bootstrap/core/build_steps/
compile.rs

1//! Implementation of compiling various phases of the compiler and standard
2//! library.
3//!
4//! This module contains some of the real meat in the bootstrap build system
5//! which is where Cargo is used to compile the standard library, libtest, and
6//! the compiler. This module is also responsible for assembling the sysroot as it
7//! goes along from the output of the previous stage.
8
9use std::borrow::Cow;
10use std::collections::{BTreeMap, HashMap, HashSet};
11use std::ffi::OsStr;
12use std::io::BufReader;
13use std::io::prelude::*;
14use std::path::{Path, PathBuf};
15use std::time::SystemTime;
16use std::{env, fs, str};
17
18use serde_derive::Deserialize;
19#[cfg(feature = "tracing")]
20use tracing::span;
21
22use crate::core::build_steps::gcc::{Gcc, GccOutput, GccTargetPair, add_cg_gcc_cargo_flags};
23use crate::core::build_steps::tool::{RustcPrivateCompilers, SourceType, copy_lld_artifacts};
24use crate::core::build_steps::{dist, llvm};
25use crate::core::builder;
26use crate::core::builder::{
27    Builder, Cargo, Kind, RunConfig, ShouldRun, Step, StepMetadata, crate_description,
28};
29use crate::core::config::toml::target::DefaultLinuxLinkerOverride;
30use crate::core::config::{
31    CompilerBuiltins, DebuginfoLevel, LlvmLibunwind, RustcLto, TargetSelection,
32};
33use crate::utils::build_stamp;
34use crate::utils::build_stamp::BuildStamp;
35use crate::utils::exec::command;
36use crate::utils::helpers::{
37    exe, get_clang_cl_resource_dir, is_debug_info, is_dylib, symlink_dir, t, up_to_date,
38};
39use crate::{
40    CLang, CodegenBackendKind, Compiler, DependencyType, FileType, GitRepo, LLVM_TOOLS, Mode,
41    debug, trace,
42};
43
44/// Build a standard library for the given `target` using the given `build_compiler`.
45#[derive(Debug, Clone, PartialEq, Eq, Hash)]
46pub struct Std {
47    pub target: TargetSelection,
48    /// Compiler that builds the standard library.
49    pub build_compiler: Compiler,
50    /// Whether to build only a subset of crates in the standard library.
51    ///
52    /// This shouldn't be used from other steps; see the comment on [`Rustc`].
53    crates: Vec<String>,
54    /// When using download-rustc, we need to use a new build of `std` for running unit tests of Std itself,
55    /// but we need to use the downloaded copy of std for linking to rustdoc. Allow this to be overridden by `builder.ensure` from other steps.
56    force_recompile: bool,
57    extra_rust_args: &'static [&'static str],
58    is_for_mir_opt_tests: bool,
59}
60
61impl Std {
62    pub fn new(build_compiler: Compiler, target: TargetSelection) -> Self {
63        Self {
64            target,
65            build_compiler,
66            crates: Default::default(),
67            force_recompile: false,
68            extra_rust_args: &[],
69            is_for_mir_opt_tests: false,
70        }
71    }
72
73    pub fn force_recompile(mut self, force_recompile: bool) -> Self {
74        self.force_recompile = force_recompile;
75        self
76    }
77
78    #[expect(clippy::wrong_self_convention)]
79    pub fn is_for_mir_opt_tests(mut self, is_for_mir_opt_tests: bool) -> Self {
80        self.is_for_mir_opt_tests = is_for_mir_opt_tests;
81        self
82    }
83
84    pub fn extra_rust_args(mut self, extra_rust_args: &'static [&'static str]) -> Self {
85        self.extra_rust_args = extra_rust_args;
86        self
87    }
88
89    fn copy_extra_objects(
90        &self,
91        builder: &Builder<'_>,
92        compiler: &Compiler,
93        target: TargetSelection,
94    ) -> Vec<(PathBuf, DependencyType)> {
95        let mut deps = Vec::new();
96        if !self.is_for_mir_opt_tests {
97            deps.extend(copy_third_party_objects(builder, compiler, target));
98            deps.extend(copy_self_contained_objects(builder, compiler, target));
99        }
100        deps
101    }
102
103    /// Returns true if the standard library should be uplifted from stage 1.
104    ///
105    /// Uplifting is enabled if we're building a stage2+ libstd and full bootstrap is
106    /// disabled.
107    pub fn should_be_uplifted_from_stage_1(builder: &Builder<'_>, stage: u32) -> bool {
108        stage > 1 && !builder.config.full_bootstrap
109    }
110}
111
112impl Step for Std {
113    /// Build stamp of std, if it was indeed built or uplifted.
114    type Output = Option<BuildStamp>;
115
116    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
117        run.crate_or_deps("sysroot").path("library")
118    }
119
120    fn is_default_step(_builder: &Builder<'_>) -> bool {
121        true
122    }
123
124    fn make_run(run: RunConfig<'_>) {
125        let crates = std_crates_for_run_make(&run);
126        let builder = run.builder;
127
128        // Force compilation of the standard library from source if the `library` is modified. This allows
129        // library team to compile the standard library without needing to compile the compiler with
130        // the `rust.download-rustc=true` option.
131        let force_recompile = builder.rust_info().is_managed_git_subrepository()
132            && builder.download_rustc()
133            && builder.config.has_changes_from_upstream(&["library"]);
134
135        trace!("is managed git repo: {}", builder.rust_info().is_managed_git_subrepository());
136        trace!("download_rustc: {}", builder.download_rustc());
137        trace!(force_recompile);
138
139        run.builder.ensure(Std {
140            // Note: we don't use compiler_for_std here, so that `x build library --stage 2`
141            // builds a stage2 rustc.
142            build_compiler: run.builder.compiler(run.builder.top_stage, builder.host_target),
143            target: run.target,
144            crates,
145            force_recompile,
146            extra_rust_args: &[],
147            is_for_mir_opt_tests: false,
148        });
149    }
150
151    /// Builds the standard library.
152    ///
153    /// This will build the standard library for a particular stage of the build
154    /// using the `compiler` targeting the `target` architecture. The artifacts
155    /// created will also be linked into the sysroot directory.
156    fn run(self, builder: &Builder<'_>) -> Self::Output {
157        let target = self.target;
158
159        // In most cases, we already have the std ready to be used for stage 0.
160        // However, if we are doing a local rebuild (so the build compiler can compile the standard
161        // library even on stage 0), and we're cross-compiling (so the stage0 standard library for
162        // *target* is not available), we still allow the stdlib to be built here.
163        if self.build_compiler.stage == 0
164            && !(builder.local_rebuild && target != builder.host_target)
165        {
166            let compiler = self.build_compiler;
167            builder.ensure(StdLink::from_std(self, compiler));
168
169            return None;
170        }
171
172        let build_compiler = if builder.download_rustc() && self.force_recompile {
173            // When there are changes in the library tree with CI-rustc, we want to build
174            // the stageN library and that requires using stageN-1 compiler.
175            builder
176                .compiler(self.build_compiler.stage.saturating_sub(1), builder.config.host_target)
177        } else {
178            self.build_compiler
179        };
180
181        // When using `download-rustc`, we already have artifacts for the host available. Don't
182        // recompile them.
183        if builder.download_rustc()
184            && builder.config.is_host_target(target)
185            && !self.force_recompile
186        {
187            let sysroot =
188                builder.ensure(Sysroot { compiler: build_compiler, force_recompile: false });
189            cp_rustc_component_to_ci_sysroot(
190                builder,
191                &sysroot,
192                builder.config.ci_rust_std_contents(),
193            );
194            return None;
195        }
196
197        if builder.config.keep_stage.contains(&build_compiler.stage)
198            || builder.config.keep_stage_std.contains(&build_compiler.stage)
199        {
200            trace!(keep_stage = ?builder.config.keep_stage);
201            trace!(keep_stage_std = ?builder.config.keep_stage_std);
202
203            builder.info("WARNING: Using a potentially old libstd. This may not behave well.");
204
205            builder.ensure(StartupObjects { compiler: build_compiler, target });
206
207            self.copy_extra_objects(builder, &build_compiler, target);
208
209            builder.ensure(StdLink::from_std(self, build_compiler));
210            return Some(build_stamp::libstd_stamp(builder, build_compiler, target));
211        }
212
213        let mut target_deps = builder.ensure(StartupObjects { compiler: build_compiler, target });
214
215        // Stage of the stdlib that we're building
216        let stage = build_compiler.stage;
217
218        if Self::should_be_uplifted_from_stage_1(builder, build_compiler.stage) {
219            let build_compiler_for_std_to_uplift = builder.compiler(1, builder.host_target);
220            let stage_1_stamp = builder.std(build_compiler_for_std_to_uplift, target);
221
222            let msg = if build_compiler_for_std_to_uplift.host == target {
223                format!(
224                    "Uplifting library (stage{} -> stage{stage})",
225                    build_compiler_for_std_to_uplift.stage
226                )
227            } else {
228                format!(
229                    "Uplifting library (stage{}:{} -> stage{stage}:{target})",
230                    build_compiler_for_std_to_uplift.stage, build_compiler_for_std_to_uplift.host,
231                )
232            };
233
234            builder.info(&msg);
235
236            // Even if we're not building std this stage, the new sysroot must
237            // still contain the third party objects needed by various targets.
238            self.copy_extra_objects(builder, &build_compiler, target);
239
240            builder.ensure(StdLink::from_std(self, build_compiler_for_std_to_uplift));
241            return stage_1_stamp;
242        }
243
244        target_deps.extend(self.copy_extra_objects(builder, &build_compiler, target));
245
246        // We build a sysroot for mir-opt tests using the same trick that Miri does: A check build
247        // with -Zalways-encode-mir. This frees us from the need to have a target linker, and the
248        // fact that this is a check build integrates nicely with run_cargo.
249        let mut cargo = if self.is_for_mir_opt_tests {
250            trace!("building special sysroot for mir-opt tests");
251            let mut cargo = builder::Cargo::new_for_mir_opt_tests(
252                builder,
253                build_compiler,
254                Mode::Std,
255                SourceType::InTree,
256                target,
257                Kind::Check,
258            );
259            cargo.rustflag("-Zalways-encode-mir");
260            cargo.arg("--manifest-path").arg(builder.src.join("library/sysroot/Cargo.toml"));
261            cargo
262        } else {
263            trace!("building regular sysroot");
264            let mut cargo = builder::Cargo::new(
265                builder,
266                build_compiler,
267                Mode::Std,
268                SourceType::InTree,
269                target,
270                Kind::Build,
271            );
272            std_cargo(builder, target, &mut cargo, &self.crates);
273            cargo
274        };
275
276        // See src/bootstrap/synthetic_targets.rs
277        if target.is_synthetic() {
278            cargo.env("RUSTC_BOOTSTRAP_SYNTHETIC_TARGET", "1");
279        }
280        for rustflag in self.extra_rust_args.iter() {
281            cargo.rustflag(rustflag);
282        }
283
284        let _guard = builder.msg(
285            Kind::Build,
286            format_args!("library artifacts{}", crate_description(&self.crates)),
287            Mode::Std,
288            build_compiler,
289            target,
290        );
291
292        let stamp = build_stamp::libstd_stamp(builder, build_compiler, target);
293        run_cargo(
294            builder,
295            cargo,
296            vec![],
297            &stamp,
298            target_deps,
299            self.is_for_mir_opt_tests, // is_check
300            false,
301        );
302
303        builder.ensure(StdLink::from_std(
304            self,
305            builder.compiler(build_compiler.stage, builder.config.host_target),
306        ));
307        Some(stamp)
308    }
309
310    fn metadata(&self) -> Option<StepMetadata> {
311        Some(StepMetadata::build("std", self.target).built_by(self.build_compiler))
312    }
313}
314
315fn copy_and_stamp(
316    builder: &Builder<'_>,
317    libdir: &Path,
318    sourcedir: &Path,
319    name: &str,
320    target_deps: &mut Vec<(PathBuf, DependencyType)>,
321    dependency_type: DependencyType,
322) {
323    let target = libdir.join(name);
324    builder.copy_link(&sourcedir.join(name), &target, FileType::Regular);
325
326    target_deps.push((target, dependency_type));
327}
328
329fn copy_llvm_libunwind(builder: &Builder<'_>, target: TargetSelection, libdir: &Path) -> PathBuf {
330    let libunwind_path = builder.ensure(llvm::Libunwind { target });
331    let libunwind_source = libunwind_path.join("libunwind.a");
332    let libunwind_target = libdir.join("libunwind.a");
333    builder.copy_link(&libunwind_source, &libunwind_target, FileType::NativeLibrary);
334    libunwind_target
335}
336
337/// Copies third party objects needed by various targets.
338fn copy_third_party_objects(
339    builder: &Builder<'_>,
340    compiler: &Compiler,
341    target: TargetSelection,
342) -> Vec<(PathBuf, DependencyType)> {
343    let mut target_deps = vec![];
344
345    if builder.config.needs_sanitizer_runtime_built(target) && compiler.stage != 0 {
346        // The sanitizers are only copied in stage1 or above,
347        // to avoid creating dependency on LLVM.
348        target_deps.extend(
349            copy_sanitizers(builder, compiler, target)
350                .into_iter()
351                .map(|d| (d, DependencyType::Target)),
352        );
353    }
354
355    if target == "x86_64-fortanix-unknown-sgx"
356        || builder.config.llvm_libunwind(target) == LlvmLibunwind::InTree
357            && (target.contains("linux") || target.contains("fuchsia") || target.contains("aix"))
358    {
359        let libunwind_path =
360            copy_llvm_libunwind(builder, target, &builder.sysroot_target_libdir(*compiler, target));
361        target_deps.push((libunwind_path, DependencyType::Target));
362    }
363
364    target_deps
365}
366
367/// Copies third party objects needed by various targets for self-contained linkage.
368fn copy_self_contained_objects(
369    builder: &Builder<'_>,
370    compiler: &Compiler,
371    target: TargetSelection,
372) -> Vec<(PathBuf, DependencyType)> {
373    let libdir_self_contained =
374        builder.sysroot_target_libdir(*compiler, target).join("self-contained");
375    t!(fs::create_dir_all(&libdir_self_contained));
376    let mut target_deps = vec![];
377
378    // Copies the libc and CRT objects.
379    //
380    // rustc historically provides a more self-contained installation for musl targets
381    // not requiring the presence of a native musl toolchain. For example, it can fall back
382    // to using gcc from a glibc-targeting toolchain for linking.
383    // To do that we have to distribute musl startup objects as a part of Rust toolchain
384    // and link with them manually in the self-contained mode.
385    if target.needs_crt_begin_end() {
386        let srcdir = builder.musl_libdir(target).unwrap_or_else(|| {
387            panic!("Target {:?} does not have a \"musl-libdir\" key", target.triple)
388        });
389        if !target.starts_with("wasm32") {
390            for &obj in &["libc.a", "crt1.o", "Scrt1.o", "rcrt1.o", "crti.o", "crtn.o"] {
391                copy_and_stamp(
392                    builder,
393                    &libdir_self_contained,
394                    &srcdir,
395                    obj,
396                    &mut target_deps,
397                    DependencyType::TargetSelfContained,
398                );
399            }
400            let crt_path = builder.ensure(llvm::CrtBeginEnd { target });
401            for &obj in &["crtbegin.o", "crtbeginS.o", "crtend.o", "crtendS.o"] {
402                let src = crt_path.join(obj);
403                let target = libdir_self_contained.join(obj);
404                builder.copy_link(&src, &target, FileType::NativeLibrary);
405                target_deps.push((target, DependencyType::TargetSelfContained));
406            }
407        } else {
408            // For wasm32 targets, we need to copy the libc.a and crt1-command.o files from the
409            // musl-libdir, but we don't need the other files.
