miri/concurrency/vector_clock.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
use std::cmp::Ordering;
use std::fmt::Debug;
use std::ops::{Index, Shr};
use rustc_index::Idx;
use rustc_span::{DUMMY_SP, Span, SpanData};
use smallvec::SmallVec;
use super::data_race::NaReadType;
/// A vector clock index, this is associated with a thread id
/// but in some cases one vector index may be shared with
/// multiple thread ids if it's safe to do so.
#[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub(super) struct VectorIdx(u32);
impl VectorIdx {
#[inline(always)]
fn to_u32(self) -> u32 {
self.0
}
}
impl Idx for VectorIdx {
#[inline]
fn new(idx: usize) -> Self {
VectorIdx(u32::try_from(idx).unwrap())
}
#[inline]
fn index(self) -> usize {
usize::try_from(self.0).unwrap()
}
}
impl From<u32> for VectorIdx {
#[inline]
fn from(id: u32) -> Self {
Self(id)
}
}
/// The size of the vector-clock to store inline
/// clock vectors larger than this will be stored on the heap
const SMALL_VECTOR: usize = 4;
/// The time-stamps recorded in the data-race detector consist of both
/// a 32-bit unsigned integer which is the actual timestamp, and a `Span`
/// so that diagnostics can report what code was responsible for an operation.
#[derive(Clone, Copy, Debug)]
pub(super) struct VTimestamp {
/// The lowest bit indicates read type, the rest is the time.
/// `1` indicates a retag read, `0` a regular read.
time_and_read_type: u32,
pub span: Span,
}
impl VTimestamp {
pub const ZERO: VTimestamp = VTimestamp::new(0, NaReadType::Read, DUMMY_SP);
#[inline]
const fn encode_time_and_read_type(time: u32, read_type: NaReadType) -> u32 {
let read_type_bit = match read_type {
NaReadType::Read => 0,
NaReadType::Retag => 1,
};
// Put the `read_type` in the lowest bit and `time` in the rest
read_type_bit | time.checked_mul(2).expect("Vector clock overflow")
}
#[inline]
const fn new(time: u32, read_type: NaReadType, span: Span) -> Self {
Self { time_and_read_type: Self::encode_time_and_read_type(time, read_type), span }
}
#[inline]
fn time(&self) -> u32 {
self.time_and_read_type.shr(1)
}
#[inline]
fn set_time(&mut self, time: u32) {
self.time_and_read_type = Self::encode_time_and_read_type(time, self.read_type());
}
#[inline]
pub(super) fn read_type(&self) -> NaReadType {
if self.time_and_read_type & 1 == 0 { NaReadType::Read } else { NaReadType::Retag }
}
#[inline]
pub(super) fn set_read_type(&mut self, read_type: NaReadType) {
self.time_and_read_type = Self::encode_time_and_read_type(self.time(), read_type);
}
#[inline]
pub(super) fn span_data(&self) -> SpanData {
self.span.data()
}
}
impl PartialEq for VTimestamp {
fn eq(&self, other: &Self) -> bool {
self.time() == other.time()
}
}
impl Eq for VTimestamp {}
impl PartialOrd for VTimestamp {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for VTimestamp {
fn cmp(&self, other: &Self) -> Ordering {
self.time().cmp(&other.time())
}
}
/// A vector clock for detecting data-races, this is conceptually
/// a map from a vector index (and thus a thread id) to a timestamp.
/// The compare operations require that the invariant that the last
/// element in the internal timestamp slice must not be a 0, hence
/// all zero vector clocks are always represented by the empty slice;
/// and allows for the implementation of compare operations to short
/// circuit the calculation and return the correct result faster,
/// also this means that there is only one unique valid length
/// for each set of vector clock values and hence the PartialEq
/// and Eq derivations are correct.
///
/// This means we cannot represent a clock where the last entry is a timestamp-0 read that occurs
/// because of a retag. That's fine, all it does is risk wrong diagnostics in a extreme corner case.
