Skip to main content

bootstrap/core/build_steps/
compile.rs

1//! Implementation of compiling various phases of the compiler and standard
2//! library.
3//!
4//! This module contains some of the real meat in the bootstrap build system
5//! which is where Cargo is used to compile the standard library, libtest, and
6//! the compiler. This module is also responsible for assembling the sysroot as it
7//! goes along from the output of the previous stage.
8
9use std::borrow::Cow;
10use std::collections::{BTreeMap, HashMap, HashSet};
11use std::ffi::OsStr;
12use std::io::BufReader;
13use std::io::prelude::*;
14use std::path::{Path, PathBuf};
15use std::time::SystemTime;
16use std::{env, fs, str};
17
18use serde_derive::Deserialize;
19#[cfg(feature = "tracing")]
20use tracing::span;
21
22use crate::core::build_steps::gcc::{Gcc, GccOutput, GccTargetPair};
23use crate::core::build_steps::tool::{RustcPrivateCompilers, SourceType, copy_lld_artifacts};
24use crate::core::build_steps::{dist, llvm};
25use crate::core::builder;
26use crate::core::builder::{
27    Builder, Cargo, Kind, RunConfig, ShouldRun, Step, StepMetadata, crate_description,
28};
29use crate::core::config::toml::target::DefaultLinuxLinkerOverride;
30use crate::core::config::{
31    CompilerBuiltins, DebuginfoLevel, LlvmLibunwind, RustcLto, TargetSelection,
32};
33use crate::utils::build_stamp;
34use crate::utils::build_stamp::BuildStamp;
35use crate::utils::exec::command;
36use crate::utils::helpers::{
37    exe, get_clang_cl_resource_dir, is_debug_info, is_dylib, symlink_dir, t, up_to_date,
38};
39use crate::{
40    CLang, CodegenBackendKind, Compiler, DependencyType, FileType, GitRepo, LLVM_TOOLS, Mode,
41    debug, trace,
42};
43
44/// Build a standard library for the given `target` using the given `build_compiler`.
45#[derive(Debug, Clone, PartialEq, Eq, Hash)]
46pub struct Std {
47    pub target: TargetSelection,
48    /// Compiler that builds the standard library.
49    pub build_compiler: Compiler,
50    /// Whether to build only a subset of crates in the standard library.
51    ///
52    /// This shouldn't be used from other steps; see the comment on [`Rustc`].
53    crates: Vec<String>,
54    /// When using download-rustc, we need to use a new build of `std` for running unit tests of Std itself,
55    /// but we need to use the downloaded copy of std for linking to rustdoc. Allow this to be overridden by `builder.ensure` from other steps.
56    force_recompile: bool,
57    extra_rust_args: &'static [&'static str],
58    is_for_mir_opt_tests: bool,
59}
60
61impl Std {
62    pub fn new(build_compiler: Compiler, target: TargetSelection) -> Self {
63        Self {
64            target,
65            build_compiler,
66            crates: Default::default(),
67            force_recompile: false,
68            extra_rust_args: &[],
69            is_for_mir_opt_tests: false,
70        }
71    }
72
73    pub fn force_recompile(mut self, force_recompile: bool) -> Self {
74        self.force_recompile = force_recompile;
75        self
76    }
77
78    #[expect(clippy::wrong_self_convention)]
79    pub fn is_for_mir_opt_tests(mut self, is_for_mir_opt_tests: bool) -> Self {
80        self.is_for_mir_opt_tests = is_for_mir_opt_tests;
81        self
82    }
83
84    pub fn extra_rust_args(mut self, extra_rust_args: &'static [&'static str]) -> Self {
85        self.extra_rust_args = extra_rust_args;
86        self
87    }
88
89    fn copy_extra_objects(
90        &self,
91        builder: &Builder<'_>,
92        compiler: &Compiler,
93        target: TargetSelection,
94    ) -> Vec<(PathBuf, DependencyType)> {
95        let mut deps = Vec::new();
96        if !self.is_for_mir_opt_tests {
97            deps.extend(copy_third_party_objects(builder, compiler, target));
98            deps.extend(copy_self_contained_objects(builder, compiler, target));
99        }
100        deps
101    }
102
103    /// Returns true if the standard library should be uplifted from stage 1.
104    ///
105    /// Uplifting is enabled if we're building a stage2+ libstd and full bootstrap is
106    /// disabled.
107    pub fn should_be_uplifted_from_stage_1(builder: &Builder<'_>, stage: u32) -> bool {
108        stage > 1 && !builder.config.full_bootstrap
109    }
110}
111
112impl Step for Std {
113    /// Build stamp of std, if it was indeed built or uplifted.
114    type Output = Option<BuildStamp>;
115
116    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
117        run.crate_or_deps("sysroot").path("library")
118    }
119
120    fn is_default_step(_builder: &Builder<'_>) -> bool {
121        true
122    }
123
124    fn make_run(run: RunConfig<'_>) {
125        let crates = std_crates_for_run_make(&run);
126        let builder = run.builder;
127
128        // Force compilation of the standard library from source if the `library` is modified. This allows
129        // library team to compile the standard library without needing to compile the compiler with
130        // the `rust.download-rustc=true` option.
131        let force_recompile = builder.rust_info().is_managed_git_subrepository()
132            && builder.download_rustc()
133            && builder.config.has_changes_from_upstream(&["library"]);
134
135        trace!("is managed git repo: {}", builder.rust_info().is_managed_git_subrepository());
136        trace!("download_rustc: {}", builder.download_rustc());
137        trace!(force_recompile);
138
139        run.builder.ensure(Std {
140            // Note: we don't use compiler_for_std here, so that `x build library --stage 2`
141            // builds a stage2 rustc.