410            for &obj in &["libc.a", "crt1-command.o"] {
411                copy_and_stamp(
412                    builder,
413                    &libdir_self_contained,
414                    &srcdir,
415                    obj,
416                    &mut target_deps,
417                    DependencyType::TargetSelfContained,
418                );
419            }
420        }
421        if !target.starts_with("s390x") {
422            let libunwind_path = copy_llvm_libunwind(builder, target, &libdir_self_contained);
423            target_deps.push((libunwind_path, DependencyType::TargetSelfContained));
424        }
425    } else if target.contains("-wasi") {
426        let srcdir = builder.wasi_libdir(target).unwrap_or_else(|| {
427            panic!(
428                "Target {:?} does not have a \"wasi-root\" key in bootstrap.toml \
429                    or `$WASI_SDK_PATH` set",
430                target.triple
431            )
432        });
433
434        // wasm32-wasip3 doesn't exist in wasi-libc yet, so instead use libs
435        // from the wasm32-wasip2 target. Once wasi-libc supports wasip3 this
436        // should be deleted and the native objects should be used.
437        let srcdir = if target == "wasm32-wasip3" {
438            assert!(!srcdir.exists(), "wasip3 support is in wasi-libc, this should be updated now");
439            builder.wasi_libdir(TargetSelection::from_user("wasm32-wasip2")).unwrap()
440        } else {
441            srcdir
442        };
443        for &obj in &["libc.a", "crt1-command.o", "crt1-reactor.o"] {
444            copy_and_stamp(
445                builder,
446                &libdir_self_contained,
447                &srcdir,
448                obj,
449                &mut target_deps,
450                DependencyType::TargetSelfContained,
451            );
452        }
453    } else if target.is_windows_gnu() || target.is_windows_gnullvm() {
454        for obj in ["crt2.o", "dllcrt2.o"].iter() {
455            let src = compiler_file(builder, &builder.cc(target), target, CLang::C, obj);
456            let dst = libdir_self_contained.join(obj);
457            builder.copy_link(&src, &dst, FileType::NativeLibrary);
458            target_deps.push((dst, DependencyType::TargetSelfContained));
459        }
460    }
461
462    target_deps
463}
464
465/// Resolves standard library crates for `Std::run_make` for any build kind (like check, doc,
466/// build, clippy, etc.).
467pub fn std_crates_for_run_make(run: &RunConfig<'_>) -> Vec<String> {
468    let mut crates = run.make_run_crates(builder::Alias::Library);
469
470    // For no_std targets, we only want to check core and alloc
471    // Regardless of core/alloc being selected explicitly or via the "library" default alias,
472    // we only want to keep these two crates.
473    // The set of no_std crates should be kept in sync with what `Builder::std_cargo` does.
474    // Note: an alternative design would be to return an enum from this function (Default vs Subset)
475    // of crates. However, several steps currently pass `-p <package>` even if all crates are
476    // selected, because Cargo behaves differently in that case. To keep that behavior without
477    // making further changes, we pre-filter the no-std crates here.
478    let target_is_no_std = run.builder.no_std(run.target).unwrap_or(false);
479    if target_is_no_std {
480        crates.retain(|c| c == "core" || c == "alloc");
481    }
482    crates
483}
484
485/// Tries to find LLVM's `compiler-rt` source directory, for building `library/profiler_builtins`.
486///
487/// Normally it lives in the `src/llvm-project` submodule, but if we will be using a
488/// downloaded copy of CI LLVM, then we try to use the `compiler-rt` sources from
489/// there instead, which lets us avoid checking out the LLVM submodule.
490fn compiler_rt_for_profiler(builder: &Builder<'_>) -> PathBuf {
491    // Try to use `compiler-rt` sources from downloaded CI LLVM, if possible.
492    if builder.config.llvm_from_ci {
493        // CI LLVM might not have been downloaded yet, so try to download it now.
494        builder.config.maybe_download_ci_llvm();
495        let ci_llvm_compiler_rt = builder.config.ci_llvm_root().join("compiler-rt");
496        if ci_llvm_compiler_rt.exists() {
497            return ci_llvm_compiler_rt;
498        }
499    }
500
501    // Otherwise, fall back to requiring the LLVM submodule.
502    builder.require_submodule("src/llvm-project", {
503        Some("The `build.profiler` config option requires `compiler-rt` sources from LLVM.")
504    });
505    builder.src.join("src/llvm-project/compiler-rt")
506}
507
508/// Configure cargo to compile the standard library, adding appropriate env vars
509/// and such.
510pub fn std_cargo(
511    builder: &Builder<'_>,
512    target: TargetSelection,
513    cargo: &mut Cargo,
514    crates: &[String],
515) {
516    // rustc already ensures that it builds with the minimum deployment
517    // target, so ideally we shouldn't need to do anything here.
518    //
519    // However, `cc` currently defaults to a higher version for backwards
520    // compatibility, which means that compiler-rt, which is built via
521    // compiler-builtins' build script, gets built with a higher deployment
522    // target. This in turn causes warnings while linking, and is generally
523    // a compatibility hazard.
524    //
525    // So, at least until https://github.com/rust-lang/cc-rs/issues/1171, or
526    // perhaps https://github.com/rust-lang/cargo/issues/13115 is resolved, we
527    // explicitly set the deployment target environment variables to avoid
528    // this issue.
529    //
530    // This place also serves as an extension point if we ever wanted to raise
531    // rustc's default deployment target while keeping the prebuilt `std` at
532    // a lower version, so it's kinda nice to have in any case.
533    if target.contains("apple") && !builder.config.dry_run() {
534        // Query rustc for the deployment target, and the associated env var.
535        // The env var is one of the standard `*_DEPLOYMENT_TARGET` vars, i.e.
536        // `MACOSX_DEPLOYMENT_TARGET`, `IPHONEOS_DEPLOYMENT_TARGET`, etc.
537        let mut cmd = builder.rustc_cmd(cargo.compiler());
538        cmd.arg("--target").arg(target.rustc_target_arg());
539        cmd.arg("--print=deployment-target");
540        let output = cmd.run_capture_stdout(builder).stdout();
541
542        let (env_var, value) = output.split_once('=').unwrap();
543        // Unconditionally set the env var (if it was set in the environment
544        // already, rustc should've picked that up).
545        cargo.env(env_var.trim(), value.trim());
546
547        // Allow CI to override the deployment target for `std` on macOS.
548        //
549        // This is useful because we might want the host tooling LLVM, `rustc`
550        // and Cargo to have a different deployment target than `std` itself
551        // (currently, these two versions are the same, but in the past, we
552        // supported macOS 10.7 for user code and macOS 10.8 in host tooling).
553        //
554        // It is not necessary on the other platforms, since only macOS has
555        // support for host tooling.
556        if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
557            cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
558        }
559    }
560
561    // Paths needed by `library/profiler_builtins/build.rs`.
562    if let Some(path) = builder.config.profiler_path(target) {
563        cargo.env("LLVM_PROFILER_RT_LIB", path);
564    } else if builder.config.profiler_enabled(target) {
565        let compiler_rt = compiler_rt_for_profiler(builder);
566        // Currently this is separate from the env var used by `compiler_builtins`
567        // (below) so that adding support for CI LLVM here doesn't risk breaking
568        // the compiler builtins. But they could be unified if desired.
569        cargo.env("RUST_COMPILER_RT_FOR_PROFILER", compiler_rt);
570    }
571
572    // Determine if we're going to compile in optimized C intrinsics to
573    // the `compiler-builtins` crate. These intrinsics live in LLVM's
574    // `compiler-rt` repository.
575    //
576    // Note that this shouldn't affect the correctness of `compiler-builtins`,
577    // but only its speed. Some intrinsics in C haven't been translated to Rust
578    // yet but that's pretty rare. Other intrinsics have optimized
579    // implementations in C which have only had slower versions ported to Rust,
580    // so we favor the C version where we can, but it's not critical.
581    //
582    // If `compiler-rt` is available ensure that the `c` feature of the
583    // `compiler-builtins` crate is enabled and it's configured to learn where
584    // `compiler-rt` is located.
585    let compiler_builtins_c_feature = match builder.config.optimized_compiler_builtins(target) {
586        CompilerBuiltins::LinkLLVMBuiltinsLib(path) => {
587            cargo.env("LLVM_COMPILER_RT_LIB", path);
588            " compiler-builtins-c"
589        }
590        CompilerBuiltins::BuildLLVMFuncs => {
591            // NOTE: this interacts strangely with `llvm-has-rust-patches`. In that case, we enforce
592            // `submodules = false`, so this is a no-op. But, the user could still decide to
593            //  manually use an in-tree submodule.
594            //
595            // NOTE: if we're using system llvm, we'll end up building a version of `compiler-rt`
596            // that doesn't match the LLVM we're linking to. That's probably ok? At least, the
597            // difference wasn't enforced before. There's a comment in the compiler_builtins build
598            // script that makes me nervous, though:
599            // https://github.com/rust-lang/compiler-builtins/blob/31ee4544dbe47903ce771270d6e3bea8654e9e50/build.rs#L575-L579
600            builder.require_submodule(
601                "src/llvm-project",
602                Some(
603                    "The `build.optimized-compiler-builtins` config option \
604                     requires `compiler-rt` sources from LLVM.",
605                ),
606            );
607            let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
608            if !builder.config.dry_run() {
609                // This assertion would otherwise trigger during tests if `llvm-project` is not
610                // checked out.
611                assert!(compiler_builtins_root.exists());
612            }
613
614            // The path to `compiler-rt` is also used by `profiler_builtins` (above),
615            // so if you're changing something here please also change that as appropriate.
616            cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
617            " compiler-builtins-c"
618        }
619        CompilerBuiltins::BuildRustOnly => "",
620    };
621
622    // `libtest` uses this to know whether or not to support
623    // `-Zunstable-options`.
624    if !builder.unstable_features() {
625        cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
626    }
627
628    for krate in crates {
629        cargo.args(["-p", krate]);
630    }
631
632    let mut features = String::new();
633
634    if builder.no_std(target) == Some(true) {
635        features += " compiler-builtins-mem";
636        if !target.starts_with("bpf") {
637            features.push_str(compiler_builtins_c_feature);
638        }
639
640        // for no-std targets we only compile a few no_std crates
641        if crates.is_empty() {
642            cargo.args(["-p", "alloc"]);
643        }
644        cargo
645            .arg("--manifest-path")
646            .arg(builder.src.join("library/alloc/Cargo.toml"))
647            .arg("--features")
648            .arg(features);
649    } else {
650        features += &builder.std_features(target);
651        features.push_str(compiler_builtins_c_feature);
652
653        cargo
654            .arg("--features")
655            .arg(features)
656            .arg("--manifest-path")
657            .arg(builder.src.join("library/sysroot/Cargo.toml"));
658
659        // Help the libc crate compile by assisting it in finding various
660        // sysroot native libraries.
661        if target.contains("musl")
662            && let Some(p) = builder.musl_libdir(target)
663        {
664            let root = format!("native={}", p.to_str().unwrap());
665            cargo.rustflag("-L").rustflag(&root);
666        }
667
668        if target.contains("-wasi")
669            && let Some(dir) = builder.wasi_libdir(target)
670        {
671            let root = format!("native={}", dir.to_str().unwrap());
672            cargo.rustflag("-L").rustflag(&root);
673        }
674    }
675
676    // By default, rustc uses `-Cembed-bitcode=yes`, and Cargo overrides that
677    // with `-Cembed-bitcode=no` for non-LTO builds. However, libstd must be
678    // built with bitcode so that the produced rlibs can be used for both LTO
679    // builds (which use bitcode) and non-LTO builds (which use object code).
680    // So we override the override here!
681    cargo.rustflag("-Cembed-bitcode=yes");
682
683    if builder.config.rust_lto == RustcLto::Off {
684        cargo.rustflag("-Clto=off");
685    }
686
687    // By default, rustc does not include unwind tables unless they are required
688    // for a particular target. They are not required by RISC-V targets, but
689    // compiling the standard library with them means that users can get
690    // backtraces without having to recompile the standard library themselves.
691    //
692    // This choice was discussed in https://github.com/rust-lang/rust/pull/69890
693    if target.contains("riscv") {
694        cargo.rustflag("-Cforce-unwind-tables=yes");
695    }
696
697    // Enable frame pointers by default for the library. Note that they are still controlled by a
698    // separate setting for the compiler.
699    cargo.rustflag("-Zunstable-options");
700    cargo.rustflag("-Cforce-frame-pointers=non-leaf");
701
702    let html_root =
703        format!("-Zcrate-attr=doc(html_root_url=\"{}/\")", builder.doc_rust_lang_org_channel(),);
704    cargo.rustflag(&html_root);
705    cargo.rustdocflag(&html_root);
706
707    cargo.rustdocflag("-Zcrate-attr=warn(rust_2018_idioms)");
708}
709
710/// Link all libstd rlibs/dylibs into a sysroot of `target_compiler`.
711///
712/// Links those artifacts generated by `compiler` to the `stage` compiler's
713/// sysroot for the specified `host` and `target`.
714///
715/// Note that this assumes that `compiler` has already generated the libstd
716/// libraries for `target`, and this method will find them in the relevant
717/// output directory.
718#[derive(Debug, Clone, PartialEq, Eq, Hash)]
719pub struct StdLink {
720    pub compiler: Compiler,
721    pub target_compiler: Compiler,
722    pub target: TargetSelection,
723    /// Not actually used; only present to make sure the cache invalidation is correct.
724    crates: Vec<String>,
725    /// See [`Std::force_recompile`].
726    force_recompile: bool,
727}
728
729impl StdLink {
730    pub fn from_std(std: Std, host_compiler: Compiler) -> Self {
731        Self {
732            compiler: host_compiler,
733            target_compiler: std.build_compiler,
734            target: std.target,
735            crates: std.crates,
736            force_recompile: std.force_recompile,
737        }
738    }
739}
740
741impl Step for StdLink {
742    type Output = ();
743
744    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
745        run.never()
746    }
747
748    /// Link all libstd rlibs/dylibs into the sysroot location.
749    ///
750    /// Links those artifacts generated by `compiler` to the `stage` compiler's
751    /// sysroot for the specified `host` and `target`.
752    ///
753    /// Note that this assumes that `compiler` has already generated the libstd
754    /// libraries for `target`, and this method will find them in the relevant
755    /// output directory.
756    fn run(self, builder: &Builder<'_>) {
757        let compiler = self.compiler;
758        let target_compiler = self.target_compiler;
759        let target = self.target;
760
761        // NOTE: intentionally does *not* check `target == builder.build` to avoid having to add the same check in `test::Crate`.
