Skip to main content

bootstrap/core/build_steps/
compile.rs

1//! Implementation of compiling various phases of the compiler and standard
2//! library.
3//!
4//! This module contains some of the real meat in the bootstrap build system
5//! which is where Cargo is used to compile the standard library, libtest, and
6//! the compiler. This module is also responsible for assembling the sysroot as it
7//! goes along from the output of the previous stage.
8
9use std::borrow::Cow;
10use std::collections::{BTreeMap, HashMap, HashSet};
11use std::ffi::OsStr;
12use std::io::BufReader;
13use std::io::prelude::*;
14use std::path::{Path, PathBuf};
15use std::time::SystemTime;
16use std::{env, fs, str};
17
18use serde_derive::Deserialize;
19#[cfg(feature = "tracing")]
20use tracing::span;
21
22use crate::core::build_steps::gcc::{Gcc, GccOutput, GccTargetPair};
23use crate::core::build_steps::tool::{RustcPrivateCompilers, SourceType, copy_lld_artifacts};
24use crate::core::build_steps::{dist, llvm};
25use crate::core::builder;
26use crate::core::builder::{
27    Builder, Cargo, Kind, RunConfig, ShouldRun, Step, StepMetadata, crate_description,
28};
29use crate::core::config::toml::target::DefaultLinuxLinkerOverride;
30use crate::core::config::{
31    CompilerBuiltins, DebuginfoLevel, LlvmLibunwind, RustcLto, TargetSelection,
32};
33use crate::utils::build_stamp;
34use crate::utils::build_stamp::BuildStamp;
35use crate::utils::exec::command;
36use crate::utils::helpers::{
37    exe, get_clang_cl_resource_dir, is_debug_info, is_dylib, symlink_dir, t, up_to_date,
38};
39use crate::{
40    CLang, CodegenBackendKind, Compiler, DependencyType, FileType, GitRepo, LLVM_TOOLS, Mode,
41    debug, trace,
42};
43
44/// Build a standard library for the given `target` using the given `build_compiler`.
45#[derive(Debug, Clone, PartialEq, Eq, Hash)]
46pub struct Std {
47    pub target: TargetSelection,
48    /// Compiler that builds the standard library.
49    pub build_compiler: Compiler,
50    /// Whether to build only a subset of crates in the standard library.
51    ///
52    /// This shouldn't be used from other steps; see the comment on [`Rustc`].
53    crates: Vec<String>,
54    /// When using download-rustc, we need to use a new build of `std` for running unit tests of Std itself,
55    /// but we need to use the downloaded copy of std for linking to rustdoc. Allow this to be overridden by `builder.ensure` from other steps.
56    force_recompile: bool,
57    extra_rust_args: &'static [&'static str],
58    is_for_mir_opt_tests: bool,
59}
60
61impl Std {
62    pub fn new(build_compiler: Compiler, target: TargetSelection) -> Self {
63        Self {
64            target,
65            build_compiler,
66            crates: Default::default(),
67            force_recompile: false,
68            extra_rust_args: &[],
69            is_for_mir_opt_tests: false,
70        }
71    }
72
73    pub fn force_recompile(mut self, force_recompile: bool) -> Self {
74        self.force_recompile = force_recompile;
75        self
76    }
77
78    #[expect(clippy::wrong_self_convention)]
79    pub fn is_for_mir_opt_tests(mut self, is_for_mir_opt_tests: bool) -> Self {
80        self.is_for_mir_opt_tests = is_for_mir_opt_tests;
81        self
82    }
83
84    pub fn extra_rust_args(mut self, extra_rust_args: &'static [&'static str]) -> Self {
85        self.extra_rust_args = extra_rust_args;
86        self
87    }
88
89    fn copy_extra_objects(
90        &self,
91        builder: &Builder<'_>,
92        compiler: &Compiler,
93        target: TargetSelection,
94    ) -> Vec<(PathBuf, DependencyType)> {
95        let mut deps = Vec::new();
96        if !self.is_for_mir_opt_tests {
97            deps.extend(copy_third_party_objects(builder, compiler, target));
98            deps.extend(copy_self_contained_objects(builder, compiler, target));
99        }
100        deps
101    }
102
103    /// Returns true if the standard library should be uplifted from stage 1.
104    ///
105    /// Uplifting is enabled if we're building a stage2+ libstd and full bootstrap is
106    /// disabled.
107    pub fn should_be_uplifted_from_stage_1(builder: &Builder<'_>, stage: u32) -> bool {
108        stage > 1 && !builder.config.full_bootstrap
109    }
110}
111
112impl Step for Std {
113    /// Build stamp of std, if it was indeed built or uplifted.
114    type Output = Option<BuildStamp>;
115
116    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
117        run.crate_or_deps("sysroot").path("library")
118    }
119
120    fn is_default_step(_builder: &Builder<'_>) -> bool {
121        true
122    }
123
124    fn make_run(run: RunConfig<'_>) {
125        let crates = std_crates_for_run_make(&run);
126        let builder = run.builder;
127
128        // Force compilation of the standard library from source if the `library` is modified. This allows
129        // library team to compile the standard library without needing to compile the compiler with
130        // the `rust.download-rustc=true` option.
131        let force_recompile = builder.rust_info().is_managed_git_subrepository()
132            && builder.download_rustc()
133            && builder.config.has_changes_from_upstream(&["library"]);
134
135        trace!("is managed git repo: {}", builder.rust_info().is_managed_git_subrepository());
136        trace!("download_rustc: {}", builder.download_rustc());
137        trace!(force_recompile);
138
139        run.builder.ensure(Std {
140            // Note: we don't use compiler_for_std here, so that `x build library --stage 2`
141            // builds a stage2 rustc.
142            build_compiler: run.builder.compiler(run.builder.top_stage, builder.host_target),
143            target: run.target,
144            crates,
145            force_recompile,
146            extra_rust_args: &[],
147            is_for_mir_opt_tests: false,
148        });
149    }
150
151    /// Builds the standard library.
152    ///
153    /// This will build the standard library for a particular stage of the build
154    /// using the `compiler` targeting the `target` architecture. The artifacts
155    /// created will also be linked into the sysroot directory.
156    fn run(self, builder: &Builder<'_>) -> Self::Output {
157        let target = self.target;
158
159        // In most cases, we already have the std ready to be used for stage 0.
160        // However, if we are doing a local rebuild (so the build compiler can compile the standard
161        // library even on stage 0), and we're cross-compiling (so the stage0 standard library for
162        // *target* is not available), we still allow the stdlib to be built here.
163        if self.build_compiler.stage == 0
164            && !(builder.local_rebuild && target != builder.host_target)
165        {
166            let compiler = self.build_compiler;
167            builder.ensure(StdLink::from_std(self, compiler));
168
169            return None;
170        }
171
172        let build_compiler = if builder.download_rustc() && self.force_recompile {
173            // When there are changes in the library tree with CI-rustc, we want to build
174            // the stageN library and that requires using stageN-1 compiler.
175            builder
176                .compiler(self.build_compiler.stage.saturating_sub(1), builder.config.host_target)
177        } else {
178            self.build_compiler
179        };
180
181        // When using `download-rustc`, we already have artifacts for the host available. Don't
182        // recompile them.
183        if builder.download_rustc()
184            && builder.config.is_host_target(target)
185            && !self.force_recompile
186        {
187            let sysroot =
188                builder.ensure(Sysroot { compiler: build_compiler, force_recompile: false });
189            cp_rustc_component_to_ci_sysroot(
190                builder,
191                &sysroot,
192                builder.config.ci_rust_std_contents(),
193            );
194            return None;
195        }
196
197        if builder.config.keep_stage.contains(&build_compiler.stage)
198            || builder.config.keep_stage_std.contains(&build_compiler.stage)
199        {
200            trace!(keep_stage = ?builder.config.keep_stage);
201            trace!(keep_stage_std = ?builder.config.keep_stage_std);
202
203            builder.info("WARNING: Using a potentially old libstd. This may not behave well.");
204
205            builder.ensure(StartupObjects { compiler: build_compiler, target });
206
207            self.copy_extra_objects(builder, &build_compiler, target);
208
209            builder.ensure(StdLink::from_std(self, build_compiler));
210            return Some(build_stamp::libstd_stamp(builder, build_compiler, target));
211        }
212
213        let mut target_deps = builder.ensure(StartupObjects { compiler: build_compiler, target });
214
215        // Stage of the stdlib that we're building
216        let stage = build_compiler.stage;
217
218        if Self::should_be_uplifted_from_stage_1(builder, build_compiler.stage) {
219            let build_compiler_for_std_to_uplift = builder.compiler(1, builder.host_target);
220            let stage_1_stamp = builder.std(build_compiler_for_std_to_uplift, target);
221
222            let msg = if build_compiler_for_std_to_uplift.host == target {
223                format!(
224                    "Uplifting library (stage{} -> stage{stage})",
225                    build_compiler_for_std_to_uplift.stage
226                )
227            } else {
228                format!(
229                    "Uplifting library (stage{}:{} -> stage{stage}:{target})",
230                    build_compiler_for_std_to_uplift.stage, build_compiler_for_std_to_uplift.host,
231                )
232            };
233
234            builder.info(&msg);
235
236            // Even if we're not building std this stage, the new sysroot must
237            // still contain the third party objects needed by various targets.
238            self.copy_extra_objects(builder, &build_compiler, target);
239
240            builder.ensure(StdLink::from_std(self, build_compiler_for_std_to_uplift));
241            return stage_1_stamp;
242        }
243
244        target_deps.extend(self.copy_extra_objects(builder, &build_compiler, target));
245
246        // We build a sysroot for mir-opt tests using the same trick that Miri does: A check build
247        // with -Zalways-encode-mir. This frees us from the need to have a target linker, and the
248        // fact that this is a check build integrates nicely with run_cargo.
249        let mut cargo = if self.is_for_mir_opt_tests {
250            trace!("building special sysroot for mir-opt tests");
251            let mut cargo = builder::Cargo::new_for_mir_opt_tests(
252                builder,
253                build_compiler,
254                Mode::Std,
255                SourceType::InTree,
256                target,
257                Kind::Check,
258            );
259            cargo.rustflag("-Zalways-encode-mir");
260            cargo.arg("--manifest-path").arg(builder.src.join("library/sysroot/Cargo.toml"));
261            cargo
262        } else {
263            trace!("building regular sysroot");
264            let mut cargo = builder::Cargo::new(
265                builder,
266                build_compiler,
267                Mode::Std,
268                SourceType::InTree,
269                target,
270                Kind::Build,
271            );
272            std_cargo(builder, target, &mut cargo, &self.crates);
273            cargo
274        };
275
276        // See src/bootstrap/synthetic_targets.rs
277        if target.is_synthetic() {
278            cargo.env("RUSTC_BOOTSTRAP_SYNTHETIC_TARGET", "1");
279        }
280        for rustflag in self.extra_rust_args.iter() {
281            cargo.rustflag(rustflag);
282        }
283
284        let _guard = builder.msg(
285            Kind::Build,
286            format_args!("library artifacts{}", crate_description(&self.crates)),
287            Mode::Std,
288            build_compiler,
289            target,
290        );
291
292        let stamp = build_stamp::libstd_stamp(builder, build_compiler, target);
293        run_cargo(
294            builder,
295            cargo,
296            vec![],
297            &stamp,
298            target_deps,
299            if self.is_for_mir_opt_tests {
300                ArtifactKeepMode::OnlyRmeta
301            } else {
302                // We use -Zno-embed-metadata for the standard library
303                ArtifactKeepMode::BothRlibAndRmeta
304            },
305        );
306
307        builder.ensure(StdLink::from_std(
308            self,
309            builder.compiler(build_compiler.stage, builder.config.host_target),
310        ));
311        Some(stamp)
312    }
313
314    fn metadata(&self) -> Option<StepMetadata> {
315        Some(StepMetadata::build("std", self.target).built_by(self.build_compiler))
316    }
317}
318
319fn copy_and_stamp(
320    builder: &Builder<'_>,
321    libdir: &Path,
322    sourcedir: &Path,
323    name: &str,
324    target_deps: &mut Vec<(PathBuf, DependencyType)>,
325    dependency_type: DependencyType,
326) {
327    let target = libdir.join(name);
328    builder.copy_link(&sourcedir.join(name), &target, FileType::Regular);
329
330    target_deps.push((target, dependency_type));
331}
332
333fn copy_llvm_libunwind(builder: &Builder<'_>, target: TargetSelection, libdir: &Path) -> PathBuf {
334    let libunwind_path = builder.ensure(llvm::Libunwind { target });
335    let libunwind_source = libunwind_path.join("libunwind.a");
336    let libunwind_target = libdir.join("libunwind.a");
337    builder.copy_link(&libunwind_source, &libunwind_target, FileType::NativeLibrary);
338    libunwind_target
339}
340
341/// Copies third party objects needed by various targets.
342fn copy_third_party_objects(
343    builder: &Builder<'_>,
344    compiler: &Compiler,
345    target: TargetSelection,
346) -> Vec<(PathBuf, DependencyType)> {
347    let mut target_deps = vec![];
348
349    if builder.config.needs_sanitizer_runtime_built(target) && compiler.stage != 0 {
350        // The sanitizers are only copied in stage1 or above,
351        // to avoid creating dependency on LLVM.
352        target_deps.extend(
353            copy_sanitizers(builder, compiler, target)
354                .into_iter()
355                .map(|d| (d, DependencyType::Target)),
356        );
357    }
358
359    if target == "x86_64-fortanix-unknown-sgx"
360        || builder.config.llvm_libunwind(target) == LlvmLibunwind::InTree
361            && (target.contains("linux")
362                || target.contains("fuchsia")
363                || target.contains("aix")
364                || target.contains("hexagon"))
365    {
366        let libunwind_path =
367            copy_llvm_libunwind(builder, target, &builder.sysroot_target_libdir(*compiler, target));
368        target_deps.push((libunwind_path, DependencyType::Target));
369    }
370
371    target_deps
372}
373
374/// Copies third party objects needed by various targets for self-contained linkage.
375fn copy_self_contained_objects(
376    builder: &Builder<'_>,
377    compiler: &Compiler,
378    target: TargetSelection,
379) -> Vec<(PathBuf, DependencyType)> {
380    let libdir_self_contained =
381        builder.sysroot_target_libdir(*compiler, target).join("self-contained");
382    t!(fs::create_dir_all(&libdir_self_contained));
383    let mut target_deps = vec![];
384
385    // Copies the libc and CRT objects.
386    //
387    // rustc historically provides a more self-contained installation for musl targets
388    // not requiring the presence of a native musl toolchain. For example, it can fall back
389    // to using gcc from a glibc-targeting toolchain for linking.
390    // To do that we have to distribute musl startup objects as a part of Rust toolchain
391    // and link with them manually in the self-contained mode.