142            build_compiler: run.builder.compiler(run.builder.top_stage, builder.host_target),
143            target: run.target,
144            crates,
145            force_recompile,
146            extra_rust_args: &[],
147            is_for_mir_opt_tests: false,
148        });
149    }
150
151    /// Builds the standard library.
152    ///
153    /// This will build the standard library for a particular stage of the build
154    /// using the `compiler` targeting the `target` architecture. The artifacts
155    /// created will also be linked into the sysroot directory.
156    fn run(self, builder: &Builder<'_>) -> Self::Output {
157        let target = self.target;
158
159        // In most cases, we already have the std ready to be used for stage 0.
160        // However, if we are doing a local rebuild (so the build compiler can compile the standard
161        // library even on stage 0), and we're cross-compiling (so the stage0 standard library for
162        // *target* is not available), we still allow the stdlib to be built here.
163        if self.build_compiler.stage == 0
164            && !(builder.local_rebuild && target != builder.host_target)
165        {
166            let compiler = self.build_compiler;
167            builder.ensure(StdLink::from_std(self, compiler));
168
169            return None;
170        }
171
172        let build_compiler = if builder.download_rustc() && self.force_recompile {
173            // When there are changes in the library tree with CI-rustc, we want to build
174            // the stageN library and that requires using stageN-1 compiler.
175            builder
176                .compiler(self.build_compiler.stage.saturating_sub(1), builder.config.host_target)
177        } else {
178            self.build_compiler
179        };
180
181        // When using `download-rustc`, we already have artifacts for the host available. Don't
182        // recompile them.
183        if builder.download_rustc()
184            && builder.config.is_host_target(target)
185            && !self.force_recompile
186        {
187            let sysroot =
188                builder.ensure(Sysroot { compiler: build_compiler, force_recompile: false });
189            cp_rustc_component_to_ci_sysroot(
190                builder,
191                &sysroot,
192                builder.config.ci_rust_std_contents(),
193            );
194            return None;
195        }
196
197        if builder.config.keep_stage.contains(&build_compiler.stage)
198            || builder.config.keep_stage_std.contains(&build_compiler.stage)
199        {
200            trace!(keep_stage = ?builder.config.keep_stage);
201            trace!(keep_stage_std = ?builder.config.keep_stage_std);
202
203            builder.info("WARNING: Using a potentially old libstd. This may not behave well.");
204
205            builder.ensure(StartupObjects { compiler: build_compiler, target });
206
207            self.copy_extra_objects(builder, &build_compiler, target);
208
209            builder.ensure(StdLink::from_std(self, build_compiler));
210            return Some(build_stamp::libstd_stamp(builder, build_compiler, target));
211        }
212
213        let mut target_deps = builder.ensure(StartupObjects { compiler: build_compiler, target });
214
215        // Stage of the stdlib that we're building
216        let stage = build_compiler.stage;
217
218        if Self::should_be_uplifted_from_stage_1(builder, build_compiler.stage) {
219            let build_compiler_for_std_to_uplift = builder.compiler(1, builder.host_target);
220            let stage_1_stamp = builder.std(build_compiler_for_std_to_uplift, target);
221
222            let msg = if build_compiler_for_std_to_uplift.host == target {
223                format!(
224                    "Uplifting library (stage{} -> stage{stage})",
225                    build_compiler_for_std_to_uplift.stage
226                )
227            } else {
228                format!(
229                    "Uplifting library (stage{}:{} -> stage{stage}:{target})",
230                    build_compiler_for_std_to_uplift.stage, build_compiler_for_std_to_uplift.host,
231                )
232            };
233
234            builder.info(&msg);
235
236            // Even if we're not building std this stage, the new sysroot must
237            // still contain the third party objects needed by various targets.
238            self.copy_extra_objects(builder, &build_compiler, target);
239
240            builder.ensure(StdLink::from_std(self, build_compiler_for_std_to_uplift));
241            return stage_1_stamp;
242        }
243
244        target_deps.extend(self.copy_extra_objects(builder, &build_compiler, target));
245
246        // We build a sysroot for mir-opt tests using the same trick that Miri does: A check build
247        // with -Zalways-encode-mir. This frees us from the need to have a target linker, and the
248        // fact that this is a check build integrates nicely with run_cargo.
249        let mut cargo = if self.is_for_mir_opt_tests {
250            trace!("building special sysroot for mir-opt tests");
251            let mut cargo = builder::Cargo::new_for_mir_opt_tests(
252                builder,
253                build_compiler,
254                Mode::Std,
255                SourceType::InTree,
256                target,
257                Kind::Check,
258            );
259            cargo.rustflag("-Zalways-encode-mir");
260            cargo.arg("--manifest-path").arg(builder.src.join("library/sysroot/Cargo.toml"));
261            cargo
262        } else {
263            trace!("building regular sysroot");
264            let mut cargo = builder::Cargo::new(
265                builder,
266                build_compiler,
267                Mode::Std,
268                SourceType::InTree,
269                target,
270                Kind::Build,
271            );
272            std_cargo(builder, target, &mut cargo, &self.crates);
273            cargo
274        };
275
276        // See src/bootstrap/synthetic_targets.rs
277        if target.is_synthetic() {
278            cargo.env("RUSTC_BOOTSTRAP_SYNTHETIC_TARGET", "1");
279        }
280        for rustflag in self.extra_rust_args.iter() {
281            cargo.rustflag(rustflag);
282        }
283
284        let _guard = builder.msg(
285            Kind::Build,
286            format_args!("library artifacts{}", crate_description(&self.crates)),
287            Mode::Std,
288            build_compiler,
289            target,
290        );
291
292        let stamp = build_stamp::libstd_stamp(builder, build_compiler, target);
293        run_cargo(
294            builder,
295            cargo,
296            vec![],
297            &stamp,
298            target_deps,
299            if self.is_for_mir_opt_tests {
300                ArtifactKeepMode::OnlyRmeta
301            } else {
302                // We use -Zno-embed-metadata for the standard library
303                ArtifactKeepMode::BothRlibAndRmeta
304            },
305        );
306
307        builder.ensure(StdLink::from_std(
308            self,
309            builder.compiler(build_compiler.stage, builder.config.host_target),
310        ));
311        Some(stamp)
312    }
313
314    fn metadata(&self) -> Option<StepMetadata> {
315        Some(StepMetadata::build("std", self.target).built_by(self.build_compiler))
316    }
317}
318
319fn copy_and_stamp(
320    builder: &Builder<'_>,
321    libdir: &Path,
322    sourcedir: &Path,
323    name: &str,
324    target_deps: &mut Vec<(PathBuf, DependencyType)>,
325    dependency_type: DependencyType,
326) {
327    let target = libdir.join(name);
328    builder.copy_link(&sourcedir.join(name), &target, FileType::Regular);
329
330    target_deps.push((target, dependency_type));
331}
332
333fn copy_llvm_libunwind(builder: &Builder<'_>, target: TargetSelection, libdir: &Path) -> PathBuf {
334    let libunwind_path = builder.ensure(llvm::Libunwind { target });
335    let libunwind_source = libunwind_path.join("libunwind.a");
336    let libunwind_target = libdir.join("libunwind.a");
337    builder.copy_link(&libunwind_source, &libunwind_target, FileType::NativeLibrary);
338    libunwind_target
339}
340
341/// Copies third party objects needed by various targets.
