bootstrap/core/build_steps/
compile.rs

1//! Implementation of compiling various phases of the compiler and standard
2//! library.
3//!
4//! This module contains some of the real meat in the bootstrap build system
5//! which is where Cargo is used to compile the standard library, libtest, and
6//! the compiler. This module is also responsible for assembling the sysroot as it
7//! goes along from the output of the previous stage.
8
9use std::borrow::Cow;
10use std::collections::{BTreeMap, HashMap, HashSet};
11use std::ffi::OsStr;
12use std::io::BufReader;
13use std::io::prelude::*;
14use std::path::{Path, PathBuf};
15use std::time::SystemTime;
16use std::{env, fs, str};
17
18use serde_derive::Deserialize;
19#[cfg(feature = "tracing")]
20use tracing::span;
21
22use crate::core::build_steps::gcc::{Gcc, GccOutput, GccTargetPair, add_cg_gcc_cargo_flags};
23use crate::core::build_steps::tool::{RustcPrivateCompilers, SourceType, copy_lld_artifacts};
24use crate::core::build_steps::{dist, llvm};
25use crate::core::builder;
26use crate::core::builder::{
27    Builder, Cargo, Kind, RunConfig, ShouldRun, Step, StepMetadata, crate_description,
28};
29use crate::core::config::toml::target::DefaultLinuxLinkerOverride;
30use crate::core::config::{
31    CompilerBuiltins, DebuginfoLevel, LlvmLibunwind, RustcLto, TargetSelection,
32};
33use crate::utils::build_stamp;
34use crate::utils::build_stamp::BuildStamp;
35use crate::utils::exec::command;
36use crate::utils::helpers::{
37    exe, get_clang_cl_resource_dir, is_debug_info, is_dylib, symlink_dir, t, up_to_date,
38};
39use crate::{
40    CLang, CodegenBackendKind, Compiler, DependencyType, FileType, GitRepo, LLVM_TOOLS, Mode,
41    debug, trace,
42};
43
44/// Build a standard library for the given `target` using the given `build_compiler`.
45#[derive(Debug, Clone, PartialEq, Eq, Hash)]
46pub struct Std {
47    pub target: TargetSelection,
48    /// Compiler that builds the standard library.
49    pub build_compiler: Compiler,
50    /// Whether to build only a subset of crates in the standard library.
51    ///
52    /// This shouldn't be used from other steps; see the comment on [`Rustc`].
53    crates: Vec<String>,
54    /// When using download-rustc, we need to use a new build of `std` for running unit tests of Std itself,
55    /// but we need to use the downloaded copy of std for linking to rustdoc. Allow this to be overridden by `builder.ensure` from other steps.
56    force_recompile: bool,
57    extra_rust_args: &'static [&'static str],
58    is_for_mir_opt_tests: bool,
59}
60
61impl Std {
62    pub fn new(build_compiler: Compiler, target: TargetSelection) -> Self {
63        Self {
64            target,
65            build_compiler,
66            crates: Default::default(),
67            force_recompile: false,
68            extra_rust_args: &[],
69            is_for_mir_opt_tests: false,
70        }
71    }
72
73    pub fn force_recompile(mut self, force_recompile: bool) -> Self {
74        self.force_recompile = force_recompile;
75        self
76    }
77
78    #[expect(clippy::wrong_self_convention)]
79    pub fn is_for_mir_opt_tests(mut self, is_for_mir_opt_tests: bool) -> Self {
80        self.is_for_mir_opt_tests = is_for_mir_opt_tests;
81        self
82    }
83
84    pub fn extra_rust_args(mut self, extra_rust_args: &'static [&'static str]) -> Self {
85        self.extra_rust_args = extra_rust_args;
86        self
87    }
88
89    fn copy_extra_objects(
90        &self,
91        builder: &Builder<'_>,
92        compiler: &Compiler,
93        target: TargetSelection,
94    ) -> Vec<(PathBuf, DependencyType)> {
95        let mut deps = Vec::new();
96        if !self.is_for_mir_opt_tests {
97            deps.extend(copy_third_party_objects(builder, compiler, target));
98            deps.extend(copy_self_contained_objects(builder, compiler, target));
99        }
100        deps
101    }
102
103    /// Returns true if the standard library should be uplifted from stage 1.
104    ///
105    /// Uplifting is enabled if we're building a stage2+ libstd and full bootstrap is
106    /// disabled.
107    pub fn should_be_uplifted_from_stage_1(builder: &Builder<'_>, stage: u32) -> bool {
108        stage > 1 && !builder.config.full_bootstrap
109    }
110}
111
112impl Step for Std {
113    /// Build stamp of std, if it was indeed built or uplifted.
114    type Output = Option<BuildStamp>;
115
116    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
117        run.crate_or_deps("sysroot").path("library")
118    }
119
120    fn is_default_step(_builder: &Builder<'_>) -> bool {
121        true
122    }
123
124    fn make_run(run: RunConfig<'_>) {
125        let crates = std_crates_for_run_make(&run);
126        let builder = run.builder;
127
128        // Force compilation of the standard library from source if the `library` is modified. This allows
129        // library team to compile the standard library without needing to compile the compiler with
130        // the `rust.download-rustc=true` option.
131        let force_recompile = builder.rust_info().is_managed_git_subrepository()
132            && builder.download_rustc()
133            && builder.config.has_changes_from_upstream(&["library"]);
134
135        trace!("is managed git repo: {}", builder.rust_info().is_managed_git_subrepository());
136        trace!("download_rustc: {}", builder.download_rustc());
137        trace!(force_recompile);
138
139        run.builder.ensure(Std {
140            // Note: we don't use compiler_for_std here, so that `x build library --stage 2`
141            // builds a stage2 rustc.
142            build_compiler: run.builder.compiler(run.builder.top_stage, builder.host_target),
143            target: run.target,
144            crates,
145            force_recompile,
146            extra_rust_args: &[],
147            is_for_mir_opt_tests: false,
148        });
149    }
150
151    /// Builds the standard library.
152    ///
153    /// This will build the standard library for a particular stage of the build
154    /// using the `compiler` targeting the `target` architecture. The artifacts
155    /// created will also be linked into the sysroot directory.
156    fn run(self, builder: &Builder<'_>) -> Self::Output {
157        let target = self.target;
158
159        // In most cases, we already have the std ready to be used for stage 0.
160        // However, if we are doing a local rebuild (so the build compiler can compile the standard
161        // library even on stage 0), and we're cross-compiling (so the stage0 standard library for
162        // *target* is not available), we still allow the stdlib to be built here.
163        if self.build_compiler.stage == 0
164            && !(builder.local_rebuild && target != builder.host_target)
165        {
166            let compiler = self.build_compiler;
167            builder.ensure(StdLink::from_std(self, compiler));
168
169            return None;
170        }
171
172        let build_compiler = if builder.download_rustc() && self.force_recompile {
173            // When there are changes in the library tree with CI-rustc, we want to build
174            // the stageN library and that requires using stageN-1 compiler.
175            builder
176                .compiler(self.build_compiler.stage.saturating_sub(1), builder.config.host_target)
177        } else {
178            self.build_compiler
179        };
180
181        // When using `download-rustc`, we already have artifacts for the host available. Don't
182        // recompile them.
183        if builder.download_rustc()
184            && builder.config.is_host_target(target)
185            && !self.force_recompile
186        {
187            let sysroot =
188                builder.ensure(Sysroot { compiler: build_compiler, force_recompile: false });
189            cp_rustc_component_to_ci_sysroot(
190                builder,
191                &sysroot,
192                builder.config.ci_rust_std_contents(),
193            );
194            return None;
195        }
196
197        if builder.config.keep_stage.contains(&build_compiler.stage)
198            || builder.config.keep_stage_std.contains(&build_compiler.stage)
199        {
200            trace!(keep_stage = ?builder.config.keep_stage);
201            trace!(keep_stage_std = ?builder.config.keep_stage_std);
202
203            builder.info("WARNING: Using a potentially old libstd. This may not behave well.");
204
205            builder.ensure(StartupObjects { compiler: build_compiler, target });
206
207            self.copy_extra_objects(builder, &build_compiler, target);
208
209            builder.ensure(StdLink::from_std(self, build_compiler));
210            return Some(build_stamp::libstd_stamp(builder, build_compiler, target));
211        }
212
213        let mut target_deps = builder.ensure(StartupObjects { compiler: build_compiler, target });
214
215        // Stage of the stdlib that we're building
216        let stage = build_compiler.stage;
217
218        if Self::should_be_uplifted_from_stage_1(builder, build_compiler.stage) {
219            let build_compiler_for_std_to_uplift = builder.compiler(1, builder.host_target);
220            let stage_1_stamp = builder.std(build_compiler_for_std_to_uplift, target);
221
222            let msg = if build_compiler_for_std_to_uplift.host == target {
223                format!(
224                    "Uplifting library (stage{} -> stage{stage})",
225                    build_compiler_for_std_to_uplift.stage
226                )
227            } else {
228                format!(
229                    "Uplifting library (stage{}:{} -> stage{stage}:{target})",
230                    build_compiler_for_std_to_uplift.stage, build_compiler_for_std_to_uplift.host,
231                )
232            };
233
234            builder.info(&msg);
235
236            // Even if we're not building std this stage, the new sysroot must
237            // still contain the third party objects needed by various targets.
238            self.copy_extra_objects(builder, &build_compiler, target);
239
240            builder.ensure(StdLink::from_std(self, build_compiler_for_std_to_uplift));
241            return stage_1_stamp;
242        }
243
244        target_deps.extend(self.copy_extra_objects(builder, &build_compiler, target));
245
246        // We build a sysroot for mir-opt tests using the same trick that Miri does: A check build
247        // with -Zalways-encode-mir. This frees us from the need to have a target linker, and the
248        // fact that this is a check build integrates nicely with run_cargo.
249        let mut cargo = if self.is_for_mir_opt_tests {
250            trace!("building special sysroot for mir-opt tests");
251            let mut cargo = builder::Cargo::new_for_mir_opt_tests(
252                builder,
253                build_compiler,
254                Mode::Std,
255                SourceType::InTree,
256                target,
257                Kind::Check,
258            );
259            cargo.rustflag("-Zalways-encode-mir");
260            cargo.arg("--manifest-path").arg(builder.src.join("library/sysroot/Cargo.toml"));
261            cargo
262        } else {
263            trace!("building regular sysroot");
264            let mut cargo = builder::Cargo::new(
265                builder,
266                build_compiler,
267                Mode::Std,
268                SourceType::InTree,
269                target,
270                Kind::Build,
271            );
272            std_cargo(builder, target, &mut cargo, &self.crates);
273            cargo
274        };
275
276        // See src/bootstrap/synthetic_targets.rs
277        if target.is_synthetic() {
278            cargo.env("RUSTC_BOOTSTRAP_SYNTHETIC_TARGET", "1");
279        }
280        for rustflag in self.extra_rust_args.iter() {
281            cargo.rustflag(rustflag);
282        }
283
284        let _guard = builder.msg(
285            Kind::Build,
286            format_args!("library artifacts{}", crate_description(&self.crates)),
287            Mode::Std,
288            build_compiler,
289            target,
290        );
291
292        let stamp = build_stamp::libstd_stamp(builder, build_compiler, target);
293        run_cargo(
294            builder,
295            cargo,
296            vec![],
297            &stamp,
298            target_deps,
299            self.is_for_mir_opt_tests, // is_check
300            false,
301        );
302
303        builder.ensure(StdLink::from_std(
304            self,
305            builder.compiler(build_compiler.stage, builder.config.host_target),
306        ));
307        Some(stamp)
308    }
309
310    fn metadata(&self) -> Option<StepMetadata> {
311        Some(StepMetadata::build("std", self.target).built_by(self.build_compiler))
312    }
313}
314
315fn copy_and_stamp(
316    builder: &Builder<'_>,
317    libdir: &Path,
318    sourcedir: &Path,
319    name: &str,
320    target_deps: &mut Vec<(PathBuf, DependencyType)>,
321    dependency_type: DependencyType,
322) {
323    let target = libdir.join(name);
324    builder.copy_link(&sourcedir.join(name), &target, FileType::Regular);
325
326    target_deps.push((target, dependency_type));
327}
328
329fn copy_llvm_libunwind(builder: &Builder<'_>, target: TargetSelection, libdir: &Path) -> PathBuf {
330    let libunwind_path = builder.ensure(llvm::Libunwind { target });
331    let libunwind_source = libunwind_path.join("libunwind.a");
332    let libunwind_target = libdir.join("libunwind.a");
333    builder.copy_link(&libunwind_source, &libunwind_target, FileType::NativeLibrary);
334    libunwind_target
335}
336
337/// Copies third party objects needed by various targets.
338fn copy_third_party_objects(
339    builder: &Builder<'_>,
340    compiler: &Compiler,
341    target: TargetSelection,
342) -> Vec<(PathBuf, DependencyType)> {
343    let mut target_deps = vec![];
344
345    if builder.config.needs_sanitizer_runtime_built(target) && compiler.stage != 0 {
346        // The sanitizers are only copied in stage1 or above,
347        // to avoid creating dependency on LLVM.
348        target_deps.extend(
349            copy_sanitizers(builder, compiler, target)
350                .into_iter()
351                .map(|d| (d, DependencyType::Target)),
352        );
353    }
354
355    if target == "x86_64-fortanix-unknown-sgx"
356        || builder.config.llvm_libunwind(target) == LlvmLibunwind::InTree
357            && (target.contains("linux")
358                || target.contains("fuchsia")
359                || target.contains("aix")
360                || target.contains("hexagon"))
361    {
362        let libunwind_path =
363            copy_llvm_libunwind(builder, target, &builder.sysroot_target_libdir(*compiler, target));
364        target_deps.push((libunwind_path, DependencyType::Target));
365    }
366
367    target_deps
368}
369
370/// Copies third party objects needed by various targets for self-contained linkage.
371fn copy_self_contained_objects(
372    builder: &Builder<'_>,
373    compiler: &Compiler,
374    target: TargetSelection,
375) -> Vec<(PathBuf, DependencyType)> {
376    let libdir_self_contained =
377        builder.sysroot_target_libdir(*compiler, target).join("self-contained");
378    t!(fs::create_dir_all(&libdir_self_contained));
379    let mut target_deps = vec![];
380
381    // Copies the libc and CRT objects.
382    //
383    // rustc historically provides a more self-contained installation for musl targets
384    // not requiring the presence of a native musl toolchain. For example, it can fall back
385    // to using gcc from a glibc-targeting toolchain for linking.
386    // To do that we have to distribute musl startup objects as a part of Rust toolchain
387    // and link with them manually in the self-contained mode.
388    if target.needs_crt_begin_end() {
389        let srcdir = builder.musl_libdir(target).unwrap_or_else(|| {
390            panic!("Target {:?} does not have a \"musl-libdir\" key", target.triple)
391        });
392        if !target.starts_with("wasm32") {
393            for &obj in &["libc.a", "crt1.o", "Scrt1.o", "rcrt1.o", "crti.o", "crtn.o"] {
394                copy_and_stamp(
395                    builder,
396                    &libdir_self_contained,
397                    &srcdir,
398                    obj,
399                    &mut target_deps,
400                    DependencyType::TargetSelfContained,
401                );
402            }
403            let crt_path = builder.ensure(llvm::CrtBeginEnd { target });
404            for &obj in &["crtbegin.o", "crtbeginS.o", "crtend.o", "crtendS.o"] {
405                let src = crt_path.join(obj);
406                let target = libdir_self_contained.join(obj);
407                builder.copy_link(&src, &target, FileType::NativeLibrary);
408                target_deps.push((target, DependencyType::TargetSelfContained));
409            }
410        } else {
411            // For wasm32 targets, we need to copy the libc.a and crt1-command.o files from the
412            // musl-libdir, but we don't need the other files.