762        let (libdir, hostdir) = if !self.force_recompile && builder.download_rustc() {
763            // NOTE: copies part of `sysroot_libdir` to avoid having to add a new `force_recompile` argument there too
764            let lib = builder.sysroot_libdir_relative(self.compiler);
765            let sysroot = builder.ensure(crate::core::build_steps::compile::Sysroot {
766                compiler: self.compiler,
767                force_recompile: self.force_recompile,
768            });
769            let libdir = sysroot.join(lib).join("rustlib").join(target).join("lib");
770            let hostdir = sysroot.join(lib).join("rustlib").join(compiler.host).join("lib");
771            (libdir, hostdir)
772        } else {
773            let libdir = builder.sysroot_target_libdir(target_compiler, target);
774            let hostdir = builder.sysroot_target_libdir(target_compiler, compiler.host);
775            (libdir, hostdir)
776        };
777
778        let is_downloaded_beta_stage0 = builder
779            .build
780            .config
781            .initial_rustc
782            .starts_with(builder.out.join(compiler.host).join("stage0/bin"));
783
784        // Special case for stage0, to make `rustup toolchain link` and `x dist --stage 0`
785        // work for stage0-sysroot. We only do this if the stage0 compiler comes from beta,
786        // and is not set to a custom path.
787        if compiler.stage == 0 && is_downloaded_beta_stage0 {
788            // Copy bin files from stage0/bin to stage0-sysroot/bin
789            let sysroot = builder.out.join(compiler.host).join("stage0-sysroot");
790
791            let host = compiler.host;
792            let stage0_bin_dir = builder.out.join(host).join("stage0/bin");
793            let sysroot_bin_dir = sysroot.join("bin");
794            t!(fs::create_dir_all(&sysroot_bin_dir));
795            builder.cp_link_r(&stage0_bin_dir, &sysroot_bin_dir);
796
797            let stage0_lib_dir = builder.out.join(host).join("stage0/lib");
798            t!(fs::create_dir_all(sysroot.join("lib")));
799            builder.cp_link_r(&stage0_lib_dir, &sysroot.join("lib"));
800
801            // Copy codegen-backends from stage0
802            let sysroot_codegen_backends = builder.sysroot_codegen_backends(compiler);
803            t!(fs::create_dir_all(&sysroot_codegen_backends));
804            let stage0_codegen_backends = builder
805                .out
806                .join(host)
807                .join("stage0/lib/rustlib")
808                .join(host)
809                .join("codegen-backends");
810            if stage0_codegen_backends.exists() {
811                builder.cp_link_r(&stage0_codegen_backends, &sysroot_codegen_backends);
812            }
813        } else if compiler.stage == 0 {
814            let sysroot = builder.out.join(compiler.host.triple).join("stage0-sysroot");
815
816            if builder.local_rebuild {
817                // On local rebuilds this path might be a symlink to the project root,
818                // which can be read-only (e.g., on CI). So remove it before copying
819                // the stage0 lib.
820                let _ = fs::remove_dir_all(sysroot.join("lib/rustlib/src/rust"));
821            }
822
823            builder.cp_link_r(&builder.initial_sysroot.join("lib"), &sysroot.join("lib"));
824        } else {
825            if builder.download_rustc() {
826                // Ensure there are no CI-rustc std artifacts.
827                let _ = fs::remove_dir_all(&libdir);
828                let _ = fs::remove_dir_all(&hostdir);
829            }
830
831            add_to_sysroot(
832                builder,
833                &libdir,
834                &hostdir,
835                &build_stamp::libstd_stamp(builder, compiler, target),
836            );
837        }
838    }
839}
840
841/// Copies sanitizer runtime libraries into target libdir.
842fn copy_sanitizers(
843    builder: &Builder<'_>,
844    compiler: &Compiler,
845    target: TargetSelection,
846) -> Vec<PathBuf> {
847    let runtimes: Vec<llvm::SanitizerRuntime> = builder.ensure(llvm::Sanitizers { target });
848
849    if builder.config.dry_run() {
850        return Vec::new();
851    }
852
853    let mut target_deps = Vec::new();
854    let libdir = builder.sysroot_target_libdir(*compiler, target);
855
856    for runtime in &runtimes {
857        let dst = libdir.join(&runtime.name);
858        builder.copy_link(&runtime.path, &dst, FileType::NativeLibrary);
859
860        // The `aarch64-apple-ios-macabi` and `x86_64-apple-ios-macabi` are also supported for
861        // sanitizers, but they share a sanitizer runtime with `${arch}-apple-darwin`, so we do
862        // not list them here to rename and sign the runtime library.
863        if target == "x86_64-apple-darwin"
864            || target == "aarch64-apple-darwin"
865            || target == "aarch64-apple-ios"
866            || target == "aarch64-apple-ios-sim"
867            || target == "x86_64-apple-ios"
868        {
869            // Update the library’s install name to reflect that it has been renamed.
870            apple_darwin_update_library_name(builder, &dst, &format!("@rpath/{}", runtime.name));
871            // Upon renaming the install name, the code signature of the file will invalidate,
872            // so we will sign it again.
873            apple_darwin_sign_file(builder, &dst);
874        }
875
876        target_deps.push(dst);
877    }
878
879    target_deps
880}
881
882fn apple_darwin_update_library_name(builder: &Builder<'_>, library_path: &Path, new_name: &str) {
883    command("install_name_tool").arg("-id").arg(new_name).arg(library_path).run(builder);
884}
885
886fn apple_darwin_sign_file(builder: &Builder<'_>, file_path: &Path) {
887    command("codesign")
888        .arg("-f") // Force to rewrite the existing signature
889        .arg("-s")
890        .arg("-")
891        .arg(file_path)
892        .run(builder);
893}
894
895#[derive(Debug, Clone, PartialEq, Eq, Hash)]
896pub struct StartupObjects {
897    pub compiler: Compiler,
898    pub target: TargetSelection,
899}
900
901impl Step for StartupObjects {
902    type Output = Vec<(PathBuf, DependencyType)>;
903
904    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
905        run.path("library/rtstartup")
906    }
907
908    fn make_run(run: RunConfig<'_>) {
909        run.builder.ensure(StartupObjects {
910            compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()),
911            target: run.target,
912        });
913    }
914
915    /// Builds and prepare startup objects like rsbegin.o and rsend.o
916    ///
917    /// These are primarily used on Windows right now for linking executables/dlls.
918    /// They don't require any library support as they're just plain old object
919    /// files, so we just use the nightly snapshot compiler to always build them (as
920    /// no other compilers are guaranteed to be available).
921    fn run(self, builder: &Builder<'_>) -> Vec<(PathBuf, DependencyType)> {
922        let for_compiler = self.compiler;
923        let target = self.target;
924        // Even though no longer necessary on x86_64, they are kept for now to
925        // avoid potential issues in downstream crates.
926        if !target.is_windows_gnu() {
927            return vec![];
928        }
929
930        let mut target_deps = vec![];
931
932        let src_dir = &builder.src.join("library").join("rtstartup");
933        let dst_dir = &builder.native_dir(target).join("rtstartup");
934        let sysroot_dir = &builder.sysroot_target_libdir(for_compiler, target);
935        t!(fs::create_dir_all(dst_dir));
936
937        for file in &["rsbegin", "rsend"] {
938            let src_file = &src_dir.join(file.to_string() + ".rs");
939            let dst_file = &dst_dir.join(file.to_string() + ".o");
940            if !up_to_date(src_file, dst_file) {
941                let mut cmd = command(&builder.initial_rustc);
942                cmd.env("RUSTC_BOOTSTRAP", "1");
943                if !builder.local_rebuild {
944                    // a local_rebuild compiler already has stage1 features
945                    cmd.arg("--cfg").arg("bootstrap");
946                }
947                cmd.arg("--target")
948                    .arg(target.rustc_target_arg())
949                    .arg("--emit=obj")
950                    .arg("-o")
951                    .arg(dst_file)
952                    .arg(src_file)
953                    .run(builder);
954            }
955
956            let obj = sysroot_dir.join((*file).to_string() + ".o");
957            builder.copy_link(dst_file, &obj, FileType::NativeLibrary);
958            target_deps.push((obj, DependencyType::Target));
959        }
960
961        target_deps
962    }
963}
964
965fn cp_rustc_component_to_ci_sysroot(builder: &Builder<'_>, sysroot: &Path, contents: Vec<String>) {
966    let ci_rustc_dir = builder.config.ci_rustc_dir();
967
968    for file in contents {
969        let src = ci_rustc_dir.join(&file);
970        let dst = sysroot.join(file);
971        if src.is_dir() {
972            t!(fs::create_dir_all(dst));
973        } else {
974            builder.copy_link(&src, &dst, FileType::Regular);
975        }
976    }
977}
978
979/// Represents information about a built rustc.
980#[derive(Clone, Debug)]
981pub struct BuiltRustc {
982    /// The compiler that actually built this *rustc*.
983    /// This can be different from the *build_compiler* passed to the `Rustc` step because of
984    /// uplifting.
985    pub build_compiler: Compiler,
986}
987
988/// Build rustc using the passed `build_compiler`.
989///
990/// - Makes sure that `build_compiler` has a standard library prepared for its host target,
991///   so that it can compile build scripts and proc macros when building this `rustc`.
992/// - Makes sure that `build_compiler` has a standard library prepared for `target`,
993///   so that the built `rustc` can *link to it* and use it at runtime.
994#[derive(Debug, Clone, PartialEq, Eq, Hash)]
995pub struct Rustc {
996    /// The target on which rustc will run (its host).
997    pub target: TargetSelection,
998    /// The **previous** compiler used to compile this rustc.
999    pub build_compiler: Compiler,
1000    /// Whether to build a subset of crates, rather than the whole compiler.
1001    ///
1002    /// This should only be requested by the user, not used within bootstrap itself.
1003    /// Using it within bootstrap can lead to confusing situation where lints are replayed
1004    /// in two different steps.
1005    crates: Vec<String>,
1006}
1007
1008impl Rustc {
1009    pub fn new(build_compiler: Compiler, target: TargetSelection) -> Self {
1010        Self { target, build_compiler, crates: Default::default() }
1011    }
1012}
1013
1014impl Step for Rustc {
1015    type Output = BuiltRustc;
1016    const IS_HOST: bool = true;
1017
1018    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1019        let mut crates = run.builder.in_tree_crates("rustc-main", None);
1020        for (i, krate) in crates.iter().enumerate() {
1021            // We can't allow `build rustc` as an alias for this Step, because that's reserved by `Assemble`.
1022            // Ideally Assemble would use `build compiler` instead, but that seems too confusing to be worth the breaking change.
1023            if krate.name == "rustc-main" {
1024                crates.swap_remove(i);
1025                break;
1026            }
1027        }
1028        run.crates(crates)
1029    }
1030
1031    fn is_default_step(_builder: &Builder<'_>) -> bool {
1032        false
1033    }
1034
1035    fn make_run(run: RunConfig<'_>) {
1036        // If only `compiler` was passed, do not run this step.
1037        // Instead the `Assemble` step will take care of compiling Rustc.
1038        if run.builder.paths == vec![PathBuf::from("compiler")] {
1039            return;
1040        }
1041
1042        let crates = run.cargo_crates_in_set();
1043        run.builder.ensure(Rustc {
1044            build_compiler: run
1045                .builder
1046                .compiler(run.builder.top_stage.saturating_sub(1), run.build_triple()),
1047            target: run.target,
1048            crates,
1049        });
1050    }
1051
1052    /// Builds the compiler.
1053    ///
1054    /// This will build the compiler for a particular stage of the build using
1055    /// the `build_compiler` targeting the `target` architecture. The artifacts
1056    /// created will also be linked into the sysroot directory.
1057    fn run(self, builder: &Builder<'_>) -> Self::Output {
1058        let build_compiler = self.build_compiler;
1059        let target = self.target;
1060
1061        // NOTE: the ABI of the stage0 compiler is different from the ABI of the downloaded compiler,
1062        // so its artifacts can't be reused.
1063        if builder.download_rustc() && build_compiler.stage != 0 {
1064            trace!(stage = build_compiler.stage, "`download_rustc` requested");
1065
1066            let sysroot =
1067                builder.ensure(Sysroot { compiler: build_compiler, force_recompile: false });
1068            cp_rustc_component_to_ci_sysroot(
1069                builder,
1070                &sysroot,
1071                builder.config.ci_rustc_dev_contents(),
1072            );
1073            return BuiltRustc { build_compiler };
1074        }
1075
1076        // Build a standard library for `target` using the `build_compiler`.
1077        // This will be the standard library that the rustc which we build *links to*.
1078        builder.std(build_compiler, target);
1079
1080        if builder.config.keep_stage.contains(&build_compiler.stage) {
1081            trace!(stage = build_compiler.stage, "`keep-stage` requested");
1082
1083            builder.info("WARNING: Using a potentially old librustc. This may not behave well.");
1084            builder.info("WARNING: Use `--keep-stage-std` if you want to rebuild the compiler when it changes");
1085            builder.ensure(RustcLink::from_rustc(self));
1086
1087            return BuiltRustc { build_compiler };
1088        }
1089
1090        // The stage of the compiler that we're building
1091        let stage = build_compiler.stage + 1;
1092
1093        // If we are building a stage3+ compiler, and full bootstrap is disabled, and we have a
1094        // previous rustc available, we will uplift a compiler from a previous stage.
1095        // We do not allow cross-compilation uplifting here, because there it can be quite tricky
1096        // to figure out which stage actually built the rustc that should be uplifted.
1097        if build_compiler.stage >= 2
1098            && !builder.config.full_bootstrap
1099            && target == builder.host_target
1100        {
1101            // Here we need to determine the **build compiler** that built the stage that we will
1102            // be uplifting. We cannot uplift stage 1, as it has a different ABI than stage 2+,
1103            // so we always uplift the stage2 compiler (compiled with stage 1).
1104            let uplift_build_compiler = builder.compiler(1, build_compiler.host);
1105
1106            let msg = format!("Uplifting rustc from stage2 to stage{stage})");
1107            builder.info(&msg);
1108
1109            // Here the compiler that built the rlibs (`uplift_build_compiler`) can be different
1110            // from the compiler whose sysroot should be modified in this step. So we need to copy
1111            // the (previously built) rlibs into the correct sysroot.
1112            builder.ensure(RustcLink::from_build_compiler_and_sysroot(
1113                // This is the compiler that actually built the rustc rlibs
1114                uplift_build_compiler,
1115                // We copy the rlibs into the sysroot of `build_compiler`
1116                build_compiler,
1117                target,
1118                self.crates,
1119            ));
1120
1121            // Here we have performed an uplift, so we return the actual build compiler that "built"
1122            // this rustc.
1123            return BuiltRustc { build_compiler: uplift_build_compiler };
1124        }
1125
1126        // Build a standard library for the current host target using the `build_compiler`.
1127        // This standard library will be used when building `rustc` for compiling
1128        // build scripts and proc macros.
1129        // If we are not cross-compiling, the Std build above will be the same one as the one we
1130        // prepare here.
1131        builder.std(
1132            builder.compiler(self.build_compiler.stage, builder.config.host_target),
1133            builder.config.host_target,
1134        );
1135
1136        let mut cargo = builder::Cargo::new(
1137            builder,
1138            build_compiler,
1139            Mode::Rustc,
1140            SourceType::InTree,
1141            target,
1142            Kind::Build,
1143        );
1144
1145        rustc_cargo(builder, &mut cargo, target, &build_compiler, &self.crates);
1146
1147        // NB: all RUSTFLAGS should be added to `rustc_cargo()` so they will be
1148        // consistently applied by check/doc/test modes too.