#[derive(PartialEq, Eq, Default, Debug)]
pub struct VClock(SmallVec<[VTimestamp; SMALL_VECTOR]>);
impl VClock {
/// Create a new vector-clock containing all zeros except
/// for a value at the given index
pub(super) fn new_with_index(index: VectorIdx, timestamp: VTimestamp) -> VClock {
if timestamp.time() == 0 {
return VClock::default();
}
let len = index.index() + 1;
let mut vec = smallvec::smallvec![VTimestamp::ZERO; len];
vec[index.index()] = timestamp;
VClock(vec)
}
/// Load the internal timestamp slice in the vector clock
#[inline]
pub(super) fn as_slice(&self) -> &[VTimestamp] {
debug_assert!(self.0.last().is_none_or(|t| t.time() != 0));
self.0.as_slice()
}
#[inline]
pub(super) fn index_mut(&mut self, index: VectorIdx) -> &mut VTimestamp {
self.0.as_mut_slice().get_mut(index.to_u32() as usize).unwrap()
}
/// Get a mutable slice to the internal vector with minimum `min_len`
/// elements. To preserve invariants, the caller must modify
/// the `min_len`-1 nth element to a non-zero value
#[inline]
fn get_mut_with_min_len(&mut self, min_len: usize) -> &mut [VTimestamp] {
if self.0.len() < min_len {
self.0.resize(min_len, VTimestamp::ZERO);
}
assert!(self.0.len() >= min_len);
self.0.as_mut_slice()
}
/// Increment the vector clock at a known index
/// this will panic if the vector index overflows
#[inline]
pub(super) fn increment_index(&mut self, idx: VectorIdx, current_span: Span) {
let idx = idx.index();
let mut_slice = self.get_mut_with_min_len(idx + 1);
let idx_ref = &mut mut_slice[idx];
idx_ref.set_time(idx_ref.time().checked_add(1).expect("Vector clock overflow"));
if !current_span.is_dummy() {
idx_ref.span = current_span;
}
}
// Join the two vector-clocks together, this
// sets each vector-element to the maximum value
// of that element in either of the two source elements.
pub fn join(&mut self, other: &Self) {
let rhs_slice = other.as_slice();
let lhs_slice = self.get_mut_with_min_len(rhs_slice.len());
for (l, &r) in lhs_slice.iter_mut().zip(rhs_slice.iter()) {
let l_span = l.span;
let r_span = r.span;
*l = r.max(*l);
l.span = l.span.substitute_dummy(r_span).substitute_dummy(l_span);
}
}
/// Set the element at the current index of the vector. May only increase elements.
pub(super) fn set_at_index(&mut self, other: &Self, idx: VectorIdx) {
let new_timestamp = other[idx];
// Setting to 0 is different, since the last element cannot be 0.
if new_timestamp.time() == 0 {
if idx.index() >= self.0.len() {
// This index does not even exist yet in our clock. Just do nothing.
return;
}
// This changes an existing element. Since it can only increase, that
// can never make the last element 0.
}
let mut_slice = self.get_mut_with_min_len(idx.index() + 1);
let mut_timestamp = &mut mut_slice[idx.index()];
let prev_span = mut_timestamp.span;
assert!(*mut_timestamp <= new_timestamp, "set_at_index: may only increase the timestamp");
*mut_timestamp = new_timestamp;
let span = &mut mut_timestamp.span;
*span = span.substitute_dummy(prev_span);
}
/// Set the vector to the all-zero vector
#[inline]
pub(super) fn set_zero_vector(&mut self) {
self.0.clear();
}
}
impl Clone for VClock {
fn clone(&self) -> Self {
VClock(self.0.clone())
}
// Optimized clone-from, can be removed
// and replaced with a derive once a similar
// optimization is inserted into SmallVec's
// clone implementation.
fn clone_from(&mut self, source: &Self) {
let source_slice = source.as_slice();
self.0.clear();
self.0.extend_from_slice(source_slice);
}
}
impl PartialOrd for VClock {
fn partial_cmp(&self, other: &VClock) -> Option<Ordering> {
// Load the values as slices
let lhs_slice = self.as_slice();
let rhs_slice = other.as_slice();
// Iterate through the combined vector slice continuously updating
// the value of `order` to the current comparison of the vector from
// index 0 to the currently checked index.
// An Equal ordering can be converted into Less or Greater ordering
// on finding an element that is less than or greater than the other
// but if one Greater and one Less element-wise comparison is found
// then no ordering is possible and so directly return an ordering
// of None.
let mut iter = lhs_slice.iter().zip(rhs_slice.iter());
let mut order = match iter.next() {
Some((lhs, rhs)) => lhs.cmp(rhs),
None => Ordering::Equal,
};
for (l, r) in iter {
match order {
Ordering::Equal => order = l.cmp(r),
Ordering::Less =>
if l > r {
return None;
},
Ordering::Greater =>
if l < r {
return None;
},
}
}
// Now test if either left or right have trailing elements,
// by the invariant the trailing elements have at least 1
// non zero value, so no additional calculation is required
// to determine the result of the PartialOrder.
let l_len = lhs_slice.len();
let r_len = rhs_slice.len();
match l_len.cmp(&r_len) {
// Equal means no additional elements: return current order
Ordering::Equal => Some(order),
// Right has at least 1 element > than the implicit 0,
// so the only valid values are Ordering::Less or None.
