
1299                )?;
1300                writeln!(file, "| --- | ---: | ---: | ---: |")?;
1301
1302                for MonoItem { name, instantiation_count, size_estimate, total_estimate } in stats {
1303                    writeln!(
1304                        file,
1305                        "| `{name}` | {instantiation_count} | {size_estimate} | {total_estimate} |"
1306                    )?;
1307                }
1308            }
1309        }
1310    }
1311
1312    Ok(())
1313}
1314
1315pub(crate) fn provide(providers: &mut Providers) {
1316    providers.collect_and_partition_mono_items = collect_and_partition_mono_items;
1317
1318    providers.is_codegened_item =
1319        |tcx, def_id| tcx.collect_and_partition_mono_items(()).all_mono_items.contains(&def_id);
1320
1321    providers.codegen_unit = |tcx, name| {
1322        tcx.collect_and_partition_mono_items(())
1323            .codegen_units
1324            .iter()
1325            .find(|cgu| cgu.name() == name)
1326            .unwrap_or_else(|| panic!("failed to find cgu with name {name:?}"))
1327    };
1328
1329    providers.size_estimate = |tcx, instance| {
1330        match instance.def {
1331            // "Normal" functions size estimate: the number of
1332            // statements, plus one for the terminator.
1333            InstanceKind::Item(..)
1334            | InstanceKind::DropGlue(..)
1335            | InstanceKind::AsyncDropGlueCtorShim(..) => {
1336                let mir = tcx.instance_mir(instance.def);
1337                mir.basic_blocks.iter().map(|bb| bb.statements.len() + 1).sum()
1338            }
1339            // Other compiler-generated shims size estimate: 1
1340            _ => 1,
1341        }
1342    };
1343
1344    collector::provide(providers);
1345}