1149
1150        for krate in &*self.crates {
1151            cargo.arg("-p").arg(krate);
1152        }
1153
1154        if builder.build.config.enable_bolt_settings && build_compiler.stage == 1 {
1155            // Relocations are required for BOLT to work.
1156            cargo.env("RUSTC_BOLT_LINK_FLAGS", "1");
1157        }
1158
1159        let _guard = builder.msg(
1160            Kind::Build,
1161            format_args!("compiler artifacts{}", crate_description(&self.crates)),
1162            Mode::Rustc,
1163            build_compiler,
1164            target,
1165        );
1166        let stamp = build_stamp::librustc_stamp(builder, build_compiler, target);
1167        run_cargo(
1168            builder,
1169            cargo,
1170            vec![],
1171            &stamp,
1172            vec![],
1173            false,
1174            true, // Only ship rustc_driver.so and .rmeta files, not all intermediate .rlib files.
1175        );
1176
1177        let target_root_dir = stamp.path().parent().unwrap();
1178        // When building `librustc_driver.so` (like `libLLVM.so`) on linux, it can contain
1179        // unexpected debuginfo from dependencies, for example from the C++ standard library used in
1180        // our LLVM wrapper. Unless we're explicitly requesting `librustc_driver` to be built with
1181        // debuginfo (via the debuginfo level of the executables using it): strip this debuginfo
1182        // away after the fact.
1183        if builder.config.rust_debuginfo_level_rustc == DebuginfoLevel::None
1184            && builder.config.rust_debuginfo_level_tools == DebuginfoLevel::None
1185        {
1186            let rustc_driver = target_root_dir.join("librustc_driver.so");
1187            strip_debug(builder, target, &rustc_driver);
1188        }
1189
1190        if builder.config.rust_debuginfo_level_rustc == DebuginfoLevel::None {
1191            // Due to LTO a lot of debug info from C++ dependencies such as jemalloc can make it into
1192            // our final binaries
1193            strip_debug(builder, target, &target_root_dir.join("rustc-main"));
1194        }
1195
1196        builder.ensure(RustcLink::from_rustc(self));
1197        BuiltRustc { build_compiler }
1198    }
1199
1200    fn metadata(&self) -> Option<StepMetadata> {
1201        Some(StepMetadata::build("rustc", self.target).built_by(self.build_compiler))
1202    }
1203}
1204
1205pub fn rustc_cargo(
1206    builder: &Builder<'_>,
1207    cargo: &mut Cargo,
1208    target: TargetSelection,
1209    build_compiler: &Compiler,
1210    crates: &[String],
1211) {
1212    cargo
1213        .arg("--features")
1214        .arg(builder.rustc_features(builder.kind, target, crates))
1215        .arg("--manifest-path")
1216        .arg(builder.src.join("compiler/rustc/Cargo.toml"));
1217
1218    cargo.rustdocflag("-Zcrate-attr=warn(rust_2018_idioms)");
1219
1220    // If the rustc output is piped to e.g. `head -n1` we want the process to be killed, rather than
1221    // having an error bubble up and cause a panic.
1222    //
1223    // FIXME(jieyouxu): this flag is load-bearing for rustc to not ICE on broken pipes, because
1224    // rustc internally sometimes uses std `println!` -- but std `println!` by default will panic on
1225    // broken pipes, and uncaught panics will manifest as an ICE. The compiler *should* handle this
1226    // properly, but this flag is set in the meantime to paper over the I/O errors.
1227    //
1228    // See <https://github.com/rust-lang/rust/issues/131059> for details.
1229    //
1230    // Also see the discussion for properly handling I/O errors related to broken pipes, i.e. safe
1231    // variants of `println!` in
1232    // <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Internal.20lint.20for.20raw.20.60print!.60.20and.20.60println!.60.3F>.
1233    cargo.rustflag("-Zon-broken-pipe=kill");
1234
1235    // Building with protected visibility reduces the number of dynamic relocations needed, giving
1236    // us a faster startup time. However GNU ld < 2.40 will error if we try to link a shared object
1237    // with direct references to protected symbols, so for now we only use protected symbols if
1238    // linking with LLD is enabled.
1239    if builder.build.config.bootstrap_override_lld.is_used() {
1240        cargo.rustflag("-Zdefault-visibility=protected");
1241    }
1242
1243    if is_lto_stage(build_compiler) {
1244        match builder.config.rust_lto {
1245            RustcLto::Thin | RustcLto::Fat => {
1246                // Since using LTO for optimizing dylibs is currently experimental,
1247                // we need to pass -Zdylib-lto.
1248                cargo.rustflag("-Zdylib-lto");
1249                // Cargo by default passes `-Cembed-bitcode=no` and doesn't pass `-Clto` when
1250                // compiling dylibs (and their dependencies), even when LTO is enabled for the
1251                // crate. Therefore, we need to override `-Clto` and `-Cembed-bitcode` here.
1252                let lto_type = match builder.config.rust_lto {
1253                    RustcLto::Thin => "thin",
1254                    RustcLto::Fat => "fat",
1255                    _ => unreachable!(),
1256                };
1257                cargo.rustflag(&format!("-Clto={lto_type}"));
1258                cargo.rustflag("-Cembed-bitcode=yes");
1259            }
1260            RustcLto::ThinLocal => { /* Do nothing, this is the default */ }
1261            RustcLto::Off => {
1262                cargo.rustflag("-Clto=off");
1263            }
1264        }
1265    } else if builder.config.rust_lto == RustcLto::Off {
1266        cargo.rustflag("-Clto=off");
1267    }
1268
1269    // With LLD, we can use ICF (identical code folding) to reduce the executable size
1270    // of librustc_driver/rustc and to improve i-cache utilization.
1271    //
1272    // -Wl,[link options] doesn't work on MSVC. However, /OPT:ICF (technically /OPT:REF,ICF)
1273    // is already on by default in MSVC optimized builds, which is interpreted as --icf=all:
1274    // https://github.com/llvm/llvm-project/blob/3329cec2f79185bafd678f310fafadba2a8c76d2/lld/COFF/Driver.cpp#L1746
1275    // https://github.com/rust-lang/rust/blob/f22819bcce4abaff7d1246a56eec493418f9f4ee/compiler/rustc_codegen_ssa/src/back/linker.rs#L827
1276    if builder.config.bootstrap_override_lld.is_used() && !build_compiler.host.is_msvc() {
1277        cargo.rustflag("-Clink-args=-Wl,--icf=all");
1278    }
1279
1280    if builder.config.rust_profile_use.is_some() && builder.config.rust_profile_generate.is_some() {
1281        panic!("Cannot use and generate PGO profiles at the same time");
1282    }
1283    let is_collecting = if let Some(path) = &builder.config.rust_profile_generate {
1284        if build_compiler.stage == 1 {
1285            cargo.rustflag(&format!("-Cprofile-generate={path}"));
1286            // Apparently necessary to avoid overflowing the counters during
1287            // a Cargo build profile
1288            cargo.rustflag("-Cllvm-args=-vp-counters-per-site=4");
1289            true
1290        } else {
1291            false
1292        }
1293    } else if let Some(path) = &builder.config.rust_profile_use {
1294        if build_compiler.stage == 1 {
1295            cargo.rustflag(&format!("-Cprofile-use={path}"));
1296            if builder.is_verbose() {
1297                cargo.rustflag("-Cllvm-args=-pgo-warn-missing-function");
1298            }
1299            true
1300        } else {
1301            false
1302        }
1303    } else {
1304        false
1305    };
1306    if is_collecting {
1307        // Ensure paths to Rust sources are relative, not absolute.
1308        cargo.rustflag(&format!(
1309            "-Cllvm-args=-static-func-strip-dirname-prefix={}",
1310            builder.config.src.components().count()
1311        ));
1312    }
1313
1314    // The stage0 compiler changes infrequently and does not directly depend on code
1315    // in the current working directory. Therefore, caching it with sccache should be
1316    // useful.
1317    // This is only performed for non-incremental builds, as ccache cannot deal with these.
1318    if let Some(ref ccache) = builder.config.ccache
1319        && build_compiler.stage == 0
1320        && !builder.config.incremental
1321    {
1322        cargo.env("RUSTC_WRAPPER", ccache);
1323    }
1324
1325    rustc_cargo_env(builder, cargo, target);
1326}
1327
1328pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
1329    // Set some configuration variables picked up by build scripts and
1330    // the compiler alike
1331    cargo
1332        .env("CFG_RELEASE", builder.rust_release())
1333        .env("CFG_RELEASE_CHANNEL", &builder.config.channel)
1334        .env("CFG_VERSION", builder.rust_version());
1335
1336    // Some tools like Cargo detect their own git information in build scripts. When omit-git-hash
1337    // is enabled in bootstrap.toml, we pass this environment variable to tell build scripts to avoid
1338    // detecting git information on their own.
1339    if builder.config.omit_git_hash {
1340        cargo.env("CFG_OMIT_GIT_HASH", "1");
1341    }
1342
1343    cargo.env("CFG_DEFAULT_CODEGEN_BACKEND", builder.config.default_codegen_backend(target).name());
1344
1345    let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib"));
1346    let target_config = builder.config.target_config.get(&target);
1347
1348    cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
1349
1350    if let Some(ref ver_date) = builder.rust_info().commit_date() {
1351        cargo.env("CFG_VER_DATE", ver_date);
1352    }
1353    if let Some(ref ver_hash) = builder.rust_info().sha() {
1354        cargo.env("CFG_VER_HASH", ver_hash);
1355    }
1356    if !builder.unstable_features() {
1357        cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
1358    }
1359
1360    // Prefer the current target's own default_linker, else a globally
1361    // specified one.
1362    if let Some(s) = target_config.and_then(|c| c.default_linker.as_ref()) {
1363        cargo.env("CFG_DEFAULT_LINKER", s);
1364    } else if let Some(ref s) = builder.config.rustc_default_linker {
1365        cargo.env("CFG_DEFAULT_LINKER", s);
1366    }
1367
1368    // Enable rustc's env var to use a linker override on Linux when requested.
1369    if let Some(linker) = target_config.map(|c| c.default_linker_linux_override) {
1370        match linker {
1371            DefaultLinuxLinkerOverride::Off => {}
1372            DefaultLinuxLinkerOverride::SelfContainedLldCc => {
1373                cargo.env("CFG_DEFAULT_LINKER_SELF_CONTAINED_LLD_CC", "1");
1374            }
1375        }
1376    }
1377
1378    if builder.config.rust_verify_llvm_ir {
1379        cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
1380    }
1381
1382    // These conditionals represent a tension between three forces:
1383    // - For non-check builds, we need to define some LLVM-related environment
1384    //   variables, requiring LLVM to have been built.
1385    // - For check builds, we want to avoid building LLVM if possible.
1386    // - Check builds and non-check builds should have the same environment if
1387    //   possible, to avoid unnecessary rebuilds due to cache-busting.
1388    //
1389    // Therefore we try to avoid building LLVM for check builds, but only if
1390    // building LLVM would be expensive. If "building" LLVM is cheap
1391    // (i.e. it's already built or is downloadable), we prefer to maintain a
1392    // consistent environment between check and non-check builds.
1393    if builder.config.llvm_enabled(target) {
1394        let building_llvm_is_expensive =
1395            crate::core::build_steps::llvm::prebuilt_llvm_config(builder, target, false)
1396                .should_build();
1397
1398        let skip_llvm = (builder.kind == Kind::Check) && building_llvm_is_expensive;
1399        if !skip_llvm {
1400            rustc_llvm_env(builder, cargo, target)
1401        }
1402    }
1403
1404    // See also the "JEMALLOC_SYS_WITH_LG_PAGE" setting in the tool build step.
1405    if builder.config.jemalloc(target) && env::var_os("JEMALLOC_SYS_WITH_LG_PAGE").is_none() {
1406        // Build jemalloc on AArch64 with support for page sizes up to 64K
1407        // See: https://github.com/rust-lang/rust/pull/135081
1408        if target.starts_with("aarch64") {
1409            cargo.env("JEMALLOC_SYS_WITH_LG_PAGE", "16");
1410        }
1411        // Build jemalloc on LoongArch with support for page sizes up to 16K
1412        else if target.starts_with("loongarch") {
1413            cargo.env("JEMALLOC_SYS_WITH_LG_PAGE", "14");
1414        }
1415    }
1416}
1417
1418/// Pass down configuration from the LLVM build into the build of
1419/// rustc_llvm and rustc_codegen_llvm.
1420///
1421/// Note that this has the side-effect of _building LLVM_, which is sometimes
1422/// unwanted (e.g. for check builds).
1423fn rustc_llvm_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
1424    if builder.config.is_rust_llvm(target) {
1425        cargo.env("LLVM_RUSTLLVM", "1");
1426    }
1427    if builder.config.llvm_enzyme {
1428        cargo.env("LLVM_ENZYME", "1");
1429    }
1430    if builder.config.llvm_offload {
1431        cargo.env("LLVM_OFFLOAD", "1");
1432    }
1433    let llvm::LlvmResult { host_llvm_config, .. } = builder.ensure(llvm::Llvm { target });
1434    cargo.env("LLVM_CONFIG", &host_llvm_config);
1435
1436    // Some LLVM linker flags (-L and -l) may be needed to link `rustc_llvm`. Its build script
1437    // expects these to be passed via the `LLVM_LINKER_FLAGS` env variable, separated by
1438    // whitespace.
1439    //
1440    // For example:
1441    // - on windows, when `clang-cl` is used with instrumentation, we need to manually add
1442    // clang's runtime library resource directory so that the profiler runtime library can be
1443    // found. This is to avoid the linker errors about undefined references to
1444    // `__llvm_profile_instrument_memop` when linking `rustc_driver`.
1445    let mut llvm_linker_flags = String::new();
1446    if builder.config.llvm_profile_generate
1447        && target.is_msvc()
1448        && let Some(ref clang_cl_path) = builder.config.llvm_clang_cl
1449    {
1450        // Add clang's runtime library directory to the search path
1451        let clang_rt_dir = get_clang_cl_resource_dir(builder, clang_cl_path);
1452        llvm_linker_flags.push_str(&format!("-L{}", clang_rt_dir.display()));
1453    }
1454
1455    // The config can also specify its own llvm linker flags.
1456    if let Some(ref s) = builder.config.llvm_ldflags {
1457        if !llvm_linker_flags.is_empty() {
1458            llvm_linker_flags.push(' ');
1459        }
1460        llvm_linker_flags.push_str(s);
1461    }
1462
1463    // Set the linker flags via the env var that `rustc_llvm`'s build script will read.