Ordering::Less =>
match order {
Ordering::Less | Ordering::Equal => Some(Ordering::Less),
Ordering::Greater => None,
},
// Left has at least 1 element > than the implicit 0,
// so the only valid values are Ordering::Greater or None.
Ordering::Greater =>
match order {
Ordering::Greater | Ordering::Equal => Some(Ordering::Greater),
Ordering::Less => None,
},
}
}
fn lt(&self, other: &VClock) -> bool {
// Load the values as slices
let lhs_slice = self.as_slice();
let rhs_slice = other.as_slice();
// If l_len > r_len then at least one element
// in l_len is > than r_len, therefore the result
// is either Some(Greater) or None, so return false
// early.
let l_len = lhs_slice.len();
let r_len = rhs_slice.len();
if l_len <= r_len {
// If any elements on the left are greater than the right
// then the result is None or Some(Greater), both of which
// return false, the earlier test asserts that no elements in the
// extended tail violate this assumption. Otherwise l <= r, finally
// the case where the values are potentially equal needs to be considered
// and false returned as well
let mut equal = l_len == r_len;
for (&l, &r) in lhs_slice.iter().zip(rhs_slice.iter()) {
if l > r {
return false;
} else if l < r {
equal = false;
}
}
!equal
} else {
false
}
}
fn le(&self, other: &VClock) -> bool {
// Load the values as slices
let lhs_slice = self.as_slice();
let rhs_slice = other.as_slice();
// If l_len > r_len then at least one element
// in l_len is > than r_len, therefore the result
// is either Some(Greater) or None, so return false
// early.
let l_len = lhs_slice.len();
let r_len = rhs_slice.len();
if l_len <= r_len {
// If any elements on the left are greater than the right
// then the result is None or Some(Greater), both of which
// return false, the earlier test asserts that no elements in the
// extended tail violate this assumption. Otherwise l <= r
!lhs_slice.iter().zip(rhs_slice.iter()).any(|(&l, &r)| l > r)
} else {
false
}
}
fn gt(&self, other: &VClock) -> bool {
// Load the values as slices
let lhs_slice = self.as_slice();
let rhs_slice = other.as_slice();
// If r_len > l_len then at least one element
// in r_len is > than l_len, therefore the result
// is either Some(Less) or None, so return false
// early.
let l_len = lhs_slice.len();
let r_len = rhs_slice.len();
if l_len >= r_len {
// If any elements on the left are less than the right
// then the result is None or Some(Less), both of which
// return false, the earlier test asserts that no elements in the
// extended tail violate this assumption. Otherwise l >=, finally
// the case where the values are potentially equal needs to be considered
// and false returned as well
let mut equal = l_len == r_len;
for (&l, &r) in lhs_slice.iter().zip(rhs_slice.iter()) {
if l < r {
return false;
} else if l > r {
equal = false;
}
}
!equal
} else {
false
}
}
fn ge(&self, other: &VClock) -> bool {
// Load the values as slices
let lhs_slice = self.as_slice();
let rhs_slice = other.as_slice();
// If r_len > l_len then at least one element
// in r_len is > than l_len, therefore the result
// is either Some(Less) or None, so return false
// early.