342fn copy_third_party_objects(
343    builder: &Builder<'_>,
344    compiler: &Compiler,
345    target: TargetSelection,
346) -> Vec<(PathBuf, DependencyType)> {
347    let mut target_deps = vec![];
348
349    if builder.config.needs_sanitizer_runtime_built(target) && compiler.stage != 0 {
350        // The sanitizers are only copied in stage1 or above,
351        // to avoid creating dependency on LLVM.
352        target_deps.extend(
353            copy_sanitizers(builder, compiler, target)
354                .into_iter()
355                .map(|d| (d, DependencyType::Target)),
356        );
357    }
358
359    if target == "x86_64-fortanix-unknown-sgx"
360        || builder.config.llvm_libunwind(target) == LlvmLibunwind::InTree
361            && (target.contains("linux")
362                || target.contains("fuchsia")
363                || target.contains("aix")
364                || target.contains("hexagon"))
365    {
366        let libunwind_path =
367            copy_llvm_libunwind(builder, target, &builder.sysroot_target_libdir(*compiler, target));
368        target_deps.push((libunwind_path, DependencyType::Target));
369    }
370
371    target_deps
372}
373
374/// Copies third party objects needed by various targets for self-contained linkage.
375fn copy_self_contained_objects(
376    builder: &Builder<'_>,
377    compiler: &Compiler,
378    target: TargetSelection,
379) -> Vec<(PathBuf, DependencyType)> {
380    let libdir_self_contained =
381        builder.sysroot_target_libdir(*compiler, target).join("self-contained");
382    t!(fs::create_dir_all(&libdir_self_contained));
383    let mut target_deps = vec![];
384
385    // Copies the libc and CRT objects.
386    //
387    // rustc historically provides a more self-contained installation for musl targets
388    // not requiring the presence of a native musl toolchain. For example, it can fall back
389    // to using gcc from a glibc-targeting toolchain for linking.
390    // To do that we have to distribute musl startup objects as a part of Rust toolchain
391    // and link with them manually in the self-contained mode.
392    if target.needs_crt_begin_end() {
393        let srcdir = builder.musl_libdir(target).unwrap_or_else(|| {
394            panic!("Target {:?} does not have a \"musl-libdir\" key", target.triple)
395        });
396        if !target.starts_with("wasm32") {
397            for &obj in &["libc.a", "crt1.o", "Scrt1.o", "rcrt1.o", "crti.o", "crtn.o"] {
398                copy_and_stamp(
399                    builder,
400                    &libdir_self_contained,
401                    &srcdir,
402                    obj,
403                    &mut target_deps,
404                    DependencyType::TargetSelfContained,
405                );
406            }
407            let crt_path = builder.ensure(llvm::CrtBeginEnd { target });
408            for &obj in &["crtbegin.o", "crtbeginS.o", "crtend.o", "crtendS.o"] {
409                let src = crt_path.join(obj);
410                let target = libdir_self_contained.join(obj);
411                builder.copy_link(&src, &target, FileType::NativeLibrary);
412                target_deps.push((target, DependencyType::TargetSelfContained));
413            }
414        } else {
415            // For wasm32 targets, we need to copy the libc.a and crt1-command.o files from the
416            // musl-libdir, but we don't need the other files.
417            for &obj in &["libc.a", "crt1-command.o"] {
418                copy_and_stamp(
419                    builder,
420                    &libdir_self_contained,
421                    &srcdir,
422                    obj,
423                    &mut target_deps,
424                    DependencyType::TargetSelfContained,
425                );
426            }
427        }
428        if !target.starts_with("s390x") {
429            let libunwind_path = copy_llvm_libunwind(builder, target, &libdir_self_contained);
430            target_deps.push((libunwind_path, DependencyType::TargetSelfContained));
431        }
432    } else if target.contains("-wasi") {
433        let srcdir = builder.wasi_libdir(target).unwrap_or_else(|| {
434            panic!(
435                "Target {:?} does not have a \"wasi-root\" key in bootstrap.toml \
436                    or `$WASI_SDK_PATH` set",
437                target.triple
438            )
439        });
440
441        // wasm32-wasip3 doesn't exist in wasi-libc yet, so instead use libs
442        // from the wasm32-wasip2 target. Once wasi-libc supports wasip3 this
443        // should be deleted and the native objects should be used.