1464    if !llvm_linker_flags.is_empty() {
1465        cargo.env("LLVM_LINKER_FLAGS", llvm_linker_flags);
1466    }
1467
1468    // Building with a static libstdc++ is only supported on Linux and windows-gnu* right now,
1469    // not for MSVC or macOS
1470    if builder.config.llvm_static_stdcpp
1471        && !target.contains("freebsd")
1472        && !target.is_msvc()
1473        && !target.contains("apple")
1474        && !target.contains("solaris")
1475    {
1476        let libstdcxx_name =
1477            if target.contains("windows-gnullvm") { "libc++.a" } else { "libstdc++.a" };
1478        let file = compiler_file(
1479            builder,
1480            &builder.cxx(target).unwrap(),
1481            target,
1482            CLang::Cxx,
1483            libstdcxx_name,
1484        );
1485        cargo.env("LLVM_STATIC_STDCPP", file);
1486    }
1487    if builder.llvm_link_shared() {
1488        cargo.env("LLVM_LINK_SHARED", "1");
1489    }
1490    if builder.config.llvm_use_libcxx {
1491        cargo.env("LLVM_USE_LIBCXX", "1");
1492    }
1493    if builder.config.llvm_assertions {
1494        cargo.env("LLVM_ASSERTIONS", "1");
1495    }
1496}
1497
1498/// `RustcLink` copies compiler rlibs from a rustc build into a compiler sysroot.
1499/// It works with (potentially up to) three compilers:
1500/// - `build_compiler` is a compiler that built rustc rlibs
1501/// - `sysroot_compiler` is a compiler into whose sysroot we will copy the rlibs
1502///   - In most situations, `build_compiler` == `sysroot_compiler`
1503/// - `target_compiler` is the compiler whose rlibs were built. It is not represented explicitly
1504///   in this step, rather we just read the rlibs from a rustc build stamp of `build_compiler`.
1505///
1506/// This is necessary for tools using `rustc_private`, where the previous compiler will build
1507/// a tool against the next compiler.
1508/// To build a tool against a compiler, the rlibs of that compiler that it links against
1509/// must be in the sysroot of the compiler that's doing the compiling.
1510#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1511struct RustcLink {
1512    /// This compiler **built** some rustc, whose rlibs we will copy into a sysroot.
1513    build_compiler: Compiler,
1514    /// This is the compiler into whose sysroot we want to copy the built rlibs.
1515    /// In most cases, it will correspond to `build_compiler`.
1516    sysroot_compiler: Compiler,
1517    target: TargetSelection,
1518    /// Not actually used; only present to make sure the cache invalidation is correct.
1519    crates: Vec<String>,
1520}
1521
1522impl RustcLink {
1523    /// Copy rlibs from the build compiler that build this `rustc` into the sysroot of that
1524    /// build compiler.
1525    fn from_rustc(rustc: Rustc) -> Self {
1526        Self {
1527            build_compiler: rustc.build_compiler,
1528            sysroot_compiler: rustc.build_compiler,
1529            target: rustc.target,
1530            crates: rustc.crates,
1531        }
1532    }
1533
1534    /// Copy rlibs **built** by `build_compiler` into the sysroot of `sysroot_compiler`.
1535    fn from_build_compiler_and_sysroot(
1536        build_compiler: Compiler,
1537        sysroot_compiler: Compiler,
1538        target: TargetSelection,
1539        crates: Vec<String>,
1540    ) -> Self {
1541        Self { build_compiler, sysroot_compiler, target, crates }
1542    }
1543}
1544
1545impl Step for RustcLink {
1546    type Output = ();
1547
1548    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1549        run.never()
1550    }
1551
1552    /// Same as `StdLink`, only for librustc
1553    fn run(self, builder: &Builder<'_>) {
1554        let build_compiler = self.build_compiler;
1555        let sysroot_compiler = self.sysroot_compiler;
1556        let target = self.target;
1557        add_to_sysroot(
1558            builder,
1559            &builder.sysroot_target_libdir(sysroot_compiler, target),
1560            &builder.sysroot_target_libdir(sysroot_compiler, sysroot_compiler.host),
1561            &build_stamp::librustc_stamp(builder, build_compiler, target),
1562        );
1563    }
1564}
1565
1566/// Set of `libgccjit` dylibs that can be used by `cg_gcc` to compile code for a set of targets.
1567#[derive(Clone)]
1568pub struct GccDylibSet {
1569    dylibs: BTreeMap<GccTargetPair, GccOutput>,
1570    host_pair: GccTargetPair,
1571}
1572
1573impl GccDylibSet {
1574    /// Returns the libgccjit.so dylib that corresponds to a host target on which `cg_gcc` will be
1575    /// executed, and which will target the host. So e.g. if `cg_gcc` will be executed on
1576    /// x86_64-unknown-linux-gnu, the host dylib will be for compilation pair
1577    /// `(x86_64-unknown-linux-gnu, x86_64-unknown-linux-gnu)`.
1578    fn host_dylib(&self) -> &GccOutput {
1579        self.dylibs.get(&self.host_pair).unwrap_or_else(|| {
1580            panic!("libgccjit.so was not built for host target {}", self.host_pair)
1581        })
1582    }
1583
1584    /// Install the libgccjit dylibs to the corresponding target directories of the given compiler.
1585    /// cg_gcc know how to search for the libgccjit dylibs in these directories, according to the
1586    /// (host, target) pair that is being compiled by rustc and cg_gcc.
1587    pub fn install_to(&self, builder: &Builder<'_>, compiler: Compiler) {
1588        if builder.config.dry_run() {
1589            return;
1590        }
1591
1592        // <rustc>/lib/<host-target>/codegen-backends
1593        let cg_sysroot = builder.sysroot_codegen_backends(compiler);
1594
1595        for (target_pair, libgccjit) in &self.dylibs {
1596            assert_eq!(
1597                target_pair.host(),
1598                compiler.host,
1599                "Trying to install libgccjit ({target_pair}) to a compiler with a different host ({})",
1600                compiler.host
1601            );
1602            let libgccjit = libgccjit.libgccjit();
1603            let target_filename = libgccjit.file_name().unwrap().to_str().unwrap();
1604
1605            // If we build libgccjit ourselves, then `libgccjit` can actually be a symlink.
1606            // In that case, we have to resolve it first, otherwise we'd create a symlink to a
1607            // symlink, which wouldn't work.
1608            let actual_libgccjit_path = t!(
1609                libgccjit.canonicalize(),
1610                format!("Cannot find libgccjit at {}", libgccjit.display())
1611            );
1612
1613            // <cg-sysroot>/lib/<target>/libgccjit.so
1614            let dest_dir = cg_sysroot.join("lib").join(target_pair.target());
1615            t!(fs::create_dir_all(&dest_dir));
1616            let dst = dest_dir.join(target_filename);
1617            builder.copy_link(&actual_libgccjit_path, &dst, FileType::NativeLibrary);
1618        }
1619    }
1620}
1621
1622/// Output of the `compile::GccCodegenBackend` step.
1623///
1624/// It contains paths to all built libgccjit libraries on which this backend depends here.
1625#[derive(Clone)]
1626pub struct GccCodegenBackendOutput {
1627    stamp: BuildStamp,
1628    dylib_set: GccDylibSet,
1629}
1630
1631/// Builds the GCC codegen backend (`cg_gcc`).
1632/// The `cg_gcc` backend uses `libgccjit`, which requires a separate build for each
1633/// `host -> target` pair. So if you are on linux-x64 and build for linux-aarch64,
1634/// you will need at least:
1635/// - linux-x64 -> linux-x64 libgccjit (for building host code like proc macros)
1636/// - linux-x64 -> linux-aarch64 libgccjit (for the aarch64 target code)
1637///
1638/// We model this by having a single cg_gcc for a given host target, which contains one
1639/// libgccjit per (host, target) pair.
1640/// Note that the host target is taken from `self.compilers.target_compiler.host`.
1641#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1642pub struct GccCodegenBackend {
1643    compilers: RustcPrivateCompilers,
1644    targets: Vec<TargetSelection>,
1645}
1646
1647impl GccCodegenBackend {
1648    /// Build `cg_gcc` that will run on host `H` (`compilers.target_compiler.host`) and will be
1649    /// able to produce code target pairs (`H`, `T`) for all `T` from `targets`.
1650    pub fn for_targets(
1651        compilers: RustcPrivateCompilers,
1652        mut targets: Vec<TargetSelection>,
1653    ) -> Self {
1654        // Sort targets to improve step cache hits
1655        targets.sort();
1656        Self { compilers, targets }
1657    }
1658}
1659
1660impl Step for GccCodegenBackend {
1661    type Output = GccCodegenBackendOutput;
1662
1663    const IS_HOST: bool = true;
1664
1665    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1666        run.alias("rustc_codegen_gcc").alias("cg_gcc")
1667    }
1668
1669    fn make_run(run: RunConfig<'_>) {
1670        // By default, build cg_gcc that will only be able to compile native code for the given
1671        // host target.
1672        let compilers = RustcPrivateCompilers::new(run.builder, run.builder.top_stage, run.target);
1673        run.builder.ensure(GccCodegenBackend { compilers, targets: vec![run.target] });
1674    }
1675
1676    fn run(self, builder: &Builder<'_>) -> Self::Output {
1677        let host = self.compilers.target();
1678        let build_compiler = self.compilers.build_compiler();
1679
1680        let stamp = build_stamp::codegen_backend_stamp(
1681            builder,
1682            build_compiler,
1683            host,
1684            &CodegenBackendKind::Gcc,
1685        );
1686
1687        let dylib_set = GccDylibSet {
1688            dylibs: self
1689                .targets
1690                .iter()
1691                .map(|&target| {
1692                    let target_pair = GccTargetPair::for_target_pair(host, target);
1693                    (target_pair, builder.ensure(Gcc { target_pair }))
1694                })
1695                .collect(),
1696            host_pair: GccTargetPair::for_native_build(host),
1697        };
1698
1699        if builder.config.keep_stage.contains(&build_compiler.stage) {
1700            trace!("`keep-stage` requested");
1701            builder.info(
1702                "WARNING: Using a potentially old codegen backend. \
1703                This may not behave well.",
1704            );
1705            // Codegen backends are linked separately from this step today, so we don't do
1706            // anything here.
1707            return GccCodegenBackendOutput { stamp, dylib_set };
1708        }
1709
1710        let mut cargo = builder::Cargo::new(
1711            builder,
1712            build_compiler,
1713            Mode::Codegen,
1714            SourceType::InTree,
1715            host,
1716            Kind::Build,
1717        );
1718        cargo.arg("--manifest-path").arg(builder.src.join("compiler/rustc_codegen_gcc/Cargo.toml"));
1719        rustc_cargo_env(builder, &mut cargo, host);
1720
1721        add_cg_gcc_cargo_flags(&mut cargo, dylib_set.host_dylib());
1722
1723        let _guard =
1724            builder.msg(Kind::Build, "codegen backend gcc", Mode::Codegen, build_compiler, host);
1725        let files = run_cargo(builder, cargo, vec![], &stamp, vec![], false, false);
1726
1727        GccCodegenBackendOutput {
1728            stamp: write_codegen_backend_stamp(stamp, files, builder.config.dry_run()),
1729            dylib_set,
1730        }
1731    }
1732
1733    fn metadata(&self) -> Option<StepMetadata> {
1734        Some(
1735            StepMetadata::build("rustc_codegen_gcc", self.compilers.target())
1736                .built_by(self.compilers.build_compiler()),
1737        )
1738    }
1739}
1740
1741#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1742pub struct CraneliftCodegenBackend {
1743    pub compilers: RustcPrivateCompilers,
1744}
1745
1746impl Step for CraneliftCodegenBackend {
1747    type Output = BuildStamp;
1748    const IS_HOST: bool = true;
1749
1750    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1751        run.alias("rustc_codegen_cranelift").alias("cg_clif")
1752    }
1753
1754    fn make_run(run: RunConfig<'_>) {
1755        run.builder.ensure(CraneliftCodegenBackend {
1756            compilers: RustcPrivateCompilers::new(run.builder, run.builder.top_stage, run.target),
1757        });
1758    }
1759
1760    fn run(self, builder: &Builder<'_>) -> Self::Output {
1761        let target = self.compilers.target();
1762        let build_compiler = self.compilers.build_compiler();
1763
1764        let stamp = build_stamp::codegen_backend_stamp(
1765            builder,
1766            build_compiler,
1767            target,
1768            &CodegenBackendKind::Cranelift,
1769        );
1770
1771        if builder.config.keep_stage.contains(&build_compiler.stage) {
1772            trace!("`keep-stage` requested");
1773            builder.info(
1774                "WARNING: Using a potentially old codegen backend. \
1775                This may not behave well.",
1776            );
1777            // Codegen backends are linked separately from this step today, so we don't do
1778            // anything here.
1779            return stamp;
1780        }
1781
1782        let mut cargo = builder::Cargo::new(
1783            builder,
1784            build_compiler,
1785            Mode::Codegen,
1786            SourceType::InTree,
1787            target,
1788            Kind::Build,
1789        );
1790        cargo
1791            .arg("--manifest-path")
1792            .arg(builder.src.join("compiler/rustc_codegen_cranelift/Cargo.toml"));
1793        rustc_cargo_env(builder, &mut cargo, target);
1794
1795        let _guard = builder.msg(
1796            Kind::Build,
1797            "codegen backend cranelift",
1798            Mode::Codegen,
1799            build_compiler,
1800            target,
1801        );
1802        let files = run_cargo(builder, cargo, vec![], &stamp, vec![], false, false);
1803        write_codegen_backend_stamp(stamp, files, builder.config.dry_run())
1804    }
1805
1806    fn metadata(&self) -> Option<StepMetadata> {
1807        Some(
1808            StepMetadata::build("rustc_codegen_cranelift", self.compilers.target())
1809                .built_by(self.compilers.build_compiler()),
1810        )
1811    }
1812}
1813
1814/// Write filtered `files` into the passed build stamp and returns it.
1815fn write_codegen_backend_stamp(
1816    mut stamp: BuildStamp,
1817    files: Vec<PathBuf>,
1818    dry_run: bool,
1819) -> BuildStamp {
1820    if dry_run {
1821        return stamp;
1822    }
1823
1824    let mut files = files.into_iter().filter(|f| {
1825        let filename = f.file_name().unwrap().to_str().unwrap();
1826        is_dylib(f) && filename.contains("rustc_codegen_")
1827    });
1828    let codegen_backend = match files.next() {
1829        Some(f) => f,
1830        None => panic!("no dylibs built for codegen backend?"),
1831    };
1832    if let Some(f) = files.next() {
1833        panic!("codegen backend built two dylibs:\n{}\n{}", codegen_backend.display(), f.display());
1834    }
1835
1836    let codegen_backend = codegen_backend.to_str().unwrap();
1837    stamp = stamp.add_stamp(codegen_backend);
1838    t!(stamp.write());
1839    stamp
1840}
1841
1842/// Creates the `codegen-backends` folder for a compiler that's about to be
1843/// assembled as a complete compiler.
1844///
1845/// This will take the codegen artifacts recorded in the given `stamp` and link them
1846/// into an appropriate location for `target_compiler` to be a functional
1847/// compiler.
1848fn copy_codegen_backends_to_sysroot(
1849    builder: &Builder<'_>,
1850    stamp: BuildStamp,
1851    target_compiler: Compiler,
1852) {
1853    // Note that this step is different than all the other `*Link` steps in
1854    // that it's not assembling a bunch of libraries but rather is primarily
1855    // moving the codegen backend into place. The codegen backend of rustc is
1856    // not linked into the main compiler by default but is rather dynamically
1857    // selected at runtime for inclusion.