413            for &obj in &["libc.a", "crt1-command.o"] {
414                copy_and_stamp(
415                    builder,
416                    &libdir_self_contained,
417                    &srcdir,
418                    obj,
419                    &mut target_deps,
420                    DependencyType::TargetSelfContained,
421                );
422            }
423        }
424        if !target.starts_with("s390x") {
425            let libunwind_path = copy_llvm_libunwind(builder, target, &libdir_self_contained);
426            target_deps.push((libunwind_path, DependencyType::TargetSelfContained));
427        }
428    } else if target.contains("-wasi") {
429        let srcdir = builder.wasi_libdir(target).unwrap_or_else(|| {
430            panic!(
431                "Target {:?} does not have a \"wasi-root\" key in bootstrap.toml \
432                    or `$WASI_SDK_PATH` set",
433                target.triple
434            )
435        });
436
437        // wasm32-wasip3 doesn't exist in wasi-libc yet, so instead use libs
438        // from the wasm32-wasip2 target. Once wasi-libc supports wasip3 this
439        // should be deleted and the native objects should be used.
440        let srcdir = if target == "wasm32-wasip3" {
441            assert!(!srcdir.exists(), "wasip3 support is in wasi-libc, this should be updated now");
442            builder.wasi_libdir(TargetSelection::from_user("wasm32-wasip2")).unwrap()
443        } else {
444            srcdir
445        };
446        for &obj in &["libc.a", "crt1-command.o", "crt1-reactor.o"] {
447            copy_and_stamp(
448                builder,
449                &libdir_self_contained,
450                &srcdir,
451                obj,
452                &mut target_deps,
453                DependencyType::TargetSelfContained,
454            );
455        }
456    } else if target.is_windows_gnu() || target.is_windows_gnullvm() {
457        for obj in ["crt2.o", "dllcrt2.o"].iter() {
458            let src = compiler_file(builder, &builder.cc(target), target, CLang::C, obj);
459            let dst = libdir_self_contained.join(obj);
460            builder.copy_link(&src, &dst, FileType::NativeLibrary);
461            target_deps.push((dst, DependencyType::TargetSelfContained));
462        }
463    }
464
465    target_deps
466}
467
468/// Resolves standard library crates for `Std::run_make` for any build kind (like check, doc,
469/// build, clippy, etc.).
470pub fn std_crates_for_run_make(run: &RunConfig<'_>) -> Vec<String> {
471    let mut crates = run.make_run_crates(builder::Alias::Library);
472
473    // For no_std targets, we only want to check core and alloc
474    // Regardless of core/alloc being selected explicitly or via the "library" default alias,
475    // we only want to keep these two crates.
476    // The set of no_std crates should be kept in sync with what `Builder::std_cargo` does.
477    // Note: an alternative design would be to return an enum from this function (Default vs Subset)
478    // of crates. However, several steps currently pass `-p <package>` even if all crates are
479    // selected, because Cargo behaves differently in that case. To keep that behavior without
480    // making further changes, we pre-filter the no-std crates here.
481    let target_is_no_std = run.builder.no_std(run.target).unwrap_or(false);
482    if target_is_no_std {
483        crates.retain(|c| c == "core" || c == "alloc");
484    }
485    crates
486}
487
488/// Tries to find LLVM's `compiler-rt` source directory, for building `library/profiler_builtins`.
489///
490/// Normally it lives in the `src/llvm-project` submodule, but if we will be using a
491/// downloaded copy of CI LLVM, then we try to use the `compiler-rt` sources from
492/// there instead, which lets us avoid checking out the LLVM submodule.
493fn compiler_rt_for_profiler(builder: &Builder<'_>) -> PathBuf {
494    // Try to use `compiler-rt` sources from downloaded CI LLVM, if possible.
495    if builder.config.llvm_from_ci {
496        // CI LLVM might not have been downloaded yet, so try to download it now.
497        builder.config.maybe_download_ci_llvm();
498        let ci_llvm_compiler_rt = builder.config.ci_llvm_root().join("compiler-rt");
499        if ci_llvm_compiler_rt.exists() {
500            return ci_llvm_compiler_rt;
501        }
502    }
503
504    // Otherwise, fall back to requiring the LLVM submodule.
505    builder.require_submodule("src/llvm-project", {
506        Some("The `build.profiler` config option requires `compiler-rt` sources from LLVM.")
507    });
508    builder.src.join("src/llvm-project/compiler-rt")
509}
510
511/// Configure cargo to compile the standard library, adding appropriate env vars
512/// and such.
513pub fn std_cargo(
514    builder: &Builder<'_>,
515    target: TargetSelection,
516    cargo: &mut Cargo,
517    crates: &[String],
518) {
519    // rustc already ensures that it builds with the minimum deployment
520    // target, so ideally we shouldn't need to do anything here.
521    //
522    // However, `cc` currently defaults to a higher version for backwards
523    // compatibility, which means that compiler-rt, which is built via
524    // compiler-builtins' build script, gets built with a higher deployment
525    // target. This in turn causes warnings while linking, and is generally
526    // a compatibility hazard.
527    //
528    // So, at least until https://github.com/rust-lang/cc-rs/issues/1171, or
529    // perhaps https://github.com/rust-lang/cargo/issues/13115 is resolved, we
530    // explicitly set the deployment target environment variables to avoid
531    // this issue.
532    //
533    // This place also serves as an extension point if we ever wanted to raise
534    // rustc's default deployment target while keeping the prebuilt `std` at
535    // a lower version, so it's kinda nice to have in any case.
536    if target.contains("apple") && !builder.config.dry_run() {
537        // Query rustc for the deployment target, and the associated env var.
538        // The env var is one of the standard `*_DEPLOYMENT_TARGET` vars, i.e.
539        // `MACOSX_DEPLOYMENT_TARGET`, `IPHONEOS_DEPLOYMENT_TARGET`, etc.
540        let mut cmd = builder.rustc_cmd(cargo.compiler());
541        cmd.arg("--target").arg(target.rustc_target_arg());
542        cmd.arg("--print=deployment-target");
543        let output = cmd.run_capture_stdout(builder).stdout();
544
545        let (env_var, value) = output.split_once('=').unwrap();
546        // Unconditionally set the env var (if it was set in the environment
547        // already, rustc should've picked that up).
548        cargo.env(env_var.trim(), value.trim());
549
550        // Allow CI to override the deployment target for `std` on macOS.
551        //
552        // This is useful because we might want the host tooling LLVM, `rustc`
553        // and Cargo to have a different deployment target than `std` itself
554        // (currently, these two versions are the same, but in the past, we
555        // supported macOS 10.7 for user code and macOS 10.8 in host tooling).
556        //
557        // It is not necessary on the other platforms, since only macOS has
558        // support for host tooling.
559        if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
560            cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
561        }
562    }
563
564    // Paths needed by `library/profiler_builtins/build.rs`.
565    if let Some(path) = builder.config.profiler_path(target) {
566        cargo.env("LLVM_PROFILER_RT_LIB", path);
567    } else if builder.config.profiler_enabled(target) {
568        let compiler_rt = compiler_rt_for_profiler(builder);
569        // Currently this is separate from the env var used by `compiler_builtins`
570        // (below) so that adding support for CI LLVM here doesn't risk breaking
571        // the compiler builtins. But they could be unified if desired.
572        cargo.env("RUST_COMPILER_RT_FOR_PROFILER", compiler_rt);
573    }
574
575    // Determine if we're going to compile in optimized C intrinsics to
576    // the `compiler-builtins` crate. These intrinsics live in LLVM's
577    // `compiler-rt` repository.
578    //
579    // Note that this shouldn't affect the correctness of `compiler-builtins`,
580    // but only its speed. Some intrinsics in C haven't been translated to Rust
581    // yet but that's pretty rare. Other intrinsics have optimized
582    // implementations in C which have only had slower versions ported to Rust,
583    // so we favor the C version where we can, but it's not critical.
584    //
585    // If `compiler-rt` is available ensure that the `c` feature of the
586    // `compiler-builtins` crate is enabled and it's configured to learn where
587    // `compiler-rt` is located.
588    let compiler_builtins_c_feature = match builder.config.optimized_compiler_builtins(target) {
589        CompilerBuiltins::LinkLLVMBuiltinsLib(path) => {
590            cargo.env("LLVM_COMPILER_RT_LIB", path);
591            " compiler-builtins-c"
592        }
593        CompilerBuiltins::BuildLLVMFuncs => {
594            // NOTE: this interacts strangely with `llvm-has-rust-patches`. In that case, we enforce
595            // `submodules = false`, so this is a no-op. But, the user could still decide to
596            //  manually use an in-tree submodule.
597            //
598            // NOTE: if we're using system llvm, we'll end up building a version of `compiler-rt`
599            // that doesn't match the LLVM we're linking to. That's probably ok? At least, the
600            // difference wasn't enforced before. There's a comment in the compiler_builtins build
601            // script that makes me nervous, though:
602            // https://github.com/rust-lang/compiler-builtins/blob/31ee4544dbe47903ce771270d6e3bea8654e9e50/build.rs#L575-L579
603            builder.require_submodule(
604                "src/llvm-project",
605                Some(
606                    "The `build.optimized-compiler-builtins` config option \
607                     requires `compiler-rt` sources from LLVM.",
608                ),
609            );
610            let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
611            if !builder.config.dry_run() {
612                // This assertion would otherwise trigger during tests if `llvm-project` is not
613                // checked out.
614                assert!(compiler_builtins_root.exists());
615            }
616
617            // The path to `compiler-rt` is also used by `profiler_builtins` (above),
618            // so if you're changing something here please also change that as appropriate.
619            cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
620            " compiler-builtins-c"
621        }
622        CompilerBuiltins::BuildRustOnly => "",
623    };
624
625    // `libtest` uses this to know whether or not to support
626    // `-Zunstable-options`.
627    if !builder.unstable_features() {
628        cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
629    }
630
631    for krate in crates {
632        cargo.args(["-p", krate]);
633    }
634
635    let mut features = String::new();
636
637    if builder.no_std(target) == Some(true) {
638        features += " compiler-builtins-mem";
639        if !target.starts_with("bpf") {
640            features.push_str(compiler_builtins_c_feature);
641        }
642
643        // for no-std targets we only compile a few no_std crates
644        if crates.is_empty() {
645            cargo.args(["-p", "alloc"]);
646        }
647        cargo
648            .arg("--manifest-path")
649            .arg(builder.src.join("library/alloc/Cargo.toml"))
650            .arg("--features")
651            .arg(features);
652    } else {
653        features += &builder.std_features(target);
654        features.push_str(compiler_builtins_c_feature);
655
656        cargo
657            .arg("--features")
658            .arg(features)
659            .arg("--manifest-path")
660            .arg(builder.src.join("library/sysroot/Cargo.toml"));
661
662        // Help the libc crate compile by assisting it in finding various
663        // sysroot native libraries.
664        if target.contains("musl")
665            && let Some(p) = builder.musl_libdir(target)
666        {
667            let root = format!("native={}", p.to_str().unwrap());
668            cargo.rustflag("-L").rustflag(&root);
669        }
670
671        if target.contains("-wasi")
672            && let Some(dir) = builder.wasi_libdir(target)
673        {
674            let root = format!("native={}", dir.to_str().unwrap());
675            cargo.rustflag("-L").rustflag(&root);
676        }
677    }
678
679    // By default, rustc uses `-Cembed-bitcode=yes`, and Cargo overrides that
680    // with `-Cembed-bitcode=no` for non-LTO builds. However, libstd must be
681    // built with bitcode so that the produced rlibs can be used for both LTO
682    // builds (which use bitcode) and non-LTO builds (which use object code).
683    // So we override the override here!
684    cargo.rustflag("-Cembed-bitcode=yes");
685
686    if builder.config.rust_lto == RustcLto::Off {
687        cargo.rustflag("-Clto=off");
688    }
689
690    // By default, rustc does not include unwind tables unless they are required
691    // for a particular target. They are not required by RISC-V targets, but
692    // compiling the standard library with them means that users can get
693    // backtraces without having to recompile the standard library themselves.
694    //
695    // This choice was discussed in https://github.com/rust-lang/rust/pull/69890
696    if target.contains("riscv") {
697        cargo.rustflag("-Cforce-unwind-tables=yes");
698    }
699
700    // Enable frame pointers by default for the library. Note that they are still controlled by a
701    // separate setting for the compiler.
702    cargo.rustflag("-Zunstable-options");
703    cargo.rustflag("-Cforce-frame-pointers=non-leaf");
704
705    let html_root =
706        format!("-Zcrate-attr=doc(html_root_url=\"{}/\")", builder.doc_rust_lang_org_channel(),);
707    cargo.rustflag(&html_root);
708    cargo.rustdocflag(&html_root);
709
710    cargo.rustdocflag("-Zcrate-attr=warn(rust_2018_idioms)");
711}
712
713/// Link all libstd rlibs/dylibs into a sysroot of `target_compiler`.
714///
715/// Links those artifacts generated by `compiler` to the `stage` compiler's
716/// sysroot for the specified `host` and `target`.
717///
718/// Note that this assumes that `compiler` has already generated the libstd
719/// libraries for `target`, and this method will find them in the relevant
720/// output directory.
721#[derive(Debug, Clone, PartialEq, Eq, Hash)]
722pub struct StdLink {
723    pub compiler: Compiler,
724    pub target_compiler: Compiler,
725    pub target: TargetSelection,
726    /// Not actually used; only present to make sure the cache invalidation is correct.
727    crates: Vec<String>,
728    /// See [`Std::force_recompile`].
729    force_recompile: bool,
730}
731
732impl StdLink {
733    pub fn from_std(std: Std, host_compiler: Compiler) -> Self {
734        Self {
735            compiler: host_compiler,
736            target_compiler: std.build_compiler,
737            target: std.target,
738            crates: std.crates,
739            force_recompile: std.force_recompile,
740        }
741    }
742}
743
744impl Step for StdLink {
745    type Output = ();
746
747    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
748        run.never()
749    }
750
751    /// Link all libstd rlibs/dylibs into the sysroot location.
752    ///
753    /// Links those artifacts generated by `compiler` to the `stage` compiler's
754    /// sysroot for the specified `host` and `target`.
755    ///
756    /// Note that this assumes that `compiler` has already generated the libstd
757    /// libraries for `target`, and this method will find them in the relevant
758    /// output directory.
759    fn run(self, builder: &Builder<'_>) {
760        let compiler = self.compiler;
761        let target_compiler = self.target_compiler;
762        let target = self.target;
763
764        // NOTE: intentionally does *not* check `target == builder.build` to avoid having to add the same check in `test::Crate`.