392    if target.needs_crt_begin_end() {
393        let srcdir = builder.musl_libdir(target).unwrap_or_else(|| {
394            panic!("Target {:?} does not have a \"musl-libdir\" key", target.triple)
395        });
396        if !target.starts_with("wasm32") {
397            for &obj in &["libc.a", "crt1.o", "Scrt1.o", "rcrt1.o", "crti.o", "crtn.o"] {
398                copy_and_stamp(
399                    builder,
400                    &libdir_self_contained,
401                    &srcdir,
402                    obj,
403                    &mut target_deps,
404                    DependencyType::TargetSelfContained,
405                );
406            }
407            let crt_path = builder.ensure(llvm::CrtBeginEnd { target });
408            for &obj in &["crtbegin.o", "crtbeginS.o", "crtend.o", "crtendS.o"] {
409                let src = crt_path.join(obj);
410                let target = libdir_self_contained.join(obj);
411                builder.copy_link(&src, &target, FileType::NativeLibrary);
412                target_deps.push((target, DependencyType::TargetSelfContained));
413            }
414        } else {
415            // For wasm32 targets, we need to copy the libc.a and crt1-command.o files from the
416            // musl-libdir, but we don't need the other files.
417            for &obj in &["libc.a", "crt1-command.o"] {
418                copy_and_stamp(
419                    builder,
420                    &libdir_self_contained,
421                    &srcdir,
422                    obj,
423                    &mut target_deps,
424                    DependencyType::TargetSelfContained,
425                );
426            }
427        }
428        if !target.starts_with("s390x") {
429            let libunwind_path = copy_llvm_libunwind(builder, target, &libdir_self_contained);
430            target_deps.push((libunwind_path, DependencyType::TargetSelfContained));
431        }
432    } else if target.contains("-wasi") {
433        let srcdir = builder.wasi_libdir(target).unwrap_or_else(|| {
434            panic!(
435                "Target {:?} does not have a \"wasi-root\" key in bootstrap.toml \
436                    or `$WASI_SDK_PATH` set",
437                target.triple
438            )
439        });
440
441        // wasm32-wasip3 doesn't exist in wasi-libc yet, so instead use libs
442        // from the wasm32-wasip2 target. Once wasi-libc supports wasip3 this
443        // should be deleted and the native objects should be used.
444        let srcdir = if target == "wasm32-wasip3" {
445            assert!(!srcdir.exists(), "wasip3 support is in wasi-libc, this should be updated now");
446            builder.wasi_libdir(TargetSelection::from_user("wasm32-wasip2")).unwrap()
447        } else {
448            srcdir
449        };
450        for &obj in &["libc.a", "crt1-command.o", "crt1-reactor.o"] {
451            copy_and_stamp(
452                builder,
453                &libdir_self_contained,
454                &srcdir,
455                obj,
456                &mut target_deps,
457                DependencyType::TargetSelfContained,
458            );
459        }
460    } else if target.is_windows_gnu() || target.is_windows_gnullvm() {
461        for obj in ["crt2.o", "dllcrt2.o"].iter() {
462            let src = compiler_file(builder, &builder.cc(target), target, CLang::C, obj);
463            let dst = libdir_self_contained.join(obj);
464            builder.copy_link(&src, &dst, FileType::NativeLibrary);
465            target_deps.push((dst, DependencyType::TargetSelfContained));
466        }
467    }
468
469    target_deps
470}
471
472/// Resolves standard library crates for `Std::run_make` for any build kind (like check, doc,
473/// build, clippy, etc.).
474pub fn std_crates_for_run_make(run: &RunConfig<'_>) -> Vec<String> {
475    let mut crates = run.make_run_crates(builder::Alias::Library);
476
477    // For no_std targets, we only want to check core and alloc
478    // Regardless of core/alloc being selected explicitly or via the "library" default alias,
479    // we only want to keep these two crates.
480    // The set of no_std crates should be kept in sync with what `Builder::std_cargo` does.
481    // Note: an alternative design would be to return an enum from this function (Default vs Subset)
482    // of crates. However, several steps currently pass `-p <package>` even if all crates are
483    // selected, because Cargo behaves differently in that case. To keep that behavior without
484    // making further changes, we pre-filter the no-std crates here.
485    let target_is_no_std = run.builder.no_std(run.target).unwrap_or(false);
486    if target_is_no_std {
487        crates.retain(|c| c == "core" || c == "alloc");
488    }
489    crates
490}
491
492/// Tries to find LLVM's `compiler-rt` source directory, for building `library/profiler_builtins`.
493///
494/// Normally it lives in the `src/llvm-project` submodule, but if we will be using a
495/// downloaded copy of CI LLVM, then we try to use the `compiler-rt` sources from
496/// there instead, which lets us avoid checking out the LLVM submodule.
497fn compiler_rt_for_profiler(builder: &Builder<'_>) -> PathBuf {
498    // Try to use `compiler-rt` sources from downloaded CI LLVM, if possible.
499    if builder.config.llvm_from_ci {
500        // CI LLVM might not have been downloaded yet, so try to download it now.
501        builder.config.maybe_download_ci_llvm();
502        let ci_llvm_compiler_rt = builder.config.ci_llvm_root().join("compiler-rt");
503        if ci_llvm_compiler_rt.exists() {
504            return ci_llvm_compiler_rt;
505        }
506    }
507
508    // Otherwise, fall back to requiring the LLVM submodule.
509    builder.require_submodule("src/llvm-project", {
510        Some("The `build.profiler` config option requires `compiler-rt` sources from LLVM.")
511    });
512    builder.src.join("src/llvm-project/compiler-rt")
513}
514
515/// Configure cargo to compile the standard library, adding appropriate env vars
516/// and such.
517pub fn std_cargo(
518    builder: &Builder<'_>,
519    target: TargetSelection,
520    cargo: &mut Cargo,
521    crates: &[String],
522) {
523    // rustc already ensures that it builds with the minimum deployment
524    // target, so ideally we shouldn't need to do anything here.
525    //
526    // However, `cc` currently defaults to a higher version for backwards
527    // compatibility, which means that compiler-rt, which is built via
528    // compiler-builtins' build script, gets built with a higher deployment
529    // target. This in turn causes warnings while linking, and is generally
530    // a compatibility hazard.
531    //
532    // So, at least until https://github.com/rust-lang/cc-rs/issues/1171, or
533    // perhaps https://github.com/rust-lang/cargo/issues/13115 is resolved, we
534    // explicitly set the deployment target environment variables to avoid
535    // this issue.
536    //
537    // This place also serves as an extension point if we ever wanted to raise
538    // rustc's default deployment target while keeping the prebuilt `std` at
539    // a lower version, so it's kinda nice to have in any case.
540    if target.contains("apple") && !builder.config.dry_run() {
541        // Query rustc for the deployment target, and the associated env var.
542        // The env var is one of the standard `*_DEPLOYMENT_TARGET` vars, i.e.
543        // `MACOSX_DEPLOYMENT_TARGET`, `IPHONEOS_DEPLOYMENT_TARGET`, etc.
544        let mut cmd = builder.rustc_cmd(cargo.compiler());
545        cmd.arg("--target").arg(target.rustc_target_arg());
546        cmd.arg("--print=deployment-target");
547        let output = cmd.run_capture_stdout(builder).stdout();
548
549        let (env_var, value) = output.split_once('=').unwrap();
550        // Unconditionally set the env var (if it was set in the environment
551        // already, rustc should've picked that up).
552        cargo.env(env_var.trim(), value.trim());
553
554        // Allow CI to override the deployment target for `std` on macOS.
555        //
556        // This is useful because we might want the host tooling LLVM, `rustc`
557        // and Cargo to have a different deployment target than `std` itself
558        // (currently, these two versions are the same, but in the past, we
559        // supported macOS 10.7 for user code and macOS 10.8 in host tooling).
560        //
561        // It is not necessary on the other platforms, since only macOS has
562        // support for host tooling.
563        if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
564            cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
565        }
566    }
567
568    // Paths needed by `library/profiler_builtins/build.rs`.
569    if let Some(path) = builder.config.profiler_path(target) {
570        cargo.env("LLVM_PROFILER_RT_LIB", path);
571    } else if builder.config.profiler_enabled(target) {
572        let compiler_rt = compiler_rt_for_profiler(builder);
573        // Currently this is separate from the env var used by `compiler_builtins`
574        // (below) so that adding support for CI LLVM here doesn't risk breaking
575        // the compiler builtins. But they could be unified if desired.
576        cargo.env("RUST_COMPILER_RT_FOR_PROFILER", compiler_rt);
577    }
578
579    // Determine if we're going to compile in optimized C intrinsics to
580    // the `compiler-builtins` crate. These intrinsics live in LLVM's
581    // `compiler-rt` repository.
582    //
583    // Note that this shouldn't affect the correctness of `compiler-builtins`,
584    // but only its speed. Some intrinsics in C haven't been translated to Rust
585    // yet but that's pretty rare. Other intrinsics have optimized
586    // implementations in C which have only had slower versions ported to Rust,
587    // so we favor the C version where we can, but it's not critical.
588    //
589    // If `compiler-rt` is available ensure that the `c` feature of the
590    // `compiler-builtins` crate is enabled and it's configured to learn where
591    // `compiler-rt` is located.
592    let compiler_builtins_c_feature = match builder.config.optimized_compiler_builtins(target) {
593        CompilerBuiltins::LinkLLVMBuiltinsLib(path) => {
594            cargo.env("LLVM_COMPILER_RT_LIB", path);
595            " compiler-builtins-c"
596        }
597        CompilerBuiltins::BuildLLVMFuncs => {
598            // NOTE: this interacts strangely with `llvm-has-rust-patches`. In that case, we enforce
599            // `submodules = false`, so this is a no-op. But, the user could still decide to
600            //  manually use an in-tree submodule.
601            //
602            // NOTE: if we're using system llvm, we'll end up building a version of `compiler-rt`
603            // that doesn't match the LLVM we're linking to. That's probably ok? At least, the
604            // difference wasn't enforced before. There's a comment in the compiler_builtins build
605            // script that makes me nervous, though:
606            // https://github.com/rust-lang/compiler-builtins/blob/31ee4544dbe47903ce771270d6e3bea8654e9e50/build.rs#L575-L579
607            builder.require_submodule(
608                "src/llvm-project",
609                Some(
610                    "The `build.optimized-compiler-builtins` config option \
611                     requires `compiler-rt` sources from LLVM.",
612                ),
613            );
614            let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
615            if !builder.config.dry_run() {
616                // This assertion would otherwise trigger during tests if `llvm-project` is not
617                // checked out.
618                assert!(compiler_builtins_root.exists());
619            }
620
621            // The path to `compiler-rt` is also used by `profiler_builtins` (above),
622            // so if you're changing something here please also change that as appropriate.
623            cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
624            " compiler-builtins-c"
625        }
626        CompilerBuiltins::BuildRustOnly => "",
627    };
628
629    for krate in crates {
630        cargo.args(["-p", krate]);
631    }
632
633    let mut features = String::new();
634
635    if builder.no_std(target) == Some(true) {
636        features += " compiler-builtins-mem";
637        if !target.starts_with("bpf") {
638            features.push_str(compiler_builtins_c_feature);
639        }
640
641        // for no-std targets we only compile a few no_std crates
642        if crates.is_empty() {
643            cargo.args(["-p", "alloc"]);
644        }
645        cargo
646            .arg("--manifest-path")
647            .arg(builder.src.join("library/alloc/Cargo.toml"))
648            .arg("--features")
649            .arg(features);
650    } else {
651        features += &builder.std_features(target);
652        features.push_str(compiler_builtins_c_feature);
653
654        cargo
655            .arg("--features")
656            .arg(features)
657            .arg("--manifest-path")
658            .arg(builder.src.join("library/sysroot/Cargo.toml"));
659
660        // Help the libc crate compile by assisting it in finding various
661        // sysroot native libraries.
662        if target.contains("musl")
663            && let Some(p) = builder.musl_libdir(target)
664        {
665            let root = format!("native={}", p.to_str().unwrap());
666            cargo.rustflag("-L").rustflag(&root);
667        }
668
669        if target.contains("-wasi")
670            && let Some(dir) = builder.wasi_libdir(target)
671        {
672            let root = format!("native={}", dir.to_str().unwrap());
673            cargo.rustflag("-L").rustflag(&root);
674        }
675    }
676
677    if builder.config.rust_lto == RustcLto::Off {
678        cargo.rustflag("-Clto=off");
679    }
680
681    // By default, rustc does not include unwind tables unless they are required
682    // for a particular target. They are not required by RISC-V targets, but
683    // compiling the standard library with them means that users can get
684    // backtraces without having to recompile the standard library themselves.
685    //
686    // This choice was discussed in https://github.com/rust-lang/rust/pull/69890
687    if target.contains("riscv") {
688        cargo.rustflag("-Cforce-unwind-tables=yes");
689    }
690
691    let html_root =
692        format!("-Zcrate-attr=doc(html_root_url=\"{}/\")", builder.doc_rust_lang_org_channel(),);
693    cargo.rustflag(&html_root);
694    cargo.rustdocflag(&html_root);
695
696    cargo.rustdocflag("-Zcrate-attr=warn(rust_2018_idioms)");
697}
698
699/// Link all libstd rlibs/dylibs into a sysroot of `target_compiler`.
700///
701/// Links those artifacts generated by `compiler` to the `stage` compiler's
702/// sysroot for the specified `host` and `target`.
703///
704/// Note that this assumes that `compiler` has already generated the libstd
705/// libraries for `target`, and this method will find them in the relevant
706/// output directory.
707#[derive(Debug, Clone, PartialEq, Eq, Hash)]
708pub struct StdLink {
709    pub compiler: Compiler,
710    pub target_compiler: Compiler,
711    pub target: TargetSelection,
712    /// Not actually used; only present to make sure the cache invalidation is correct.
713    crates: Vec<String>,
714    /// See [`Std::force_recompile`].
715    force_recompile: bool,
716}
717
718impl StdLink {
719    pub fn from_std(std: Std, host_compiler: Compiler) -> Self {
720        Self {
721            compiler: host_compiler,
722            target_compiler: std.build_compiler,
723            target: std.target,
724            crates: std.crates,
725            force_recompile: std.force_recompile,
726        }
727    }
728}
729
730impl Step for StdLink {
731    type Output = ();
732
733    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
734        run.never()
735    }
736
737    /// Link all libstd rlibs/dylibs into the sysroot location.
738    ///
739    /// Links those artifacts generated by `compiler` to the `stage` compiler's
740    /// sysroot for the specified `host` and `target`.
741    ///
742    /// Note that this assumes that `compiler` has already generated the libstd
743    /// libraries for `target`, and this method will find them in the relevant
744    /// output directory.
745    fn run(self, builder: &Builder<'_>) {
746        let compiler = self.compiler;
747        let target_compiler = self.target_compiler;
748        let target = self.target;
749
750        // NOTE: intentionally does *not* check `target == builder.build` to avoid having to add the same check in `test::Crate`.
751        let (libdir, hostdir) = if !self.force_recompile && builder.download_rustc() {
752            // NOTE: copies part of `sysroot_libdir` to avoid having to add a new `force_recompile` argument there too
753            let lib = builder.sysroot_libdir_relative(self.compiler);
754            let sysroot = builder.ensure(crate::core::build_steps::compile::Sysroot {
755                compiler: self.compiler,
756                force_recompile: self.force_recompile,
757            });
758            let libdir = sysroot.join(lib).join("rustlib").join(target).join("lib");
759            let hostdir = sysroot.join(lib).join("rustlib").join(compiler.host).join("lib");
760            (libdir, hostdir)
761        } else {
762            let libdir = builder.sysroot_target_libdir(target_compiler, target);
763            let hostdir = builder.sysroot_target_libdir(target_compiler, compiler.host);
764            (libdir, hostdir)
765        };
766
767        let is_downloaded_beta_stage0 = builder
768            .build
769            .config
770            .initial_rustc
771            .starts_with(builder.out.join(compiler.host).join("stage0/bin"));
772
773        // Special case for stage0, to make `rustup toolchain link` and `x dist --stage 0`
774        // work for stage0-sysroot. We only do this if the stage0 compiler comes from beta,
775        // and is not set to a custom path.