1858    //
1859    // Here we're looking for the output dylib of the `CodegenBackend` step and
1860    // we're copying that into the `codegen-backends` folder.
1861    let dst = builder.sysroot_codegen_backends(target_compiler);
1862    t!(fs::create_dir_all(&dst), dst);
1863
1864    if builder.config.dry_run() {
1865        return;
1866    }
1867
1868    if stamp.path().exists() {
1869        let file = get_codegen_backend_file(&stamp);
1870        builder.copy_link(
1871            &file,
1872            &dst.join(normalize_codegen_backend_name(builder, &file)),
1873            FileType::NativeLibrary,
1874        );
1875    }
1876}
1877
1878/// Gets the path to a dynamic codegen backend library from its build stamp.
1879pub fn get_codegen_backend_file(stamp: &BuildStamp) -> PathBuf {
1880    PathBuf::from(t!(fs::read_to_string(stamp.path())))
1881}
1882
1883/// Normalize the name of a dynamic codegen backend library.
1884pub fn normalize_codegen_backend_name(builder: &Builder<'_>, path: &Path) -> String {
1885    let filename = path.file_name().unwrap().to_str().unwrap();
1886    // change e.g. `librustc_codegen_cranelift-xxxxxx.so` to
1887    // `librustc_codegen_cranelift-release.so`
1888    let dash = filename.find('-').unwrap();
1889    let dot = filename.find('.').unwrap();
1890    format!("{}-{}{}", &filename[..dash], builder.rust_release(), &filename[dot..])
1891}
1892
1893pub fn compiler_file(
1894    builder: &Builder<'_>,
1895    compiler: &Path,
1896    target: TargetSelection,
1897    c: CLang,
1898    file: &str,
1899) -> PathBuf {
1900    if builder.config.dry_run() {
1901        return PathBuf::new();
1902    }
1903    let mut cmd = command(compiler);
1904    cmd.args(builder.cc_handled_clags(target, c));
1905    cmd.args(builder.cc_unhandled_cflags(target, GitRepo::Rustc, c));
1906    cmd.arg(format!("-print-file-name={file}"));
1907    let out = cmd.run_capture_stdout(builder).stdout();
1908    PathBuf::from(out.trim())
1909}
1910
1911#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1912pub struct Sysroot {
1913    pub compiler: Compiler,
1914    /// See [`Std::force_recompile`].
1915    force_recompile: bool,
1916}
1917
1918impl Sysroot {
1919    pub(crate) fn new(compiler: Compiler) -> Self {
1920        Sysroot { compiler, force_recompile: false }
1921    }
1922}
1923
1924impl Step for Sysroot {
1925    type Output = PathBuf;
1926
1927    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1928        run.never()
1929    }
1930
1931    /// Returns the sysroot that `compiler` is supposed to use.
1932    /// For the stage0 compiler, this is stage0-sysroot (because of the initial std build).
1933    /// For all other stages, it's the same stage directory that the compiler lives in.
1934    fn run(self, builder: &Builder<'_>) -> PathBuf {
1935        let compiler = self.compiler;
1936        let host_dir = builder.out.join(compiler.host);
1937
1938        let sysroot_dir = |stage| {
1939            if stage == 0 {
1940                host_dir.join("stage0-sysroot")
1941            } else if self.force_recompile && stage == compiler.stage {
1942                host_dir.join(format!("stage{stage}-test-sysroot"))
1943            } else if builder.download_rustc() && compiler.stage != builder.top_stage {
1944                host_dir.join("ci-rustc-sysroot")
1945            } else {
1946                host_dir.join(format!("stage{stage}"))
1947            }
1948        };
1949        let sysroot = sysroot_dir(compiler.stage);
1950        trace!(stage = ?compiler.stage, ?sysroot);
1951
1952        builder.do_if_verbose(|| {
1953            println!("Removing sysroot {} to avoid caching bugs", sysroot.display())
1954        });
1955        let _ = fs::remove_dir_all(&sysroot);
1956        t!(fs::create_dir_all(&sysroot));
1957
1958        // In some cases(see https://github.com/rust-lang/rust/issues/109314), when the stage0
1959        // compiler relies on more recent version of LLVM than the stage0 compiler, it may not
1960        // be able to locate the correct LLVM in the sysroot. This situation typically occurs
1961        // when we upgrade LLVM version while the stage0 compiler continues to use an older version.
1962        //
1963        // Make sure to add the correct version of LLVM into the stage0 sysroot.
1964        if compiler.stage == 0 {
1965            dist::maybe_install_llvm_target(builder, compiler.host, &sysroot);
1966        }
1967
1968        // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
1969        if builder.download_rustc() && compiler.stage != 0 {
1970            assert_eq!(
1971                builder.config.host_target, compiler.host,
1972                "Cross-compiling is not yet supported with `download-rustc`",
1973            );
1974
1975            // #102002, cleanup old toolchain folders when using download-rustc so people don't use them by accident.
1976            for stage in 0..=2 {
1977                if stage != compiler.stage {
1978                    let dir = sysroot_dir(stage);
1979                    if !dir.ends_with("ci-rustc-sysroot") {
1980                        let _ = fs::remove_dir_all(dir);
1981                    }
1982                }
1983            }
1984
1985            // Copy the compiler into the correct sysroot.
1986            // NOTE(#108767): We intentionally don't copy `rustc-dev` artifacts until they're requested with `builder.ensure(Rustc)`.
1987            // This fixes an issue where we'd have multiple copies of libc in the sysroot with no way to tell which to load.
1988            // There are a few quirks of bootstrap that interact to make this reliable:
1989            // 1. The order `Step`s are run is hard-coded in `builder.rs` and not configurable. This
1990            //    avoids e.g. reordering `test::UiFulldeps` before `test::Ui` and causing the latter to
1991            //    fail because of duplicate metadata.
1992            // 2. The sysroot is deleted and recreated between each invocation, so running `x test
1993            //    ui-fulldeps && x test ui` can't cause failures.
1994            let mut filtered_files = Vec::new();
1995            let mut add_filtered_files = |suffix, contents| {
1996                for path in contents {
1997                    let path = Path::new(&path);
1998                    if path.parent().is_some_and(|parent| parent.ends_with(suffix)) {
1999                        filtered_files.push(path.file_name().unwrap().to_owned());
2000                    }
2001                }
2002            };
2003            let suffix = format!("lib/rustlib/{}/lib", compiler.host);
2004            add_filtered_files(suffix.as_str(), builder.config.ci_rustc_dev_contents());
2005            // NOTE: we can't copy std eagerly because `stage2-test-sysroot` needs to have only the
2006            // newly compiled std, not the downloaded std.
2007            add_filtered_files("lib", builder.config.ci_rust_std_contents());
2008
2009            let filtered_extensions = [
2010                OsStr::new("rmeta"),
2011                OsStr::new("rlib"),
2012                // FIXME: this is wrong when compiler.host != build, but we don't support that today
2013                OsStr::new(std::env::consts::DLL_EXTENSION),
2014            ];
2015            let ci_rustc_dir = builder.config.ci_rustc_dir();
2016            builder.cp_link_filtered(&ci_rustc_dir, &sysroot, &|path| {
2017                if path.extension().is_none_or(|ext| !filtered_extensions.contains(&ext)) {
2018                    return true;
2019                }
2020                if !path.parent().is_none_or(|p| p.ends_with(&suffix)) {
2021                    return true;
2022                }
2023                filtered_files.iter().all(|f| f != path.file_name().unwrap())
2024            });
2025        }
2026
2027        // Symlink the source root into the same location inside the sysroot,
2028        // where `rust-src` component would go (`$sysroot/lib/rustlib/src/rust`),
2029        // so that any tools relying on `rust-src` also work for local builds,
2030        // and also for translating the virtual `/rustc/$hash` back to the real
2031        // directory (for running tests with `rust.remap-debuginfo = true`).
2032        if compiler.stage != 0 {
2033            let sysroot_lib_rustlib_src = sysroot.join("lib/rustlib/src");
2034            t!(fs::create_dir_all(&sysroot_lib_rustlib_src));
2035            let sysroot_lib_rustlib_src_rust = sysroot_lib_rustlib_src.join("rust");
2036            if let Err(e) =
2037                symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_src_rust)
2038            {
2039                eprintln!(
2040                    "ERROR: creating symbolic link `{}` to `{}` failed with {}",
2041                    sysroot_lib_rustlib_src_rust.display(),
2042                    builder.src.display(),
2043                    e,
2044                );
2045                if builder.config.rust_remap_debuginfo {
2046                    eprintln!(
2047                        "ERROR: some `tests/ui` tests will fail when lacking `{}`",
2048                        sysroot_lib_rustlib_src_rust.display(),
2049                    );
2050                }
2051                build_helper::exit!(1);
2052            }
2053        }
2054
2055        // rustc-src component is already part of CI rustc's sysroot
2056        if !builder.download_rustc() {
2057            let sysroot_lib_rustlib_rustcsrc = sysroot.join("lib/rustlib/rustc-src");
2058            t!(fs::create_dir_all(&sysroot_lib_rustlib_rustcsrc));
2059            let sysroot_lib_rustlib_rustcsrc_rust = sysroot_lib_rustlib_rustcsrc.join("rust");
2060            if let Err(e) =
2061                symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_rustcsrc_rust)
2062            {
2063                eprintln!(
2064                    "ERROR: creating symbolic link `{}` to `{}` failed with {}",
2065                    sysroot_lib_rustlib_rustcsrc_rust.display(),
2066                    builder.src.display(),
2067                    e,
2068                );
2069                build_helper::exit!(1);
2070            }
2071        }
2072
2073        sysroot
2074    }
2075}
2076
2077/// Prepare a compiler sysroot.
2078///
2079/// The sysroot may contain various things useful for running the compiler, like linkers and
2080/// linker wrappers (LLD, LLVM bitcode linker, etc.).
2081///
2082/// This will assemble a compiler in `build/$target/stage$stage`.
2083#[derive(Debug, Clone, PartialEq, Eq, Hash)]
2084pub struct Assemble {
2085    /// The compiler which we will produce in this step. Assemble itself will
2086    /// take care of ensuring that the necessary prerequisites to do so exist,
2087    /// that is, this can be e.g. a stage2 compiler and Assemble will build
2088    /// the previous stages for you.
2089    pub target_compiler: Compiler,
2090}
2091
2092impl Step for Assemble {
2093    type Output = Compiler;
2094    const IS_HOST: bool = true;
2095
2096    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
2097        run.path("compiler/rustc").path("compiler")
2098    }
2099
2100    fn make_run(run: RunConfig<'_>) {
2101        run.builder.ensure(Assemble {
2102            target_compiler: run.builder.compiler(run.builder.top_stage, run.target),
2103        });
2104    }
2105
2106    fn run(self, builder: &Builder<'_>) -> Compiler {
2107        let target_compiler = self.target_compiler;
2108
2109        if target_compiler.stage == 0 {
2110            trace!("stage 0 build compiler is always available, simply returning");
2111            assert_eq!(
2112                builder.config.host_target, target_compiler.host,
2113                "Cannot obtain compiler for non-native build triple at stage 0"
2114            );
2115            // The stage 0 compiler for the build triple is always pre-built.
2116            return target_compiler;
2117        }
2118
2119        // We prepend this bin directory to the user PATH when linking Rust binaries. To
2120        // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
2121        let libdir = builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2122        let libdir_bin = libdir.parent().unwrap().join("bin");
2123        t!(fs::create_dir_all(&libdir_bin));
2124
2125        if builder.config.llvm_enabled(target_compiler.host) {
2126            trace!("target_compiler.host" = ?target_compiler.host, "LLVM enabled");
2127
2128            let target = target_compiler.host;
2129            let llvm::LlvmResult { host_llvm_config, .. } = builder.ensure(llvm::Llvm { target });
2130            if !builder.config.dry_run() && builder.config.llvm_tools_enabled {
2131                trace!("LLVM tools enabled");
2132
2133                let host_llvm_bin_dir = command(&host_llvm_config)
2134                    .arg("--bindir")
2135                    .cached()
2136                    .run_capture_stdout(builder)
2137                    .stdout()
2138                    .trim()
2139                    .to_string();
2140
2141                let llvm_bin_dir = if target == builder.host_target {
2142                    PathBuf::from(host_llvm_bin_dir)
2143                } else {
2144                    // If we're cross-compiling, we cannot run the target llvm-config in order to
2145                    // figure out where binaries are located. We thus have to guess.
2146                    let external_llvm_config = builder
2147                        .config
2148                        .target_config
2149                        .get(&target)
2150                        .and_then(|t| t.llvm_config.clone());
2151                    if let Some(external_llvm_config) = external_llvm_config {
2152                        // If we have an external LLVM, just hope that the bindir is the directory
2153                        // where the LLVM config is located
2154                        external_llvm_config.parent().unwrap().to_path_buf()
2155                    } else {
2156                        // If we have built LLVM locally, then take the path of the host bindir
2157                        // relative to its output build directory, and then apply it to the target
2158                        // LLVM output build directory.
2159                        let host_llvm_out = builder.llvm_out(builder.host_target);
2160                        let target_llvm_out = builder.llvm_out(target);
2161                        if let Ok(relative_path) =
2162                            Path::new(&host_llvm_bin_dir).strip_prefix(host_llvm_out)
2163                        {
2164                            target_llvm_out.join(relative_path)
2165                        } else {
2166                            // This is the most desperate option, just replace the host target with
2167                            // the actual target in the directory path...
2168                            PathBuf::from(
2169                                host_llvm_bin_dir
2170                                    .replace(&*builder.host_target.triple, &target.triple),
2171                            )
2172                        }
2173                    }
2174                };
2175
2176                // Since we've already built the LLVM tools, install them to the sysroot.
2177                // This is the equivalent of installing the `llvm-tools-preview` component via
2178                // rustup, and lets developers use a locally built toolchain to
2179                // build projects that expect llvm tools to be present in the sysroot
2180                // (e.g. the `bootimage` crate).
2181
2182                #[cfg(feature = "tracing")]
2183                let _llvm_tools_span =
2184                    span!(tracing::Level::TRACE, "installing llvm tools to sysroot", ?libdir_bin)
2185                        .entered();
2186                for tool in LLVM_TOOLS {
2187                    trace!("installing `{tool}`");
2188                    let tool_exe = exe(tool, target_compiler.host);
2189                    let src_path = llvm_bin_dir.join(&tool_exe);
2190
2191                    // When using `download-ci-llvm`, some of the tools may not exist, so skip trying to copy them.
2192                    if !src_path.exists() && builder.config.llvm_from_ci {
2193                        eprintln!("{} does not exist; skipping copy", src_path.display());
2194                        continue;
2195                    }
2196
2197                    // There is a chance that these tools are being installed from an external LLVM.
2198                    // Use `Builder::resolve_symlink_and_copy` instead of `Builder::copy_link` to ensure
2199                    // we are copying the original file not the symlinked path, which causes issues for
2200                    // tarball distribution.
2201                    //
2202                    // See https://github.com/rust-lang/rust/issues/135554.