765        let (libdir, hostdir) = if !self.force_recompile && builder.download_rustc() {
766            // NOTE: copies part of `sysroot_libdir` to avoid having to add a new `force_recompile` argument there too
767            let lib = builder.sysroot_libdir_relative(self.compiler);
768            let sysroot = builder.ensure(crate::core::build_steps::compile::Sysroot {
769                compiler: self.compiler,
770                force_recompile: self.force_recompile,
771            });
772            let libdir = sysroot.join(lib).join("rustlib").join(target).join("lib");
773            let hostdir = sysroot.join(lib).join("rustlib").join(compiler.host).join("lib");
774            (libdir, hostdir)
775        } else {
776            let libdir = builder.sysroot_target_libdir(target_compiler, target);
777            let hostdir = builder.sysroot_target_libdir(target_compiler, compiler.host);
778            (libdir, hostdir)
779        };
780
781        let is_downloaded_beta_stage0 = builder
782            .build
783            .config
784            .initial_rustc
785            .starts_with(builder.out.join(compiler.host).join("stage0/bin"));
786
787        // Special case for stage0, to make `rustup toolchain link` and `x dist --stage 0`
788        // work for stage0-sysroot. We only do this if the stage0 compiler comes from beta,
789        // and is not set to a custom path.
790        if compiler.stage == 0 && is_downloaded_beta_stage0 {
791            // Copy bin files from stage0/bin to stage0-sysroot/bin
792            let sysroot = builder.out.join(compiler.host).join("stage0-sysroot");
793
794            let host = compiler.host;
795            let stage0_bin_dir = builder.out.join(host).join("stage0/bin");
796            let sysroot_bin_dir = sysroot.join("bin");
797            t!(fs::create_dir_all(&sysroot_bin_dir));
798            builder.cp_link_r(&stage0_bin_dir, &sysroot_bin_dir);
799
800            let stage0_lib_dir = builder.out.join(host).join("stage0/lib");
801            t!(fs::create_dir_all(sysroot.join("lib")));
802            builder.cp_link_r(&stage0_lib_dir, &sysroot.join("lib"));
803
804            // Copy codegen-backends from stage0
805            let sysroot_codegen_backends = builder.sysroot_codegen_backends(compiler);
806            t!(fs::create_dir_all(&sysroot_codegen_backends));
807            let stage0_codegen_backends = builder
808                .out
809                .join(host)
810                .join("stage0/lib/rustlib")
811                .join(host)
812                .join("codegen-backends");
813            if stage0_codegen_backends.exists() {
814                builder.cp_link_r(&stage0_codegen_backends, &sysroot_codegen_backends);
815            }
816        } else if compiler.stage == 0 {
817            let sysroot = builder.out.join(compiler.host.triple).join("stage0-sysroot");
818
819            if builder.local_rebuild {
820                // On local rebuilds this path might be a symlink to the project root,
821                // which can be read-only (e.g., on CI). So remove it before copying
822                // the stage0 lib.
823                let _ = fs::remove_dir_all(sysroot.join("lib/rustlib/src/rust"));
824            }
825
826            builder.cp_link_r(&builder.initial_sysroot.join("lib"), &sysroot.join("lib"));
827        } else {
828            if builder.download_rustc() {
829                // Ensure there are no CI-rustc std artifacts.
830                let _ = fs::remove_dir_all(&libdir);
831                let _ = fs::remove_dir_all(&hostdir);
832            }
833
834            add_to_sysroot(
835                builder,
836                &libdir,
837                &hostdir,
838                &build_stamp::libstd_stamp(builder, compiler, target),
839            );
840        }
841    }
842}
843
844/// Copies sanitizer runtime libraries into target libdir.
845fn copy_sanitizers(
846    builder: &Builder<'_>,
847    compiler: &Compiler,
848    target: TargetSelection,
849) -> Vec<PathBuf> {
850    let runtimes: Vec<llvm::SanitizerRuntime> = builder.ensure(llvm::Sanitizers { target });
851
852    if builder.config.dry_run() {
853        return Vec::new();
854    }
855
856    let mut target_deps = Vec::new();
857    let libdir = builder.sysroot_target_libdir(*compiler, target);
858
859    for runtime in &runtimes {
860        let dst = libdir.join(&runtime.name);
861        builder.copy_link(&runtime.path, &dst, FileType::NativeLibrary);
862
863        // The `aarch64-apple-ios-macabi` and `x86_64-apple-ios-macabi` are also supported for
864        // sanitizers, but they share a sanitizer runtime with `${arch}-apple-darwin`, so we do
865        // not list them here to rename and sign the runtime library.
866        if target == "x86_64-apple-darwin"
867            || target == "aarch64-apple-darwin"
868            || target == "aarch64-apple-ios"
869            || target == "aarch64-apple-ios-sim"
870            || target == "x86_64-apple-ios"
871        {
872            // Update the library’s install name to reflect that it has been renamed.
873            apple_darwin_update_library_name(builder, &dst, &format!("@rpath/{}", runtime.name));
874            // Upon renaming the install name, the code signature of the file will invalidate,
875            // so we will sign it again.
876            apple_darwin_sign_file(builder, &dst);
877        }
878
879        target_deps.push(dst);
880    }
881
882    target_deps
883}
884
885fn apple_darwin_update_library_name(builder: &Builder<'_>, library_path: &Path, new_name: &str) {
886    command("install_name_tool").arg("-id").arg(new_name).arg(library_path).run(builder);
887}
888
889fn apple_darwin_sign_file(builder: &Builder<'_>, file_path: &Path) {
890    command("codesign")
891        .arg("-f") // Force to rewrite the existing signature
892        .arg("-s")
893        .arg("-")
894        .arg(file_path)
895        .run(builder);
896}
897
898#[derive(Debug, Clone, PartialEq, Eq, Hash)]
899pub struct StartupObjects {
900    pub compiler: Compiler,
901    pub target: TargetSelection,
902}
903
904impl Step for StartupObjects {
905    type Output = Vec<(PathBuf, DependencyType)>;
906
907    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
908        run.path("library/rtstartup")
909    }
910
911    fn make_run(run: RunConfig<'_>) {
912        run.builder.ensure(StartupObjects {
913            compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()),
914            target: run.target,
915        });
916    }
917
918    /// Builds and prepare startup objects like rsbegin.o and rsend.o
919    ///
920    /// These are primarily used on Windows right now for linking executables/dlls.
921    /// They don't require any library support as they're just plain old object
922    /// files, so we just use the nightly snapshot compiler to always build them (as
923    /// no other compilers are guaranteed to be available).
924    fn run(self, builder: &Builder<'_>) -> Vec<(PathBuf, DependencyType)> {
925        let for_compiler = self.compiler;
926        let target = self.target;
927        // Even though no longer necessary on x86_64, they are kept for now to
928        // avoid potential issues in downstream crates.
929        if !target.is_windows_gnu() {
930            return vec![];
931        }
932
933        let mut target_deps = vec![];
934
935        let src_dir = &builder.src.join("library").join("rtstartup");
936        let dst_dir = &builder.native_dir(target).join("rtstartup");
937        let sysroot_dir = &builder.sysroot_target_libdir(for_compiler, target);
938        t!(fs::create_dir_all(dst_dir));
939
940        for file in &["rsbegin", "rsend"] {
941            let src_file = &src_dir.join(file.to_string() + ".rs");
942            let dst_file = &dst_dir.join(file.to_string() + ".o");
943            if !up_to_date(src_file, dst_file) {
944                let mut cmd = command(&builder.initial_rustc);
945                cmd.env("RUSTC_BOOTSTRAP", "1");
946                if !builder.local_rebuild {
947                    // a local_rebuild compiler already has stage1 features
948                    cmd.arg("--cfg").arg("bootstrap");
949                }
950                cmd.arg("--target")
951                    .arg(target.rustc_target_arg())
952                    .arg("--emit=obj")
953                    .arg("-o")
954                    .arg(dst_file)
955                    .arg(src_file)
956                    .run(builder);
957            }
958
959            let obj = sysroot_dir.join((*file).to_string() + ".o");
960            builder.copy_link(dst_file, &obj, FileType::NativeLibrary);
961            target_deps.push((obj, DependencyType::Target));
962        }
963
964        target_deps
965    }
966}
967
968fn cp_rustc_component_to_ci_sysroot(builder: &Builder<'_>, sysroot: &Path, contents: Vec<String>) {
969    let ci_rustc_dir = builder.config.ci_rustc_dir();
970
971    for file in contents {
972        let src = ci_rustc_dir.join(&file);
973        let dst = sysroot.join(file);
974        if src.is_dir() {
975            t!(fs::create_dir_all(dst));
976        } else {
977            builder.copy_link(&src, &dst, FileType::Regular);
978        }
979    }
980}
981
982/// Represents information about a built rustc.
983#[derive(Clone, Debug)]
984pub struct BuiltRustc {
985    /// The compiler that actually built this *rustc*.
986    /// This can be different from the *build_compiler* passed to the `Rustc` step because of
987    /// uplifting.
988    pub build_compiler: Compiler,
989}
990
991/// Build rustc using the passed `build_compiler`.
992///
993/// - Makes sure that `build_compiler` has a standard library prepared for its host target,
994///   so that it can compile build scripts and proc macros when building this `rustc`.
995/// - Makes sure that `build_compiler` has a standard library prepared for `target`,
996///   so that the built `rustc` can *link to it* and use it at runtime.
997#[derive(Debug, Clone, PartialEq, Eq, Hash)]
998pub struct Rustc {
999    /// The target on which rustc will run (its host).
1000    pub target: TargetSelection,
1001    /// The **previous** compiler used to compile this rustc.
1002    pub build_compiler: Compiler,
1003    /// Whether to build a subset of crates, rather than the whole compiler.
1004    ///
1005    /// This should only be requested by the user, not used within bootstrap itself.
1006    /// Using it within bootstrap can lead to confusing situation where lints are replayed
1007    /// in two different steps.
1008    crates: Vec<String>,
1009}
1010
1011impl Rustc {
1012    pub fn new(build_compiler: Compiler, target: TargetSelection) -> Self {
1013        Self { target, build_compiler, crates: Default::default() }
1014    }
1015}
1016
1017impl Step for Rustc {
1018    type Output = BuiltRustc;
1019    const IS_HOST: bool = true;
1020
1021    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1022        let mut crates = run.builder.in_tree_crates("rustc-main", None);
1023        for (i, krate) in crates.iter().enumerate() {
1024            // We can't allow `build rustc` as an alias for this Step, because that's reserved by `Assemble`.
1025            // Ideally Assemble would use `build compiler` instead, but that seems too confusing to be worth the breaking change.
1026            if krate.name == "rustc-main" {
1027                crates.swap_remove(i);
1028                break;
1029            }
1030        }
1031        run.crates(crates)
1032    }
1033
1034    fn is_default_step(_builder: &Builder<'_>) -> bool {
1035        false
1036    }
1037
1038    fn make_run(run: RunConfig<'_>) {
1039        // If only `compiler` was passed, do not run this step.
1040        // Instead the `Assemble` step will take care of compiling Rustc.
1041        if run.builder.paths == vec![PathBuf::from("compiler")] {
1042            return;
1043        }
1044
1045        let crates = run.cargo_crates_in_set();
1046        run.builder.ensure(Rustc {
1047            build_compiler: run
1048                .builder
1049                .compiler(run.builder.top_stage.saturating_sub(1), run.build_triple()),
1050            target: run.target,
1051            crates,
1052        });
1053    }
1054
1055    /// Builds the compiler.
1056    ///
1057    /// This will build the compiler for a particular stage of the build using
1058    /// the `build_compiler` targeting the `target` architecture. The artifacts
1059    /// created will also be linked into the sysroot directory.
1060    fn run(self, builder: &Builder<'_>) -> Self::Output {
1061        let build_compiler = self.build_compiler;
1062        let target = self.target;
1063
1064        // NOTE: the ABI of the stage0 compiler is different from the ABI of the downloaded compiler,
1065        // so its artifacts can't be reused.
1066        if builder.download_rustc() && build_compiler.stage != 0 {
1067            trace!(stage = build_compiler.stage, "`download_rustc` requested");
1068
1069            let sysroot =
1070                builder.ensure(Sysroot { compiler: build_compiler, force_recompile: false });
1071            cp_rustc_component_to_ci_sysroot(
1072                builder,
1073                &sysroot,
1074                builder.config.ci_rustc_dev_contents(),
1075            );
1076            return BuiltRustc { build_compiler };
1077        }
1078
1079        // Build a standard library for `target` using the `build_compiler`.
1080        // This will be the standard library that the rustc which we build *links to*.
1081        builder.std(build_compiler, target);
1082
1083        if builder.config.keep_stage.contains(&build_compiler.stage) {
1084            trace!(stage = build_compiler.stage, "`keep-stage` requested");
1085
1086            builder.info("WARNING: Using a potentially old librustc. This may not behave well.");
1087            builder.info("WARNING: Use `--keep-stage-std` if you want to rebuild the compiler when it changes");
1088            builder.ensure(RustcLink::from_rustc(self));
1089
1090            return BuiltRustc { build_compiler };
1091        }
1092
1093        // The stage of the compiler that we're building
1094        let stage = build_compiler.stage + 1;
1095
1096        // If we are building a stage3+ compiler, and full bootstrap is disabled, and we have a
1097        // previous rustc available, we will uplift a compiler from a previous stage.
1098        // We do not allow cross-compilation uplifting here, because there it can be quite tricky
1099        // to figure out which stage actually built the rustc that should be uplifted.
1100        if build_compiler.stage >= 2
1101            && !builder.config.full_bootstrap
1102            && target == builder.host_target
1103        {
1104            // Here we need to determine the **build compiler** that built the stage that we will
1105            // be uplifting. We cannot uplift stage 1, as it has a different ABI than stage 2+,
1106            // so we always uplift the stage2 compiler (compiled with stage 1).
1107            let uplift_build_compiler = builder.compiler(1, build_compiler.host);
1108
1109            let msg = format!("Uplifting rustc from stage2 to stage{stage})");
1110            builder.info(&msg);
1111
1112            // Here the compiler that built the rlibs (`uplift_build_compiler`) can be different
1113            // from the compiler whose sysroot should be modified in this step. So we need to copy
1114            // the (previously built) rlibs into the correct sysroot.
1115            builder.ensure(RustcLink::from_build_compiler_and_sysroot(
1116                // This is the compiler that actually built the rustc rlibs
1117                uplift_build_compiler,
1118                // We copy the rlibs into the sysroot of `build_compiler`
1119                build_compiler,
1120                target,
1121                self.crates,
1122            ));
1123
1124            // Here we have performed an uplift, so we return the actual build compiler that "built"
1125            // this rustc.
1126            return BuiltRustc { build_compiler: uplift_build_compiler };
1127        }
1128
1129        // Build a standard library for the current host target using the `build_compiler`.
1130        // This standard library will be used when building `rustc` for compiling
1131        // build scripts and proc macros.
1132        // If we are not cross-compiling, the Std build above will be the same one as the one we
1133        // prepare here.
1134        builder.std(
1135            builder.compiler(self.build_compiler.stage, builder.config.host_target),
1136            builder.config.host_target,
1137        );
1138
1139        let mut cargo = builder::Cargo::new(
1140            builder,
1141            build_compiler,
1142            Mode::Rustc,
1143            SourceType::InTree,
1144            target,
1145            Kind::Build,
1146        );
1147
1148        rustc_cargo(builder, &mut cargo, target, &build_compiler, &self.crates);
1149
1150        // NB: all RUSTFLAGS should be added to `rustc_cargo()` so they will be
1151        // consistently applied by check/doc/test modes too.