444        let srcdir = if target == "wasm32-wasip3" {
445            assert!(!srcdir.exists(), "wasip3 support is in wasi-libc, this should be updated now");
446            builder.wasi_libdir(TargetSelection::from_user("wasm32-wasip2")).unwrap()
447        } else {
448            srcdir
449        };
450        for &obj in &["libc.a", "crt1-command.o", "crt1-reactor.o"] {
451            copy_and_stamp(
452                builder,
453                &libdir_self_contained,
454                &srcdir,
455                obj,
456                &mut target_deps,
457                DependencyType::TargetSelfContained,
458            );
459        }
460    } else if target.is_windows_gnu() || target.is_windows_gnullvm() {
461        for obj in ["crt2.o", "dllcrt2.o"].iter() {
462            let src = compiler_file(builder, &builder.cc(target), target, CLang::C, obj);
463            let dst = libdir_self_contained.join(obj);
464            builder.copy_link(&src, &dst, FileType::NativeLibrary);
465            target_deps.push((dst, DependencyType::TargetSelfContained));
466        }
467    }
468
469    target_deps
470}
471
472/// Resolves standard library crates for `Std::run_make` for any build kind (like check, doc,
473/// build, clippy, etc.).
474pub fn std_crates_for_run_make(run: &RunConfig<'_>) -> Vec<String> {
475    let mut crates = run.make_run_crates(builder::Alias::Library);
476
477    // For no_std targets, we only want to check core and alloc
478    // Regardless of core/alloc being selected explicitly or via the "library" default alias,
479    // we only want to keep these two crates.
480    // The set of no_std crates should be kept in sync with what `Builder::std_cargo` does.
481    // Note: an alternative design would be to return an enum from this function (Default vs Subset)
482    // of crates. However, several steps currently pass `-p <package>` even if all crates are
483    // selected, because Cargo behaves differently in that case. To keep that behavior without
484    // making further changes, we pre-filter the no-std crates here.
485    let target_is_no_std = run.builder.no_std(run.target).unwrap_or(false);
486    if target_is_no_std {
487        crates.retain(|c| c == "core" || c == "alloc");
488    }
489    crates
490}
491
492/// Tries to find LLVM's `compiler-rt` source directory, for building `library/profiler_builtins`.
493///
494/// Normally it lives in the `src/llvm-project` submodule, but if we will be using a
495/// downloaded copy of CI LLVM, then we try to use the `compiler-rt` sources from
496/// there instead, which lets us avoid checking out the LLVM submodule.
497fn compiler_rt_for_profiler(builder: &Builder<'_>) -> PathBuf {
498    // Try to use `compiler-rt` sources from downloaded CI LLVM, if possible.
499    if builder.config.llvm_from_ci {
500        // CI LLVM might not have been downloaded yet, so try to download it now.
501        builder.config.maybe_download_ci_llvm();
502        let ci_llvm_compiler_rt = builder.config.ci_llvm_root().join("compiler-rt");
503        if ci_llvm_compiler_rt.exists() {
504            return ci_llvm_compiler_rt;
505        }
506    }
507
508    // Otherwise, fall back to requiring the LLVM submodule.
509    builder.require_submodule("src/llvm-project", {
510        Some("The `build.profiler` config option requires `compiler-rt` sources from LLVM.")
511    });
512    builder.src.join("src/llvm-project/compiler-rt")
513}
514
515/// Configure cargo to compile the standard library, adding appropriate env vars
516/// and such.
517pub fn std_cargo(
518    builder: &Builder<'_>,
519    target: TargetSelection,
520    cargo: &mut Cargo,
521    crates: &[String],
522) {
523    // rustc already ensures that it builds with the minimum deployment
524    // target, so ideally we shouldn't need to do anything here.
525    //
526    // However, `cc` currently defaults to a higher version for backwards
527    // compatibility, which means that compiler-rt, which is built via
528    // compiler-builtins' build script, gets built with a higher deployment
529    // target. This in turn causes warnings while linking, and is generally
530    // a compatibility hazard.
531    //
532    // So, at least until https://github.com/rust-lang/cc-rs/issues/1171, or
533    // perhaps https://github.com/rust-lang/cargo/issues/13115 is resolved, we
534    // explicitly set the deployment target environment variables to avoid
535    // this issue.
536    //
537    // This place also serves as an extension point if we ever wanted to raise
538    // rustc's default deployment target while keeping the prebuilt `std` at
539    // a lower version, so it's kinda nice to have in any case.
540    if target.contains("apple") && !builder.config.dry_run() {
541        // Query rustc for the deployment target, and the associated env var.
542        // The env var is one of the standard `*_DEPLOYMENT_TARGET` vars, i.e.
543        // `MACOSX_DEPLOYMENT_TARGET`, `IPHONEOS_DEPLOYMENT_TARGET`, etc.
544        let mut cmd = builder.rustc_cmd(cargo.compiler());
545        cmd.arg("--target").arg(target.rustc_target_arg());
546        cmd.arg("--print=deployment-target");
547        let output = cmd.run_capture_stdout(builder).stdout();
548
549        let (env_var, value) = output.split_once('=').unwrap();
550        // Unconditionally set the env var (if it was set in the environment
551        // already, rustc should've picked that up).
552        cargo.env(env_var.trim(), value.trim());
553
554        // Allow CI to override the deployment target for `std` on macOS.
555        //
556        // This is useful because we might want the host tooling LLVM, `rustc`
557        // and Cargo to have a different deployment target than `std` itself
558        // (currently, these two versions are the same, but in the past, we
559        // supported macOS 10.7 for user code and macOS 10.8 in host tooling).
560        //
561        // It is not necessary on the other platforms, since only macOS has
562        // support for host tooling.
563        if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
564            cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
565        }
566    }
567
568    // Paths needed by `library/profiler_builtins/build.rs`.