2203                    builder.resolve_symlink_and_copy(&src_path, &libdir_bin.join(&tool_exe));
2204                }
2205            }
2206        }
2207
2208        let maybe_install_llvm_bitcode_linker = || {
2209            if builder.config.llvm_bitcode_linker_enabled {
2210                trace!("llvm-bitcode-linker enabled, installing");
2211                let llvm_bitcode_linker = builder.ensure(
2212                    crate::core::build_steps::tool::LlvmBitcodeLinker::from_target_compiler(
2213                        builder,
2214                        target_compiler,
2215                    ),
2216                );
2217
2218                // Copy the llvm-bitcode-linker to the self-contained binary directory
2219                let bindir_self_contained = builder
2220                    .sysroot(target_compiler)
2221                    .join(format!("lib/rustlib/{}/bin/self-contained", target_compiler.host));
2222                let tool_exe = exe("llvm-bitcode-linker", target_compiler.host);
2223
2224                t!(fs::create_dir_all(&bindir_self_contained));
2225                builder.copy_link(
2226                    &llvm_bitcode_linker.tool_path,
2227                    &bindir_self_contained.join(tool_exe),
2228                    FileType::Executable,
2229                );
2230            }
2231        };
2232
2233        // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
2234        if builder.download_rustc() {
2235            trace!("`download-rustc` requested, reusing CI compiler for stage > 0");
2236
2237            builder.std(target_compiler, target_compiler.host);
2238            let sysroot =
2239                builder.ensure(Sysroot { compiler: target_compiler, force_recompile: false });
2240            // Ensure that `libLLVM.so` ends up in the newly created target directory,
2241            // so that tools using `rustc_private` can use it.
2242            dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
2243            // Lower stages use `ci-rustc-sysroot`, not stageN
2244            if target_compiler.stage == builder.top_stage {
2245                builder.info(&format!("Creating a sysroot for stage{stage} compiler (use `rustup toolchain link 'name' build/host/stage{stage}`)", stage = target_compiler.stage));
2246            }
2247
2248            // FIXME: this is incomplete, we do not copy a bunch of other stuff to the downloaded
2249            // sysroot...
2250            maybe_install_llvm_bitcode_linker();
2251
2252            return target_compiler;
2253        }
2254
2255        // Get the compiler that we'll use to bootstrap ourselves.
2256        //
2257        // Note that this is where the recursive nature of the bootstrap
2258        // happens, as this will request the previous stage's compiler on
2259        // downwards to stage 0.
2260        //
2261        // Also note that we're building a compiler for the host platform. We
2262        // only assume that we can run `build` artifacts, which means that to
2263        // produce some other architecture compiler we need to start from
2264        // `build` to get there.
2265        //
2266        // FIXME: It may be faster if we build just a stage 1 compiler and then
2267        //        use that to bootstrap this compiler forward.
2268        debug!(
2269            "ensuring build compiler is available: compiler(stage = {}, host = {:?})",
2270            target_compiler.stage - 1,
2271            builder.config.host_target,
2272        );
2273        let build_compiler =
2274            builder.compiler(target_compiler.stage - 1, builder.config.host_target);
2275
2276        // Build enzyme
2277        if builder.config.llvm_enzyme && !builder.config.dry_run() {
2278            debug!("`llvm_enzyme` requested");
2279            let enzyme_install = builder.ensure(llvm::Enzyme { target: build_compiler.host });
2280            if let Some(llvm_config) = builder.llvm_config(builder.config.host_target) {
2281                let llvm_version_major = llvm::get_llvm_version_major(builder, &llvm_config);
2282                let lib_ext = std::env::consts::DLL_EXTENSION;
2283                let libenzyme = format!("libEnzyme-{llvm_version_major}");
2284                let src_lib =
2285                    enzyme_install.join("build/Enzyme").join(&libenzyme).with_extension(lib_ext);
2286                let libdir = builder.sysroot_target_libdir(build_compiler, build_compiler.host);
2287                let target_libdir =
2288                    builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2289                let dst_lib = libdir.join(&libenzyme).with_extension(lib_ext);
2290                let target_dst_lib = target_libdir.join(&libenzyme).with_extension(lib_ext);
2291                builder.copy_link(&src_lib, &dst_lib, FileType::NativeLibrary);
2292                builder.copy_link(&src_lib, &target_dst_lib, FileType::NativeLibrary);
2293            }
2294        }
2295
2296        // Build the libraries for this compiler to link to (i.e., the libraries
2297        // it uses at runtime).
2298        debug!(
2299            ?build_compiler,
2300            "target_compiler.host" = ?target_compiler.host,
2301            "building compiler libraries to link to"
2302        );
2303
2304        // It is possible that an uplift has happened, so we override build_compiler here.
2305        let BuiltRustc { build_compiler } =
2306            builder.ensure(Rustc::new(build_compiler, target_compiler.host));
2307
2308        let stage = target_compiler.stage;
2309        let host = target_compiler.host;
2310        let (host_info, dir_name) = if build_compiler.host == host {
2311            ("".into(), "host".into())
2312        } else {
2313            (format!(" ({host})"), host.to_string())
2314        };
2315        // NOTE: "Creating a sysroot" is somewhat inconsistent with our internal terminology, since
2316        // sysroots can temporarily be empty until we put the compiler inside. However,
2317        // `ensure(Sysroot)` isn't really something that's user facing, so there shouldn't be any
2318        // ambiguity.
2319        let msg = format!(
2320            "Creating a sysroot for stage{stage} compiler{host_info} (use `rustup toolchain link 'name' build/{dir_name}/stage{stage}`)"
2321        );
2322        builder.info(&msg);
2323
2324        // Link in all dylibs to the libdir
2325        let stamp = build_stamp::librustc_stamp(builder, build_compiler, target_compiler.host);
2326        let proc_macros = builder
2327            .read_stamp_file(&stamp)
2328            .into_iter()
2329            .filter_map(|(path, dependency_type)| {
2330                if dependency_type == DependencyType::Host {
2331                    Some(path.file_name().unwrap().to_owned().into_string().unwrap())
2332                } else {
2333                    None
2334                }
2335            })
2336            .collect::<HashSet<_>>();
2337
2338        let sysroot = builder.sysroot(target_compiler);
2339        let rustc_libdir = builder.rustc_libdir(target_compiler);
2340        t!(fs::create_dir_all(&rustc_libdir));
2341        let src_libdir = builder.sysroot_target_libdir(build_compiler, host);
2342        for f in builder.read_dir(&src_libdir) {
2343            let filename = f.file_name().into_string().unwrap();
2344
2345            let is_proc_macro = proc_macros.contains(&filename);
2346            let is_dylib_or_debug = is_dylib(&f.path()) || is_debug_info(&filename);
2347
2348            // If we link statically to stdlib, do not copy the libstd dynamic library file
2349            // FIXME: Also do this for Windows once incremental post-optimization stage0 tests
2350            // work without std.dll (see https://github.com/rust-lang/rust/pull/131188).
2351            let can_be_rustc_dynamic_dep = if builder
2352                .link_std_into_rustc_driver(target_compiler.host)
2353                && !target_compiler.host.is_windows()
2354            {
2355                let is_std = filename.starts_with("std-") || filename.starts_with("libstd-");
2356                !is_std
2357            } else {
2358                true
2359            };
2360
2361            if is_dylib_or_debug && can_be_rustc_dynamic_dep && !is_proc_macro {
2362                builder.copy_link(&f.path(), &rustc_libdir.join(&filename), FileType::Regular);
2363            }
2364        }
2365
2366        {
2367            #[cfg(feature = "tracing")]
2368            let _codegen_backend_span =
2369                span!(tracing::Level::DEBUG, "building requested codegen backends").entered();
2370
2371            for backend in builder.config.enabled_codegen_backends(target_compiler.host) {
2372                // FIXME: this is a horrible hack used to make `x check` work when other codegen
2373                // backends are enabled.
2374                // `x check` will check stage 1 rustc, which copies its rmetas to the stage0 sysroot.
2375                // Then it checks codegen backends, which correctly use these rmetas.
2376                // Then it needs to check std, but for that it needs to build stage 1 rustc.
2377                // This copies the build rmetas into the stage0 sysroot, effectively poisoning it,
2378                // because we then have both check and build rmetas in the same sysroot.
2379                // That would be fine on its own. However, when another codegen backend is enabled,
2380                // then building stage 1 rustc implies also building stage 1 codegen backend (even if
2381                // it isn't used for anything). And since that tries to use the poisoned
2382                // rmetas, it fails to build.
2383                // We don't actually need to build rustc-private codegen backends for checking std,
2384                // so instead we skip that.
2385                // Note: this would be also an issue for other rustc-private tools, but that is "solved"
2386                // by check::Std being last in the list of checked things (see
2387                // `Builder::get_step_descriptions`).
2388                if builder.kind == Kind::Check && builder.top_stage == 1 {
2389                    continue;
2390                }
2391
2392                let prepare_compilers = || {
2393                    RustcPrivateCompilers::from_build_and_target_compiler(
2394                        build_compiler,
2395                        target_compiler,
2396                    )
2397                };
2398
2399                match backend {
2400                    CodegenBackendKind::Cranelift => {
2401                        let stamp = builder
2402                            .ensure(CraneliftCodegenBackend { compilers: prepare_compilers() });
2403                        copy_codegen_backends_to_sysroot(builder, stamp, target_compiler);
2404                    }
2405                    CodegenBackendKind::Gcc => {
2406                        // We need to build cg_gcc for the host target of the compiler which we
2407                        // build here, which is `target_compiler`.
2408                        // But we also need to build libgccjit for some additional targets, in
2409                        // the most general case.
2410                        // 1. We need to build (target_compiler.host, stdlib target) libgccjit
2411                        // for all stdlibs that we build, so that cg_gcc can be used to build code
2412                        // for all those targets.
2413                        // 2. We need to build (target_compiler.host, target_compiler.host)
2414                        // libgccjit, so that the target compiler can compile host code (e.g. proc
2415                        // macros).
2416                        // 3. We need to build (target_compiler.host, host target) libgccjit
2417                        // for all *host targets* that we build, so that cg_gcc can be used to
2418                        // build a (possibly cross-compiled) stage 2+ rustc.
2419                        //
2420                        // Assume that we are on host T1 and we do a stage2 build of rustc for T2.
2421                        // We want the T2 rustc compiler to be able to use cg_gcc and build code
2422                        // for T2 (host) and T3 (target). We also want to build the stage2 compiler
2423                        // itself using cg_gcc.
2424                        // This could correspond to the following bootstrap invocation:
2425                        // `x build rustc --build T1 --host T2 --target T3 --set codegen-backends=['gcc', 'llvm']`
2426                        //
2427                        // For that, we will need the following GCC target pairs:
2428                        // 1. T1 -> T2 (to cross-compile a T2 rustc using cg_gcc running on T1)
2429                        // 2. T2 -> T2 (to build host code with the stage 2 rustc running on T2)
2430                        // 3. T2 -> T3 (to cross-compile code with the stage 2 rustc running on T2)
2431                        //
2432                        // FIXME: this set of targets is *maximal*, in reality we might need
2433                        // less libgccjits at this current build stage. Try to reduce the set of
2434                        // GCC dylibs built below by taking a look at the current stage and whether
2435                        // cg_gcc is used as the default codegen backend.
2436
2437                        let compilers = prepare_compilers();
2438
2439                        // The left side of the target pairs below is implied. It has to match the
2440                        // host target on which cg_gcc will run, which is the host target of
2441                        // `target_compiler`. We only pass the right side of the target pairs to
2442                        // the `GccCodegenBackend` constructor.
2443                        let mut targets = HashSet::new();
2444                        // Add all host targets, so that we are able to build host code in this
2445                        // bootstrap invocation using cg_gcc.
2446                        for target in &builder.hosts {
2447                            targets.insert(*target);
2448                        }
2449                        // Add all stdlib targets, so that the built rustc can produce code for them
2450                        for target in &builder.targets {
2451                            targets.insert(*target);
2452                        }
2453                        // Add the host target of the built rustc itself, so that it can build
2454                        // host code (e.g. proc macros) using cg_gcc.
2455                        targets.insert(compilers.target_compiler().host);
2456
2457                        let output = builder.ensure(GccCodegenBackend::for_targets(
2458                            compilers,
2459                            targets.into_iter().collect(),
2460                        ));
2461                        copy_codegen_backends_to_sysroot(builder, output.stamp, target_compiler);
2462                        // Also copy all requires libgccjit dylibs to the corresponding
2463                        // library sysroots, so that they are available for the codegen backend.
2464                        output.dylib_set.install_to(builder, target_compiler);
2465                    }
2466                    CodegenBackendKind::Llvm | CodegenBackendKind::Custom(_) => continue,
2467                }
2468            }
2469        }
2470
2471        if builder.config.lld_enabled {
2472            let lld_wrapper =
2473                builder.ensure(crate::core::build_steps::tool::LldWrapper::for_use_by_compiler(
2474                    builder,
2475                    target_compiler,
2476                ));
2477            copy_lld_artifacts(builder, lld_wrapper, target_compiler);
2478        }
2479
2480        if builder.config.llvm_enabled(target_compiler.host) && builder.config.llvm_tools_enabled {
2481            debug!(
2482                "llvm and llvm tools enabled; copying `llvm-objcopy` as `rust-objcopy` to \
2483                workaround faulty homebrew `strip`s"
2484            );
2485
2486            // `llvm-strip` is used by rustc, which is actually just a symlink to `llvm-objcopy`, so
2487            // copy and rename `llvm-objcopy`.
2488            //
2489            // But only do so if llvm-tools are enabled, as bootstrap compiler might not contain any
2490            // LLVM tools, e.g. for cg_clif.
2491            // See <https://github.com/rust-lang/rust/issues/132719>.
2492            let src_exe = exe("llvm-objcopy", target_compiler.host);
2493            let dst_exe = exe("rust-objcopy", target_compiler.host);
2494            builder.copy_link(
2495                &libdir_bin.join(src_exe),
2496                &libdir_bin.join(dst_exe),
2497                FileType::Executable,
2498            );
2499        }
2500
2501        // In addition to `rust-lld` also install `wasm-component-ld` when
2502        // is enabled. This is used by the `wasm32-wasip2` target of Rust.
2503        if builder.tool_enabled("wasm-component-ld") {
2504            let wasm_component = builder.ensure(
2505                crate::core::build_steps::tool::WasmComponentLd::for_use_by_compiler(
2506                    builder,
2507                    target_compiler,
2508                ),
2509            );
2510            builder.copy_link(
2511                &wasm_component.tool_path,
2512                &libdir_bin.join(wasm_component.tool_path.file_name().unwrap()),
2513                FileType::Executable,
2514            );
2515        }
2516
2517        maybe_install_llvm_bitcode_linker();
2518
2519        // Ensure that `libLLVM.so` ends up in the newly build compiler directory,
2520        // so that it can be found when the newly built `rustc` is run.
2521        debug!(
2522            "target_compiler.host" = ?target_compiler.host,
2523            ?sysroot,
2524            "ensuring availability of `libLLVM.so` in compiler directory"
2525        );
2526        dist::maybe_install_llvm_runtime(builder, target_compiler.host, &sysroot);
2527        dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
2528
2529        // Link the compiler binary itself into place
2530        let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
2531        let rustc = out_dir.join(exe("rustc-main", host));
2532        let bindir = sysroot.join("bin");
2533        t!(fs::create_dir_all(bindir));
2534        let compiler = builder.rustc(target_compiler);
2535        debug!(src = ?rustc, dst = ?compiler, "linking compiler binary itself");
2536        builder.copy_link(&rustc, &compiler, FileType::Executable);
2537
2538        target_compiler
2539    }
2540}
2541
2542/// Link some files into a rustc sysroot.