1152
1153        for krate in &*self.crates {
1154            cargo.arg("-p").arg(krate);
1155        }
1156
1157        if builder.build.config.enable_bolt_settings && build_compiler.stage == 1 {
1158            // Relocations are required for BOLT to work.
1159            cargo.env("RUSTC_BOLT_LINK_FLAGS", "1");
1160        }
1161
1162        let _guard = builder.msg(
1163            Kind::Build,
1164            format_args!("compiler artifacts{}", crate_description(&self.crates)),
1165            Mode::Rustc,
1166            build_compiler,
1167            target,
1168        );
1169        let stamp = build_stamp::librustc_stamp(builder, build_compiler, target);
1170        run_cargo(
1171            builder,
1172            cargo,
1173            vec![],
1174            &stamp,
1175            vec![],
1176            false,
1177            true, // Only ship rustc_driver.so and .rmeta files, not all intermediate .rlib files.
1178        );
1179
1180        let target_root_dir = stamp.path().parent().unwrap();
1181        // When building `librustc_driver.so` (like `libLLVM.so`) on linux, it can contain
1182        // unexpected debuginfo from dependencies, for example from the C++ standard library used in
1183        // our LLVM wrapper. Unless we're explicitly requesting `librustc_driver` to be built with
1184        // debuginfo (via the debuginfo level of the executables using it): strip this debuginfo
1185        // away after the fact.
1186        if builder.config.rust_debuginfo_level_rustc == DebuginfoLevel::None
1187            && builder.config.rust_debuginfo_level_tools == DebuginfoLevel::None
1188        {
1189            let rustc_driver = target_root_dir.join("librustc_driver.so");
1190            strip_debug(builder, target, &rustc_driver);
1191        }
1192
1193        if builder.config.rust_debuginfo_level_rustc == DebuginfoLevel::None {
1194            // Due to LTO a lot of debug info from C++ dependencies such as jemalloc can make it into
1195            // our final binaries
1196            strip_debug(builder, target, &target_root_dir.join("rustc-main"));
1197        }
1198
1199        builder.ensure(RustcLink::from_rustc(self));
1200        BuiltRustc { build_compiler }
1201    }
1202
1203    fn metadata(&self) -> Option<StepMetadata> {
1204        Some(StepMetadata::build("rustc", self.target).built_by(self.build_compiler))
1205    }
1206}
1207
1208pub fn rustc_cargo(
1209    builder: &Builder<'_>,
1210    cargo: &mut Cargo,
1211    target: TargetSelection,
1212    build_compiler: &Compiler,
1213    crates: &[String],
1214) {
1215    cargo
1216        .arg("--features")
1217        .arg(builder.rustc_features(builder.kind, target, crates))
1218        .arg("--manifest-path")
1219        .arg(builder.src.join("compiler/rustc/Cargo.toml"));
1220
1221    cargo.rustdocflag("-Zcrate-attr=warn(rust_2018_idioms)");
1222
1223    // If the rustc output is piped to e.g. `head -n1` we want the process to be killed, rather than
1224    // having an error bubble up and cause a panic.
1225    //
1226    // FIXME(jieyouxu): this flag is load-bearing for rustc to not ICE on broken pipes, because
1227    // rustc internally sometimes uses std `println!` -- but std `println!` by default will panic on
1228    // broken pipes, and uncaught panics will manifest as an ICE. The compiler *should* handle this
1229    // properly, but this flag is set in the meantime to paper over the I/O errors.
1230    //
1231    // See <https://github.com/rust-lang/rust/issues/131059> for details.
1232    //
1233    // Also see the discussion for properly handling I/O errors related to broken pipes, i.e. safe
1234    // variants of `println!` in
1235    // <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Internal.20lint.20for.20raw.20.60print!.60.20and.20.60println!.60.3F>.
1236    cargo.rustflag("-Zon-broken-pipe=kill");
1237
1238    // Building with protected visibility reduces the number of dynamic relocations needed, giving
1239    // us a faster startup time. However GNU ld < 2.40 will error if we try to link a shared object
1240    // with direct references to protected symbols, so for now we only use protected symbols if
1241    // linking with LLD is enabled.
1242    if builder.build.config.bootstrap_override_lld.is_used() {
1243        cargo.rustflag("-Zdefault-visibility=protected");
1244    }
1245
1246    if is_lto_stage(build_compiler) {
1247        match builder.config.rust_lto {
1248            RustcLto::Thin | RustcLto::Fat => {
1249                // Since using LTO for optimizing dylibs is currently experimental,
1250                // we need to pass -Zdylib-lto.
1251                cargo.rustflag("-Zdylib-lto");
1252                // Cargo by default passes `-Cembed-bitcode=no` and doesn't pass `-Clto` when
1253                // compiling dylibs (and their dependencies), even when LTO is enabled for the
1254                // crate. Therefore, we need to override `-Clto` and `-Cembed-bitcode` here.
1255                let lto_type = match builder.config.rust_lto {
1256                    RustcLto::Thin => "thin",
1257                    RustcLto::Fat => "fat",
1258                    _ => unreachable!(),
1259                };
1260                cargo.rustflag(&format!("-Clto={lto_type}"));
1261                cargo.rustflag("-Cembed-bitcode=yes");
1262            }
1263            RustcLto::ThinLocal => { /* Do nothing, this is the default */ }
1264            RustcLto::Off => {
1265                cargo.rustflag("-Clto=off");
1266            }
1267        }
1268    } else if builder.config.rust_lto == RustcLto::Off {
1269        cargo.rustflag("-Clto=off");
1270    }
1271
1272    // With LLD, we can use ICF (identical code folding) to reduce the executable size
1273    // of librustc_driver/rustc and to improve i-cache utilization.
1274    //
1275    // -Wl,[link options] doesn't work on MSVC. However, /OPT:ICF (technically /OPT:REF,ICF)
1276    // is already on by default in MSVC optimized builds, which is interpreted as --icf=all:
1277    // https://github.com/llvm/llvm-project/blob/3329cec2f79185bafd678f310fafadba2a8c76d2/lld/COFF/Driver.cpp#L1746
1278    // https://github.com/rust-lang/rust/blob/f22819bcce4abaff7d1246a56eec493418f9f4ee/compiler/rustc_codegen_ssa/src/back/linker.rs#L827
1279    if builder.config.bootstrap_override_lld.is_used() && !build_compiler.host.is_msvc() {
1280        cargo.rustflag("-Clink-args=-Wl,--icf=all");
1281    }
1282
1283    if builder.config.rust_profile_use.is_some() && builder.config.rust_profile_generate.is_some() {
1284        panic!("Cannot use and generate PGO profiles at the same time");
1285    }
1286    let is_collecting = if let Some(path) = &builder.config.rust_profile_generate {
1287        if build_compiler.stage == 1 {
1288            cargo.rustflag(&format!("-Cprofile-generate={path}"));
1289            // Apparently necessary to avoid overflowing the counters during
1290            // a Cargo build profile
1291            cargo.rustflag("-Cllvm-args=-vp-counters-per-site=4");
1292            true
1293        } else {
1294            false
1295        }
1296    } else if let Some(path) = &builder.config.rust_profile_use {
1297        if build_compiler.stage == 1 {
1298            cargo.rustflag(&format!("-Cprofile-use={path}"));
1299            if builder.is_verbose() {
1300                cargo.rustflag("-Cllvm-args=-pgo-warn-missing-function");
1301            }
1302            true
1303        } else {
1304            false
1305        }
1306    } else {
1307        false
1308    };
1309    if is_collecting {
1310        // Ensure paths to Rust sources are relative, not absolute.
1311        cargo.rustflag(&format!(
1312            "-Cllvm-args=-static-func-strip-dirname-prefix={}",
1313            builder.config.src.components().count()
1314        ));
1315    }
1316
1317    // The stage0 compiler changes infrequently and does not directly depend on code
1318    // in the current working directory. Therefore, caching it with sccache should be
1319    // useful.
1320    // This is only performed for non-incremental builds, as ccache cannot deal with these.
1321    if let Some(ref ccache) = builder.config.ccache
1322        && build_compiler.stage == 0
1323        && !builder.config.incremental
1324    {
1325        cargo.env("RUSTC_WRAPPER", ccache);
1326    }
1327
1328    rustc_cargo_env(builder, cargo, target);
1329}
1330
1331pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
1332    // Set some configuration variables picked up by build scripts and
1333    // the compiler alike
1334    cargo
1335        .env("CFG_RELEASE", builder.rust_release())
1336        .env("CFG_RELEASE_CHANNEL", &builder.config.channel)
1337        .env("CFG_VERSION", builder.rust_version());
1338
1339    // Some tools like Cargo detect their own git information in build scripts. When omit-git-hash
1340    // is enabled in bootstrap.toml, we pass this environment variable to tell build scripts to avoid
1341    // detecting git information on their own.
1342    if builder.config.omit_git_hash {
1343        cargo.env("CFG_OMIT_GIT_HASH", "1");
1344    }
1345
1346    cargo.env("CFG_DEFAULT_CODEGEN_BACKEND", builder.config.default_codegen_backend(target).name());
1347
1348    let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib"));
1349    let target_config = builder.config.target_config.get(&target);
1350
1351    cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
1352
1353    if let Some(ref ver_date) = builder.rust_info().commit_date() {
1354        cargo.env("CFG_VER_DATE", ver_date);
1355    }
1356    if let Some(ref ver_hash) = builder.rust_info().sha() {
1357        cargo.env("CFG_VER_HASH", ver_hash);
1358    }
1359    if !builder.unstable_features() {
1360        cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
1361    }
1362
1363    // Prefer the current target's own default_linker, else a globally
1364    // specified one.
1365    if let Some(s) = target_config.and_then(|c| c.default_linker.as_ref()) {
1366        cargo.env("CFG_DEFAULT_LINKER", s);
1367    } else if let Some(ref s) = builder.config.rustc_default_linker {
1368        cargo.env("CFG_DEFAULT_LINKER", s);
1369    }
1370
1371    // Enable rustc's env var to use a linker override on Linux when requested.
1372    if let Some(linker) = target_config.map(|c| c.default_linker_linux_override) {
1373        match linker {
1374            DefaultLinuxLinkerOverride::Off => {}
1375            DefaultLinuxLinkerOverride::SelfContainedLldCc => {
1376                cargo.env("CFG_DEFAULT_LINKER_SELF_CONTAINED_LLD_CC", "1");
1377            }
1378        }
1379    }
1380
1381    if builder.config.rust_verify_llvm_ir {
1382        cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
1383    }
1384
1385    // These conditionals represent a tension between three forces:
1386    // - For non-check builds, we need to define some LLVM-related environment
1387    //   variables, requiring LLVM to have been built.
1388    // - For check builds, we want to avoid building LLVM if possible.
1389    // - Check builds and non-check builds should have the same environment if
1390    //   possible, to avoid unnecessary rebuilds due to cache-busting.
1391    //
1392    // Therefore we try to avoid building LLVM for check builds, but only if
1393    // building LLVM would be expensive. If "building" LLVM is cheap
1394    // (i.e. it's already built or is downloadable), we prefer to maintain a
1395    // consistent environment between check and non-check builds.
1396    if builder.config.llvm_enabled(target) {
1397        let building_llvm_is_expensive =
1398            crate::core::build_steps::llvm::prebuilt_llvm_config(builder, target, false)
1399                .should_build();
1400
1401        let skip_llvm = (builder.kind == Kind::Check) && building_llvm_is_expensive;
1402        if !skip_llvm {
1403            rustc_llvm_env(builder, cargo, target)
1404        }
1405    }
1406
1407    // See also the "JEMALLOC_SYS_WITH_LG_PAGE" setting in the tool build step.
1408    if builder.config.jemalloc(target) && env::var_os("JEMALLOC_SYS_WITH_LG_PAGE").is_none() {
1409        // Build jemalloc on AArch64 with support for page sizes up to 64K
1410        // See: https://github.com/rust-lang/rust/pull/135081
1411        if target.starts_with("aarch64") {
1412            cargo.env("JEMALLOC_SYS_WITH_LG_PAGE", "16");
1413        }
1414        // Build jemalloc on LoongArch with support for page sizes up to 16K
1415        else if target.starts_with("loongarch") {
1416            cargo.env("JEMALLOC_SYS_WITH_LG_PAGE", "14");
1417        }
1418    }
1419}
1420
1421/// Pass down configuration from the LLVM build into the build of
1422/// rustc_llvm and rustc_codegen_llvm.
1423///
1424/// Note that this has the side-effect of _building LLVM_, which is sometimes
1425/// unwanted (e.g. for check builds).
1426fn rustc_llvm_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
1427    if builder.config.is_rust_llvm(target) {
1428        cargo.env("LLVM_RUSTLLVM", "1");
1429    }
1430    if builder.config.llvm_enzyme {
1431        cargo.env("LLVM_ENZYME", "1");
1432    }
1433    let llvm::LlvmResult { host_llvm_config, .. } = builder.ensure(llvm::Llvm { target });
1434    if builder.config.llvm_offload {
1435        builder.ensure(llvm::OmpOffload { target });
1436        cargo.env("LLVM_OFFLOAD", "1");
1437    }
1438
1439    cargo.env("LLVM_CONFIG", &host_llvm_config);
1440
1441    // Some LLVM linker flags (-L and -l) may be needed to link `rustc_llvm`. Its build script
1442    // expects these to be passed via the `LLVM_LINKER_FLAGS` env variable, separated by
1443    // whitespace.
1444    //
1445    // For example:
1446    // - on windows, when `clang-cl` is used with instrumentation, we need to manually add
1447    // clang's runtime library resource directory so that the profiler runtime library can be
1448    // found. This is to avoid the linker errors about undefined references to
1449    // `__llvm_profile_instrument_memop` when linking `rustc_driver`.
1450    let mut llvm_linker_flags = String::new();
1451    if builder.config.llvm_profile_generate
1452        && target.is_msvc()
1453        && let Some(ref clang_cl_path) = builder.config.llvm_clang_cl
1454    {
1455        // Add clang's runtime library directory to the search path
1456        let clang_rt_dir = get_clang_cl_resource_dir(builder, clang_cl_path);
1457        llvm_linker_flags.push_str(&format!("-L{}", clang_rt_dir.display()));
1458    }
1459
1460    // The config can also specify its own llvm linker flags.
1461    if let Some(ref s) = builder.config.llvm_ldflags {
1462        if !llvm_linker_flags.is_empty() {
1463            llvm_linker_flags.push(' ');
1464        }
1465        llvm_linker_flags.push_str(s);
1466    }
1467
1468    // Set the linker flags via the env var that `rustc_llvm`'s build script will read.
1469    if !llvm_linker_flags.is_empty() {
1470        cargo.env("LLVM_LINKER_FLAGS", llvm_linker_flags);
1471    }
1472
1473    // Building with a static libstdc++ is only supported on Linux and windows-gnu* right now,
1474    // not for MSVC or macOS
1475    if builder.config.llvm_static_stdcpp
1476        && !target.contains("freebsd")
1477        && !target.is_msvc()
1478        && !target.contains("apple")
1479        && !target.contains("solaris")
1480    {
1481        let libstdcxx_name =
1482            if target.contains("windows-gnullvm") { "libc++.a" } else { "libstdc++.a" };
1483        let file = compiler_file(
1484            builder,
1485            &builder.cxx(target).unwrap(),
1486            target,
1487            CLang::Cxx,
1488            libstdcxx_name,
1489        );
1490        cargo.env("LLVM_STATIC_STDCPP", file);
1491    }
1492    if builder.llvm_link_shared() {
1493        cargo.env("LLVM_LINK_SHARED", "1");
1494    }
1495    if builder.config.llvm_use_libcxx {
1496        cargo.env("LLVM_USE_LIBCXX", "1");
1497    }
1498    if builder.config.llvm_assertions {
1499        cargo.env("LLVM_ASSERTIONS", "1");
1500    }
1501}
1502
1503/// `RustcLink` copies compiler rlibs from a rustc build into a compiler sysroot.
