1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//! A heuristic to tell whether an expression's type can be determined purely from its
//! subexpressions, and the arguments and locals they use. Put another way, `expr_type_is_certain`
//! tries to tell whether an expression's type can be determined without appeal to the surrounding
//! context.
//!
//! This is, in some sense, a counterpart to `let_unit_value`'s `expr_needs_inferred_result`.
//! Intuitively, that function determines whether an expression's type is needed for type inference,
//! whereas `expr_type_is_certain` determines whether type inference is needed for an expression's
//! type.
//!
//! As a heuristic, `expr_type_is_certain` may produce false negatives, but a false positive should
//! be considered a bug.

use crate::def_path_res;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{walk_qpath, walk_ty, Visitor};
use rustc_hir::{self as hir, Expr, ExprKind, GenericArgs, HirId, Node, PathSegment, QPath, TyKind};
use rustc_lint::LateContext;
use rustc_middle::ty::{self, AdtDef, GenericArgKind, Ty};
use rustc_span::{Span, Symbol};

mod certainty;
use certainty::{join, meet, Certainty, Meet};

pub fn expr_type_is_certain(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
    expr_type_certainty(cx, expr).is_certain()
}

fn expr_type_certainty(cx: &LateContext<'_>, expr: &Expr<'_>) -> Certainty {
    let certainty = match &expr.kind {
        ExprKind::Unary(_, expr)
        | ExprKind::Field(expr, _)
        | ExprKind::Index(expr, _, _)
        | ExprKind::AddrOf(_, _, expr) => expr_type_certainty(cx, expr),

        ExprKind::Array(exprs) => join(exprs.iter().map(|expr| expr_type_certainty(cx, expr))),

        ExprKind::Call(callee, args) => {
            let lhs = expr_type_certainty(cx, callee);
            let rhs = if type_is_inferable_from_arguments(cx, expr) {
                meet(args.iter().map(|arg| expr_type_certainty(cx, arg)))
            } else {
                Certainty::Uncertain
            };
            lhs.join_clearing_def_ids(rhs)
        },

        ExprKind::MethodCall(method, receiver, args, _) => {
            let mut receiver_type_certainty = expr_type_certainty(cx, receiver);
            // Even if `receiver_type_certainty` is `Certain(Some(..))`, the `Self` type in the method
            // identified by `type_dependent_def_id(..)` can differ. This can happen as a result of a `deref`,
            // for example. So update the `DefId` in `receiver_type_certainty` (if any).
            if let Some(method_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
                && let Some(self_ty_def_id) = adt_def_id(self_ty(cx, method_def_id))
            {
                receiver_type_certainty = receiver_type_certainty.with_def_id(self_ty_def_id);
            };
            let lhs = path_segment_certainty(cx, receiver_type_certainty, method, false);
            let rhs = if type_is_inferable_from_arguments(cx, expr) {
                meet(
                    std::iter::once(receiver_type_certainty).chain(args.iter().map(|arg| expr_type_certainty(cx, arg))),
                )
            } else {
                Certainty::Uncertain
            };
            lhs.join(rhs)
        },

        ExprKind::Tup(exprs) => meet(exprs.iter().map(|expr| expr_type_certainty(cx, expr))),

        ExprKind::Binary(_, lhs, rhs) => expr_type_certainty(cx, lhs).meet(expr_type_certainty(cx, rhs)),

        ExprKind::Lit(_) => Certainty::Certain(None),

        ExprKind::Cast(_, ty) => type_certainty(cx, ty),

        ExprKind::If(_, if_expr, Some(else_expr)) => {
            expr_type_certainty(cx, if_expr).join(expr_type_certainty(cx, else_expr))
        },

        ExprKind::Path(qpath) => qpath_certainty(cx, qpath, false),

        ExprKind::Struct(qpath, _, _) => qpath_certainty(cx, qpath, true),

        _ => Certainty::Uncertain,
    };

    let expr_ty = cx.typeck_results().expr_ty(expr);
    if let Some(def_id) = adt_def_id(expr_ty) {
        certainty.with_def_id(def_id)
    } else {
        certainty.clear_def_id()
    }
}

struct CertaintyVisitor<'cx, 'tcx> {
    cx: &'cx LateContext<'tcx>,
    certainty: Certainty,
}

impl<'cx, 'tcx> CertaintyVisitor<'cx, 'tcx> {
    fn new(cx: &'cx LateContext<'tcx>) -> Self {
        Self {
            cx,
            certainty: Certainty::Certain(None),
        }
    }
}