569    if let Some(path) = builder.config.profiler_path(target) {
570        cargo.env("LLVM_PROFILER_RT_LIB", path);
571    } else if builder.config.profiler_enabled(target) {
572        let compiler_rt = compiler_rt_for_profiler(builder);
573        // Currently this is separate from the env var used by `compiler_builtins`
574        // (below) so that adding support for CI LLVM here doesn't risk breaking
575        // the compiler builtins. But they could be unified if desired.
576        cargo.env("RUST_COMPILER_RT_FOR_PROFILER", compiler_rt);
577    }
578
579    // Determine if we're going to compile in optimized C intrinsics to
580    // the `compiler-builtins` crate. These intrinsics live in LLVM's
581    // `compiler-rt` repository.
582    //
583    // Note that this shouldn't affect the correctness of `compiler-builtins`,
584    // but only its speed. Some intrinsics in C haven't been translated to Rust
585    // yet but that's pretty rare. Other intrinsics have optimized
586    // implementations in C which have only had slower versions ported to Rust,
587    // so we favor the C version where we can, but it's not critical.
588    //
589    // If `compiler-rt` is available ensure that the `c` feature of the
590    // `compiler-builtins` crate is enabled and it's configured to learn where
591    // `compiler-rt` is located.
592    let compiler_builtins_c_feature = match builder.config.optimized_compiler_builtins(target) {
593        CompilerBuiltins::LinkLLVMBuiltinsLib(path) => {
594            cargo.env("LLVM_COMPILER_RT_LIB", path);
595            " compiler-builtins-c"
596        }
597        CompilerBuiltins::BuildLLVMFuncs => {
598            // NOTE: this interacts strangely with `llvm-has-rust-patches`. In that case, we enforce
599            // `submodules = false`, so this is a no-op. But, the user could still decide to
600            //  manually use an in-tree submodule.
601            //
602            // NOTE: if we're using system llvm, we'll end up building a version of `compiler-rt`
603            // that doesn't match the LLVM we're linking to. That's probably ok? At least, the
604            // difference wasn't enforced before. There's a comment in the compiler_builtins build
605            // script that makes me nervous, though:
606            // https://github.com/rust-lang/compiler-builtins/blob/31ee4544dbe47903ce771270d6e3bea8654e9e50/build.rs#L575-L579
607            builder.require_submodule(
608                "src/llvm-project",
609                Some(
610                    "The `build.optimized-compiler-builtins` config option \
611                     requires `compiler-rt` sources from LLVM.",
612                ),
613            );
614            let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
615            if !builder.config.dry_run() {
616                // This assertion would otherwise trigger during tests if `llvm-project` is not
617                // checked out.
618                assert!(compiler_builtins_root.exists());
619            }
620
621            // The path to `compiler-rt` is also used by `profiler_builtins` (above),
622            // so if you're changing something here please also change that as appropriate.
623            cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
624            " compiler-builtins-c"
625        }
626        CompilerBuiltins::BuildRustOnly => "",
627    };
628
629    for krate in crates {
630        cargo.args(["-p", krate]);
631    }
632
633    let mut features = String::new();
634
635    if builder.no_std(target) == Some(true) {
636        features += " compiler-builtins-mem";
637        if !target.starts_with("bpf") {
638            features.push_str(compiler_builtins_c_feature);
639        }
640
641        // for no-std targets we only compile a few no_std crates
642        if crates.is_empty() {
643            cargo.args(["-p", "alloc"]);
644        }
645        cargo
646            .arg("--manifest-path")
647            .arg(builder.src.join("library/alloc/Cargo.toml"))
648            .arg("--features")
649            .arg(features);
650    } else {
651        features += &builder.std_features(target);
652        features.push_str(compiler_builtins_c_feature);
653
654        cargo
655            .arg("--features")
656            .arg(features)
657            .arg("--manifest-path")
658            .arg(builder.src.join("library/sysroot/Cargo.toml"));
659
660        // Help the libc crate compile by assisting it in finding various
661        // sysroot native libraries.
662        if target.contains("musl")
663            && let Some(p) = builder.musl_libdir(target)
664        {
665            let root = format!("native={}", p.to_str().unwrap());
666            cargo.rustflag("-L").rustflag(&root);
667        }
668
669        if target.contains("-wasi")
670            && let Some(dir) = builder.wasi_libdir(target)
671        {
672            let root = format!("native={}", dir.to_str().unwrap());
673            cargo.rustflag("-L").rustflag(&root);
674        }
675    }
676
677    if builder.config.rust_lto == RustcLto::Off {
678        cargo.rustflag("-Clto=off");
679    }
680
681    // By default, rustc does not include unwind tables unless they are required
682    // for a particular target. They are not required by RISC-V targets, but
683    // compiling the standard library with them means that users can get
684    // backtraces without having to recompile the standard library themselves.
685    //
686    // This choice was discussed in https://github.com/rust-lang/rust/pull/69890
687    if target.contains("riscv") {
688        cargo.rustflag("-Cforce-unwind-tables=yes");
689    }
690
691    let html_root =
692        format!("-Zcrate-attr=doc(html_root_url=\"{}/\")", builder.doc_rust_lang_org_channel(),);
693    cargo.rustflag(&html_root);
694    cargo.rustdocflag(&html_root);
695
696    cargo.rustdocflag("-Zcrate-attr=warn(rust_2018_idioms)");
697}
698
699/// Link all libstd rlibs/dylibs into a sysroot of `target_compiler`.
700///
701/// Links those artifacts generated by `compiler` to the `stage` compiler's
702/// sysroot for the specified `host` and `target`.
703///
704/// Note that this assumes that `compiler` has already generated the libstd
705/// libraries for `target`, and this method will find them in the relevant
706/// output directory.