1504/// It works with (potentially up to) three compilers:
1505/// - `build_compiler` is a compiler that built rustc rlibs
1506/// - `sysroot_compiler` is a compiler into whose sysroot we will copy the rlibs
1507///   - In most situations, `build_compiler` == `sysroot_compiler`
1508/// - `target_compiler` is the compiler whose rlibs were built. It is not represented explicitly
1509///   in this step, rather we just read the rlibs from a rustc build stamp of `build_compiler`.
1510///
1511/// This is necessary for tools using `rustc_private`, where the previous compiler will build
1512/// a tool against the next compiler.
1513/// To build a tool against a compiler, the rlibs of that compiler that it links against
1514/// must be in the sysroot of the compiler that's doing the compiling.
1515#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1516struct RustcLink {
1517    /// This compiler **built** some rustc, whose rlibs we will copy into a sysroot.
1518    build_compiler: Compiler,
1519    /// This is the compiler into whose sysroot we want to copy the built rlibs.
1520    /// In most cases, it will correspond to `build_compiler`.
1521    sysroot_compiler: Compiler,
1522    target: TargetSelection,
1523    /// Not actually used; only present to make sure the cache invalidation is correct.
1524    crates: Vec<String>,
1525}
1526
1527impl RustcLink {
1528    /// Copy rlibs from the build compiler that build this `rustc` into the sysroot of that
1529    /// build compiler.
1530    fn from_rustc(rustc: Rustc) -> Self {
1531        Self {
1532            build_compiler: rustc.build_compiler,
1533            sysroot_compiler: rustc.build_compiler,
1534            target: rustc.target,
1535            crates: rustc.crates,
1536        }
1537    }
1538
1539    /// Copy rlibs **built** by `build_compiler` into the sysroot of `sysroot_compiler`.
1540    fn from_build_compiler_and_sysroot(
1541        build_compiler: Compiler,
1542        sysroot_compiler: Compiler,
1543        target: TargetSelection,
1544        crates: Vec<String>,
1545    ) -> Self {
1546        Self { build_compiler, sysroot_compiler, target, crates }
1547    }
1548}
1549
1550impl Step for RustcLink {
1551    type Output = ();
1552
1553    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1554        run.never()
1555    }
1556
1557    /// Same as `StdLink`, only for librustc
1558    fn run(self, builder: &Builder<'_>) {
1559        let build_compiler = self.build_compiler;
1560        let sysroot_compiler = self.sysroot_compiler;
1561        let target = self.target;
1562        add_to_sysroot(
1563            builder,
1564            &builder.sysroot_target_libdir(sysroot_compiler, target),
1565            &builder.sysroot_target_libdir(sysroot_compiler, sysroot_compiler.host),
1566            &build_stamp::librustc_stamp(builder, build_compiler, target),
1567        );
1568    }
1569}
1570
1571/// Set of `libgccjit` dylibs that can be used by `cg_gcc` to compile code for a set of targets.
1572#[derive(Clone)]
1573pub struct GccDylibSet {
1574    dylibs: BTreeMap<GccTargetPair, GccOutput>,
1575    host_pair: GccTargetPair,
1576}
1577
1578impl GccDylibSet {
1579    /// Returns the libgccjit.so dylib that corresponds to a host target on which `cg_gcc` will be
1580    /// executed, and which will target the host. So e.g. if `cg_gcc` will be executed on
1581    /// x86_64-unknown-linux-gnu, the host dylib will be for compilation pair
1582    /// `(x86_64-unknown-linux-gnu, x86_64-unknown-linux-gnu)`.
1583    fn host_dylib(&self) -> &GccOutput {
1584        self.dylibs.get(&self.host_pair).unwrap_or_else(|| {
1585            panic!("libgccjit.so was not built for host target {}", self.host_pair)
1586        })
1587    }
1588
1589    /// Install the libgccjit dylibs to the corresponding target directories of the given compiler.
1590    /// cg_gcc know how to search for the libgccjit dylibs in these directories, according to the
1591    /// (host, target) pair that is being compiled by rustc and cg_gcc.
1592    pub fn install_to(&self, builder: &Builder<'_>, compiler: Compiler) {
1593        if builder.config.dry_run() {
1594            return;
1595        }
1596
1597        // <rustc>/lib/<host-target>/codegen-backends
1598        let cg_sysroot = builder.sysroot_codegen_backends(compiler);
1599
1600        for (target_pair, libgccjit) in &self.dylibs {
1601            assert_eq!(
1602                target_pair.host(),
1603                compiler.host,
1604                "Trying to install libgccjit ({target_pair}) to a compiler with a different host ({})",
1605                compiler.host
1606            );
1607            let libgccjit = libgccjit.libgccjit();
1608            let target_filename = libgccjit.file_name().unwrap().to_str().unwrap();
1609
1610            // If we build libgccjit ourselves, then `libgccjit` can actually be a symlink.
1611            // In that case, we have to resolve it first, otherwise we'd create a symlink to a
1612            // symlink, which wouldn't work.
1613            let actual_libgccjit_path = t!(
1614                libgccjit.canonicalize(),
1615                format!("Cannot find libgccjit at {}", libgccjit.display())
1616            );
1617
1618            // <cg-sysroot>/lib/<target>/libgccjit.so
1619            let dest_dir = cg_sysroot.join("lib").join(target_pair.target());
1620            t!(fs::create_dir_all(&dest_dir));
1621            let dst = dest_dir.join(target_filename);
1622            builder.copy_link(&actual_libgccjit_path, &dst, FileType::NativeLibrary);
1623        }
1624    }
1625}
1626
1627/// Output of the `compile::GccCodegenBackend` step.
1628///
1629/// It contains paths to all built libgccjit libraries on which this backend depends here.
1630#[derive(Clone)]
1631pub struct GccCodegenBackendOutput {
1632    stamp: BuildStamp,
1633    dylib_set: GccDylibSet,
1634}
1635
1636/// Builds the GCC codegen backend (`cg_gcc`).
1637/// The `cg_gcc` backend uses `libgccjit`, which requires a separate build for each
1638/// `host -> target` pair. So if you are on linux-x64 and build for linux-aarch64,
1639/// you will need at least:
1640/// - linux-x64 -> linux-x64 libgccjit (for building host code like proc macros)
1641/// - linux-x64 -> linux-aarch64 libgccjit (for the aarch64 target code)
1642///
1643/// We model this by having a single cg_gcc for a given host target, which contains one
1644/// libgccjit per (host, target) pair.
1645/// Note that the host target is taken from `self.compilers.target_compiler.host`.
1646#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1647pub struct GccCodegenBackend {
1648    compilers: RustcPrivateCompilers,
1649    targets: Vec<TargetSelection>,
1650}
1651
1652impl GccCodegenBackend {
1653    /// Build `cg_gcc` that will run on host `H` (`compilers.target_compiler.host`) and will be
1654    /// able to produce code target pairs (`H`, `T`) for all `T` from `targets`.
1655    pub fn for_targets(
1656        compilers: RustcPrivateCompilers,
1657        mut targets: Vec<TargetSelection>,
1658    ) -> Self {
1659        // Sort targets to improve step cache hits
1660        targets.sort();
1661        Self { compilers, targets }
1662    }
1663}
1664
1665impl Step for GccCodegenBackend {
1666    type Output = GccCodegenBackendOutput;
1667
1668    const IS_HOST: bool = true;
1669
1670    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1671        run.alias("rustc_codegen_gcc").alias("cg_gcc")
1672    }
1673
1674    fn make_run(run: RunConfig<'_>) {
1675        // By default, build cg_gcc that will only be able to compile native code for the given
1676        // host target.
1677        let compilers = RustcPrivateCompilers::new(run.builder, run.builder.top_stage, run.target);
1678        run.builder.ensure(GccCodegenBackend { compilers, targets: vec![run.target] });
1679    }
1680
1681    fn run(self, builder: &Builder<'_>) -> Self::Output {
1682        let host = self.compilers.target();
1683        let build_compiler = self.compilers.build_compiler();
1684
1685        let stamp = build_stamp::codegen_backend_stamp(
1686            builder,
1687            build_compiler,
1688            host,
1689            &CodegenBackendKind::Gcc,
1690        );
1691
1692        let dylib_set = GccDylibSet {
1693            dylibs: self
1694                .targets
1695                .iter()
1696                .map(|&target| {
1697                    let target_pair = GccTargetPair::for_target_pair(host, target);
1698                    (target_pair, builder.ensure(Gcc { target_pair }))
1699                })
1700                .collect(),
1701            host_pair: GccTargetPair::for_native_build(host),
1702        };
1703
1704        if builder.config.keep_stage.contains(&build_compiler.stage) {
1705            trace!("`keep-stage` requested");
1706            builder.info(
1707                "WARNING: Using a potentially old codegen backend. \
1708                This may not behave well.",
1709            );
1710            // Codegen backends are linked separately from this step today, so we don't do
1711            // anything here.
1712            return GccCodegenBackendOutput { stamp, dylib_set };
1713        }
1714
1715        let mut cargo = builder::Cargo::new(
1716            builder,
1717            build_compiler,
1718            Mode::Codegen,
1719            SourceType::InTree,
1720            host,
1721            Kind::Build,
1722        );
1723        cargo.arg("--manifest-path").arg(builder.src.join("compiler/rustc_codegen_gcc/Cargo.toml"));
1724        rustc_cargo_env(builder, &mut cargo, host);
1725
1726        add_cg_gcc_cargo_flags(&mut cargo, dylib_set.host_dylib());
1727
1728        let _guard =
1729            builder.msg(Kind::Build, "codegen backend gcc", Mode::Codegen, build_compiler, host);
1730        let files = run_cargo(builder, cargo, vec![], &stamp, vec![], false, false);
1731
1732        GccCodegenBackendOutput {
1733            stamp: write_codegen_backend_stamp(stamp, files, builder.config.dry_run()),
1734            dylib_set,
1735        }
1736    }
1737
1738    fn metadata(&self) -> Option<StepMetadata> {
1739        Some(
1740            StepMetadata::build("rustc_codegen_gcc", self.compilers.target())
1741                .built_by(self.compilers.build_compiler()),
1742        )
1743    }
1744}
1745
1746#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1747pub struct CraneliftCodegenBackend {
1748    pub compilers: RustcPrivateCompilers,
1749}
1750
1751impl Step for CraneliftCodegenBackend {
1752    type Output = BuildStamp;
1753    const IS_HOST: bool = true;
1754
1755    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1756        run.alias("rustc_codegen_cranelift").alias("cg_clif")
1757    }
1758
1759    fn make_run(run: RunConfig<'_>) {
1760        run.builder.ensure(CraneliftCodegenBackend {
1761            compilers: RustcPrivateCompilers::new(run.builder, run.builder.top_stage, run.target),
1762        });
1763    }
1764
1765    fn run(self, builder: &Builder<'_>) -> Self::Output {
1766        let target = self.compilers.target();
1767        let build_compiler = self.compilers.build_compiler();
1768
1769        let stamp = build_stamp::codegen_backend_stamp(
1770            builder,
1771            build_compiler,
1772            target,
1773            &CodegenBackendKind::Cranelift,
1774        );
1775
1776        if builder.config.keep_stage.contains(&build_compiler.stage) {
1777            trace!("`keep-stage` requested");
1778            builder.info(
1779                "WARNING: Using a potentially old codegen backend. \
1780                This may not behave well.",
1781            );
1782            // Codegen backends are linked separately from this step today, so we don't do
1783            // anything here.
1784            return stamp;
1785        }
1786
1787        let mut cargo = builder::Cargo::new(
1788            builder,
1789            build_compiler,
1790            Mode::Codegen,
1791            SourceType::InTree,
1792            target,
1793            Kind::Build,
1794        );
1795        cargo
1796            .arg("--manifest-path")
1797            .arg(builder.src.join("compiler/rustc_codegen_cranelift/Cargo.toml"));
1798        rustc_cargo_env(builder, &mut cargo, target);
1799
1800        let _guard = builder.msg(
1801            Kind::Build,
1802            "codegen backend cranelift",
1803            Mode::Codegen,
1804            build_compiler,
1805            target,
1806        );
1807        let files = run_cargo(builder, cargo, vec![], &stamp, vec![], false, false);
1808        write_codegen_backend_stamp(stamp, files, builder.config.dry_run())
1809    }
1810
1811    fn metadata(&self) -> Option<StepMetadata> {
1812        Some(
1813            StepMetadata::build("rustc_codegen_cranelift", self.compilers.target())
1814                .built_by(self.compilers.build_compiler()),
1815        )
1816    }
1817}
1818
1819/// Write filtered `files` into the passed build stamp and returns it.
1820fn write_codegen_backend_stamp(
1821    mut stamp: BuildStamp,
1822    files: Vec<PathBuf>,
1823    dry_run: bool,
1824) -> BuildStamp {
1825    if dry_run {
1826        return stamp;
1827    }
1828
1829    let mut files = files.into_iter().filter(|f| {
1830        let filename = f.file_name().unwrap().to_str().unwrap();
1831        is_dylib(f) && filename.contains("rustc_codegen_")
1832    });
1833    let codegen_backend = match files.next() {
1834        Some(f) => f,
1835        None => panic!("no dylibs built for codegen backend?"),
1836    };
1837    if let Some(f) = files.next() {
1838        panic!("codegen backend built two dylibs:\n{}\n{}", codegen_backend.display(), f.display());
1839    }
1840
1841    let codegen_backend = codegen_backend.to_str().unwrap();
1842    stamp = stamp.add_stamp(codegen_backend);
1843    t!(stamp.write());
1844    stamp
1845}
1846
1847/// Creates the `codegen-backends` folder for a compiler that's about to be
1848/// assembled as a complete compiler.
1849///
1850/// This will take the codegen artifacts recorded in the given `stamp` and link them
1851/// into an appropriate location for `target_compiler` to be a functional
1852/// compiler.
1853fn copy_codegen_backends_to_sysroot(
1854    builder: &Builder<'_>,
1855    stamp: BuildStamp,
1856    target_compiler: Compiler,
1857) {
1858    // Note that this step is different than all the other `*Link` steps in
1859    // that it's not assembling a bunch of libraries but rather is primarily
1860    // moving the codegen backend into place. The codegen backend of rustc is
1861    // not linked into the main compiler by default but is rather dynamically
1862    // selected at runtime for inclusion.
1863    //
1864    // Here we're looking for the output dylib of the `CodegenBackend` step and
1865    // we're copying that into the `codegen-backends` folder.
1866    let dst = builder.sysroot_codegen_backends(target_compiler);
1867    t!(fs::create_dir_all(&dst), dst);
1868
1869    if builder.config.dry_run() {
1870        return;
1871    }
1872
1873    if stamp.path().exists() {
1874        let file = get_codegen_backend_file(&stamp);
1875        builder.copy_link(
1876            &file,
1877            &dst.join(normalize_codegen_backend_name(builder, &file)),
1878            FileType::NativeLibrary,
1879        );
1880    }
1881}
1882
1883/// Gets the path to a dynamic codegen backend library from its build stamp.