impl<'cx, 'tcx> Visitor<'cx> for CertaintyVisitor<'cx, 'tcx> {
    fn visit_qpath(&mut self, qpath: &'cx QPath<'_>, hir_id: HirId, _: Span) {
        self.certainty = self.certainty.meet(qpath_certainty(self.cx, qpath, true));
        if self.certainty != Certainty::Uncertain {
            walk_qpath(self, qpath, hir_id);
        }
    }

    fn visit_ty(&mut self, ty: &'cx hir::Ty<'_>) {
        if matches!(ty.kind, TyKind::Infer) {
            self.certainty = Certainty::Uncertain;
        }
        if self.certainty != Certainty::Uncertain {
            walk_ty(self, ty);
        }
    }
}

fn type_certainty(cx: &LateContext<'_>, ty: &hir::Ty<'_>) -> Certainty {
    // Handle `TyKind::Path` specially so that its `DefId` can be preserved.
    //
    // Note that `CertaintyVisitor::new` initializes the visitor's internal certainty to
    // `Certainty::Certain(None)`. Furthermore, if a `TyKind::Path` is encountered while traversing
    // `ty`, the result of the call to `qpath_certainty` is combined with the visitor's internal
    // certainty using `Certainty::meet`. Thus, if the `TyKind::Path` were not treated specially here,
    // the resulting certainty would be `Certainty::Certain(None)`.
    if let TyKind::Path(qpath) = &ty.kind {
        return qpath_certainty(cx, qpath, true);
    }

    let mut visitor = CertaintyVisitor::new(cx);
    visitor.visit_ty(ty);
    visitor.certainty
}

fn generic_args_certainty(cx: &LateContext<'_>, args: &GenericArgs<'_>) -> Certainty {
    let mut visitor = CertaintyVisitor::new(cx);
    visitor.visit_generic_args(args);
    visitor.certainty
}

/// Tries to tell whether a `QPath` resolves to something certain, e.g., whether all of its path
/// segments generic arguments are instantiated.
///
/// `qpath` could refer to either a type or a value. The heuristic never needs the `DefId` of a
/// value. So `DefId`s are retained only when `resolves_to_type` is true.
fn qpath_certainty(cx: &LateContext<'_>, qpath: &QPath<'_>, resolves_to_type: bool) -> Certainty {
    let certainty = match qpath {
        QPath::Resolved(ty, path) => {
            let len = path.segments.len();
            path.segments.iter().enumerate().fold(
                ty.map_or(Certainty::Uncertain, |ty| type_certainty(cx, ty)),
                |parent_certainty, (i, path_segment)| {
                    path_segment_certainty(cx, parent_certainty, path_segment, i != len - 1 || resolves_to_type)
                },
            )
        },

        QPath::TypeRelative(ty, path_segment) => {
            path_segment_certainty(cx, type_certainty(cx, ty), path_segment, resolves_to_type)
        },

        QPath::LangItem(lang_item, ..) => cx
            .tcx
            .lang_items()
            .get(*lang_item)
            .map_or(Certainty::Uncertain, |def_id| {
                let generics = cx.tcx.generics_of(def_id);
                if generics.is_empty() {
                    Certainty::Certain(if resolves_to_type { Some(def_id) } else { None })
                } else {
                    Certainty::Uncertain
                }
            }),
    };
    debug_assert!(resolves_to_type || certainty.to_def_id().is_none());
    certainty
}

fn path_segment_certainty(
    cx: &LateContext<'_>,
    parent_certainty: Certainty,
    path_segment: &PathSegment<'_>,
    resolves_to_type: bool,
) -> Certainty {
    let certainty = match update_res(cx, parent_certainty, path_segment).unwrap_or(path_segment.res) {
        // A definition's type is certain if it refers to something without generics (e.g., a crate or module, or
        // an unparameterized type), or the generics are instantiated with arguments that are certain.
        //
        // If the parent is uncertain, then the current path segment must account for the parent's generic arguments.
        // Consider the following examples, where the current path segment is `None`:
        // - `Option::None`             // uncertain; parent (i.e., `Option`) is uncertain
        // - `Option::<Vec<u64>>::None` // certain; parent (i.e., `Option::<..>`) is certain
        // - `Option::None::<Vec<u64>>` // certain; parent (i.e., `Option`) is uncertain
        Res::Def(_, def_id) => {
            // Checking `res_generics_def_id(..)` before calling `generics_of` avoids an ICE.
            if cx.tcx.res_generics_def_id(path_segment.res).is_some() {
                let generics = cx.tcx.generics_of(def_id);
                let count = generics.own_params.len() - usize::from(generics.host_effect_index.is_some());
                let lhs = if (parent_certainty.is_certain() || generics.parent_count == 0) && count == 0 {
                    Certainty::Certain(None)
                } else {
                    Certainty::Uncertain
                };
                let rhs = path_segment
                    .args
                    .map_or(Certainty::Uncertain, |args| generic_args_certainty(cx, args));
                // See the comment preceding `qpath_certainty`. `def_id` could refer to a type or a value.
                let certainty = lhs.join_clearing_def_ids(rhs);
                if resolves_to_type {
                    if let DefKind::TyAlias = cx.tcx.def_kind(def_id) {
                        adt_def_id(cx.tcx.type_of(def_id).instantiate_identity())
                            .map_or(certainty, |def_id| certainty.with_def_id(def_id))
                    } else {
                        certainty.with_def_id(def_id)
                    }
                } else {
                    certainty
                }
            } else {
                Certainty::Certain(None)
            }
        },