776        if compiler.stage == 0 && is_downloaded_beta_stage0 {
777            // Copy bin files from stage0/bin to stage0-sysroot/bin
778            let sysroot = builder.out.join(compiler.host).join("stage0-sysroot");
779
780            let host = compiler.host;
781            let stage0_bin_dir = builder.out.join(host).join("stage0/bin");
782            let sysroot_bin_dir = sysroot.join("bin");
783            t!(fs::create_dir_all(&sysroot_bin_dir));
784            builder.cp_link_r(&stage0_bin_dir, &sysroot_bin_dir);
785
786            let stage0_lib_dir = builder.out.join(host).join("stage0/lib");
787            t!(fs::create_dir_all(sysroot.join("lib")));
788            builder.cp_link_r(&stage0_lib_dir, &sysroot.join("lib"));
789
790            // Copy codegen-backends from stage0
791            let sysroot_codegen_backends = builder.sysroot_codegen_backends(compiler);
792            t!(fs::create_dir_all(&sysroot_codegen_backends));
793            let stage0_codegen_backends = builder
794                .out
795                .join(host)
796                .join("stage0/lib/rustlib")
797                .join(host)
798                .join("codegen-backends");
799            if stage0_codegen_backends.exists() {
800                builder.cp_link_r(&stage0_codegen_backends, &sysroot_codegen_backends);
801            }
802        } else if compiler.stage == 0 {
803            let sysroot = builder.out.join(compiler.host.triple).join("stage0-sysroot");
804
805            if builder.local_rebuild {
806                // On local rebuilds this path might be a symlink to the project root,
807                // which can be read-only (e.g., on CI). So remove it before copying
808                // the stage0 lib.
809                let _ = fs::remove_dir_all(sysroot.join("lib/rustlib/src/rust"));
810            }
811
812            builder.cp_link_r(&builder.initial_sysroot.join("lib"), &sysroot.join("lib"));
813        } else {
814            if builder.download_rustc() {
815                // Ensure there are no CI-rustc std artifacts.
816                let _ = fs::remove_dir_all(&libdir);
817                let _ = fs::remove_dir_all(&hostdir);
818            }
819
820            add_to_sysroot(
821                builder,
822                &libdir,
823                &hostdir,
824                &build_stamp::libstd_stamp(builder, compiler, target),
825            );
826        }
827    }
828}
829
830/// Copies sanitizer runtime libraries into target libdir.
831fn copy_sanitizers(
832    builder: &Builder<'_>,
833    compiler: &Compiler,
834    target: TargetSelection,
835) -> Vec<PathBuf> {
836    let runtimes: Vec<llvm::SanitizerRuntime> = builder.ensure(llvm::Sanitizers { target });
837
838    if builder.config.dry_run() {
839        return Vec::new();
840    }
841
842    let mut target_deps = Vec::new();
843    let libdir = builder.sysroot_target_libdir(*compiler, target);
844
845    for runtime in &runtimes {
846        let dst = libdir.join(&runtime.name);
847        builder.copy_link(&runtime.path, &dst, FileType::NativeLibrary);
848
849        // The `aarch64-apple-ios-macabi` and `x86_64-apple-ios-macabi` are also supported for
850        // sanitizers, but they share a sanitizer runtime with `${arch}-apple-darwin`, so we do
851        // not list them here to rename and sign the runtime library.
852        if target == "x86_64-apple-darwin"
853            || target == "aarch64-apple-darwin"
854            || target == "aarch64-apple-ios"
855            || target == "aarch64-apple-ios-sim"
856            || target == "x86_64-apple-ios"
857        {
858            // Update the library’s install name to reflect that it has been renamed.
859            apple_darwin_update_library_name(builder, &dst, &format!("@rpath/{}", runtime.name));
860            // Upon renaming the install name, the code signature of the file will invalidate,
861            // so we will sign it again.
862            apple_darwin_sign_file(builder, &dst);
863        }
864
865        target_deps.push(dst);
866    }
867
868    target_deps
869}
870
871fn apple_darwin_update_library_name(builder: &Builder<'_>, library_path: &Path, new_name: &str) {
872    command("install_name_tool").arg("-id").arg(new_name).arg(library_path).run(builder);
873}
874
875fn apple_darwin_sign_file(builder: &Builder<'_>, file_path: &Path) {
876    command("codesign")
877        .arg("-f") // Force to rewrite the existing signature
878        .arg("-s")
879        .arg("-")
880        .arg(file_path)
881        .run(builder);
882}
883
884#[derive(Debug, Clone, PartialEq, Eq, Hash)]
885pub struct StartupObjects {
886    pub compiler: Compiler,
887    pub target: TargetSelection,
888}
889
890impl Step for StartupObjects {
891    type Output = Vec<(PathBuf, DependencyType)>;
892
893    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
894        run.path("library/rtstartup")
895    }
896
897    fn make_run(run: RunConfig<'_>) {
898        run.builder.ensure(StartupObjects {
899            compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()),
900            target: run.target,
901        });
902    }
903
904    /// Builds and prepare startup objects like rsbegin.o and rsend.o
905    ///
906    /// These are primarily used on Windows right now for linking executables/dlls.
907    /// They don't require any library support as they're just plain old object
908    /// files, so we just use the nightly snapshot compiler to always build them (as
909    /// no other compilers are guaranteed to be available).
910    fn run(self, builder: &Builder<'_>) -> Vec<(PathBuf, DependencyType)> {
911        let for_compiler = self.compiler;
912        let target = self.target;
913        // Even though no longer necessary on x86_64, they are kept for now to
914        // avoid potential issues in downstream crates.
915        if !target.is_windows_gnu() {
916            return vec![];
917        }
918
919        let mut target_deps = vec![];
920
921        let src_dir = &builder.src.join("library").join("rtstartup");
922        let dst_dir = &builder.native_dir(target).join("rtstartup");
923        let sysroot_dir = &builder.sysroot_target_libdir(for_compiler, target);
924        t!(fs::create_dir_all(dst_dir));
925
926        for file in &["rsbegin", "rsend"] {
927            let src_file = &src_dir.join(file.to_string() + ".rs");
928            let dst_file = &dst_dir.join(file.to_string() + ".o");
929            if !up_to_date(src_file, dst_file) {
930                let mut cmd = command(&builder.initial_rustc);
931                cmd.env("RUSTC_BOOTSTRAP", "1");
932                if !builder.local_rebuild {
933                    // a local_rebuild compiler already has stage1 features
934                    cmd.arg("--cfg").arg("bootstrap");
935                }
936                cmd.arg("--target")
937                    .arg(target.rustc_target_arg())
938                    .arg("--emit=obj")
939                    .arg("-o")
940                    .arg(dst_file)
941                    .arg(src_file)
942                    .run(builder);
943            }
944
945            let obj = sysroot_dir.join((*file).to_string() + ".o");
946            builder.copy_link(dst_file, &obj, FileType::NativeLibrary);
947            target_deps.push((obj, DependencyType::Target));
948        }
949
950        target_deps
951    }
952}
953
954fn cp_rustc_component_to_ci_sysroot(builder: &Builder<'_>, sysroot: &Path, contents: Vec<String>) {
955    let ci_rustc_dir = builder.config.ci_rustc_dir();
956
957    for file in contents {
958        let src = ci_rustc_dir.join(&file);
959        let dst = sysroot.join(file);
960        if src.is_dir() {
961            t!(fs::create_dir_all(dst));
962        } else {
963            builder.copy_link(&src, &dst, FileType::Regular);
964        }
965    }
966}
967
968/// Represents information about a built rustc.
969#[derive(Clone, Debug)]
970pub struct BuiltRustc {
971    /// The compiler that actually built this *rustc*.
972    /// This can be different from the *build_compiler* passed to the `Rustc` step because of
973    /// uplifting.
974    pub build_compiler: Compiler,
975}
976
977/// Build rustc using the passed `build_compiler`.
978///
979/// - Makes sure that `build_compiler` has a standard library prepared for its host target,
980///   so that it can compile build scripts and proc macros when building this `rustc`.
981/// - Makes sure that `build_compiler` has a standard library prepared for `target`,
982///   so that the built `rustc` can *link to it* and use it at runtime.
983#[derive(Debug, Clone, PartialEq, Eq, Hash)]
984pub struct Rustc {
985    /// The target on which rustc will run (its host).
986    pub target: TargetSelection,
987    /// The **previous** compiler used to compile this rustc.
988    pub build_compiler: Compiler,
989    /// Whether to build a subset of crates, rather than the whole compiler.
990    ///
991    /// This should only be requested by the user, not used within bootstrap itself.
992    /// Using it within bootstrap can lead to confusing situation where lints are replayed
993    /// in two different steps.
994    crates: Vec<String>,
995}
996
997impl Rustc {
998    pub fn new(build_compiler: Compiler, target: TargetSelection) -> Self {
999        Self { target, build_compiler, crates: Default::default() }
1000    }
1001}
1002
1003impl Step for Rustc {
1004    type Output = BuiltRustc;
1005    const IS_HOST: bool = true;
1006
1007    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1008        let mut crates = run.builder.in_tree_crates("rustc-main", None);
1009        for (i, krate) in crates.iter().enumerate() {
1010            // We can't allow `build rustc` as an alias for this Step, because that's reserved by `Assemble`.
1011            // Ideally Assemble would use `build compiler` instead, but that seems too confusing to be worth the breaking change.
1012            if krate.name == "rustc-main" {
1013                crates.swap_remove(i);
1014                break;
1015            }
1016        }
1017        run.crates(crates)
1018    }
1019
1020    fn is_default_step(_builder: &Builder<'_>) -> bool {
1021        false
1022    }
1023
1024    fn make_run(run: RunConfig<'_>) {
1025        // If only `compiler` was passed, do not run this step.
1026        // Instead the `Assemble` step will take care of compiling Rustc.
1027        if run.builder.paths == vec![PathBuf::from("compiler")] {
1028            return;
1029        }
1030
1031        let crates = run.cargo_crates_in_set();
1032        run.builder.ensure(Rustc {
1033            build_compiler: run
1034                .builder
1035                .compiler(run.builder.top_stage.saturating_sub(1), run.build_triple()),
1036            target: run.target,
1037            crates,
1038        });
1039    }
1040
1041    /// Builds the compiler.
1042    ///
1043    /// This will build the compiler for a particular stage of the build using
1044    /// the `build_compiler` targeting the `target` architecture. The artifacts
1045    /// created will also be linked into the sysroot directory.
1046    fn run(self, builder: &Builder<'_>) -> Self::Output {
1047        let build_compiler = self.build_compiler;
1048        let target = self.target;
1049
1050        // NOTE: the ABI of the stage0 compiler is different from the ABI of the downloaded compiler,
1051        // so its artifacts can't be reused.
1052        if builder.download_rustc() && build_compiler.stage != 0 {
1053            trace!(stage = build_compiler.stage, "`download_rustc` requested");
1054
1055            let sysroot =
1056                builder.ensure(Sysroot { compiler: build_compiler, force_recompile: false });
1057            cp_rustc_component_to_ci_sysroot(
1058                builder,
1059                &sysroot,
1060                builder.config.ci_rustc_dev_contents(),
1061            );
1062            return BuiltRustc { build_compiler };
1063        }
1064
1065        // Build a standard library for `target` using the `build_compiler`.
1066        // This will be the standard library that the rustc which we build *links to*.
1067        builder.std(build_compiler, target);
1068
1069        if builder.config.keep_stage.contains(&build_compiler.stage) {
1070            trace!(stage = build_compiler.stage, "`keep-stage` requested");
1071
1072            builder.info("WARNING: Using a potentially old librustc. This may not behave well.");
1073            builder.info("WARNING: Use `--keep-stage-std` if you want to rebuild the compiler when it changes");
1074            builder.ensure(RustcLink::from_rustc(self));
1075
1076            return BuiltRustc { build_compiler };
1077        }
1078
1079        // The stage of the compiler that we're building
1080        let stage = build_compiler.stage + 1;
1081
1082        // If we are building a stage3+ compiler, and full bootstrap is disabled, and we have a
1083        // previous rustc available, we will uplift a compiler from a previous stage.
1084        // We do not allow cross-compilation uplifting here, because there it can be quite tricky
1085        // to figure out which stage actually built the rustc that should be uplifted.
1086        if build_compiler.stage >= 2
1087            && !builder.config.full_bootstrap
1088            && target == builder.host_target
1089        {
1090            // Here we need to determine the **build compiler** that built the stage that we will
1091            // be uplifting. We cannot uplift stage 1, as it has a different ABI than stage 2+,
1092            // so we always uplift the stage2 compiler (compiled with stage 1).
1093            let uplift_build_compiler = builder.compiler(1, build_compiler.host);
1094
1095            let msg = format!("Uplifting rustc from stage2 to stage{stage})");
1096            builder.info(&msg);
1097
1098            // Here the compiler that built the rlibs (`uplift_build_compiler`) can be different
1099            // from the compiler whose sysroot should be modified in this step. So we need to copy
1100            // the (previously built) rlibs into the correct sysroot.
1101            builder.ensure(RustcLink::from_build_compiler_and_sysroot(
1102                // This is the compiler that actually built the rustc rlibs
1103                uplift_build_compiler,
1104                // We copy the rlibs into the sysroot of `build_compiler`
1105                build_compiler,
1106                target,
1107                self.crates,
1108            ));
1109
1110            // Here we have performed an uplift, so we return the actual build compiler that "built"
1111            // this rustc.
1112            return BuiltRustc { build_compiler: uplift_build_compiler };
1113        }
1114
1115        // Build a standard library for the current host target using the `build_compiler`.
1116        // This standard library will be used when building `rustc` for compiling
1117        // build scripts and proc macros.
1118        // If we are not cross-compiling, the Std build above will be the same one as the one we
1119        // prepare here.
1120        builder.std(
1121            builder.compiler(self.build_compiler.stage, builder.config.host_target),
1122            builder.config.host_target,
1123        );
1124
1125        let mut cargo = builder::Cargo::new(
1126            builder,
1127            build_compiler,
1128            Mode::Rustc,
1129            SourceType::InTree,
1130            target,
1131            Kind::Build,
1132        );
1133
1134        rustc_cargo(builder, &mut cargo, target, &build_compiler, &self.crates);
1135
1136        // NB: all RUSTFLAGS should be added to `rustc_cargo()` so they will be
1137        // consistently applied by check/doc/test modes too.
1138
1139        for krate in &*self.crates {
1140            cargo.arg("-p").arg(krate);
1141        }
1142
1143        if builder.build.config.enable_bolt_settings && build_compiler.stage == 1 {
1144            // Relocations are required for BOLT to work.