1884pub fn get_codegen_backend_file(stamp: &BuildStamp) -> PathBuf {
1885    PathBuf::from(t!(fs::read_to_string(stamp.path())))
1886}
1887
1888/// Normalize the name of a dynamic codegen backend library.
1889pub fn normalize_codegen_backend_name(builder: &Builder<'_>, path: &Path) -> String {
1890    let filename = path.file_name().unwrap().to_str().unwrap();
1891    // change e.g. `librustc_codegen_cranelift-xxxxxx.so` to
1892    // `librustc_codegen_cranelift-release.so`
1893    let dash = filename.find('-').unwrap();
1894    let dot = filename.find('.').unwrap();
1895    format!("{}-{}{}", &filename[..dash], builder.rust_release(), &filename[dot..])
1896}
1897
1898pub fn compiler_file(
1899    builder: &Builder<'_>,
1900    compiler: &Path,
1901    target: TargetSelection,
1902    c: CLang,
1903    file: &str,
1904) -> PathBuf {
1905    if builder.config.dry_run() {
1906        return PathBuf::new();
1907    }
1908    let mut cmd = command(compiler);
1909    cmd.args(builder.cc_handled_clags(target, c));
1910    cmd.args(builder.cc_unhandled_cflags(target, GitRepo::Rustc, c));
1911    cmd.arg(format!("-print-file-name={file}"));
1912    let out = cmd.run_capture_stdout(builder).stdout();
1913    PathBuf::from(out.trim())
1914}
1915
1916#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1917pub struct Sysroot {
1918    pub compiler: Compiler,
1919    /// See [`Std::force_recompile`].
1920    force_recompile: bool,
1921}
1922
1923impl Sysroot {
1924    pub(crate) fn new(compiler: Compiler) -> Self {
1925        Sysroot { compiler, force_recompile: false }
1926    }
1927}
1928
1929impl Step for Sysroot {
1930    type Output = PathBuf;
1931
1932    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1933        run.never()
1934    }
1935
1936    /// Returns the sysroot that `compiler` is supposed to use.
1937    /// For the stage0 compiler, this is stage0-sysroot (because of the initial std build).
1938    /// For all other stages, it's the same stage directory that the compiler lives in.
1939    fn run(self, builder: &Builder<'_>) -> PathBuf {
1940        let compiler = self.compiler;
1941        let host_dir = builder.out.join(compiler.host);
1942
1943        let sysroot_dir = |stage| {
1944            if stage == 0 {
1945                host_dir.join("stage0-sysroot")
1946            } else if self.force_recompile && stage == compiler.stage {
1947                host_dir.join(format!("stage{stage}-test-sysroot"))
1948            } else if builder.download_rustc() && compiler.stage != builder.top_stage {
1949                host_dir.join("ci-rustc-sysroot")
1950            } else {
1951                host_dir.join(format!("stage{stage}"))
1952            }
1953        };
1954        let sysroot = sysroot_dir(compiler.stage);
1955        trace!(stage = ?compiler.stage, ?sysroot);
1956
1957        builder.do_if_verbose(|| {
1958            println!("Removing sysroot {} to avoid caching bugs", sysroot.display())
1959        });
1960        let _ = fs::remove_dir_all(&sysroot);
1961        t!(fs::create_dir_all(&sysroot));
1962
1963        // In some cases(see https://github.com/rust-lang/rust/issues/109314), when the stage0
1964        // compiler relies on more recent version of LLVM than the stage0 compiler, it may not
1965        // be able to locate the correct LLVM in the sysroot. This situation typically occurs
1966        // when we upgrade LLVM version while the stage0 compiler continues to use an older version.
1967        //
1968        // Make sure to add the correct version of LLVM into the stage0 sysroot.
1969        if compiler.stage == 0 {
1970            dist::maybe_install_llvm_target(builder, compiler.host, &sysroot);
1971        }
1972
1973        // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
1974        if builder.download_rustc() && compiler.stage != 0 {
1975            assert_eq!(
1976                builder.config.host_target, compiler.host,
1977                "Cross-compiling is not yet supported with `download-rustc`",
1978            );
1979
1980            // #102002, cleanup old toolchain folders when using download-rustc so people don't use them by accident.
1981            for stage in 0..=2 {
1982                if stage != compiler.stage {
1983                    let dir = sysroot_dir(stage);
1984                    if !dir.ends_with("ci-rustc-sysroot") {
1985                        let _ = fs::remove_dir_all(dir);
1986                    }
1987                }
1988            }
1989
1990            // Copy the compiler into the correct sysroot.
1991            // NOTE(#108767): We intentionally don't copy `rustc-dev` artifacts until they're requested with `builder.ensure(Rustc)`.
1992            // This fixes an issue where we'd have multiple copies of libc in the sysroot with no way to tell which to load.
1993            // There are a few quirks of bootstrap that interact to make this reliable:
1994            // 1. The order `Step`s are run is hard-coded in `builder.rs` and not configurable. This
1995            //    avoids e.g. reordering `test::UiFulldeps` before `test::Ui` and causing the latter to
1996            //    fail because of duplicate metadata.
1997            // 2. The sysroot is deleted and recreated between each invocation, so running `x test
1998            //    ui-fulldeps && x test ui` can't cause failures.
1999            let mut filtered_files = Vec::new();
2000            let mut add_filtered_files = |suffix, contents| {
2001                for path in contents {
2002                    let path = Path::new(&path);
2003                    if path.parent().is_some_and(|parent| parent.ends_with(suffix)) {
2004                        filtered_files.push(path.file_name().unwrap().to_owned());
2005                    }
2006                }
2007            };
2008            let suffix = format!("lib/rustlib/{}/lib", compiler.host);
2009            add_filtered_files(suffix.as_str(), builder.config.ci_rustc_dev_contents());
2010            // NOTE: we can't copy std eagerly because `stage2-test-sysroot` needs to have only the
2011            // newly compiled std, not the downloaded std.
2012            add_filtered_files("lib", builder.config.ci_rust_std_contents());
2013
2014            let filtered_extensions = [
2015                OsStr::new("rmeta"),
2016                OsStr::new("rlib"),
2017                // FIXME: this is wrong when compiler.host != build, but we don't support that today
2018                OsStr::new(std::env::consts::DLL_EXTENSION),
2019            ];
2020            let ci_rustc_dir = builder.config.ci_rustc_dir();
2021            builder.cp_link_filtered(&ci_rustc_dir, &sysroot, &|path| {
2022                if path.extension().is_none_or(|ext| !filtered_extensions.contains(&ext)) {
2023                    return true;
2024                }
2025                if !path.parent().is_none_or(|p| p.ends_with(&suffix)) {
2026                    return true;
2027                }
2028                filtered_files.iter().all(|f| f != path.file_name().unwrap())
2029            });
2030        }
2031
2032        // Symlink the source root into the same location inside the sysroot,
2033        // where `rust-src` component would go (`$sysroot/lib/rustlib/src/rust`),
2034        // so that any tools relying on `rust-src` also work for local builds,
2035        // and also for translating the virtual `/rustc/$hash` back to the real
2036        // directory (for running tests with `rust.remap-debuginfo = true`).
2037        if compiler.stage != 0 {
2038            let sysroot_lib_rustlib_src = sysroot.join("lib/rustlib/src");
2039            t!(fs::create_dir_all(&sysroot_lib_rustlib_src));
2040            let sysroot_lib_rustlib_src_rust = sysroot_lib_rustlib_src.join("rust");
2041            if let Err(e) =
2042                symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_src_rust)
2043            {
2044                eprintln!(
2045                    "ERROR: creating symbolic link `{}` to `{}` failed with {}",
2046                    sysroot_lib_rustlib_src_rust.display(),
2047                    builder.src.display(),
2048                    e,
2049                );
2050                if builder.config.rust_remap_debuginfo {
2051                    eprintln!(
2052                        "ERROR: some `tests/ui` tests will fail when lacking `{}`",
2053                        sysroot_lib_rustlib_src_rust.display(),
2054                    );
2055                }
2056                build_helper::exit!(1);
2057            }
2058        }
2059
2060        // rustc-src component is already part of CI rustc's sysroot
2061        if !builder.download_rustc() {
2062            let sysroot_lib_rustlib_rustcsrc = sysroot.join("lib/rustlib/rustc-src");
2063            t!(fs::create_dir_all(&sysroot_lib_rustlib_rustcsrc));
2064            let sysroot_lib_rustlib_rustcsrc_rust = sysroot_lib_rustlib_rustcsrc.join("rust");
2065            if let Err(e) =
2066                symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_rustcsrc_rust)
2067            {
2068                eprintln!(
2069                    "ERROR: creating symbolic link `{}` to `{}` failed with {}",
2070                    sysroot_lib_rustlib_rustcsrc_rust.display(),
2071                    builder.src.display(),
2072                    e,
2073                );
2074                build_helper::exit!(1);
2075            }
2076        }
2077
2078        sysroot
2079    }
2080}
2081
2082/// Prepare a compiler sysroot.
2083///
2084/// The sysroot may contain various things useful for running the compiler, like linkers and
2085/// linker wrappers (LLD, LLVM bitcode linker, etc.).
2086///
2087/// This will assemble a compiler in `build/$target/stage$stage`.
2088#[derive(Debug, Clone, PartialEq, Eq, Hash)]
2089pub struct Assemble {
2090    /// The compiler which we will produce in this step. Assemble itself will
2091    /// take care of ensuring that the necessary prerequisites to do so exist,
2092    /// that is, this can be e.g. a stage2 compiler and Assemble will build
2093    /// the previous stages for you.
2094    pub target_compiler: Compiler,
2095}
2096
2097impl Step for Assemble {
2098    type Output = Compiler;
2099    const IS_HOST: bool = true;
2100
2101    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
2102        run.path("compiler/rustc").path("compiler")
2103    }
2104
2105    fn make_run(run: RunConfig<'_>) {
2106        run.builder.ensure(Assemble {
2107            target_compiler: run.builder.compiler(run.builder.top_stage, run.target),
2108        });
2109    }
2110
2111    fn run(self, builder: &Builder<'_>) -> Compiler {
2112        let target_compiler = self.target_compiler;
2113
2114        if target_compiler.stage == 0 {
2115            trace!("stage 0 build compiler is always available, simply returning");
2116            assert_eq!(
2117                builder.config.host_target, target_compiler.host,
2118                "Cannot obtain compiler for non-native build triple at stage 0"
2119            );
2120            // The stage 0 compiler for the build triple is always pre-built.
2121            return target_compiler;
2122        }
2123
2124        // We prepend this bin directory to the user PATH when linking Rust binaries. To
2125        // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
2126        let libdir = builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2127        let libdir_bin = libdir.parent().unwrap().join("bin");
2128        t!(fs::create_dir_all(&libdir_bin));
2129
2130        if builder.config.llvm_enabled(target_compiler.host) {
2131            trace!("target_compiler.host" = ?target_compiler.host, "LLVM enabled");
2132
2133            let target = target_compiler.host;
2134            let llvm::LlvmResult { host_llvm_config, .. } = builder.ensure(llvm::Llvm { target });
2135            if !builder.config.dry_run() && builder.config.llvm_tools_enabled {
2136                trace!("LLVM tools enabled");
2137
2138                let host_llvm_bin_dir = command(&host_llvm_config)
2139                    .arg("--bindir")
2140                    .cached()
2141                    .run_capture_stdout(builder)
2142                    .stdout()
2143                    .trim()
2144                    .to_string();
2145
2146                let llvm_bin_dir = if target == builder.host_target {
2147                    PathBuf::from(host_llvm_bin_dir)
2148                } else {
2149                    // If we're cross-compiling, we cannot run the target llvm-config in order to
2150                    // figure out where binaries are located. We thus have to guess.
2151                    let external_llvm_config = builder
2152                        .config
2153                        .target_config
2154                        .get(&target)
2155                        .and_then(|t| t.llvm_config.clone());
2156                    if let Some(external_llvm_config) = external_llvm_config {
2157                        // If we have an external LLVM, just hope that the bindir is the directory
2158                        // where the LLVM config is located
2159                        external_llvm_config.parent().unwrap().to_path_buf()
2160                    } else {
2161                        // If we have built LLVM locally, then take the path of the host bindir
2162                        // relative to its output build directory, and then apply it to the target
2163                        // LLVM output build directory.
2164                        let host_llvm_out = builder.llvm_out(builder.host_target);
2165                        let target_llvm_out = builder.llvm_out(target);
2166                        if let Ok(relative_path) =
2167                            Path::new(&host_llvm_bin_dir).strip_prefix(host_llvm_out)
2168                        {
2169                            target_llvm_out.join(relative_path)
2170                        } else {
2171                            // This is the most desperate option, just replace the host target with
2172                            // the actual target in the directory path...
2173                            PathBuf::from(
2174                                host_llvm_bin_dir
2175                                    .replace(&*builder.host_target.triple, &target.triple),
2176                            )
2177                        }
2178                    }
2179                };
2180
2181                // Since we've already built the LLVM tools, install them to the sysroot.
2182                // This is the equivalent of installing the `llvm-tools-preview` component via
2183                // rustup, and lets developers use a locally built toolchain to
2184                // build projects that expect llvm tools to be present in the sysroot
2185                // (e.g. the `bootimage` crate).
2186
2187                #[cfg(feature = "tracing")]
2188                let _llvm_tools_span =
2189                    span!(tracing::Level::TRACE, "installing llvm tools to sysroot", ?libdir_bin)
2190                        .entered();
2191                for tool in LLVM_TOOLS {
2192                    trace!("installing `{tool}`");
2193                    let tool_exe = exe(tool, target_compiler.host);
2194                    let src_path = llvm_bin_dir.join(&tool_exe);
2195
2196                    // When using `download-ci-llvm`, some of the tools may not exist, so skip trying to copy them.
2197                    if !src_path.exists() && builder.config.llvm_from_ci {
2198                        eprintln!("{} does not exist; skipping copy", src_path.display());
2199                        continue;
2200                    }
2201
2202                    // There is a chance that these tools are being installed from an external LLVM.
2203                    // Use `Builder::resolve_symlink_and_copy` instead of `Builder::copy_link` to ensure
2204                    // we are copying the original file not the symlinked path, which causes issues for
2205                    // tarball distribution.
2206                    //
2207                    // See https://github.com/rust-lang/rust/issues/135554.
2208                    builder.resolve_symlink_and_copy(&src_path, &libdir_bin.join(&tool_exe));
2209                }
2210            }
2211        }
2212
2213        let maybe_install_llvm_bitcode_linker = || {
2214            if builder.config.llvm_bitcode_linker_enabled {
2215                trace!("llvm-bitcode-linker enabled, installing");
2216                let llvm_bitcode_linker = builder.ensure(
2217                    crate::core::build_steps::tool::LlvmBitcodeLinker::from_target_compiler(
2218                        builder,
2219                        target_compiler,
2220                    ),
2221                );
2222
2223                // Copy the llvm-bitcode-linker to the self-contained binary directory
2224                let bindir_self_contained = builder
2225                    .sysroot(target_compiler)
2226                    .join(format!("lib/rustlib/{}/bin/self-contained", target_compiler.host));
2227                let tool_exe = exe("llvm-bitcode-linker", target_compiler.host);
2228
2229                t!(fs::create_dir_all(&bindir_self_contained));
2230                builder.copy_link(
2231                    &llvm_bitcode_linker.tool_path,
2232                    &bindir_self_contained.join(tool_exe),
2233                    FileType::Executable,
2234                );
2235            }
2236        };
2237
2238        // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
2239        if builder.download_rustc() {
2240            trace!("`download-rustc` requested, reusing CI compiler for stage > 0");
2241
2242            builder.std(target_compiler, target_compiler.host);
2243            let sysroot =
2244                builder.ensure(Sysroot { compiler: target_compiler, force_recompile: false });
2245            // Ensure that `libLLVM.so` ends up in the newly created target directory,
2246            // so that tools using `rustc_private` can use it.