let l_len = lhs_slice.len();
let r_len = rhs_slice.len();
if l_len >= r_len {
// If any elements on the left are less than the right
// then the result is None or Some(Less), both of which
// return false, the earlier test asserts that no elements in the
// extended tail violate this assumption. Otherwise l >= r
!lhs_slice.iter().zip(rhs_slice.iter()).any(|(&l, &r)| l < r)
} else {
false
}
}
}
impl Index<VectorIdx> for VClock {
type Output = VTimestamp;
#[inline]
fn index(&self, index: VectorIdx) -> &VTimestamp {
self.as_slice().get(index.to_u32() as usize).unwrap_or(&VTimestamp::ZERO)
}
}
/// Test vector clock ordering operations
/// data-race detection is tested in the external
/// test suite
#[cfg(test)]
mod tests {
use std::cmp::Ordering;
use rustc_span::DUMMY_SP;
use super::{VClock, VTimestamp, VectorIdx};
use crate::concurrency::data_race::NaReadType;
#[test]
fn test_equal() {
let mut c1 = VClock::default();
let mut c2 = VClock::default();
assert_eq!(c1, c2);
c1.increment_index(VectorIdx(5), DUMMY_SP);
assert_ne!(c1, c2);
c2.increment_index(VectorIdx(53), DUMMY_SP);
assert_ne!(c1, c2);
c1.increment_index(VectorIdx(53), DUMMY_SP);
assert_ne!(c1, c2);
c2.increment_index(VectorIdx(5), DUMMY_SP);
assert_eq!(c1, c2);
}
#[test]
fn test_partial_order() {
// Small test
assert_order(&[1], &[1], Some(Ordering::Equal));
assert_order(&[1], &[2], Some(Ordering::Less));
assert_order(&[2], &[1], Some(Ordering::Greater));
assert_order(&[1], &[1, 2], Some(Ordering::Less));
assert_order(&[2], &[1, 2], None);
// Misc tests
assert_order(&[400], &[0, 1], None);
// Large test
assert_order(
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, 0],
Some(Ordering::Equal),
);
assert_order(
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 0],
Some(Ordering::Less),
);
assert_order(
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11],
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, 0],
Some(Ordering::Greater),
);
assert_order(
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11],
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 0],
None,
);
assert_order(
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9],
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, 0],
Some(Ordering::Less),
);
assert_order(
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9],
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 0],
Some(Ordering::Less),
);
}
fn from_slice(mut slice: &[u32]) -> VClock {
while let Some(0) = slice.last() {
slice = &slice[..slice.len() - 1]
}
VClock(
slice
.iter()
.copied()
.map(|time| VTimestamp::new(time, NaReadType::Read, DUMMY_SP))
.collect(),
)
}
fn assert_order(l: &[u32], r: &[u32], o: Option<Ordering>) {
let l = from_slice(l);
let r = from_slice(r);
//Test partial_cmp
let compare = l.partial_cmp(&r);
assert_eq!(compare, o, "Invalid comparison\n l: {l:?}\n r: {r:?}");
let alt_compare = r.partial_cmp(&l);
assert_eq!(
alt_compare,
o.map(Ordering::reverse),
"Invalid alt comparison\n l: {l:?}\n r: {r:?}"
);
//Test operators with faster implementations
assert_eq!(
matches!(compare, Some(Ordering::Less)),
l < r,
"Invalid (<):\n l: {l:?}\n r: {r:?}"
);
assert_eq!(
matches!(compare, Some(Ordering::Less) | Some(Ordering::Equal)),
l <= r,
"Invalid (<=):\n l: {l:?}\n r: {r:?}"
);
assert_eq!(
matches!(compare, Some(Ordering::Greater)),
l > r,
"Invalid (>):\n l: {l:?}\n r: {r:?}"
);
assert_eq!(
matches!(compare, Some(Ordering::Greater) | Some(Ordering::Equal)),
l >= r,
"Invalid (>=):\n l: {l:?}\n r: {r:?}"
);
assert_eq!(
matches!(alt_compare, Some(Ordering::Less)),
r < l,
"Invalid alt (<):\n l: {l:?}\n r: {r:?}"
);
assert_eq!(
matches!(alt_compare, Some(Ordering::Less) | Some(Ordering::Equal)),
r <= l,
"Invalid alt (<=):\n l: {l:?}\n r: {r:?}"
);
assert_eq!(
matches!(alt_compare, Some(Ordering::Greater)),
r > l,
"Invalid alt (>):\n l: {l:?}\n r: {r:?}"
);
assert_eq!(
matches!(alt_compare, Some(Ordering::Greater) | Some(Ordering::Equal)),
r >= l,
"Invalid alt (>=):\n l: {l:?}\n r: {r:?}"
);
}
#[test]
fn set_index_to_0() {
let mut clock1 = from_slice(&[0, 1, 2, 3]);
let clock2 = from_slice(&[0, 2, 3, 4, 0, 5]);
// Naively, this would extend clock1 with a new index and set it to 0, making
// the last index 0. Make sure that does not happen.
clock1.set_at_index(&clock2, VectorIdx(4));
// This must not have made the last element 0.
assert!(clock1.0.last().unwrap().time() != 0);
}
}