1145            cargo.env("RUSTC_BOLT_LINK_FLAGS", "1");
1146        }
1147
1148        let _guard = builder.msg(
1149            Kind::Build,
1150            format_args!("compiler artifacts{}", crate_description(&self.crates)),
1151            Mode::Rustc,
1152            build_compiler,
1153            target,
1154        );
1155        let stamp = build_stamp::librustc_stamp(builder, build_compiler, target);
1156
1157        run_cargo(
1158            builder,
1159            cargo,
1160            vec![],
1161            &stamp,
1162            vec![],
1163            ArtifactKeepMode::Custom(Box::new(|filename| {
1164                if filename.contains("jemalloc_sys")
1165                    || filename.contains("rustc_public_bridge")
1166                    || filename.contains("rustc_public")
1167                {
1168                    // jemalloc_sys and rustc_public_bridge are not linked into librustc_driver.so,
1169                    // so we need to distribute them as rlib to be able to use them.
1170                    filename.ends_with(".rlib")
1171                } else {
1172                    // Distribute the rest of the rustc crates as rmeta files only to reduce
1173                    // the tarball sizes by about 50%. The object files are linked into
1174                    // librustc_driver.so, so it is still possible to link against them.
1175                    filename.ends_with(".rmeta")
1176                }
1177            })),
1178        );
1179
1180        let target_root_dir = stamp.path().parent().unwrap();
1181        // When building `librustc_driver.so` (like `libLLVM.so`) on linux, it can contain
1182        // unexpected debuginfo from dependencies, for example from the C++ standard library used in
1183        // our LLVM wrapper. Unless we're explicitly requesting `librustc_driver` to be built with
1184        // debuginfo (via the debuginfo level of the executables using it): strip this debuginfo
1185        // away after the fact.
1186        if builder.config.rust_debuginfo_level_rustc == DebuginfoLevel::None
1187            && builder.config.rust_debuginfo_level_tools == DebuginfoLevel::None
1188        {
1189            let rustc_driver = target_root_dir.join("librustc_driver.so");
1190            strip_debug(builder, target, &rustc_driver);
1191        }
1192
1193        if builder.config.rust_debuginfo_level_rustc == DebuginfoLevel::None {
1194            // Due to LTO a lot of debug info from C++ dependencies such as jemalloc can make it into
1195            // our final binaries
1196            strip_debug(builder, target, &target_root_dir.join("rustc-main"));
1197        }
1198
1199        builder.ensure(RustcLink::from_rustc(self));
1200        BuiltRustc { build_compiler }
1201    }
1202
1203    fn metadata(&self) -> Option<StepMetadata> {
1204        Some(StepMetadata::build("rustc", self.target).built_by(self.build_compiler))
1205    }
1206}
1207
1208pub fn rustc_cargo(
1209    builder: &Builder<'_>,
1210    cargo: &mut Cargo,
1211    target: TargetSelection,
1212    build_compiler: &Compiler,
1213    crates: &[String],
1214) {
1215    cargo
1216        .arg("--features")
1217        .arg(builder.rustc_features(builder.kind, target, crates))
1218        .arg("--manifest-path")
1219        .arg(builder.src.join("compiler/rustc/Cargo.toml"));
1220
1221    cargo.rustdocflag("-Zcrate-attr=warn(rust_2018_idioms)");
1222
1223    // If the rustc output is piped to e.g. `head -n1` we want the process to be killed, rather than
1224    // having an error bubble up and cause a panic.
1225    //
1226    // FIXME(jieyouxu): this flag is load-bearing for rustc to not ICE on broken pipes, because
1227    // rustc internally sometimes uses std `println!` -- but std `println!` by default will panic on
1228    // broken pipes, and uncaught panics will manifest as an ICE. The compiler *should* handle this
1229    // properly, but this flag is set in the meantime to paper over the I/O errors.
1230    //
1231    // See <https://github.com/rust-lang/rust/issues/131059> for details.
1232    //
1233    // Also see the discussion for properly handling I/O errors related to broken pipes, i.e. safe
1234    // variants of `println!` in
1235    // <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Internal.20lint.20for.20raw.20.60print!.60.20and.20.60println!.60.3F>.
1236    cargo.rustflag("-Zon-broken-pipe=kill");
1237
1238    // Building with protected visibility reduces the number of dynamic relocations needed, giving
1239    // us a faster startup time. However GNU ld < 2.40 will error if we try to link a shared object
1240    // with direct references to protected symbols, so for now we only use protected symbols if
1241    // linking with LLD is enabled.
1242    if builder.build.config.bootstrap_override_lld.is_used() {
1243        cargo.rustflag("-Zdefault-visibility=protected");
1244    }
1245
1246    if is_lto_stage(build_compiler) {
1247        match builder.config.rust_lto {
1248            RustcLto::Thin | RustcLto::Fat => {
1249                // Since using LTO for optimizing dylibs is currently experimental,
1250                // we need to pass -Zdylib-lto.
1251                cargo.rustflag("-Zdylib-lto");
1252                // Cargo by default passes `-Cembed-bitcode=no` and doesn't pass `-Clto` when
1253                // compiling dylibs (and their dependencies), even when LTO is enabled for the
1254                // crate. Therefore, we need to override `-Clto` and `-Cembed-bitcode` here.
1255                let lto_type = match builder.config.rust_lto {
1256                    RustcLto::Thin => "thin",
1257                    RustcLto::Fat => "fat",
1258                    _ => unreachable!(),
1259                };
1260                cargo.rustflag(&format!("-Clto={lto_type}"));
1261                cargo.rustflag("-Cembed-bitcode=yes");
1262            }
1263            RustcLto::ThinLocal => { /* Do nothing, this is the default */ }
1264            RustcLto::Off => {
1265                cargo.rustflag("-Clto=off");
1266            }
1267        }
1268    } else if builder.config.rust_lto == RustcLto::Off {
1269        cargo.rustflag("-Clto=off");
1270    }
1271
1272    // With LLD, we can use ICF (identical code folding) to reduce the executable size
1273    // of librustc_driver/rustc and to improve i-cache utilization.
1274    //
1275    // -Wl,[link options] doesn't work on MSVC. However, /OPT:ICF (technically /OPT:REF,ICF)
1276    // is already on by default in MSVC optimized builds, which is interpreted as --icf=all:
1277    // https://github.com/llvm/llvm-project/blob/3329cec2f79185bafd678f310fafadba2a8c76d2/lld/COFF/Driver.cpp#L1746
1278    // https://github.com/rust-lang/rust/blob/f22819bcce4abaff7d1246a56eec493418f9f4ee/compiler/rustc_codegen_ssa/src/back/linker.rs#L827
1279    if builder.config.bootstrap_override_lld.is_used() && !build_compiler.host.is_msvc() {
1280        cargo.rustflag("-Clink-args=-Wl,--icf=all");
1281    }
1282
1283    if builder.config.rust_profile_use.is_some() && builder.config.rust_profile_generate.is_some() {
1284        panic!("Cannot use and generate PGO profiles at the same time");
1285    }
1286    let is_collecting = if let Some(path) = &builder.config.rust_profile_generate {
1287        if build_compiler.stage == 1 {
1288            cargo.rustflag(&format!("-Cprofile-generate={path}"));
1289            // Apparently necessary to avoid overflowing the counters during
1290            // a Cargo build profile
1291            cargo.rustflag("-Cllvm-args=-vp-counters-per-site=4");
1292            true
1293        } else {
1294            false
1295        }
1296    } else if let Some(path) = &builder.config.rust_profile_use {
1297        if build_compiler.stage == 1 {
1298            cargo.rustflag(&format!("-Cprofile-use={path}"));
1299            if builder.is_verbose() {
1300                cargo.rustflag("-Cllvm-args=-pgo-warn-missing-function");
1301            }
1302            true
1303        } else {
1304            false
1305        }
1306    } else {
1307        false
1308    };
1309    if is_collecting {
1310        // Ensure paths to Rust sources are relative, not absolute.
1311        cargo.rustflag(&format!(
1312            "-Cllvm-args=-static-func-strip-dirname-prefix={}",
1313            builder.config.src.components().count()
1314        ));
1315    }
1316
1317    // The stage0 compiler changes infrequently and does not directly depend on code
1318    // in the current working directory. Therefore, caching it with sccache should be
1319    // useful.
1320    // This is only performed for non-incremental builds, as ccache cannot deal with these.
1321    if let Some(ref ccache) = builder.config.ccache
1322        && build_compiler.stage == 0
1323        && !builder.config.incremental
1324    {
1325        cargo.env("RUSTC_WRAPPER", ccache);
1326    }
1327
1328    rustc_cargo_env(builder, cargo, target);
1329}
1330
1331pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
1332    // Set some configuration variables picked up by build scripts and
1333    // the compiler alike
1334    cargo
1335        .env("CFG_RELEASE", builder.rust_release())
1336        .env("CFG_RELEASE_CHANNEL", &builder.config.channel)
1337        .env("CFG_VERSION", builder.rust_version());
1338
1339    // Some tools like Cargo detect their own git information in build scripts. When omit-git-hash
1340    // is enabled in bootstrap.toml, we pass this environment variable to tell build scripts to avoid
1341    // detecting git information on their own.
1342    if builder.config.omit_git_hash {
1343        cargo.env("CFG_OMIT_GIT_HASH", "1");
1344    }
1345
1346    cargo.env("CFG_DEFAULT_CODEGEN_BACKEND", builder.config.default_codegen_backend(target).name());
1347
1348    let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib"));
1349    let target_config = builder.config.target_config.get(&target);
1350
1351    cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
1352
1353    if let Some(ref ver_date) = builder.rust_info().commit_date() {
1354        cargo.env("CFG_VER_DATE", ver_date);
1355    }
1356    if let Some(ref ver_hash) = builder.rust_info().sha() {
1357        cargo.env("CFG_VER_HASH", ver_hash);
1358    }
1359    if !builder.unstable_features() {
1360        cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
1361    }
1362
1363    // Prefer the current target's own default_linker, else a globally
1364    // specified one.
1365    if let Some(s) = target_config.and_then(|c| c.default_linker.as_ref()) {
1366        cargo.env("CFG_DEFAULT_LINKER", s);
1367    } else if let Some(ref s) = builder.config.rustc_default_linker {
1368        cargo.env("CFG_DEFAULT_LINKER", s);
1369    }
1370
1371    // Enable rustc's env var to use a linker override on Linux when requested.
1372    if let Some(linker) = target_config.map(|c| c.default_linker_linux_override) {
1373        match linker {
1374            DefaultLinuxLinkerOverride::Off => {}
1375            DefaultLinuxLinkerOverride::SelfContainedLldCc => {
1376                cargo.env("CFG_DEFAULT_LINKER_SELF_CONTAINED_LLD_CC", "1");
1377            }
1378        }
1379    }
1380
1381    if builder.config.rust_verify_llvm_ir {
1382        cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
1383    }
1384
1385    // These conditionals represent a tension between three forces:
1386    // - For non-check builds, we need to define some LLVM-related environment
1387    //   variables, requiring LLVM to have been built.
1388    // - For check builds, we want to avoid building LLVM if possible.
1389    // - Check builds and non-check builds should have the same environment if
1390    //   possible, to avoid unnecessary rebuilds due to cache-busting.
1391    //
1392    // Therefore we try to avoid building LLVM for check builds, but only if
1393    // building LLVM would be expensive. If "building" LLVM is cheap
1394    // (i.e. it's already built or is downloadable), we prefer to maintain a
1395    // consistent environment between check and non-check builds.
1396    if builder.config.llvm_enabled(target) {
1397        let building_llvm_is_expensive =
1398            crate::core::build_steps::llvm::prebuilt_llvm_config(builder, target, false)
1399                .should_build();
1400
1401        let skip_llvm = (builder.kind == Kind::Check) && building_llvm_is_expensive;
1402        if !skip_llvm {
1403            rustc_llvm_env(builder, cargo, target)
1404        }
1405    }
1406
1407    // See also the "JEMALLOC_SYS_WITH_LG_PAGE" setting in the tool build step.
1408    if builder.config.jemalloc(target) && env::var_os("JEMALLOC_SYS_WITH_LG_PAGE").is_none() {
1409        // Build jemalloc on AArch64 with support for page sizes up to 64K
1410        // See: https://github.com/rust-lang/rust/pull/135081
1411        if target.starts_with("aarch64") {
1412            cargo.env("JEMALLOC_SYS_WITH_LG_PAGE", "16");
1413        }
1414        // Build jemalloc on LoongArch with support for page sizes up to 16K
1415        else if target.starts_with("loongarch") {
1416            cargo.env("JEMALLOC_SYS_WITH_LG_PAGE", "14");
1417        }
1418    }
1419}
1420
1421/// Pass down configuration from the LLVM build into the build of
1422/// rustc_llvm and rustc_codegen_llvm.
1423///
1424/// Note that this has the side-effect of _building LLVM_, which is sometimes
1425/// unwanted (e.g. for check builds).
1426fn rustc_llvm_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
1427    if builder.config.is_rust_llvm(target) {
1428        cargo.env("LLVM_RUSTLLVM", "1");
1429    }
1430    if builder.config.llvm_enzyme {
1431        cargo.env("LLVM_ENZYME", "1");
1432    }
1433    let llvm::LlvmResult { host_llvm_config, .. } = builder.ensure(llvm::Llvm { target });
1434    if builder.config.llvm_offload {
1435        builder.ensure(llvm::OmpOffload { target });
1436        cargo.env("LLVM_OFFLOAD", "1");
1437    }
1438
1439    cargo.env("LLVM_CONFIG", &host_llvm_config);
1440
1441    // Some LLVM linker flags (-L and -l) may be needed to link `rustc_llvm`. Its build script
1442    // expects these to be passed via the `LLVM_LINKER_FLAGS` env variable, separated by
1443    // whitespace.
1444    //
1445    // For example:
1446    // - on windows, when `clang-cl` is used with instrumentation, we need to manually add
1447    // clang's runtime library resource directory so that the profiler runtime library can be
1448    // found. This is to avoid the linker errors about undefined references to
1449    // `__llvm_profile_instrument_memop` when linking `rustc_driver`.
1450    let mut llvm_linker_flags = String::new();
1451    if builder.config.llvm_profile_generate
1452        && target.is_msvc()
1453        && let Some(ref clang_cl_path) = builder.config.llvm_clang_cl
1454    {
1455        // Add clang's runtime library directory to the search path
1456        let clang_rt_dir = get_clang_cl_resource_dir(builder, clang_cl_path);
1457        llvm_linker_flags.push_str(&format!("-L{}", clang_rt_dir.display()));
1458    }
1459
1460    // The config can also specify its own llvm linker flags.
1461    if let Some(ref s) = builder.config.llvm_ldflags {
1462        if !llvm_linker_flags.is_empty() {
1463            llvm_linker_flags.push(' ');
1464        }
1465        llvm_linker_flags.push_str(s);
1466    }
1467
1468    // Set the linker flags via the env var that `rustc_llvm`'s build script will read.
1469    if !llvm_linker_flags.is_empty() {
1470        cargo.env("LLVM_LINKER_FLAGS", llvm_linker_flags);
1471    }
1472
1473    // Building with a static libstdc++ is only supported on Linux and windows-gnu* right now,
1474    // not for MSVC or macOS
1475    if builder.config.llvm_static_stdcpp
1476        && !target.contains("freebsd")
1477        && !target.is_msvc()
1478        && !target.contains("apple")
1479        && !target.contains("solaris")
1480    {
1481        let libstdcxx_name =
1482            if target.contains("windows-gnullvm") { "libc++.a" } else { "libstdc++.a" };
1483        let file = compiler_file(
1484            builder,
1485            &builder.cxx(target).unwrap(),
1486            target,
1487            CLang::Cxx,
1488            libstdcxx_name,
1489        );
1490        cargo.env("LLVM_STATIC_STDCPP", file);
1491    }
1492    if builder.llvm_link_shared() {
1493        cargo.env("LLVM_LINK_SHARED", "1");
1494    }
1495    if builder.config.llvm_use_libcxx {
1496        cargo.env("LLVM_USE_LIBCXX", "1");
1497    }
1498    if builder.config.llvm_assertions {
1499        cargo.env("LLVM_ASSERTIONS", "1");
1500    }
1501}
1502
1503/// `RustcLink` copies compiler rlibs from a rustc build into a compiler sysroot.