2247            dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
2248            // Lower stages use `ci-rustc-sysroot`, not stageN
2249            if target_compiler.stage == builder.top_stage {
2250                builder.info(&format!("Creating a sysroot for stage{stage} compiler (use `rustup toolchain link 'name' build/host/stage{stage}`)", stage = target_compiler.stage));
2251            }
2252
2253            // FIXME: this is incomplete, we do not copy a bunch of other stuff to the downloaded
2254            // sysroot...
2255            maybe_install_llvm_bitcode_linker();
2256
2257            return target_compiler;
2258        }
2259
2260        // Get the compiler that we'll use to bootstrap ourselves.
2261        //
2262        // Note that this is where the recursive nature of the bootstrap
2263        // happens, as this will request the previous stage's compiler on
2264        // downwards to stage 0.
2265        //
2266        // Also note that we're building a compiler for the host platform. We
2267        // only assume that we can run `build` artifacts, which means that to
2268        // produce some other architecture compiler we need to start from
2269        // `build` to get there.
2270        //
2271        // FIXME: It may be faster if we build just a stage 1 compiler and then
2272        //        use that to bootstrap this compiler forward.
2273        debug!(
2274            "ensuring build compiler is available: compiler(stage = {}, host = {:?})",
2275            target_compiler.stage - 1,
2276            builder.config.host_target,
2277        );
2278        let build_compiler =
2279            builder.compiler(target_compiler.stage - 1, builder.config.host_target);
2280
2281        // Build enzyme
2282        if builder.config.llvm_enzyme && !builder.config.dry_run() {
2283            debug!("`llvm_enzyme` requested");
2284            let enzyme_install = builder.ensure(llvm::Enzyme { target: build_compiler.host });
2285            if let Some(llvm_config) = builder.llvm_config(builder.config.host_target) {
2286                let llvm_version_major = llvm::get_llvm_version_major(builder, &llvm_config);
2287                let lib_ext = std::env::consts::DLL_EXTENSION;
2288                let libenzyme = format!("libEnzyme-{llvm_version_major}");
2289                let src_lib =
2290                    enzyme_install.join("build/Enzyme").join(&libenzyme).with_extension(lib_ext);
2291                let libdir = builder.sysroot_target_libdir(build_compiler, build_compiler.host);
2292                let target_libdir =
2293                    builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2294                let dst_lib = libdir.join(&libenzyme).with_extension(lib_ext);
2295                let target_dst_lib = target_libdir.join(&libenzyme).with_extension(lib_ext);
2296                builder.copy_link(&src_lib, &dst_lib, FileType::NativeLibrary);
2297                builder.copy_link(&src_lib, &target_dst_lib, FileType::NativeLibrary);
2298            }
2299        }
2300
2301        if builder.config.llvm_offload && !builder.config.dry_run() {
2302            debug!("`llvm_offload` requested");
2303            let offload_install = builder.ensure(llvm::OmpOffload { target: build_compiler.host });
2304            if let Some(_llvm_config) = builder.llvm_config(builder.config.host_target) {
2305                let target_libdir =
2306                    builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2307                for p in offload_install.offload_paths() {
2308                    let libname = p.file_name().unwrap();
2309                    let dst_lib = target_libdir.join(libname);
2310                    builder.resolve_symlink_and_copy(&p, &dst_lib);
2311                }
2312                // FIXME(offload): Add amdgcn-amd-amdhsa and nvptx64-nvidia-cuda folder
2313                // This one is slightly more tricky, since we have the same file twice, in two
2314                // subfolders for amdgcn and nvptx64. We'll likely find two more in the future, once
2315                // Intel and Spir-V support lands in offload.
2316            }
2317        }
2318
2319        // Build the libraries for this compiler to link to (i.e., the libraries
2320        // it uses at runtime).
2321        debug!(
2322            ?build_compiler,
2323            "target_compiler.host" = ?target_compiler.host,
2324            "building compiler libraries to link to"
2325        );
2326
2327        // It is possible that an uplift has happened, so we override build_compiler here.
2328        let BuiltRustc { build_compiler } =
2329            builder.ensure(Rustc::new(build_compiler, target_compiler.host));
2330
2331        let stage = target_compiler.stage;
2332        let host = target_compiler.host;
2333        let (host_info, dir_name) = if build_compiler.host == host {
2334            ("".into(), "host".into())
2335        } else {
2336            (format!(" ({host})"), host.to_string())
2337        };
2338        // NOTE: "Creating a sysroot" is somewhat inconsistent with our internal terminology, since
2339        // sysroots can temporarily be empty until we put the compiler inside. However,
2340        // `ensure(Sysroot)` isn't really something that's user facing, so there shouldn't be any
2341        // ambiguity.
2342        let msg = format!(
2343            "Creating a sysroot for stage{stage} compiler{host_info} (use `rustup toolchain link 'name' build/{dir_name}/stage{stage}`)"
2344        );
2345        builder.info(&msg);
2346
2347        // Link in all dylibs to the libdir
2348        let stamp = build_stamp::librustc_stamp(builder, build_compiler, target_compiler.host);
2349        let proc_macros = builder
2350            .read_stamp_file(&stamp)
2351            .into_iter()
2352            .filter_map(|(path, dependency_type)| {
2353                if dependency_type == DependencyType::Host {
2354                    Some(path.file_name().unwrap().to_owned().into_string().unwrap())
2355                } else {
2356                    None
2357                }
2358            })
2359            .collect::<HashSet<_>>();
2360
2361        let sysroot = builder.sysroot(target_compiler);
2362        let rustc_libdir = builder.rustc_libdir(target_compiler);
2363        t!(fs::create_dir_all(&rustc_libdir));
2364        let src_libdir = builder.sysroot_target_libdir(build_compiler, host);
2365        for f in builder.read_dir(&src_libdir) {
2366            let filename = f.file_name().into_string().unwrap();
2367
2368            let is_proc_macro = proc_macros.contains(&filename);
2369            let is_dylib_or_debug = is_dylib(&f.path()) || is_debug_info(&filename);
2370
2371            // If we link statically to stdlib, do not copy the libstd dynamic library file
2372            // FIXME: Also do this for Windows once incremental post-optimization stage0 tests
2373            // work without std.dll (see https://github.com/rust-lang/rust/pull/131188).
2374            let can_be_rustc_dynamic_dep = if builder
2375                .link_std_into_rustc_driver(target_compiler.host)
2376                && !target_compiler.host.is_windows()
2377            {
2378                let is_std = filename.starts_with("std-") || filename.starts_with("libstd-");
2379                !is_std
2380            } else {
2381                true
2382            };
2383
2384            if is_dylib_or_debug && can_be_rustc_dynamic_dep && !is_proc_macro {
2385                builder.copy_link(&f.path(), &rustc_libdir.join(&filename), FileType::Regular);
2386            }
2387        }
2388
2389        {
2390            #[cfg(feature = "tracing")]
2391            let _codegen_backend_span =
2392                span!(tracing::Level::DEBUG, "building requested codegen backends").entered();
2393
2394            for backend in builder.config.enabled_codegen_backends(target_compiler.host) {
2395                // FIXME: this is a horrible hack used to make `x check` work when other codegen
2396                // backends are enabled.
2397                // `x check` will check stage 1 rustc, which copies its rmetas to the stage0 sysroot.
2398                // Then it checks codegen backends, which correctly use these rmetas.
2399                // Then it needs to check std, but for that it needs to build stage 1 rustc.
2400                // This copies the build rmetas into the stage0 sysroot, effectively poisoning it,
2401                // because we then have both check and build rmetas in the same sysroot.
2402                // That would be fine on its own. However, when another codegen backend is enabled,
2403                // then building stage 1 rustc implies also building stage 1 codegen backend (even if
2404                // it isn't used for anything). And since that tries to use the poisoned
2405                // rmetas, it fails to build.
2406                // We don't actually need to build rustc-private codegen backends for checking std,
2407                // so instead we skip that.
2408                // Note: this would be also an issue for other rustc-private tools, but that is "solved"
2409                // by check::Std being last in the list of checked things (see
2410                // `Builder::get_step_descriptions`).
2411                if builder.kind == Kind::Check && builder.top_stage == 1 {
2412                    continue;
2413                }
2414
2415                let prepare_compilers = || {
2416                    RustcPrivateCompilers::from_build_and_target_compiler(
2417                        build_compiler,
2418                        target_compiler,
2419                    )
2420                };
2421
2422                match backend {
2423                    CodegenBackendKind::Cranelift => {
2424                        let stamp = builder
2425                            .ensure(CraneliftCodegenBackend { compilers: prepare_compilers() });
2426                        copy_codegen_backends_to_sysroot(builder, stamp, target_compiler);
2427                    }
2428                    CodegenBackendKind::Gcc => {
2429                        // We need to build cg_gcc for the host target of the compiler which we
2430                        // build here, which is `target_compiler`.
2431                        // But we also need to build libgccjit for some additional targets, in
2432                        // the most general case.
2433                        // 1. We need to build (target_compiler.host, stdlib target) libgccjit
2434                        // for all stdlibs that we build, so that cg_gcc can be used to build code
2435                        // for all those targets.
2436                        // 2. We need to build (target_compiler.host, target_compiler.host)
2437                        // libgccjit, so that the target compiler can compile host code (e.g. proc
2438                        // macros).
2439                        // 3. We need to build (target_compiler.host, host target) libgccjit
2440                        // for all *host targets* that we build, so that cg_gcc can be used to
2441                        // build a (possibly cross-compiled) stage 2+ rustc.
2442                        //
2443                        // Assume that we are on host T1 and we do a stage2 build of rustc for T2.
2444                        // We want the T2 rustc compiler to be able to use cg_gcc and build code
2445                        // for T2 (host) and T3 (target). We also want to build the stage2 compiler
2446                        // itself using cg_gcc.
2447                        // This could correspond to the following bootstrap invocation:
2448                        // `x build rustc --build T1 --host T2 --target T3 --set codegen-backends=['gcc', 'llvm']`
2449                        //
2450                        // For that, we will need the following GCC target pairs:
2451                        // 1. T1 -> T2 (to cross-compile a T2 rustc using cg_gcc running on T1)
2452                        // 2. T2 -> T2 (to build host code with the stage 2 rustc running on T2)
2453                        // 3. T2 -> T3 (to cross-compile code with the stage 2 rustc running on T2)
2454                        //
2455                        // FIXME: this set of targets is *maximal*, in reality we might need
2456                        // less libgccjits at this current build stage. Try to reduce the set of
2457                        // GCC dylibs built below by taking a look at the current stage and whether
2458                        // cg_gcc is used as the default codegen backend.
2459
2460                        let compilers = prepare_compilers();
2461
2462                        // The left side of the target pairs below is implied. It has to match the
2463                        // host target on which cg_gcc will run, which is the host target of
2464                        // `target_compiler`. We only pass the right side of the target pairs to
2465                        // the `GccCodegenBackend` constructor.
2466                        let mut targets = HashSet::new();
2467                        // Add all host targets, so that we are able to build host code in this
2468                        // bootstrap invocation using cg_gcc.
2469                        for target in &builder.hosts {
2470                            targets.insert(*target);
2471                        }
2472                        // Add all stdlib targets, so that the built rustc can produce code for them
2473                        for target in &builder.targets {
2474                            targets.insert(*target);
2475                        }
2476                        // Add the host target of the built rustc itself, so that it can build
2477                        // host code (e.g. proc macros) using cg_gcc.
2478                        targets.insert(compilers.target_compiler().host);
2479
2480                        let output = builder.ensure(GccCodegenBackend::for_targets(
2481                            compilers,
2482                            targets.into_iter().collect(),
2483                        ));
2484                        copy_codegen_backends_to_sysroot(builder, output.stamp, target_compiler);
2485                        // Also copy all requires libgccjit dylibs to the corresponding
2486                        // library sysroots, so that they are available for the codegen backend.
2487                        output.dylib_set.install_to(builder, target_compiler);
2488                    }
2489                    CodegenBackendKind::Llvm | CodegenBackendKind::Custom(_) => continue,
2490                }
2491            }
2492        }
2493
2494        if builder.config.lld_enabled {
2495            let lld_wrapper =
2496                builder.ensure(crate::core::build_steps::tool::LldWrapper::for_use_by_compiler(
2497                    builder,
2498                    target_compiler,
2499                ));
2500            copy_lld_artifacts(builder, lld_wrapper, target_compiler);
2501        }
2502
2503        if builder.config.llvm_enabled(target_compiler.host) && builder.config.llvm_tools_enabled {
2504            debug!(
2505                "llvm and llvm tools enabled; copying `llvm-objcopy` as `rust-objcopy` to \
2506                workaround faulty homebrew `strip`s"
2507            );
2508
2509            // `llvm-strip` is used by rustc, which is actually just a symlink to `llvm-objcopy`, so
2510            // copy and rename `llvm-objcopy`.
2511            //
2512            // But only do so if llvm-tools are enabled, as bootstrap compiler might not contain any
2513            // LLVM tools, e.g. for cg_clif.
2514            // See <https://github.com/rust-lang/rust/issues/132719>.
2515            let src_exe = exe("llvm-objcopy", target_compiler.host);
2516            let dst_exe = exe("rust-objcopy", target_compiler.host);
2517            builder.copy_link(
2518                &libdir_bin.join(src_exe),
2519                &libdir_bin.join(dst_exe),
2520                FileType::Executable,
2521            );
2522        }
2523
2524        // In addition to `rust-lld` also install `wasm-component-ld` when
2525        // is enabled. This is used by the `wasm32-wasip2` target of Rust.
2526        if builder.tool_enabled("wasm-component-ld") {
2527            let wasm_component = builder.ensure(
2528                crate::core::build_steps::tool::WasmComponentLd::for_use_by_compiler(
2529                    builder,
2530                    target_compiler,
2531                ),
2532            );
2533            builder.copy_link(
2534                &wasm_component.tool_path,
2535                &libdir_bin.join(wasm_component.tool_path.file_name().unwrap()),
2536                FileType::Executable,
2537            );
2538        }
2539
2540        maybe_install_llvm_bitcode_linker();
2541
2542        // Ensure that `libLLVM.so` ends up in the newly build compiler directory,
2543        // so that it can be found when the newly built `rustc` is run.
2544        debug!(
2545            "target_compiler.host" = ?target_compiler.host,
2546            ?sysroot,
2547            "ensuring availability of `libLLVM.so` in compiler directory"
2548        );
2549        dist::maybe_install_llvm_runtime(builder, target_compiler.host, &sysroot);
2550        dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
2551
2552        // Link the compiler binary itself into place
2553        let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
2554        let rustc = out_dir.join(exe("rustc-main", host));
2555        let bindir = sysroot.join("bin");
2556        t!(fs::create_dir_all(bindir));
2557        let compiler = builder.rustc(target_compiler);
2558        debug!(src = ?rustc, dst = ?compiler, "linking compiler binary itself");
2559        builder.copy_link(&rustc, &compiler, FileType::Executable);
2560
2561        target_compiler
2562    }
2563}
2564
2565/// Link some files into a rustc sysroot.