        Res::PrimTy(_) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::SelfCtor(_) => {
            Certainty::Certain(None)
        },

        // `get_parent` because `hir_id` refers to a `Pat`, and we're interested in the node containing the `Pat`.
        Res::Local(hir_id) => match cx.tcx.parent_hir_node(hir_id) {
            // An argument's type is always certain.
            Node::Param(..) => Certainty::Certain(None),
            // A local's type is certain if its type annotation is certain or it has an initializer whose
            // type is certain.
            Node::LetStmt(local) => {
                let lhs = local.ty.map_or(Certainty::Uncertain, |ty| type_certainty(cx, ty));
                let rhs = local
                    .init
                    .map_or(Certainty::Uncertain, |init| expr_type_certainty(cx, init));
                let certainty = lhs.join(rhs);
                if resolves_to_type {
                    certainty
                } else {
                    certainty.clear_def_id()
                }
            },
            _ => Certainty::Uncertain,
        },

        _ => Certainty::Uncertain,
    };
    debug_assert!(resolves_to_type || certainty.to_def_id().is_none());
    certainty
}

/// For at least some `QPath::TypeRelative`, the path segment's `res` can be `Res::Err`.
/// `update_res` tries to fix the resolution when `parent_certainty` is `Certain(Some(..))`.
fn update_res(cx: &LateContext<'_>, parent_certainty: Certainty, path_segment: &PathSegment<'_>) -> Option<Res> {
    if path_segment.res == Res::Err
        && let Some(def_id) = parent_certainty.to_def_id()
    {
        let mut def_path = cx.get_def_path(def_id);
        def_path.push(path_segment.ident.name);
        let reses = def_path_res(cx, &def_path.iter().map(Symbol::as_str).collect::<Vec<_>>());
        if let [res] = reses.as_slice() { Some(*res) } else { None }
    } else {
        None
    }
}

#[allow(clippy::cast_possible_truncation)]
fn type_is_inferable_from_arguments(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
    let Some(callee_def_id) = (match expr.kind {
        ExprKind::Call(callee, _) => {
            let callee_ty = cx.typeck_results().expr_ty(callee);
            if let ty::FnDef(callee_def_id, _) = callee_ty.kind() {
                Some(*callee_def_id)
            } else {
                None
            }
        },
        ExprKind::MethodCall(_, _, _, _) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
        _ => None,
    }) else {
        return false;
    };

    let generics = cx.tcx.generics_of(callee_def_id);
    let fn_sig = cx.tcx.fn_sig(callee_def_id).skip_binder();

    // Check that all type parameters appear in the functions input types.
    (0..(generics.parent_count + generics.own_params.len()) as u32).all(|index| {
        Some(index as usize) == generics.host_effect_index
            || fn_sig
                .inputs()
                .iter()
                .any(|input_ty| contains_param(*input_ty.skip_binder(), index))
    })
}

fn self_ty<'tcx>(cx: &LateContext<'tcx>, method_def_id: DefId) -> Ty<'tcx> {
    cx.tcx.fn_sig(method_def_id).skip_binder().inputs().skip_binder()[0]
}

fn adt_def_id(ty: Ty<'_>) -> Option<DefId> {
    ty.peel_refs().ty_adt_def().map(AdtDef::did)
}

fn contains_param(ty: Ty<'_>, index: u32) -> bool {
    ty.walk()
        .any(|arg| matches!(arg.unpack(), GenericArgKind::Type(ty) if ty.is_param(index)))
}