707#[derive(Debug, Clone, PartialEq, Eq, Hash)]
708pub struct StdLink {
709    pub compiler: Compiler,
710    pub target_compiler: Compiler,
711    pub target: TargetSelection,
712    /// Not actually used; only present to make sure the cache invalidation is correct.
713    crates: Vec<String>,
714    /// See [`Std::force_recompile`].
715    force_recompile: bool,
716}
717
718impl StdLink {
719    pub fn from_std(std: Std, host_compiler: Compiler) -> Self {
720        Self {
721            compiler: host_compiler,
722            target_compiler: std.build_compiler,
723            target: std.target,
724            crates: std.crates,
725            force_recompile: std.force_recompile,
726        }
727    }
728}
729
730impl Step for StdLink {
731    type Output = ();
732
733    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
734        run.never()
735    }
736
737    /// Link all libstd rlibs/dylibs into the sysroot location.
738    ///
739    /// Links those artifacts generated by `compiler` to the `stage` compiler's
740    /// sysroot for the specified `host` and `target`.
741    ///
742    /// Note that this assumes that `compiler` has already generated the libstd
743    /// libraries for `target`, and this method will find them in the relevant
744    /// output directory.
745    fn run(self, builder: &Builder<'_>) {
746        let compiler = self.compiler;
747        let target_compiler = self.target_compiler;
748        let target = self.target;
749
750        // NOTE: intentionally does *not* check `target == builder.build` to avoid having to add the same check in `test::Crate`.
751        let (libdir, hostdir) = if !self.force_recompile && builder.download_rustc() {
752            // NOTE: copies part of `sysroot_libdir` to avoid having to add a new `force_recompile` argument there too
753            let lib = builder.sysroot_libdir_relative(self.compiler);
754            let sysroot = builder.ensure(crate::core::build_steps::compile::Sysroot {
755                compiler: self.compiler,
756                force_recompile: self.force_recompile,
757            });
758            let libdir = sysroot.join(lib).join("rustlib").join(target).join("lib");
759            let hostdir = sysroot.join(lib).join("rustlib").join(compiler.host).join("lib");
760            (libdir, hostdir)
761        } else {
762            let libdir = builder.sysroot_target_libdir(target_compiler, target);
763            let hostdir = builder.sysroot_target_libdir(target_compiler, compiler.host);
764            (libdir, hostdir)
765        };
766
767        let is_downloaded_beta_stage0 = builder
768            .build
769            .config
770            .initial_rustc
771            .starts_with(builder.out.join(compiler.host).join("stage0/bin"));
772
773        // Special case for stage0, to make `rustup toolchain link` and `x dist --stage 0`
774        // work for stage0-sysroot. We only do this if the stage0 compiler comes from beta,
775        // and is not set to a custom path.
776        if compiler.stage == 0 && is_downloaded_beta_stage0 {
777            // Copy bin files from stage0/bin to stage0-sysroot/bin
778            let sysroot = builder.out.join(compiler.host).join("stage0-sysroot");
779
780            let host = compiler.host;
781            let stage0_bin_dir = builder.out.join(host).join("stage0/bin");
782            let sysroot_bin_dir = sysroot.join("bin");
783            t!(fs::create_dir_all(&sysroot_bin_dir));
784            builder.cp_link_r(&stage0_bin_dir, &sysroot_bin_dir);
785
786            let stage0_lib_dir = builder.out.join(host).join("stage0/lib");
787            t!(fs::create_dir_all(sysroot.join("lib")));
788            builder.cp_link_r(&stage0_lib_dir, &sysroot.join("lib"));
789
790            // Copy codegen-backends from stage0
791            let sysroot_codegen_backends = builder.sysroot_codegen_backends(compiler);
792            t!(fs::create_dir_all(&sysroot_codegen_backends));
793            let stage0_codegen_backends = builder
794                .out
795                .join(host)
796                .join("stage0/lib/rustlib")
797                .join(host)
798                .join("codegen-backends");
799            if stage0_codegen_backends.exists() {
800                builder.cp_link_r(&stage0_codegen_backends, &sysroot_codegen_backends);
801            }
802        } else if compiler.stage == 0 {
803            let sysroot = builder.out.join(compiler.host.triple).join("stage0-sysroot");
804
805            if builder.local_rebuild {
806                // On local rebuilds this path might be a symlink to the project root,
807                // which can be read-only (e.g., on CI). So remove it before copying
808                // the stage0 lib.
809                let _ = fs::remove_dir_all(sysroot.join("lib/rustlib/src/rust"));
810            }
811
812            builder.cp_link_r(&builder.initial_sysroot.join("lib"), &sysroot.join("lib"));
813        } else {
814            if builder.download_rustc() {
815                // Ensure there are no CI-rustc std artifacts.
816                let _ = fs::remove_dir_all(&libdir);
817                let _ = fs::remove_dir_all(&hostdir);
818            }
819
820            add_to_sysroot(
821                builder,
822                &libdir,
823                &hostdir,
824                &build_stamp::libstd_stamp(builder, compiler, target),
825            );
826        }
827    }
828}
829
830/// Copies sanitizer runtime libraries into target libdir.
831fn copy_sanitizers(
832    builder: &Builder<'_>,
833    compiler: &Compiler,
834    target: TargetSelection,
835) -> Vec<PathBuf> {
836    let runtimes: Vec<llvm::SanitizerRuntime> = builder.ensure(llvm::Sanitizers { target });
837
838    if builder.config.dry_run() {
839        return Vec::new();
840    }
841
842    let mut target_deps = Vec::new();
843    let libdir = builder.sysroot_target_libdir(*compiler, target);
844
845    for runtime in &runtimes {
846        let dst = libdir.join(&runtime.name);
847        builder.copy_link(&runtime.path, &dst, FileType::NativeLibrary);
848
849        // The `aarch64-apple-ios-macabi` and `x86_64-apple-ios-macabi` are also supported for
850        // sanitizers, but they share a sanitizer runtime with `${arch}-apple-darwin`, so we do
851        // not list them here to rename and sign the runtime library.