1504/// It works with (potentially up to) three compilers:
1505/// - `build_compiler` is a compiler that built rustc rlibs
1506/// - `sysroot_compiler` is a compiler into whose sysroot we will copy the rlibs
1507///   - In most situations, `build_compiler` == `sysroot_compiler`
1508/// - `target_compiler` is the compiler whose rlibs were built. It is not represented explicitly
1509///   in this step, rather we just read the rlibs from a rustc build stamp of `build_compiler`.
1510///
1511/// This is necessary for tools using `rustc_private`, where the previous compiler will build
1512/// a tool against the next compiler.
1513/// To build a tool against a compiler, the rlibs of that compiler that it links against
1514/// must be in the sysroot of the compiler that's doing the compiling.
1515#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1516struct RustcLink {
1517    /// This compiler **built** some rustc, whose rlibs we will copy into a sysroot.
1518    build_compiler: Compiler,
1519    /// This is the compiler into whose sysroot we want to copy the built rlibs.
1520    /// In most cases, it will correspond to `build_compiler`.
1521    sysroot_compiler: Compiler,
1522    target: TargetSelection,
1523    /// Not actually used; only present to make sure the cache invalidation is correct.
1524    crates: Vec<String>,
1525}
1526
1527impl RustcLink {
1528    /// Copy rlibs from the build compiler that build this `rustc` into the sysroot of that
1529    /// build compiler.
1530    fn from_rustc(rustc: Rustc) -> Self {
1531        Self {
1532            build_compiler: rustc.build_compiler,
1533            sysroot_compiler: rustc.build_compiler,
1534            target: rustc.target,
1535            crates: rustc.crates,
1536        }
1537    }
1538
1539    /// Copy rlibs **built** by `build_compiler` into the sysroot of `sysroot_compiler`.
1540    fn from_build_compiler_and_sysroot(
1541        build_compiler: Compiler,
1542        sysroot_compiler: Compiler,
1543        target: TargetSelection,
1544        crates: Vec<String>,
1545    ) -> Self {
1546        Self { build_compiler, sysroot_compiler, target, crates }
1547    }
1548}
1549
1550impl Step for RustcLink {
1551    type Output = ();
1552
1553    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1554        run.never()
1555    }
1556
1557    /// Same as `StdLink`, only for librustc
1558    fn run(self, builder: &Builder<'_>) {
1559        let build_compiler = self.build_compiler;
1560        let sysroot_compiler = self.sysroot_compiler;
1561        let target = self.target;
1562        add_to_sysroot(
1563            builder,
1564            &builder.sysroot_target_libdir(sysroot_compiler, target),
1565            &builder.sysroot_target_libdir(sysroot_compiler, sysroot_compiler.host),
1566            &build_stamp::librustc_stamp(builder, build_compiler, target),
1567        );
1568    }
1569}
1570
1571/// Set of `libgccjit` dylibs that can be used by `cg_gcc` to compile code for a set of targets.
1572/// `libgccjit` requires a separate build for each `(host, target)` pair.
1573/// So if you are on linux-x64 and build for linux-aarch64, you will need at least:
1574/// - linux-x64 -> linux-x64 libgccjit (for building host code like proc macros)
1575/// - linux-x64 -> linux-aarch64 libgccjit (for the aarch64 target code)
1576#[derive(Clone)]
1577pub struct GccDylibSet {
1578    dylibs: BTreeMap<GccTargetPair, GccOutput>,
1579}
1580
1581impl GccDylibSet {
1582    /// Build a set of libgccjit dylibs that will be executed on `host` and will generate code for
1583    /// each specified target.
1584    pub fn build(
1585        builder: &Builder<'_>,
1586        host: TargetSelection,
1587        targets: Vec<TargetSelection>,
1588    ) -> Self {
1589        let dylibs = targets
1590            .iter()
1591            .map(|t| GccTargetPair::for_target_pair(host, *t))
1592            .map(|target_pair| (target_pair, builder.ensure(Gcc { target_pair })))
1593            .collect();
1594        Self { dylibs }
1595    }
1596
1597    /// Install the libgccjit dylibs to the corresponding target directories of the given compiler.
1598    /// cg_gcc know how to search for the libgccjit dylibs in these directories, according to the
1599    /// (host, target) pair that is being compiled by rustc and cg_gcc.
1600    pub fn install_to(&self, builder: &Builder<'_>, compiler: Compiler) {
1601        if builder.config.dry_run() {
1602            return;
1603        }
1604
1605        // <rustc>/lib/<host-target>/codegen-backends
1606        let cg_sysroot = builder.sysroot_codegen_backends(compiler);
1607
1608        for (target_pair, libgccjit) in &self.dylibs {
1609            assert_eq!(
1610                target_pair.host(),
1611                compiler.host,
1612                "Trying to install libgccjit ({target_pair}) to a compiler with a different host ({})",
1613                compiler.host
1614            );
1615            let libgccjit_path = libgccjit.libgccjit();
1616
1617            // If we build libgccjit ourselves, then `libgccjit` can actually be a symlink.
1618            // In that case, we have to resolve it first, otherwise we'd create a symlink to a
1619            // symlink, which wouldn't work.
1620            let libgccjit_path = t!(
1621                libgccjit_path.canonicalize(),
1622                format!("Cannot find libgccjit at {}", libgccjit_path.display())
1623            );
1624
1625            let dst = cg_sysroot.join(libgccjit_path_relative_to_cg_dir(target_pair, libgccjit));
1626            t!(std::fs::create_dir_all(dst.parent().unwrap()));
1627            builder.copy_link(&libgccjit_path, &dst, FileType::NativeLibrary);
1628        }
1629    }
1630}
1631
1632/// Returns a path where libgccjit.so should be stored, **relative** to the
1633/// **codegen backend directory**.
1634pub fn libgccjit_path_relative_to_cg_dir(
1635    target_pair: &GccTargetPair,
1636    libgccjit: &GccOutput,
1637) -> PathBuf {
1638    let target_filename = libgccjit.libgccjit().file_name().unwrap().to_str().unwrap();
1639
1640    // <cg-dir>/lib/<target>/libgccjit.so
1641    Path::new("lib").join(target_pair.target()).join(target_filename)
1642}
1643
1644/// Output of the `compile::GccCodegenBackend` step.
1645///
1646/// It contains a build stamp with the path to the built cg_gcc dylib.
1647#[derive(Clone)]
1648pub struct GccCodegenBackendOutput {
1649    stamp: BuildStamp,
1650}
1651
1652impl GccCodegenBackendOutput {
1653    pub fn stamp(&self) -> &BuildStamp {
1654        &self.stamp
1655    }
1656}
1657
1658/// Builds the GCC codegen backend (`cg_gcc`).
1659/// Note that this **does not** build libgccjit, which is a dependency of cg_gcc.
1660/// That has to be built separately, because a separate copy of libgccjit is required
1661/// for each (host, target) compilation pair.
1662/// cg_gcc goes to great lengths to ensure that it does not *directly* link to libgccjit,
1663/// so we respect that here and allow building cg_gcc without building libgccjit itself.
1664#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1665pub struct GccCodegenBackend {
1666    compilers: RustcPrivateCompilers,
1667    target: TargetSelection,
1668}
1669
1670impl GccCodegenBackend {
1671    /// Build `cg_gcc` that will run on the given host target.
1672    pub fn for_target(compilers: RustcPrivateCompilers, target: TargetSelection) -> Self {
1673        Self { compilers, target }
1674    }
1675}
1676
1677impl Step for GccCodegenBackend {
1678    type Output = GccCodegenBackendOutput;
1679
1680    const IS_HOST: bool = true;
1681
1682    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1683        run.alias("rustc_codegen_gcc").alias("cg_gcc")
1684    }
1685
1686    fn make_run(run: RunConfig<'_>) {
1687        let compilers = RustcPrivateCompilers::new(run.builder, run.builder.top_stage, run.target);
1688        run.builder.ensure(GccCodegenBackend::for_target(compilers, run.target));
1689    }
1690
1691    fn run(self, builder: &Builder<'_>) -> Self::Output {
1692        let host = self.compilers.target();
1693        let build_compiler = self.compilers.build_compiler();
1694
1695        let stamp = build_stamp::codegen_backend_stamp(
1696            builder,
1697            build_compiler,
1698            host,
1699            &CodegenBackendKind::Gcc,
1700        );
1701
1702        if builder.config.keep_stage.contains(&build_compiler.stage) && stamp.path().exists() {
1703            trace!("`keep-stage` requested");
1704            builder.info(
1705                "WARNING: Using a potentially old codegen backend. \
1706                This may not behave well.",
1707            );
1708            // Codegen backends are linked separately from this step today, so we don't do
1709            // anything here.
1710            return GccCodegenBackendOutput { stamp };
1711        }
1712
1713        let mut cargo = builder::Cargo::new(
1714            builder,
1715            build_compiler,
1716            Mode::Codegen,
1717            SourceType::InTree,
1718            host,
1719            Kind::Build,
1720        );
1721        cargo.arg("--manifest-path").arg(builder.src.join("compiler/rustc_codegen_gcc/Cargo.toml"));
1722        rustc_cargo_env(builder, &mut cargo, host);
1723
1724        let _guard =
1725            builder.msg(Kind::Build, "codegen backend gcc", Mode::Codegen, build_compiler, host);
1726        let files = run_cargo(builder, cargo, vec![], &stamp, vec![], ArtifactKeepMode::OnlyRlib);
1727
1728        GccCodegenBackendOutput {
1729            stamp: write_codegen_backend_stamp(stamp, files, builder.config.dry_run()),
1730        }
1731    }
1732
1733    fn metadata(&self) -> Option<StepMetadata> {
1734        Some(
1735            StepMetadata::build("rustc_codegen_gcc", self.compilers.target())
1736                .built_by(self.compilers.build_compiler()),
1737        )
1738    }
1739}
1740
1741#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1742pub struct CraneliftCodegenBackend {
1743    pub compilers: RustcPrivateCompilers,
1744}
1745
1746impl Step for CraneliftCodegenBackend {
1747    type Output = BuildStamp;
1748    const IS_HOST: bool = true;
1749
1750    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1751        run.alias("rustc_codegen_cranelift").alias("cg_clif")
1752    }
1753
1754    fn make_run(run: RunConfig<'_>) {
1755        run.builder.ensure(CraneliftCodegenBackend {
1756            compilers: RustcPrivateCompilers::new(run.builder, run.builder.top_stage, run.target),
1757        });
1758    }
1759
1760    fn run(self, builder: &Builder<'_>) -> Self::Output {
1761        let target = self.compilers.target();
1762        let build_compiler = self.compilers.build_compiler();
1763
1764        let stamp = build_stamp::codegen_backend_stamp(
1765            builder,
1766            build_compiler,
1767            target,
1768            &CodegenBackendKind::Cranelift,
1769        );
1770
1771        if builder.config.keep_stage.contains(&build_compiler.stage) {
1772            trace!("`keep-stage` requested");
1773            builder.info(
1774                "WARNING: Using a potentially old codegen backend. \
1775                This may not behave well.",
1776            );
1777            // Codegen backends are linked separately from this step today, so we don't do
1778            // anything here.
1779            return stamp;
1780        }
1781
1782        let mut cargo = builder::Cargo::new(
1783            builder,
1784            build_compiler,
1785            Mode::Codegen,
1786            SourceType::InTree,
1787            target,
1788            Kind::Build,
1789        );
1790        cargo
1791            .arg("--manifest-path")
1792            .arg(builder.src.join("compiler/rustc_codegen_cranelift/Cargo.toml"));
1793        rustc_cargo_env(builder, &mut cargo, target);
1794
1795        let _guard = builder.msg(
1796            Kind::Build,
1797            "codegen backend cranelift",
1798            Mode::Codegen,
1799            build_compiler,
1800            target,
1801        );
1802        let files = run_cargo(builder, cargo, vec![], &stamp, vec![], ArtifactKeepMode::OnlyRlib);
1803        write_codegen_backend_stamp(stamp, files, builder.config.dry_run())
1804    }
1805
1806    fn metadata(&self) -> Option<StepMetadata> {
1807        Some(
1808            StepMetadata::build("rustc_codegen_cranelift", self.compilers.target())
1809                .built_by(self.compilers.build_compiler()),
1810        )
1811    }
1812}
1813
1814/// Write filtered `files` into the passed build stamp and returns it.
1815fn write_codegen_backend_stamp(
1816    mut stamp: BuildStamp,
1817    files: Vec<PathBuf>,
1818    dry_run: bool,
1819) -> BuildStamp {
1820    if dry_run {
1821        return stamp;
1822    }
1823
1824    let mut files = files.into_iter().filter(|f| {
1825        let filename = f.file_name().unwrap().to_str().unwrap();
1826        is_dylib(f) && filename.contains("rustc_codegen_")
1827    });
1828    let codegen_backend = match files.next() {
1829        Some(f) => f,
1830        None => panic!("no dylibs built for codegen backend?"),
1831    };
1832    if let Some(f) = files.next() {
1833        panic!("codegen backend built two dylibs:\n{}\n{}", codegen_backend.display(), f.display());
1834    }
1835
1836    let codegen_backend = codegen_backend.to_str().unwrap();
1837    stamp = stamp.add_stamp(codegen_backend);
1838    t!(stamp.write());
1839    stamp
1840}
1841
1842/// Creates the `codegen-backends` folder for a compiler that's about to be
1843/// assembled as a complete compiler.
1844///
1845/// This will take the codegen artifacts recorded in the given `stamp` and link them
1846/// into an appropriate location for `target_compiler` to be a functional
1847/// compiler.
1848fn copy_codegen_backends_to_sysroot(
1849    builder: &Builder<'_>,
1850    stamp: BuildStamp,
1851    target_compiler: Compiler,
1852) {
1853    // Note that this step is different than all the other `*Link` steps in
1854    // that it's not assembling a bunch of libraries but rather is primarily
1855    // moving the codegen backend into place. The codegen backend of rustc is
1856    // not linked into the main compiler by default but is rather dynamically
1857    // selected at runtime for inclusion.
1858    //
1859    // Here we're looking for the output dylib of the `CodegenBackend` step and
1860    // we're copying that into the `codegen-backends` folder.
1861    let dst = builder.sysroot_codegen_backends(target_compiler);
1862    t!(fs::create_dir_all(&dst), dst);
1863
1864    if builder.config.dry_run() {
1865        return;
1866    }
1867
1868    if stamp.path().exists() {
1869        let file = get_codegen_backend_file(&stamp);
1870        builder.copy_link(
1871            &file,
1872            &dst.join(normalize_codegen_backend_name(builder, &file)),
1873            FileType::NativeLibrary,
1874        );
1875    }
1876}
1877
1878/// Gets the path to a dynamic codegen backend library from its build stamp.