2566///
2567/// For a particular stage this will link the file listed in `stamp` into the
2568/// `sysroot_dst` provided.
2569#[track_caller]
2570pub fn add_to_sysroot(
2571    builder: &Builder<'_>,
2572    sysroot_dst: &Path,
2573    sysroot_host_dst: &Path,
2574    stamp: &BuildStamp,
2575) {
2576    let self_contained_dst = &sysroot_dst.join("self-contained");
2577    t!(fs::create_dir_all(sysroot_dst));
2578    t!(fs::create_dir_all(sysroot_host_dst));
2579    t!(fs::create_dir_all(self_contained_dst));
2580
2581    let mut crates = HashMap::new();
2582    for (path, dependency_type) in builder.read_stamp_file(stamp) {
2583        let filename = path.file_name().unwrap().to_str().unwrap();
2584        let dst = match dependency_type {
2585            DependencyType::Host => {
2586                if sysroot_dst == sysroot_host_dst {
2587                    // Only insert the part before the . to deduplicate different files for the same crate.
2588                    // For example foo-1234.dll and foo-1234.dll.lib.
2589                    crates.insert(filename.split_once('.').unwrap().0.to_owned(), path.clone());
2590                }
2591
2592                sysroot_host_dst
2593            }
2594            DependencyType::Target => {
2595                // Only insert the part before the . to deduplicate different files for the same crate.
2596                // For example foo-1234.dll and foo-1234.dll.lib.
2597                crates.insert(filename.split_once('.').unwrap().0.to_owned(), path.clone());
2598
2599                sysroot_dst
2600            }
2601            DependencyType::TargetSelfContained => self_contained_dst,
2602        };
2603        builder.copy_link(&path, &dst.join(filename), FileType::Regular);
2604    }
2605
2606    // Check that none of the rustc_* crates have multiple versions. Otherwise using them from
2607    // the sysroot would cause ambiguity errors. We do allow rustc_hash however as it is an
2608    // external dependency that we build multiple copies of. It is re-exported by
2609    // rustc_data_structures, so not being able to use extern crate rustc_hash; is not a big
2610    // issue.
2611    let mut seen_crates = HashMap::new();
2612    for (filestem, path) in crates {
2613        if !filestem.contains("rustc_") || filestem.contains("rustc_hash") {
2614            continue;
2615        }
2616        if let Some(other_path) =
2617            seen_crates.insert(filestem.split_once('-').unwrap().0.to_owned(), path.clone())
2618        {
2619            panic!(
2620                "duplicate rustc crate {}\n-  first copy at {}\n- second copy at {}",
2621                filestem.split_once('-').unwrap().0.to_owned(),
2622                other_path.display(),
2623                path.display(),
2624            );
2625        }
2626    }
2627}
2628
2629pub fn run_cargo(
2630    builder: &Builder<'_>,
2631    cargo: Cargo,
2632    tail_args: Vec<String>,
2633    stamp: &BuildStamp,
2634    additional_target_deps: Vec<(PathBuf, DependencyType)>,
2635    is_check: bool,
2636    rlib_only_metadata: bool,
2637) -> Vec<PathBuf> {
2638    // `target_root_dir` looks like $dir/$target/release
2639    let target_root_dir = stamp.path().parent().unwrap();
2640    // `target_deps_dir` looks like $dir/$target/release/deps
2641    let target_deps_dir = target_root_dir.join("deps");
2642    // `host_root_dir` looks like $dir/release
2643    let host_root_dir = target_root_dir
2644        .parent()
2645        .unwrap() // chop off `release`
2646        .parent()
2647        .unwrap() // chop off `$target`
2648        .join(target_root_dir.file_name().unwrap());
2649
2650    // Spawn Cargo slurping up its JSON output. We'll start building up the
2651    // `deps` array of all files it generated along with a `toplevel` array of
2652    // files we need to probe for later.
2653    let mut deps = Vec::new();
2654    let mut toplevel = Vec::new();
2655    let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
2656        let (filenames_vec, crate_types) = match msg {
2657            CargoMessage::CompilerArtifact {
2658                filenames,
2659                target: CargoTarget { crate_types },
2660                ..
2661            } => {
2662                let mut f: Vec<String> = filenames.into_iter().map(|s| s.into_owned()).collect();
2663                f.sort(); // Sort the filenames
2664                (f, crate_types)
2665            }
2666            _ => return,
2667        };
2668        for filename in filenames_vec {
2669            // Skip files like executables
2670            let mut keep = false;
2671            if filename.ends_with(".lib")
2672                || filename.ends_with(".a")
2673                || is_debug_info(&filename)
2674                || is_dylib(Path::new(&*filename))
2675            {
2676                // Always keep native libraries, rust dylibs and debuginfo
2677                keep = true;
2678            }
2679            if is_check && filename.ends_with(".rmeta") {
2680                // During check builds we need to keep crate metadata
2681                keep = true;
2682            } else if rlib_only_metadata {
2683                if filename.contains("jemalloc_sys")
2684                    || filename.contains("rustc_public_bridge")
2685                    || filename.contains("rustc_public")
2686                {
2687                    // jemalloc_sys and rustc_public_bridge are not linked into librustc_driver.so,
2688                    // so we need to distribute them as rlib to be able to use them.
2689                    keep |= filename.ends_with(".rlib");
2690                } else {
2691                    // Distribute the rest of the rustc crates as rmeta files only to reduce
2692                    // the tarball sizes by about 50%. The object files are linked into
2693                    // librustc_driver.so, so it is still possible to link against them.
2694                    keep |= filename.ends_with(".rmeta");
2695                }
2696            } else {
2697                // In all other cases keep all rlibs
2698                keep |= filename.ends_with(".rlib");
2699            }
2700
2701            if !keep {
2702                continue;
2703            }
2704
2705            let filename = Path::new(&*filename);
2706
2707            // If this was an output file in the "host dir" we don't actually
2708            // worry about it, it's not relevant for us
2709            if filename.starts_with(&host_root_dir) {
2710                // Unless it's a proc macro used in the compiler
2711                if crate_types.iter().any(|t| t == "proc-macro") {
2712                    // Cargo will compile proc-macros that are part of the rustc workspace twice.
2713                    // Once as libmacro-hash.so as build dependency and once as libmacro.so as
2714                    // output artifact. Only keep the former to avoid ambiguity when trying to use
2715                    // the proc macro from the sysroot.
2716                    if filename.file_name().unwrap().to_str().unwrap().contains("-") {
2717                        deps.push((filename.to_path_buf(), DependencyType::Host));
2718                    }
2719                }
2720                continue;
2721            }
2722
2723            // If this was output in the `deps` dir then this is a precise file
2724            // name (hash included) so we start tracking it.
2725            if filename.starts_with(&target_deps_dir) {
2726                deps.push((filename.to_path_buf(), DependencyType::Target));
2727                continue;
2728            }
2729
2730            // Otherwise this was a "top level artifact" which right now doesn't
2731            // have a hash in the name, but there's a version of this file in
2732            // the `deps` folder which *does* have a hash in the name. That's
2733            // the one we'll want to we'll probe for it later.
2734            //
2735            // We do not use `Path::file_stem` or `Path::extension` here,
2736            // because some generated files may have multiple extensions e.g.
2737            // `std-<hash>.dll.lib` on Windows. The aforementioned methods only
2738            // split the file name by the last extension (`.lib`) while we need
2739            // to split by all extensions (`.dll.lib`).
2740            let expected_len = t!(filename.metadata()).len();
2741            let filename = filename.file_name().unwrap().to_str().unwrap();
2742            let mut parts = filename.splitn(2, '.');
2743            let file_stem = parts.next().unwrap().to_owned();
2744            let extension = parts.next().unwrap().to_owned();
2745
2746            toplevel.push((file_stem, extension, expected_len));
2747        }
2748    });
2749
2750    if !ok {
2751        crate::exit!(1);
2752    }
2753
2754    if builder.config.dry_run() {
2755        return Vec::new();
2756    }
2757
2758    // Ok now we need to actually find all the files listed in `toplevel`. We've
2759    // got a list of prefix/extensions and we basically just need to find the
2760    // most recent file in the `deps` folder corresponding to each one.
2761    let contents = target_deps_dir
2762        .read_dir()
2763        .unwrap_or_else(|e| panic!("Couldn't read {}: {}", target_deps_dir.display(), e))
2764        .map(|e| t!(e))
2765        .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
2766        .collect::<Vec<_>>();
2767    for (prefix, extension, expected_len) in toplevel {
2768        let candidates = contents.iter().filter(|&(_, filename, meta)| {
2769            meta.len() == expected_len
2770                && filename
2771                    .strip_prefix(&prefix[..])
2772                    .map(|s| s.starts_with('-') && s.ends_with(&extension[..]))
2773                    .unwrap_or(false)
2774        });
2775        let max = candidates.max_by_key(|&(_, _, metadata)| {
2776            metadata.modified().expect("mtime should be available on all relevant OSes")
2777        });
2778        let path_to_add = match max {
2779            Some(triple) => triple.0.to_str().unwrap(),
2780            None => panic!("no output generated for {prefix:?} {extension:?}"),
2781        };
2782        if is_dylib(Path::new(path_to_add)) {
2783            let candidate = format!("{path_to_add}.lib");
2784            let candidate = PathBuf::from(candidate);
2785            if candidate.exists() {
2786                deps.push((candidate, DependencyType::Target));
2787            }
2788        }
2789        deps.push((path_to_add.into(), DependencyType::Target));
2790    }
2791
2792    deps.extend(additional_target_deps);
2793    deps.sort();
2794    let mut new_contents = Vec::new();
2795    for (dep, dependency_type) in deps.iter() {
2796        new_contents.extend(match *dependency_type {
2797            DependencyType::Host => b"h",
2798            DependencyType::Target => b"t",
2799            DependencyType::TargetSelfContained => b"s",
2800        });
2801        new_contents.extend(dep.to_str().unwrap().as_bytes());
2802        new_contents.extend(b"\0");
2803    }
2804    t!(fs::write(stamp.path(), &new_contents));
2805    deps.into_iter().map(|(d, _)| d).collect()
2806}
2807
2808pub fn stream_cargo(
2809    builder: &Builder<'_>,
2810    cargo: Cargo,
2811    tail_args: Vec<String>,
2812    cb: &mut dyn FnMut(CargoMessage<'_>),
2813) -> bool {
2814    let mut cmd = cargo.into_cmd();
2815
2816    // Instruct Cargo to give us json messages on stdout, critically leaving
2817    // stderr as piped so we can get those pretty colors.
2818    let mut message_format = if builder.config.json_output {
2819        String::from("json")
2820    } else {
2821        String::from("json-render-diagnostics")
2822    };
2823    if let Some(s) = &builder.config.rustc_error_format {
2824        message_format.push_str(",json-diagnostic-");
2825        message_format.push_str(s);
2826    }
2827    cmd.arg("--message-format").arg(message_format);
2828
2829    for arg in tail_args {
2830        cmd.arg(arg);
2831    }
2832
2833    builder.do_if_verbose(|| println!("running: {cmd:?}"));
2834
2835    let streaming_command = cmd.stream_capture_stdout(&builder.config.exec_ctx);
2836
2837    let Some(mut streaming_command) = streaming_command else {
2838        return true;
2839    };
2840
2841    // Spawn Cargo slurping up its JSON output. We'll start building up the
2842    // `deps` array of all files it generated along with a `toplevel` array of
2843    // files we need to probe for later.
2844    let stdout = BufReader::new(streaming_command.stdout.take().unwrap());
2845    for line in stdout.lines() {
2846        let line = t!(line);
2847        match serde_json::from_str::<CargoMessage<'_>>(&line) {
2848            Ok(msg) => {
2849                if builder.config.json_output {
2850                    // Forward JSON to stdout.
2851                    println!("{line}");
2852                }
2853                cb(msg)
2854            }
2855            // If this was informational, just print it out and continue
2856            Err(_) => println!("{line}"),
2857        }
2858    }
2859
2860    // Make sure Cargo actually succeeded after we read all of its stdout.
2861    let status = t!(streaming_command.wait(&builder.config.exec_ctx));
2862    if builder.is_verbose() && !status.success() {
2863        eprintln!(
2864            "command did not execute successfully: {cmd:?}\n\
2865                  expected success, got: {status}"
2866        );
2867    }
2868
2869    status.success()
2870}
2871
2872#[derive(Deserialize)]
2873pub struct CargoTarget<'a> {
2874    crate_types: Vec<Cow<'a, str>>,
2875}
2876
2877#[derive(Deserialize)]
2878#[serde(tag = "reason", rename_all = "kebab-case")]
2879pub enum CargoMessage<'a> {
2880    CompilerArtifact { filenames: Vec<Cow<'a, str>>, target: CargoTarget<'a> },
2881    BuildScriptExecuted,
2882    BuildFinished,
2883}
2884
2885pub fn strip_debug(builder: &Builder<'_>, target: TargetSelection, path: &Path) {
2886    // FIXME: to make things simpler for now, limit this to the host and target where we know
2887    // `strip -g` is both available and will fix the issue, i.e. on a x64 linux host that is not
2888    // cross-compiling. Expand this to other appropriate targets in the future.
2889    if target != "x86_64-unknown-linux-gnu"
2890        || !builder.config.is_host_target(target)
2891        || !path.exists()
2892    {
2893        return;
2894    }
2895
2896    let previous_mtime = t!(t!(path.metadata()).modified());
2897    let stamp = BuildStamp::new(path.parent().unwrap())
2898        .with_prefix(path.file_name().unwrap().to_str().unwrap())
2899        .with_prefix("strip")
2900        .add_stamp(previous_mtime.duration_since(SystemTime::UNIX_EPOCH).unwrap().as_nanos());
2901
2902    // Running strip can be relatively expensive (~1s on librustc_driver.so), so we don't rerun it
2903    // if the file is unchanged.
2904    if !stamp.is_up_to_date() {
2905        command("strip").arg("--strip-debug").arg(path).run_capture(builder);
2906    }
2907    t!(stamp.write());
2908
2909    let file = t!(fs::File::open(path));
2910
2911    // After running `strip`, we have to set the file modification time to what it was before,
2912    // otherwise we risk Cargo invalidating its fingerprint and rebuilding the world next time
2913    // bootstrap is invoked.
2914    //
2915    // An example of this is if we run this on librustc_driver.so. In the first invocation:
2916    // - Cargo will build librustc_driver.so (mtime of 1)
2917    // - Cargo will build rustc-main (mtime of 2)
2918    // - Bootstrap will strip librustc_driver.so (changing the mtime to 3).
2919    //
2920    // In the second invocation of bootstrap, Cargo will see that the mtime of librustc_driver.so
2921    // is greater than the mtime of rustc-main, and will rebuild rustc-main. That will then cause
2922    // everything else (standard library, future stages...) to be rebuilt.
2923    t!(file.set_modified(previous_mtime));
2924}
2925
2926/// We only use LTO for stage 2+, to speed up build time of intermediate stages.
2927pub fn is_lto_stage(build_compiler: &Compiler) -> bool {
2928    build_compiler.stage != 0
2929}