852        if target == "x86_64-apple-darwin"
853            || target == "aarch64-apple-darwin"
854            || target == "aarch64-apple-ios"
855            || target == "aarch64-apple-ios-sim"
856            || target == "x86_64-apple-ios"
857        {
858            // Update the library’s install name to reflect that it has been renamed.
859            apple_darwin_update_library_name(builder, &dst, &format!("@rpath/{}", runtime.name));
860            // Upon renaming the install name, the code signature of the file will invalidate,
861            // so we will sign it again.
862            apple_darwin_sign_file(builder, &dst);
863        }
864
865        target_deps.push(dst);
866    }
867
868    target_deps
869}
870
871fn apple_darwin_update_library_name(builder: &Builder<'_>, library_path: &Path, new_name: &str) {
872    command("install_name_tool").arg("-id").arg(new_name).arg(library_path).run(builder);
873}
874
875fn apple_darwin_sign_file(builder: &Builder<'_>, file_path: &Path) {
876    command("codesign")
877        .arg("-f") // Force to rewrite the existing signature
878        .arg("-s")
879        .arg("-")
880        .arg(file_path)
881        .run(builder);
882}
883
884#[derive(Debug, Clone, PartialEq, Eq, Hash)]
885pub struct StartupObjects {
886    pub compiler: Compiler,
887    pub target: TargetSelection,
888}
889
890impl Step for StartupObjects {
891    type Output = Vec<(PathBuf, DependencyType)>;
892
893    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
894        run.path("library/rtstartup")
895    }
896
897    fn make_run(run: RunConfig<'_>) {
898        run.builder.ensure(StartupObjects {
899            compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()),
900            target: run.target,
901        });
902    }
903
904    /// Builds and prepare startup objects like rsbegin.o and rsend.o
905    ///
906    /// These are primarily used on Windows right now for linking executables/dlls.
907    /// They don't require any library support as they're just plain old object
908    /// files, so we just use the nightly snapshot compiler to always build them (as
909    /// no other compilers are guaranteed to be available).
910    fn run(self, builder: &Builder<'_>) -> Vec<(PathBuf, DependencyType)> {
911        let for_compiler = self.compiler;
912        let target = self.target;
913        // Even though no longer necessary on x86_64, they are kept for now to
914        // avoid potential issues in downstream crates.
915        if !target.is_windows_gnu() {
916            return vec![];
917        }
918
919        let mut target_deps = vec![];
920
921        let src_dir = &builder.src.join("library").join("rtstartup");
922        let dst_dir = &builder.native_dir(target).join("rtstartup");
923        let sysroot_dir = &builder.sysroot_target_libdir(for_compiler, target);
924        t!(fs::create_dir_all(dst_dir));
925
926        for file in &["rsbegin", "rsend"] {
927            let src_file = &src_dir.join(file.to_string() + ".rs");
928            let dst_file = &dst_dir.join(file.to_string() + ".o");
929            if !up_to_date(src_file, dst_file) {
930                let mut cmd = command(&builder.initial_rustc);
931                cmd.env("RUSTC_BOOTSTRAP", "1");
932                if !builder.local_rebuild {
933                    // a local_rebuild compiler already has stage1 features
934                    cmd.arg("--cfg").arg("bootstrap");
935                }
936                cmd.arg("--target")
937                    .arg(target.rustc_target_arg())
938                    .arg("--emit=obj")
939                    .arg("-o")
940                    .arg(dst_file)
941                    .arg(src_file)
942                    .run(builder);
943            }
944
945            let obj = sysroot_dir.join((*file).to_string() + ".o");
946            builder.copy_link(dst_file, &obj, FileType::NativeLibrary);
947            target_deps.push((obj, DependencyType::Target));
948        }
949
950        target_deps
951    }
952}
953
954fn cp_rustc_component_to_ci_sysroot(builder: &Builder<'_>, sysroot: &Path, contents: Vec<String>) {
955    let ci_rustc_dir = builder.config.ci_rustc_dir();
956
957    for file in contents {
958        let src = ci_rustc_dir.join(&file);
959        let dst = sysroot.join(file);
960        if src.is_dir() {
961            t!(fs::create_dir_all(dst));
962        } else {
963            builder.copy_link(&src, &dst, FileType::Regular);
964        }
965    }
966}
967
968/// Represents information about a built rustc.
969#[derive(Clone, Debug)]
970pub struct BuiltRustc {
971    /// The compiler that actually built this *rustc*.
972    /// This can be different from the *build_compiler* passed to the `Rustc` step because of
973    /// uplifting.
974    pub build_compiler: Compiler,
975}
976
977/// Build rustc using the passed `build_compiler`.
978///
979/// - Makes sure that `build_compiler` has a standard library prepared for its host target,
980///   so that it can compile build scripts and proc macros when building this `rustc`.
981/// - Makes sure that `build_compiler` has a standard library prepared for `target`,
982///   so that the built `rustc` can *link to it* and use it at runtime.
983#[derive(Debug, Clone, PartialEq, Eq, Hash)]
984pub struct Rustc {
985    /// The target on which rustc will run (its host).
986    pub target: TargetSelection,
987    /// The **previous** compiler used to compile this rustc.
988    pub build_compiler: Compiler,
989    /// Whether to build a subset of crates, rather than the whole compiler.
990    ///
991    /// This should only be requested by the user, not used within bootstrap itself.
992    /// Using it within bootstrap can lead to confusing situation where lints are replayed
993    /// in two different steps.