2543///
2544/// For a particular stage this will link the file listed in `stamp` into the
2545/// `sysroot_dst` provided.
2546#[track_caller]
2547pub fn add_to_sysroot(
2548    builder: &Builder<'_>,
2549    sysroot_dst: &Path,
2550    sysroot_host_dst: &Path,
2551    stamp: &BuildStamp,
2552) {
2553    let self_contained_dst = &sysroot_dst.join("self-contained");
2554    t!(fs::create_dir_all(sysroot_dst));
2555    t!(fs::create_dir_all(sysroot_host_dst));
2556    t!(fs::create_dir_all(self_contained_dst));
2557
2558    let mut crates = HashMap::new();
2559    for (path, dependency_type) in builder.read_stamp_file(stamp) {
2560        let filename = path.file_name().unwrap().to_str().unwrap();
2561        let dst = match dependency_type {
2562            DependencyType::Host => {
2563                if sysroot_dst == sysroot_host_dst {
2564                    // Only insert the part before the . to deduplicate different files for the same crate.
2565                    // For example foo-1234.dll and foo-1234.dll.lib.
2566                    crates.insert(filename.split_once('.').unwrap().0.to_owned(), path.clone());
2567                }
2568
2569                sysroot_host_dst
2570            }
2571            DependencyType::Target => {
2572                // Only insert the part before the . to deduplicate different files for the same crate.
2573                // For example foo-1234.dll and foo-1234.dll.lib.
2574                crates.insert(filename.split_once('.').unwrap().0.to_owned(), path.clone());
2575
2576                sysroot_dst
2577            }
2578            DependencyType::TargetSelfContained => self_contained_dst,
2579        };
2580        builder.copy_link(&path, &dst.join(filename), FileType::Regular);
2581    }
2582
2583    // Check that none of the rustc_* crates have multiple versions. Otherwise using them from
2584    // the sysroot would cause ambiguity errors. We do allow rustc_hash however as it is an
2585    // external dependency that we build multiple copies of. It is re-exported by
2586    // rustc_data_structures, so not being able to use extern crate rustc_hash; is not a big
2587    // issue.
2588    let mut seen_crates = HashMap::new();
2589    for (filestem, path) in crates {
2590        if !filestem.contains("rustc_") || filestem.contains("rustc_hash") {
2591            continue;
2592        }
2593        if let Some(other_path) =
2594            seen_crates.insert(filestem.split_once('-').unwrap().0.to_owned(), path.clone())
2595        {
2596            panic!(
2597                "duplicate rustc crate {}\n-  first copy at {}\n- second copy at {}",
2598                filestem.split_once('-').unwrap().0.to_owned(),
2599                other_path.display(),
2600                path.display(),
2601            );
2602        }
2603    }
2604}
2605
2606pub fn run_cargo(
2607    builder: &Builder<'_>,
2608    cargo: Cargo,
2609    tail_args: Vec<String>,
2610    stamp: &BuildStamp,
2611    additional_target_deps: Vec<(PathBuf, DependencyType)>,
2612    is_check: bool,
2613    rlib_only_metadata: bool,
2614) -> Vec<PathBuf> {
2615    // `target_root_dir` looks like $dir/$target/release
2616    let target_root_dir = stamp.path().parent().unwrap();
2617    // `target_deps_dir` looks like $dir/$target/release/deps
2618    let target_deps_dir = target_root_dir.join("deps");
2619    // `host_root_dir` looks like $dir/release
2620    let host_root_dir = target_root_dir
2621        .parent()
2622        .unwrap() // chop off `release`
2623        .parent()
2624        .unwrap() // chop off `$target`
2625        .join(target_root_dir.file_name().unwrap());
2626
2627    // Spawn Cargo slurping up its JSON output. We'll start building up the
2628    // `deps` array of all files it generated along with a `toplevel` array of
2629    // files we need to probe for later.
2630    let mut deps = Vec::new();
2631    let mut toplevel = Vec::new();
2632    let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
2633        let (filenames_vec, crate_types) = match msg {
2634            CargoMessage::CompilerArtifact {
2635                filenames,
2636                target: CargoTarget { crate_types },
2637                ..
2638            } => {
2639                let mut f: Vec<String> = filenames.into_iter().map(|s| s.into_owned()).collect();
2640                f.sort(); // Sort the filenames
2641                (f, crate_types)
2642            }
2643            _ => return,
2644        };
2645        for filename in filenames_vec {
2646            // Skip files like executables
2647            let mut keep = false;
2648            if filename.ends_with(".lib")
2649                || filename.ends_with(".a")
2650                || is_debug_info(&filename)
2651                || is_dylib(Path::new(&*filename))
2652            {
2653                // Always keep native libraries, rust dylibs and debuginfo
2654                keep = true;
2655            }
2656            if is_check && filename.ends_with(".rmeta") {
2657                // During check builds we need to keep crate metadata
2658                keep = true;
2659            } else if rlib_only_metadata {
2660                if filename.contains("jemalloc_sys")
2661                    || filename.contains("rustc_public_bridge")
2662                    || filename.contains("rustc_public")
2663                {
2664                    // jemalloc_sys and rustc_public_bridge are not linked into librustc_driver.so,
2665                    // so we need to distribute them as rlib to be able to use them.
2666                    keep |= filename.ends_with(".rlib");
2667                } else {
2668                    // Distribute the rest of the rustc crates as rmeta files only to reduce
2669                    // the tarball sizes by about 50%. The object files are linked into
2670                    // librustc_driver.so, so it is still possible to link against them.
2671                    keep |= filename.ends_with(".rmeta");
2672                }
2673            } else {
2674                // In all other cases keep all rlibs
2675                keep |= filename.ends_with(".rlib");
2676            }
2677
2678            if !keep {
2679                continue;
2680            }
2681
2682            let filename = Path::new(&*filename);
2683
2684            // If this was an output file in the "host dir" we don't actually
2685            // worry about it, it's not relevant for us
2686            if filename.starts_with(&host_root_dir) {
2687                // Unless it's a proc macro used in the compiler
2688                if crate_types.iter().any(|t| t == "proc-macro") {
2689                    // Cargo will compile proc-macros that are part of the rustc workspace twice.
2690                    // Once as libmacro-hash.so as build dependency and once as libmacro.so as
2691                    // output artifact. Only keep the former to avoid ambiguity when trying to use
2692                    // the proc macro from the sysroot.
2693                    if filename.file_name().unwrap().to_str().unwrap().contains("-") {
2694                        deps.push((filename.to_path_buf(), DependencyType::Host));
2695                    }
2696                }
2697                continue;
2698            }
2699
2700            // If this was output in the `deps` dir then this is a precise file
2701            // name (hash included) so we start tracking it.
2702            if filename.starts_with(&target_deps_dir) {
2703                deps.push((filename.to_path_buf(), DependencyType::Target));
2704                continue;
2705            }
2706
2707            // Otherwise this was a "top level artifact" which right now doesn't
2708            // have a hash in the name, but there's a version of this file in
2709            // the `deps` folder which *does* have a hash in the name. That's
2710            // the one we'll want to we'll probe for it later.
2711            //
2712            // We do not use `Path::file_stem` or `Path::extension` here,
2713            // because some generated files may have multiple extensions e.g.
2714            // `std-<hash>.dll.lib` on Windows. The aforementioned methods only
2715            // split the file name by the last extension (`.lib`) while we need
2716            // to split by all extensions (`.dll.lib`).
2717            let expected_len = t!(filename.metadata()).len();
2718            let filename = filename.file_name().unwrap().to_str().unwrap();
2719            let mut parts = filename.splitn(2, '.');
2720            let file_stem = parts.next().unwrap().to_owned();
2721            let extension = parts.next().unwrap().to_owned();
2722
2723            toplevel.push((file_stem, extension, expected_len));
2724        }
2725    });
2726
2727    if !ok {
2728        crate::exit!(1);
2729    }
2730
2731    if builder.config.dry_run() {
2732        return Vec::new();
2733    }
2734
2735    // Ok now we need to actually find all the files listed in `toplevel`. We've
2736    // got a list of prefix/extensions and we basically just need to find the
2737    // most recent file in the `deps` folder corresponding to each one.
2738    let contents = target_deps_dir
2739        .read_dir()
2740        .unwrap_or_else(|e| panic!("Couldn't read {}: {}", target_deps_dir.display(), e))
2741        .map(|e| t!(e))
2742        .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
2743        .collect::<Vec<_>>();
2744    for (prefix, extension, expected_len) in toplevel {
2745        let candidates = contents.iter().filter(|&(_, filename, meta)| {
2746            meta.len() == expected_len
2747                && filename
2748                    .strip_prefix(&prefix[..])
2749                    .map(|s| s.starts_with('-') && s.ends_with(&extension[..]))
2750                    .unwrap_or(false)
2751        });
2752        let max = candidates.max_by_key(|&(_, _, metadata)| {
2753            metadata.modified().expect("mtime should be available on all relevant OSes")
2754        });
2755        let path_to_add = match max {
2756            Some(triple) => triple.0.to_str().unwrap(),
2757            None => panic!("no output generated for {prefix:?} {extension:?}"),
2758        };
2759        if is_dylib(Path::new(path_to_add)) {
2760            let candidate = format!("{path_to_add}.lib");
2761            let candidate = PathBuf::from(candidate);
2762            if candidate.exists() {
2763                deps.push((candidate, DependencyType::Target));
2764            }
2765        }
2766        deps.push((path_to_add.into(), DependencyType::Target));
2767    }
2768
2769    deps.extend(additional_target_deps);
2770    deps.sort();
2771    let mut new_contents = Vec::new();
2772    for (dep, dependency_type) in deps.iter() {
2773        new_contents.extend(match *dependency_type {
2774            DependencyType::Host => b"h",
2775            DependencyType::Target => b"t",
2776            DependencyType::TargetSelfContained => b"s",
2777        });
2778        new_contents.extend(dep.to_str().unwrap().as_bytes());
2779        new_contents.extend(b"\0");
2780    }
2781    t!(fs::write(stamp.path(), &new_contents));
2782    deps.into_iter().map(|(d, _)| d).collect()
2783}
2784
2785pub fn stream_cargo(
2786    builder: &Builder<'_>,
2787    cargo: Cargo,
2788    tail_args: Vec<String>,
2789    cb: &mut dyn FnMut(CargoMessage<'_>),
2790) -> bool {
2791    let mut cmd = cargo.into_cmd();
2792
2793    // Instruct Cargo to give us json messages on stdout, critically leaving
2794    // stderr as piped so we can get those pretty colors.
2795    let mut message_format = if builder.config.json_output {
2796        String::from("json")
2797    } else {
2798        String::from("json-render-diagnostics")
2799    };
2800    if let Some(s) = &builder.config.rustc_error_format {
2801        message_format.push_str(",json-diagnostic-");
2802        message_format.push_str(s);
2803    }
2804    cmd.arg("--message-format").arg(message_format);
2805
2806    for arg in tail_args {
2807        cmd.arg(arg);
2808    }
2809
2810    builder.do_if_verbose(|| println!("running: {cmd:?}"));
2811
2812    let streaming_command = cmd.stream_capture_stdout(&builder.config.exec_ctx);
2813
2814    let Some(mut streaming_command) = streaming_command else {
2815        return true;
2816    };
2817
2818    // Spawn Cargo slurping up its JSON output. We'll start building up the
2819    // `deps` array of all files it generated along with a `toplevel` array of
2820    // files we need to probe for later.
2821    let stdout = BufReader::new(streaming_command.stdout.take().unwrap());
2822    for line in stdout.lines() {
2823        let line = t!(line);
2824        match serde_json::from_str::<CargoMessage<'_>>(&line) {
2825            Ok(msg) => {
2826                if builder.config.json_output {
2827                    // Forward JSON to stdout.
2828                    println!("{line}");
2829                }
2830                cb(msg)
2831            }
2832            // If this was informational, just print it out and continue
2833            Err(_) => println!("{line}"),
2834        }
2835    }
2836
2837    // Make sure Cargo actually succeeded after we read all of its stdout.
2838    let status = t!(streaming_command.wait(&builder.config.exec_ctx));
2839    if builder.is_verbose() && !status.success() {
2840        eprintln!(
2841            "command did not execute successfully: {cmd:?}\n\
2842                  expected success, got: {status}"
2843        );
2844    }
2845
2846    status.success()
2847}
2848
2849#[derive(Deserialize)]
2850pub struct CargoTarget<'a> {
2851    crate_types: Vec<Cow<'a, str>>,
2852}
2853
2854#[derive(Deserialize)]
2855#[serde(tag = "reason", rename_all = "kebab-case")]
2856pub enum CargoMessage<'a> {
2857    CompilerArtifact { filenames: Vec<Cow<'a, str>>, target: CargoTarget<'a> },
2858    BuildScriptExecuted,
2859    BuildFinished,
2860}
2861
2862pub fn strip_debug(builder: &Builder<'_>, target: TargetSelection, path: &Path) {
2863    // FIXME: to make things simpler for now, limit this to the host and target where we know
2864    // `strip -g` is both available and will fix the issue, i.e. on a x64 linux host that is not
2865    // cross-compiling. Expand this to other appropriate targets in the future.
2866    if target != "x86_64-unknown-linux-gnu"
2867        || !builder.config.is_host_target(target)
2868        || !path.exists()
2869    {
2870        return;
2871    }
2872
2873    let previous_mtime = t!(t!(path.metadata()).modified());
2874    let stamp = BuildStamp::new(path.parent().unwrap())
2875        .with_prefix(path.file_name().unwrap().to_str().unwrap())
2876        .with_prefix("strip")
2877        .add_stamp(previous_mtime.duration_since(SystemTime::UNIX_EPOCH).unwrap().as_nanos());
2878
2879    // Running strip can be relatively expensive (~1s on librustc_driver.so), so we don't rerun it
2880    // if the file is unchanged.
2881    if !stamp.is_up_to_date() {
2882        command("strip").arg("--strip-debug").arg(path).run_capture(builder);
2883    }
2884    t!(stamp.write());
2885
2886    let file = t!(fs::File::open(path));
2887
2888    // After running `strip`, we have to set the file modification time to what it was before,
2889    // otherwise we risk Cargo invalidating its fingerprint and rebuilding the world next time
2890    // bootstrap is invoked.
2891    //
2892    // An example of this is if we run this on librustc_driver.so. In the first invocation:
2893    // - Cargo will build librustc_driver.so (mtime of 1)
2894    // - Cargo will build rustc-main (mtime of 2)
2895    // - Bootstrap will strip librustc_driver.so (changing the mtime to 3).
2896    //
2897    // In the second invocation of bootstrap, Cargo will see that the mtime of librustc_driver.so
2898    // is greater than the mtime of rustc-main, and will rebuild rustc-main. That will then cause
2899    // everything else (standard library, future stages...) to be rebuilt.
2900    t!(file.set_modified(previous_mtime));
2901}
2902
2903/// We only use LTO for stage 2+, to speed up build time of intermediate stages.
2904pub fn is_lto_stage(build_compiler: &Compiler) -> bool {
2905    build_compiler.stage != 0
2906}