1879pub fn get_codegen_backend_file(stamp: &BuildStamp) -> PathBuf {
1880    PathBuf::from(t!(fs::read_to_string(stamp.path())))
1881}
1882
1883/// Normalize the name of a dynamic codegen backend library.
1884pub fn normalize_codegen_backend_name(builder: &Builder<'_>, path: &Path) -> String {
1885    let filename = path.file_name().unwrap().to_str().unwrap();
1886    // change e.g. `librustc_codegen_cranelift-xxxxxx.so` to
1887    // `librustc_codegen_cranelift-release.so`
1888    let dash = filename.find('-').unwrap();
1889    let dot = filename.find('.').unwrap();
1890    format!("{}-{}{}", &filename[..dash], builder.rust_release(), &filename[dot..])
1891}
1892
1893pub fn compiler_file(
1894    builder: &Builder<'_>,
1895    compiler: &Path,
1896    target: TargetSelection,
1897    c: CLang,
1898    file: &str,
1899) -> PathBuf {
1900    if builder.config.dry_run() {
1901        return PathBuf::new();
1902    }
1903    let mut cmd = command(compiler);
1904    cmd.args(builder.cc_handled_clags(target, c));
1905    cmd.args(builder.cc_unhandled_cflags(target, GitRepo::Rustc, c));
1906    cmd.arg(format!("-print-file-name={file}"));
1907    let out = cmd.run_capture_stdout(builder).stdout();
1908    PathBuf::from(out.trim())
1909}
1910
1911#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1912pub struct Sysroot {
1913    pub compiler: Compiler,
1914    /// See [`Std::force_recompile`].
1915    force_recompile: bool,
1916}
1917
1918impl Sysroot {
1919    pub(crate) fn new(compiler: Compiler) -> Self {
1920        Sysroot { compiler, force_recompile: false }
1921    }
1922}
1923
1924impl Step for Sysroot {
1925    type Output = PathBuf;
1926
1927    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1928        run.never()
1929    }
1930
1931    /// Returns the sysroot that `compiler` is supposed to use.
1932    /// For the stage0 compiler, this is stage0-sysroot (because of the initial std build).
1933    /// For all other stages, it's the same stage directory that the compiler lives in.
1934    fn run(self, builder: &Builder<'_>) -> PathBuf {
1935        let compiler = self.compiler;
1936        let host_dir = builder.out.join(compiler.host);
1937
1938        let sysroot_dir = |stage| {
1939            if stage == 0 {
1940                host_dir.join("stage0-sysroot")
1941            } else if self.force_recompile && stage == compiler.stage {
1942                host_dir.join(format!("stage{stage}-test-sysroot"))
1943            } else if builder.download_rustc() && compiler.stage != builder.top_stage {
1944                host_dir.join("ci-rustc-sysroot")
1945            } else {
1946                host_dir.join(format!("stage{stage}"))
1947            }
1948        };
1949        let sysroot = sysroot_dir(compiler.stage);
1950        trace!(stage = ?compiler.stage, ?sysroot);
1951
1952        builder.do_if_verbose(|| {
1953            println!("Removing sysroot {} to avoid caching bugs", sysroot.display())
1954        });
1955        let _ = fs::remove_dir_all(&sysroot);
1956        t!(fs::create_dir_all(&sysroot));
1957
1958        // In some cases(see https://github.com/rust-lang/rust/issues/109314), when the stage0
1959        // compiler relies on more recent version of LLVM than the stage0 compiler, it may not
1960        // be able to locate the correct LLVM in the sysroot. This situation typically occurs
1961        // when we upgrade LLVM version while the stage0 compiler continues to use an older version.
1962        //
1963        // Make sure to add the correct version of LLVM into the stage0 sysroot.
1964        if compiler.stage == 0 {
1965            dist::maybe_install_llvm_target(builder, compiler.host, &sysroot);
1966        }
1967
1968        // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
1969        if builder.download_rustc() && compiler.stage != 0 {
1970            assert_eq!(
1971                builder.config.host_target, compiler.host,
1972                "Cross-compiling is not yet supported with `download-rustc`",
1973            );
1974
1975            // #102002, cleanup old toolchain folders when using download-rustc so people don't use them by accident.
1976            for stage in 0..=2 {
1977                if stage != compiler.stage {
1978                    let dir = sysroot_dir(stage);
1979                    if !dir.ends_with("ci-rustc-sysroot") {
1980                        let _ = fs::remove_dir_all(dir);
1981                    }
1982                }
1983            }
1984
1985            // Copy the compiler into the correct sysroot.
1986            // NOTE(#108767): We intentionally don't copy `rustc-dev` artifacts until they're requested with `builder.ensure(Rustc)`.
1987            // This fixes an issue where we'd have multiple copies of libc in the sysroot with no way to tell which to load.
1988            // There are a few quirks of bootstrap that interact to make this reliable:
1989            // 1. The order `Step`s are run is hard-coded in `builder.rs` and not configurable. This
1990            //    avoids e.g. reordering `test::UiFulldeps` before `test::Ui` and causing the latter to
1991            //    fail because of duplicate metadata.
1992            // 2. The sysroot is deleted and recreated between each invocation, so running `x test
1993            //    ui-fulldeps && x test ui` can't cause failures.
1994            let mut filtered_files = Vec::new();
1995            let mut add_filtered_files = |suffix, contents| {
1996                for path in contents {
1997                    let path = Path::new(&path);
1998                    if path.parent().is_some_and(|parent| parent.ends_with(suffix)) {
1999                        filtered_files.push(path.file_name().unwrap().to_owned());
2000                    }
2001                }
2002            };
2003            let suffix = format!("lib/rustlib/{}/lib", compiler.host);
2004            add_filtered_files(suffix.as_str(), builder.config.ci_rustc_dev_contents());
2005            // NOTE: we can't copy std eagerly because `stage2-test-sysroot` needs to have only the
2006            // newly compiled std, not the downloaded std.
2007            add_filtered_files("lib", builder.config.ci_rust_std_contents());
2008
2009            let filtered_extensions = [
2010                OsStr::new("rmeta"),
2011                OsStr::new("rlib"),
2012                // FIXME: this is wrong when compiler.host != build, but we don't support that today
2013                OsStr::new(std::env::consts::DLL_EXTENSION),
2014            ];
2015            let ci_rustc_dir = builder.config.ci_rustc_dir();
2016            builder.cp_link_filtered(&ci_rustc_dir, &sysroot, &|path| {
2017                if path.extension().is_none_or(|ext| !filtered_extensions.contains(&ext)) {
2018                    return true;
2019                }
2020                if !path.parent().is_none_or(|p| p.ends_with(&suffix)) {
2021                    return true;
2022                }
2023                filtered_files.iter().all(|f| f != path.file_name().unwrap())
2024            });
2025        }
2026
2027        // Symlink the source root into the same location inside the sysroot,
2028        // where `rust-src` component would go (`$sysroot/lib/rustlib/src/rust`),
2029        // so that any tools relying on `rust-src` also work for local builds,
2030        // and also for translating the virtual `/rustc/$hash` back to the real
2031        // directory (for running tests with `rust.remap-debuginfo = true`).
2032        if compiler.stage != 0 {
2033            let sysroot_lib_rustlib_src = sysroot.join("lib/rustlib/src");
2034            t!(fs::create_dir_all(&sysroot_lib_rustlib_src));
2035            let sysroot_lib_rustlib_src_rust = sysroot_lib_rustlib_src.join("rust");
2036            if let Err(e) =
2037                symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_src_rust)
2038            {
2039                eprintln!(
2040                    "ERROR: creating symbolic link `{}` to `{}` failed with {}",
2041                    sysroot_lib_rustlib_src_rust.display(),
2042                    builder.src.display(),
2043                    e,
2044                );
2045                if builder.config.rust_remap_debuginfo {
2046                    eprintln!(
2047                        "ERROR: some `tests/ui` tests will fail when lacking `{}`",
2048                        sysroot_lib_rustlib_src_rust.display(),
2049                    );
2050                }
2051                build_helper::exit!(1);
2052            }
2053        }
2054
2055        // rustc-src component is already part of CI rustc's sysroot
2056        if !builder.download_rustc() {
2057            let sysroot_lib_rustlib_rustcsrc = sysroot.join("lib/rustlib/rustc-src");
2058            t!(fs::create_dir_all(&sysroot_lib_rustlib_rustcsrc));
2059            let sysroot_lib_rustlib_rustcsrc_rust = sysroot_lib_rustlib_rustcsrc.join("rust");
2060            if let Err(e) =
2061                symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_rustcsrc_rust)
2062            {
2063                eprintln!(
2064                    "ERROR: creating symbolic link `{}` to `{}` failed with {}",
2065                    sysroot_lib_rustlib_rustcsrc_rust.display(),
2066                    builder.src.display(),
2067                    e,
2068                );
2069                build_helper::exit!(1);
2070            }
2071        }
2072
2073        sysroot
2074    }
2075}
2076
2077/// Prepare a compiler sysroot.
2078///
2079/// The sysroot may contain various things useful for running the compiler, like linkers and
2080/// linker wrappers (LLD, LLVM bitcode linker, etc.).
2081///
2082/// This will assemble a compiler in `build/$target/stage$stage`.
2083#[derive(Debug, Clone, PartialEq, Eq, Hash)]
2084pub struct Assemble {
2085    /// The compiler which we will produce in this step. Assemble itself will
2086    /// take care of ensuring that the necessary prerequisites to do so exist,
2087    /// that is, this can be e.g. a stage2 compiler and Assemble will build
2088    /// the previous stages for you.
2089    pub target_compiler: Compiler,
2090}
2091
2092impl Step for Assemble {
2093    type Output = Compiler;
2094    const IS_HOST: bool = true;
2095
2096    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
2097        run.path("compiler/rustc").path("compiler")
2098    }
2099
2100    fn make_run(run: RunConfig<'_>) {
2101        run.builder.ensure(Assemble {
2102            target_compiler: run.builder.compiler(run.builder.top_stage, run.target),
2103        });
2104    }
2105
2106    fn run(self, builder: &Builder<'_>) -> Compiler {
2107        let target_compiler = self.target_compiler;
2108
2109        if target_compiler.stage == 0 {
2110            trace!("stage 0 build compiler is always available, simply returning");
2111            assert_eq!(
2112                builder.config.host_target, target_compiler.host,
2113                "Cannot obtain compiler for non-native build triple at stage 0"
2114            );
2115            // The stage 0 compiler for the build triple is always pre-built.
2116            return target_compiler;
2117        }
2118
2119        // We prepend this bin directory to the user PATH when linking Rust binaries. To
2120        // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
2121        let libdir = builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2122        let libdir_bin = libdir.parent().unwrap().join("bin");
2123        t!(fs::create_dir_all(&libdir_bin));
2124
2125        if builder.config.llvm_enabled(target_compiler.host) {
2126            trace!("target_compiler.host" = ?target_compiler.host, "LLVM enabled");
2127
2128            let target = target_compiler.host;
2129            let llvm::LlvmResult { host_llvm_config, .. } = builder.ensure(llvm::Llvm { target });
2130            if !builder.config.dry_run() && builder.config.llvm_tools_enabled {
2131                trace!("LLVM tools enabled");
2132
2133                let host_llvm_bin_dir = command(&host_llvm_config)
2134                    .arg("--bindir")
2135                    .cached()
2136                    .run_capture_stdout(builder)
2137                    .stdout()
2138                    .trim()
2139                    .to_string();
2140
2141                let llvm_bin_dir = if target == builder.host_target {
2142                    PathBuf::from(host_llvm_bin_dir)
2143                } else {
2144                    // If we're cross-compiling, we cannot run the target llvm-config in order to
2145                    // figure out where binaries are located. We thus have to guess.
2146                    let external_llvm_config = builder
2147                        .config
2148                        .target_config
2149                        .get(&target)
2150                        .and_then(|t| t.llvm_config.clone());
2151                    if let Some(external_llvm_config) = external_llvm_config {
2152                        // If we have an external LLVM, just hope that the bindir is the directory
2153                        // where the LLVM config is located
2154                        external_llvm_config.parent().unwrap().to_path_buf()
2155                    } else {
2156                        // If we have built LLVM locally, then take the path of the host bindir
2157                        // relative to its output build directory, and then apply it to the target
2158                        // LLVM output build directory.
2159                        let host_llvm_out = builder.llvm_out(builder.host_target);
2160                        let target_llvm_out = builder.llvm_out(target);
2161                        if let Ok(relative_path) =
2162                            Path::new(&host_llvm_bin_dir).strip_prefix(host_llvm_out)
2163                        {
2164                            target_llvm_out.join(relative_path)
2165                        } else {
2166                            // This is the most desperate option, just replace the host target with
2167                            // the actual target in the directory path...
2168                            PathBuf::from(
2169                                host_llvm_bin_dir
2170                                    .replace(&*builder.host_target.triple, &target.triple),
2171                            )
2172                        }
2173                    }
2174                };
2175
2176                // Since we've already built the LLVM tools, install them to the sysroot.
2177                // This is the equivalent of installing the `llvm-tools-preview` component via
2178                // rustup, and lets developers use a locally built toolchain to
2179                // build projects that expect llvm tools to be present in the sysroot
2180                // (e.g. the `bootimage` crate).
2181
2182                #[cfg(feature = "tracing")]
2183                let _llvm_tools_span =
2184                    span!(tracing::Level::TRACE, "installing llvm tools to sysroot", ?libdir_bin)
2185                        .entered();
2186                for tool in LLVM_TOOLS {
2187                    trace!("installing `{tool}`");
2188                    let tool_exe = exe(tool, target_compiler.host);
2189                    let src_path = llvm_bin_dir.join(&tool_exe);
2190
2191                    // When using `download-ci-llvm`, some of the tools may not exist, so skip trying to copy them.
2192                    if !src_path.exists() && builder.config.llvm_from_ci {
2193                        eprintln!("{} does not exist; skipping copy", src_path.display());
2194                        continue;
2195                    }
2196
2197                    // There is a chance that these tools are being installed from an external LLVM.
2198                    // Use `Builder::resolve_symlink_and_copy` instead of `Builder::copy_link` to ensure
2199                    // we are copying the original file not the symlinked path, which causes issues for
2200                    // tarball distribution.
2201                    //
2202                    // See https://github.com/rust-lang/rust/issues/135554.
2203                    builder.resolve_symlink_and_copy(&src_path, &libdir_bin.join(&tool_exe));
2204                }
2205            }
2206        }
2207
2208        let maybe_install_llvm_bitcode_linker = || {
2209            if builder.config.llvm_bitcode_linker_enabled {
2210                trace!("llvm-bitcode-linker enabled, installing");
2211                let llvm_bitcode_linker = builder.ensure(
2212                    crate::core::build_steps::tool::LlvmBitcodeLinker::from_target_compiler(
2213                        builder,
2214                        target_compiler,
2215                    ),
2216                );
2217
2218                // Copy the llvm-bitcode-linker to the self-contained binary directory
2219                let bindir_self_contained = builder
2220                    .sysroot(target_compiler)
2221                    .join(format!("lib/rustlib/{}/bin/self-contained", target_compiler.host));
2222                let tool_exe = exe("llvm-bitcode-linker", target_compiler.host);
2223
2224                t!(fs::create_dir_all(&bindir_self_contained));
2225                builder.copy_link(
2226                    &llvm_bitcode_linker.tool_path,
2227                    &bindir_self_contained.join(tool_exe),
2228                    FileType::Executable,
2229                );
2230            }
2231        };
2232
2233        // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
2234        if builder.download_rustc() {
2235            trace!("`download-rustc` requested, reusing CI compiler for stage > 0");
2236
2237            builder.std(target_compiler, target_compiler.host);
2238            let sysroot =
2239                builder.ensure(Sysroot { compiler: target_compiler, force_recompile: false });
2240            // Ensure that `libLLVM.so` ends up in the newly created target directory,
2241            // so that tools using `rustc_private` can use it.
2242            dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
2243            // Lower stages use `ci-rustc-sysroot`, not stageN
2244            if target_compiler.stage == builder.top_stage {
2245                builder.info(&format!("Creating a sysroot for stage{stage} compiler (use `rustup toolchain link 'name' build/host/stage{stage}`)", stage = target_compiler.stage));
2246            }
2247
2248            // FIXME: this is incomplete, we do not copy a bunch of other stuff to the downloaded
2249            // sysroot...
2250            maybe_install_llvm_bitcode_linker();
2251
2252            return target_compiler;
2253        }
2254
2255        // Get the compiler that we'll use to bootstrap ourselves.
2256        //
2257        // Note that this is where the recursive nature of the bootstrap
2258        // happens, as this will request the previous stage's compiler on
2259        // downwards to stage 0.
2260        //
2261        // Also note that we're building a compiler for the host platform. We
2262        // only assume that we can run `build` artifacts, which means that to
2263        // produce some other architecture compiler we need to start from
2264        // `build` to get there.
2265        //
2266        // FIXME: It may be faster if we build just a stage 1 compiler and then
2267        //        use that to bootstrap this compiler forward.
2268        debug!(
2269            "ensuring build compiler is available: compiler(stage = {}, host = {:?})",
2270            target_compiler.stage - 1,
2271            builder.config.host_target,
2272        );
2273        let build_compiler =
2274            builder.compiler(target_compiler.stage - 1, builder.config.host_target);
2275
2276        // Build enzyme
2277        if builder.config.llvm_enzyme {
2278            debug!("`llvm_enzyme` requested");
2279            let enzyme = builder.ensure(llvm::Enzyme { target: build_compiler.host });
2280            let target_libdir =
2281                builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2282            let target_dst_lib = target_libdir.join(enzyme.enzyme_filename());
2283            builder.copy_link(&enzyme.enzyme_path(), &target_dst_lib, FileType::NativeLibrary);
2284        }
2285
2286        if builder.config.llvm_offload && !builder.config.dry_run() {
2287            debug!("`llvm_offload` requested");
2288            let offload_install = builder.ensure(llvm::OmpOffload { target: build_compiler.host });
2289            if let Some(_llvm_config) = builder.llvm_config(builder.config.host_target) {
2290                let target_libdir =
2291                    builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2292                for p in offload_install.offload_paths() {
2293                    let libname = p.file_name().unwrap();
2294                    let dst_lib = target_libdir.join(libname);
2295                    builder.resolve_symlink_and_copy(&p, &dst_lib);
2296                }
2297                // FIXME(offload): Add amdgcn-amd-amdhsa and nvptx64-nvidia-cuda folder
2298                // This one is slightly more tricky, since we have the same file twice, in two
2299                // subfolders for amdgcn and nvptx64. We'll likely find two more in the future, once
2300                // Intel and Spir-V support lands in offload.
2301            }
2302        }
2303
2304        // Build the libraries for this compiler to link to (i.e., the libraries
2305        // it uses at runtime).
2306        debug!(
2307            ?build_compiler,
2308            "target_compiler.host" = ?target_compiler.host,
2309            "building compiler libraries to link to"
2310        );
2311
2312        // It is possible that an uplift has happened, so we override build_compiler here.
2313        let BuiltRustc { build_compiler } =
2314            builder.ensure(Rustc::new(build_compiler, target_compiler.host));
2315
2316        let stage = target_compiler.stage;
2317        let host = target_compiler.host;
2318        let (host_info, dir_name) = if build_compiler.host == host {
2319            ("".into(), "host".into())
2320        } else {
2321            (format!(" ({host})"), host.to_string())
2322        };
2323        // NOTE: "Creating a sysroot" is somewhat inconsistent with our internal terminology, since
2324        // sysroots can temporarily be empty until we put the compiler inside. However,
2325        // `ensure(Sysroot)` isn't really something that's user facing, so there shouldn't be any
2326        // ambiguity.
2327        let msg = format!(
2328            "Creating a sysroot for stage{stage} compiler{host_info} (use `rustup toolchain link 'name' build/{dir_name}/stage{stage}`)"
2329        );
2330        builder.info(&msg);
2331
2332        // Link in all dylibs to the libdir
2333        let stamp = build_stamp::librustc_stamp(builder, build_compiler, target_compiler.host);
2334        let proc_macros = builder
2335            .read_stamp_file(&stamp)
2336            .into_iter()
2337            .filter_map(|(path, dependency_type)| {
2338                if dependency_type == DependencyType::Host {
2339                    Some(path.file_name().unwrap().to_owned().into_string().unwrap())
2340                } else {
2341                    None
2342                }
2343            })
2344            .collect::<HashSet<_>>();
2345
2346        let sysroot = builder.sysroot(target_compiler);
2347        let rustc_libdir = builder.rustc_libdir(target_compiler);
2348        t!(fs::create_dir_all(&rustc_libdir));
2349        let src_libdir = builder.sysroot_target_libdir(build_compiler, host);
2350        for f in builder.read_dir(&src_libdir) {
2351            let filename = f.file_name().into_string().unwrap();
2352
2353            let is_proc_macro = proc_macros.contains(&filename);
2354            let is_dylib_or_debug = is_dylib(&f.path()) || is_debug_info(&filename);
2355
2356            // If we link statically to stdlib, do not copy the libstd dynamic library file
2357            // FIXME: Also do this for Windows once incremental post-optimization stage0 tests
2358            // work without std.dll (see https://github.com/rust-lang/rust/pull/131188).
2359            let can_be_rustc_dynamic_dep = if builder
2360                .link_std_into_rustc_driver(target_compiler.host)
2361                && !target_compiler.host.is_windows()
2362            {
2363                let is_std = filename.starts_with("std-") || filename.starts_with("libstd-");
2364                !is_std
2365            } else {
2366                true
2367            };
2368
2369            if is_dylib_or_debug && can_be_rustc_dynamic_dep && !is_proc_macro {
2370                builder.copy_link(&f.path(), &rustc_libdir.join(&filename), FileType::Regular);
2371            }
2372        }
2373
2374        {
2375            #[cfg(feature = "tracing")]
2376            let _codegen_backend_span =
2377                span!(tracing::Level::DEBUG, "building requested codegen backends").entered();
2378
2379            for backend in builder.config.enabled_codegen_backends(target_compiler.host) {
2380                // FIXME: this is a horrible hack used to make `x check` work when other codegen
2381                // backends are enabled.
2382                // `x check` will check stage 1 rustc, which copies its rmetas to the stage0 sysroot.
2383                // Then it checks codegen backends, which correctly use these rmetas.
2384                // Then it needs to check std, but for that it needs to build stage 1 rustc.
2385                // This copies the build rmetas into the stage0 sysroot, effectively poisoning it,
2386                // because we then have both check and build rmetas in the same sysroot.
2387                // That would be fine on its own. However, when another codegen backend is enabled,
2388                // then building stage 1 rustc implies also building stage 1 codegen backend (even if
2389                // it isn't used for anything). And since that tries to use the poisoned
2390                // rmetas, it fails to build.
2391                // We don't actually need to build rustc-private codegen backends for checking std,
2392                // so instead we skip that.
2393                // Note: this would be also an issue for other rustc-private tools, but that is "solved"
2394                // by check::Std being last in the list of checked things (see
2395                // `Builder::get_step_descriptions`).
2396                if builder.kind == Kind::Check && builder.top_stage == 1 {
2397                    continue;
2398                }
2399
2400                let prepare_compilers = || {
2401                    RustcPrivateCompilers::from_build_and_target_compiler(
2402                        build_compiler,
2403                        target_compiler,
2404                    )
2405                };
2406
2407                match backend {
2408                    CodegenBackendKind::Cranelift => {
2409                        let stamp = builder
2410                            .ensure(CraneliftCodegenBackend { compilers: prepare_compilers() });
2411                        copy_codegen_backends_to_sysroot(builder, stamp, target_compiler);
2412                    }
2413                    CodegenBackendKind::Gcc => {
2414                        // We need to build cg_gcc for the host target of the compiler which we
2415                        // build here, which is `target_compiler`.
2416                        // But we also need to build libgccjit for some additional targets, in
2417                        // the most general case.
2418                        // 1. We need to build (target_compiler.host, stdlib target) libgccjit
2419                        // for all stdlibs that we build, so that cg_gcc can be used to build code
2420                        // for all those targets.
2421                        // 2. We need to build (target_compiler.host, target_compiler.host)
2422                        // libgccjit, so that the target compiler can compile host code (e.g. proc
2423                        // macros).
2424                        // 3. We need to build (target_compiler.host, host target) libgccjit
2425                        // for all *host targets* that we build, so that cg_gcc can be used to
2426                        // build a (possibly cross-compiled) stage 2+ rustc.
2427                        //
2428                        // Assume that we are on host T1 and we do a stage2 build of rustc for T2.
2429                        // We want the T2 rustc compiler to be able to use cg_gcc and build code
2430                        // for T2 (host) and T3 (target). We also want to build the stage2 compiler
2431                        // itself using cg_gcc.
2432                        // This could correspond to the following bootstrap invocation:
2433                        // `x build rustc --build T1 --host T2 --target T3 --set codegen-backends=['gcc', 'llvm']`
2434                        //
2435                        // For that, we will need the following GCC target pairs:
2436                        // 1. T1 -> T2 (to cross-compile a T2 rustc using cg_gcc running on T1)
2437                        // 2. T2 -> T2 (to build host code with the stage 2 rustc running on T2)
2438                        // 3. T2 -> T3 (to cross-compile code with the stage 2 rustc running on T2)
2439                        //
2440                        // FIXME: this set of targets is *maximal*, in reality we might need
2441                        // less libgccjits at this current build stage. Try to reduce the set of
2442                        // GCC dylibs built below by taking a look at the current stage and whether
2443                        // cg_gcc is used as the default codegen backend.
2444
2445                        // First, the easy part: build cg_gcc
2446                        let compilers = prepare_compilers();
2447                        let cg_gcc = builder
2448                            .ensure(GccCodegenBackend::for_target(compilers, target_compiler.host));
2449                        copy_codegen_backends_to_sysroot(builder, cg_gcc.stamp, target_compiler);
2450
2451                        // Then, the hard part: prepare all required libgccjit dylibs.
2452
2453                        // The left side of the target pairs below is implied. It has to match the
2454                        // host target on which libgccjit will be used, which is the host target of
2455                        // `target_compiler`. We only pass the right side of the target pairs to
2456                        // the `GccDylibSet` constructor.
2457                        let mut targets = HashSet::new();
2458                        // Add all host targets, so that we are able to build host code in this
2459                        // bootstrap invocation using cg_gcc.
2460                        for target in &builder.hosts {
2461                            targets.insert(*target);
2462                        }
2463                        // Add all stdlib targets, so that the built rustc can produce code for them
2464                        for target in &builder.targets {
2465                            targets.insert(*target);
2466                        }
2467                        // Add the host target of the built rustc itself, so that it can build
2468                        // host code (e.g. proc macros) using cg_gcc.
2469                        targets.insert(compilers.target_compiler().host);
2470
2471                        // Now build all the required libgccjit dylibs
2472                        let dylib_set = GccDylibSet::build(
2473                            builder,
2474                            compilers.target_compiler().host,
2475                            targets.into_iter().collect(),
2476                        );
2477
2478                        // And then copy all the dylibs to the corresponding
2479                        // library sysroots, so that they are available for cg_gcc.
2480                        dylib_set.install_to(builder, target_compiler);
2481                    }
2482                    CodegenBackendKind::Llvm | CodegenBackendKind::Custom(_) => continue,
2483                }
2484            }
2485        }
2486
2487        if builder.config.lld_enabled {
2488            let lld_wrapper =
2489                builder.ensure(crate::core::build_steps::tool::LldWrapper::for_use_by_compiler(
2490                    builder,
2491                    target_compiler,
2492                ));
2493            copy_lld_artifacts(builder, lld_wrapper, target_compiler);
2494        }
2495
2496        if builder.config.llvm_enabled(target_compiler.host) && builder.config.llvm_tools_enabled {
2497            debug!(
2498                "llvm and llvm tools enabled; copying `llvm-objcopy` as `rust-objcopy` to \
2499                workaround faulty homebrew `strip`s"
2500            );
2501
2502            // `llvm-strip` is used by rustc, which is actually just a symlink to `llvm-objcopy`, so
2503            // copy and rename `llvm-objcopy`.
2504            //
2505            // But only do so if llvm-tools are enabled, as bootstrap compiler might not contain any
2506            // LLVM tools, e.g. for cg_clif.
2507            // See <https://github.com/rust-lang/rust/issues/132719>.
2508            let src_exe = exe("llvm-objcopy", target_compiler.host);
2509            let dst_exe = exe("rust-objcopy", target_compiler.host);
2510            builder.copy_link(
2511                &libdir_bin.join(src_exe),
2512                &libdir_bin.join(dst_exe),
2513                FileType::Executable,
2514            );
2515        }
2516
2517        // In addition to `rust-lld` also install `wasm-component-ld` when
2518        // is enabled. This is used by the `wasm32-wasip2` target of Rust.
2519        if builder.tool_enabled("wasm-component-ld") {
2520            let wasm_component = builder.ensure(
2521                crate::core::build_steps::tool::WasmComponentLd::for_use_by_compiler(
2522                    builder,
2523                    target_compiler,
2524                ),
2525            );
2526            builder.copy_link(
2527                &wasm_component.tool_path,
2528                &libdir_bin.join(wasm_component.tool_path.file_name().unwrap()),
2529                FileType::Executable,
2530            );
2531        }
2532
2533        maybe_install_llvm_bitcode_linker();
2534
2535        // Ensure that `libLLVM.so` ends up in the newly build compiler directory,
2536        // so that it can be found when the newly built `rustc` is run.
2537        debug!(
2538            "target_compiler.host" = ?target_compiler.host,
2539            ?sysroot,
2540            "ensuring availability of `libLLVM.so` in compiler directory"
2541        );
2542        dist::maybe_install_llvm_runtime(builder, target_compiler.host, &sysroot);
2543        dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
2544
2545        // Link the compiler binary itself into place
2546        let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
2547        let rustc = out_dir.join(exe("rustc-main", host));
2548        let bindir = sysroot.join("bin");
2549        t!(fs::create_dir_all(bindir));
2550        let compiler = builder.rustc(target_compiler);
2551        debug!(src = ?rustc, dst = ?compiler, "linking compiler binary itself");
2552        builder.copy_link(&rustc, &compiler, FileType::Executable);
2553
2554        target_compiler
2555    }
2556}
2557
2558/// Link some files into a rustc sysroot.
2559///
2560/// For a particular stage this will link the file listed in `stamp` into the
2561/// `sysroot_dst` provided.
2562#[track_caller]
2563pub fn add_to_sysroot(
2564    builder: &Builder<'_>,
2565    sysroot_dst: &Path,
2566    sysroot_host_dst: &Path,
2567    stamp: &BuildStamp,
2568) {
2569    let self_contained_dst = &sysroot_dst.join("self-contained");
2570    t!(fs::create_dir_all(sysroot_dst));
2571    t!(fs::create_dir_all(sysroot_host_dst));
2572    t!(fs::create_dir_all(self_contained_dst));
2573
2574    let mut crates = HashMap::new();
2575    for (path, dependency_type) in builder.read_stamp_file(stamp) {
2576        let filename = path.file_name().unwrap().to_str().unwrap();
2577        let dst = match dependency_type {
2578            DependencyType::Host => {
2579                if sysroot_dst == sysroot_host_dst {
2580                    // Only insert the part before the . to deduplicate different files for the same crate.
2581                    // For example foo-1234.dll and foo-1234.dll.lib.
2582                    crates.insert(filename.split_once('.').unwrap().0.to_owned(), path.clone());
2583                }
2584
2585                sysroot_host_dst
2586            }
2587            DependencyType::Target => {
2588                // Only insert the part before the . to deduplicate different files for the same crate.
2589                // For example foo-1234.dll and foo-1234.dll.lib.
2590                crates.insert(filename.split_once('.').unwrap().0.to_owned(), path.clone());
2591
2592                sysroot_dst
2593            }
2594            DependencyType::TargetSelfContained => self_contained_dst,
2595        };
2596        builder.copy_link(&path, &dst.join(filename), FileType::Regular);
2597    }
2598
2599    // Check that none of the rustc_* crates have multiple versions. Otherwise using them from
2600    // the sysroot would cause ambiguity errors. We do allow rustc_hash however as it is an
2601    // external dependency that we build multiple copies of. It is re-exported by
2602    // rustc_data_structures, so not being able to use extern crate rustc_hash; is not a big
2603    // issue.
2604    let mut seen_crates = HashMap::new();
2605    for (filestem, path) in crates {
2606        if !filestem.contains("rustc_") || filestem.contains("rustc_hash") {
2607            continue;
2608        }
2609        if let Some(other_path) =
2610            seen_crates.insert(filestem.split_once('-').unwrap().0.to_owned(), path.clone())
2611        {
2612            panic!(
2613                "duplicate rustc crate {}\n-  first copy at {}\n- second copy at {}",
2614                filestem.split_once('-').unwrap().0.to_owned(),
2615                other_path.display(),
2616                path.display(),
2617            );
2618        }
2619    }
2620}
2621
2622/// Specifies which rlib/rmeta artifacts outputted by Cargo should be put into the resulting
2623/// build stamp, and thus be included in dist archives and copied into sysroots by default.
2624/// Note that some kinds of artifacts are copied automatically (e.g. native libraries).
2625pub enum ArtifactKeepMode {
2626    /// Only keep .rlib files, ignore .rmeta files
2627    OnlyRlib,
2628    /// Only keep .rmeta files, ignore .rlib files
2629    OnlyRmeta,
2630    /// Keep both .rlib and .rmeta files.
2631    /// This is essentially only useful when using `-Zno-embed-metadata`, in which case both the
2632    /// .rlib and .rmeta files are needed for compilation/linking.
2633    BothRlibAndRmeta,
2634    /// Custom logic for keeping an artifact
2635    /// It receives the filename of an artifact, and returns true if it should be kept.
2636    Custom(Box<dyn Fn(&str) -> bool>),
2637}
2638
2639pub fn run_cargo(
2640    builder: &Builder<'_>,
2641    cargo: Cargo,
2642    tail_args: Vec<String>,
2643    stamp: &BuildStamp,
2644    additional_target_deps: Vec<(PathBuf, DependencyType)>,
2645    artifact_keep_mode: ArtifactKeepMode,
2646) -> Vec<PathBuf> {
2647    // `target_root_dir` looks like $dir/$target/release
2648    let target_root_dir = stamp.path().parent().unwrap();
2649    // `target_deps_dir` looks like $dir/$target/release/deps
2650    let target_deps_dir = target_root_dir.join("deps");
2651    // `host_root_dir` looks like $dir/release
2652    let host_root_dir = target_root_dir
2653        .parent()
2654        .unwrap() // chop off `release`
2655        .parent()
2656        .unwrap() // chop off `$target`
2657        .join(target_root_dir.file_name().unwrap());
2658
2659    // Spawn Cargo slurping up its JSON output. We'll start building up the
2660    // `deps` array of all files it generated along with a `toplevel` array of
2661    // files we need to probe for later.
2662    let mut deps = Vec::new();
2663    let mut toplevel = Vec::new();
2664    let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
2665        let (filenames_vec, crate_types) = match msg {
2666            CargoMessage::CompilerArtifact {
2667                filenames,
2668                target: CargoTarget { crate_types },
2669                ..
2670            } => {
2671                let mut f: Vec<String> = filenames.into_iter().map(|s| s.into_owned()).collect();
2672                f.sort(); // Sort the filenames
2673                (f, crate_types)
2674            }
2675            _ => return,
2676        };
2677        for filename in filenames_vec {
2678            // Skip files like executables
2679            let keep = if filename.ends_with(".lib")
2680                || filename.ends_with(".a")
2681                || is_debug_info(&filename)
2682                || is_dylib(Path::new(&*filename))
2683            {
2684                // Always keep native libraries, rust dylibs and debuginfo
2685                true
2686            } else {
2687                match &artifact_keep_mode {
2688                    ArtifactKeepMode::OnlyRlib => filename.ends_with(".rlib"),
2689                    ArtifactKeepMode::OnlyRmeta => filename.ends_with(".rmeta"),
2690                    ArtifactKeepMode::BothRlibAndRmeta => {
2691                        filename.ends_with(".rmeta") || filename.ends_with(".rlib")
2692                    }
2693                    ArtifactKeepMode::Custom(func) => func(&filename),
2694                }
2695            };
2696
2697            if !keep {
2698                continue;
2699            }
2700
2701            let filename = Path::new(&*filename);
2702
2703            // If this was an output file in the "host dir" we don't actually
2704            // worry about it, it's not relevant for us
2705            if filename.starts_with(&host_root_dir) {
2706                // Unless it's a proc macro used in the compiler
2707                if crate_types.iter().any(|t| t == "proc-macro") {
2708                    // Cargo will compile proc-macros that are part of the rustc workspace twice.
2709                    // Once as libmacro-hash.so as build dependency and once as libmacro.so as
2710                    // output artifact. Only keep the former to avoid ambiguity when trying to use
2711                    // the proc macro from the sysroot.
2712                    if filename.file_name().unwrap().to_str().unwrap().contains("-") {
2713                        deps.push((filename.to_path_buf(), DependencyType::Host));
2714                    }
2715                }
2716                continue;
2717            }
2718
2719            // If this was output in the `deps` dir then this is a precise file
2720            // name (hash included) so we start tracking it.
2721            if filename.starts_with(&target_deps_dir) {
2722                deps.push((filename.to_path_buf(), DependencyType::Target));
2723                continue;
2724            }
2725
2726            // Otherwise this was a "top level artifact" which right now doesn't
2727            // have a hash in the name, but there's a version of this file in
2728            // the `deps` folder which *does* have a hash in the name. That's
2729            // the one we'll want to we'll probe for it later.
2730            //
2731            // We do not use `Path::file_stem` or `Path::extension` here,
2732            // because some generated files may have multiple extensions e.g.
2733            // `std-<hash>.dll.lib` on Windows. The aforementioned methods only
2734            // split the file name by the last extension (`.lib`) while we need
2735            // to split by all extensions (`.dll.lib`).
2736            let expected_len = t!(filename.metadata()).len();
2737            let filename = filename.file_name().unwrap().to_str().unwrap();
2738            let mut parts = filename.splitn(2, '.');
2739            let file_stem = parts.next().unwrap().to_owned();
2740            let extension = parts.next().unwrap().to_owned();
2741
2742            toplevel.push((file_stem, extension, expected_len));
2743        }
2744    });
2745
2746    if !ok {
2747        crate::exit!(1);
2748    }
2749
2750    if builder.config.dry_run() {
2751        return Vec::new();
2752    }
2753
2754    // Ok now we need to actually find all the files listed in `toplevel`. We've
2755    // got a list of prefix/extensions and we basically just need to find the
2756    // most recent file in the `deps` folder corresponding to each one.
2757    let contents = target_deps_dir
2758        .read_dir()
2759        .unwrap_or_else(|e| panic!("Couldn't read {}: {}", target_deps_dir.display(), e))
2760        .map(|e| t!(e))
2761        .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
2762        .collect::<Vec<_>>();
2763    for (prefix, extension, expected_len) in toplevel {
2764        let candidates = contents.iter().filter(|&(_, filename, meta)| {
2765            meta.len() == expected_len
2766                && filename
2767                    .strip_prefix(&prefix[..])
2768                    .map(|s| s.starts_with('-') && s.ends_with(&extension[..]))
2769                    .unwrap_or(false)
2770        });
2771        let max = candidates.max_by_key(|&(_, _, metadata)| {
2772            metadata.modified().expect("mtime should be available on all relevant OSes")
2773        });
2774        let path_to_add = match max {
2775            Some(triple) => triple.0.to_str().unwrap(),
2776            None => panic!("no output generated for {prefix:?} {extension:?}"),
2777        };
2778        if is_dylib(Path::new(path_to_add)) {
2779            let candidate = format!("{path_to_add}.lib");
2780            let candidate = PathBuf::from(candidate);
2781            if candidate.exists() {
2782                deps.push((candidate, DependencyType::Target));
2783            }
2784        }
2785        deps.push((path_to_add.into(), DependencyType::Target));
2786    }
2787
2788    deps.extend(additional_target_deps);
2789    deps.sort();
2790    let mut new_contents = Vec::new();
2791    for (dep, dependency_type) in deps.iter() {
2792        new_contents.extend(match *dependency_type {
2793            DependencyType::Host => b"h",
2794            DependencyType::Target => b"t",
2795            DependencyType::TargetSelfContained => b"s",
2796        });
2797        new_contents.extend(dep.to_str().unwrap().as_bytes());
2798        new_contents.extend(b"\0");
2799    }
2800    t!(fs::write(stamp.path(), &new_contents));
2801    deps.into_iter().map(|(d, _)| d).collect()
2802}
2803
2804pub fn stream_cargo(
2805    builder: &Builder<'_>,
2806    cargo: Cargo,
2807    tail_args: Vec<String>,
2808    cb: &mut dyn FnMut(CargoMessage<'_>),
2809) -> bool {
2810    let mut cmd = cargo.into_cmd();
2811
2812    // Instruct Cargo to give us json messages on stdout, critically leaving
2813    // stderr as piped so we can get those pretty colors.
2814    let mut message_format = if builder.config.json_output {
2815        String::from("json")
2816    } else {
2817        String::from("json-render-diagnostics")
2818    };
2819    if let Some(s) = &builder.config.rustc_error_format {
2820        message_format.push_str(",json-diagnostic-");
2821        message_format.push_str(s);
2822    }
2823    cmd.arg("--message-format").arg(message_format);
2824
2825    for arg in tail_args {
2826        cmd.arg(arg);
2827    }
2828
2829    builder.do_if_verbose(|| println!("running: {cmd:?}"));
2830
2831    let streaming_command = cmd.stream_capture_stdout(&builder.config.exec_ctx);
2832
2833    let Some(mut streaming_command) = streaming_command else {
2834        return true;
2835    };
2836
2837    // Spawn Cargo slurping up its JSON output. We'll start building up the
2838    // `deps` array of all files it generated along with a `toplevel` array of
2839    // files we need to probe for later.
2840    let stdout = BufReader::new(streaming_command.stdout.take().unwrap());
2841    for line in stdout.lines() {
2842        let line = t!(line);
2843        match serde_json::from_str::<CargoMessage<'_>>(&line) {
2844            Ok(msg) => {
2845                if builder.config.json_output {
2846                    // Forward JSON to stdout.
2847                    println!("{line}");
2848                }
2849                cb(msg)
2850            }
2851            // If this was informational, just print it out and continue
2852            Err(_) => println!("{line}"),
2853        }
2854    }
2855
2856    // Make sure Cargo actually succeeded after we read all of its stdout.
2857    let status = t!(streaming_command.wait(&builder.config.exec_ctx));
2858    if builder.is_verbose() && !status.success() {
2859        eprintln!(
2860            "command did not execute successfully: {cmd:?}\n\
2861                  expected success, got: {status}"
2862        );
2863    }
2864
2865    status.success()
2866}
2867
2868#[derive(Deserialize)]
2869pub struct CargoTarget<'a> {
2870    crate_types: Vec<Cow<'a, str>>,
2871}
2872
2873#[derive(Deserialize)]
2874#[serde(tag = "reason", rename_all = "kebab-case")]
2875pub enum CargoMessage<'a> {
2876    CompilerArtifact { filenames: Vec<Cow<'a, str>>, target: CargoTarget<'a> },
2877    BuildScriptExecuted,
2878    BuildFinished,
2879}
2880
2881pub fn strip_debug(builder: &Builder<'_>, target: TargetSelection, path: &Path) {
2882    // FIXME: to make things simpler for now, limit this to the host and target where we know
2883    // `strip -g` is both available and will fix the issue, i.e. on a x64 linux host that is not
2884    // cross-compiling. Expand this to other appropriate targets in the future.
2885    if target != "x86_64-unknown-linux-gnu"
2886        || !builder.config.is_host_target(target)
2887        || !path.exists()
2888    {
2889        return;
2890    }
2891
2892    let previous_mtime = t!(t!(path.metadata()).modified());
2893    let stamp = BuildStamp::new(path.parent().unwrap())
2894        .with_prefix(path.file_name().unwrap().to_str().unwrap())
2895        .with_prefix("strip")
2896        .add_stamp(previous_mtime.duration_since(SystemTime::UNIX_EPOCH).unwrap().as_nanos());
2897
2898    // Running strip can be relatively expensive (~1s on librustc_driver.so), so we don't rerun it
2899    // if the file is unchanged.
2900    if !stamp.is_up_to_date() {
2901        command("strip").arg("--strip-debug").arg(path).run_capture(builder);
2902    }
2903    t!(stamp.write());
2904
2905    let file = t!(fs::File::open(path));
2906
2907    // After running `strip`, we have to set the file modification time to what it was before,
2908    // otherwise we risk Cargo invalidating its fingerprint and rebuilding the world next time
2909    // bootstrap is invoked.
2910    //
2911    // An example of this is if we run this on librustc_driver.so. In the first invocation:
2912    // - Cargo will build librustc_driver.so (mtime of 1)
2913    // - Cargo will build rustc-main (mtime of 2)
2914    // - Bootstrap will strip librustc_driver.so (changing the mtime to 3).
2915    //
2916    // In the second invocation of bootstrap, Cargo will see that the mtime of librustc_driver.so
2917    // is greater than the mtime of rustc-main, and will rebuild rustc-main. That will then cause
2918    // everything else (standard library, future stages...) to be rebuilt.
2919    t!(file.set_modified(previous_mtime));
2920}
2921
2922/// We only use LTO for stage 2+, to speed up build time of intermediate stages.
2923pub fn is_lto_stage(build_compiler: &Compiler) -> bool {
2924    build_compiler.stage != 0
2925}