994    crates: Vec<String>,
995}
996
997impl Rustc {
998    pub fn new(build_compiler: Compiler, target: TargetSelection) -> Self {
999        Self { target, build_compiler, crates: Default::default() }
1000    }
1001}
1002
1003impl Step for Rustc {
1004    type Output = BuiltRustc;
1005    const IS_HOST: bool = true;
1006
1007    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1008        let mut crates = run.builder.in_tree_crates("rustc-main", None);
1009        for (i, krate) in crates.iter().enumerate() {
1010            // We can't allow `build rustc` as an alias for this Step, because that's reserved by `Assemble`.
1011            // Ideally Assemble would use `build compiler` instead, but that seems too confusing to be worth the breaking change.
1012            if krate.name == "rustc-main" {
1013                crates.swap_remove(i);
1014                break;
1015            }
1016        }
1017        run.crates(crates)
1018    }
1019
1020    fn is_default_step(_builder: &Builder<'_>) -> bool {
1021        false
1022    }
1023
1024    fn make_run(run: RunConfig<'_>) {
1025        // If only `compiler` was passed, do not run this step.
1026        // Instead the `Assemble` step will take care of compiling Rustc.
1027        if run.builder.paths == vec![PathBuf::from("compiler")] {
1028            return;
1029        }
1030
1031        let crates = run.cargo_crates_in_set();
1032        run.builder.ensure(Rustc {
1033            build_compiler: run
1034                .builder
1035                .compiler(run.builder.top_stage.saturating_sub(1), run.build_triple()),
1036            target: run.target,
1037            crates,
1038        });
1039    }
1040
1041    /// Builds the compiler.
1042    ///
1043    /// This will build the compiler for a particular stage of the build using
1044    /// the `build_compiler` targeting the `target` architecture. The artifacts
1045    /// created will also be linked into the sysroot directory.
1046    fn run(self, builder: &Builder<'_>) -> Self::Output {
1047        let build_compiler = self.build_compiler;
1048        let target = self.target;
1049
1050        // NOTE: the ABI of the stage0 compiler is different from the ABI of the downloaded compiler,
1051        // so its artifacts can't be reused.
1052        if builder.download_rustc() && build_compiler.stage != 0 {
1053            trace!(stage = build_compiler.stage, "`download_rustc` requested");
1054
1055            let sysroot =
1056                builder.ensure(Sysroot { compiler: build_compiler, force_recompile: false });
1057            cp_rustc_component_to_ci_sysroot(
1058                builder,
1059                &sysroot,
1060                builder.config.ci_rustc_dev_contents(),
1061            );
1062            return BuiltRustc { build_compiler };
1063        }
1064
1065        // Build a standard library for `target` using the `build_compiler`.
1066        // This will be the standard library that the rustc which we build *links to*.
1067        builder.std(build_compiler, target);
1068
1069        if builder.config.keep_stage.contains(&build_compiler.stage) {
1070            trace!(stage = build_compiler.stage, "`keep-stage` requested");
1071
1072            builder.info("WARNING: Using a potentially old librustc. This may not behave well.");
1073            builder.info("WARNING: Use `--keep-stage-std` if you want to rebuild the compiler when it changes");
1074            builder.ensure(RustcLink::from_rustc(self));
1075
1076            return BuiltRustc { build_compiler };
1077        }
1078
1079        // The stage of the compiler that we're building
1080        let stage = build_compiler.stage + 1;
1081
1082        // If we are building a stage3+ compiler, and full bootstrap is disabled, and we have a
1083        // previous rustc available, we will uplift a compiler from a previous stage.
1084        // We do not allow cross-compilation uplifting here, because there it can be quite tricky
1085        // to figure out which stage actually built the rustc that should be uplifted.
1086        if build_compiler.stage >= 2
1087            && !builder.config.full_bootstrap
1088            && target == builder.host_target
1089        {
1090            // Here we need to determine the **build compiler** that built the stage that we will
1091            // be uplifting. We cannot uplift stage 1, as it has a different ABI than stage 2+,
1092            // so we always uplift the stage2 compiler (compiled with stage 1).
1093            let uplift_build_compiler = builder.compiler(1, build_compiler.host);
1094
1095            let msg = format!("Uplifting rustc from stage2 to stage{stage})");
1096            builder.info(&msg);
1097
1098            // Here the compiler that built the rlibs (`uplift_build_compiler`) can be different
1099            // from the compiler whose sysroot should be modified in this step. So we need to copy
1100            // the (previously built) rlibs into the correct sysroot.
1101            builder.ensure(RustcLink::from_build_compiler_and_sysroot(
1102                // This is the compiler that actually built the rustc rlibs
1103                uplift_build_compiler,
1104                // We copy the rlibs into the sysroot of `build_compiler`
1105                build_compiler,
1106                target,
1107                self.crates,
1108            ));
1109
1110            // Here we have performed an uplift, so we return the actual build compiler that "built"
1111            // this rustc.
1112            return BuiltRustc { build_compiler: uplift_build_compiler };
1113        }
1114
1115        // Build a standard library for the current host target using the `build_compiler`.
1116        // This standard library will be used when building `rustc` for compiling
1117        // build scripts and proc macros.
1118        // If we are not cross-compiling, the Std build above will be the same one as the one we
1119        // prepare here.
1120        builder.std(
1121            builder.compiler(self.build_compiler.stage, builder.config.host_target),
1122            builder.config.host_target,
1123        );
1124
1125        let mut cargo = builder::Cargo::new(
1126            builder,
1127            build_compiler,
1128            Mode::Rustc,
1129            SourceType::InTree,
1130            target,
1131            Kind::Build,
1132        );
1133
1134        rustc_cargo(builder, &mut cargo, target, &build_compiler, &self.crates);
1135
1136        // NB: all RUSTFLAGS should be added to `rustc_cargo()` so they will be
1137        // consistently applied by check/doc/test modes too.
1138
1139        for krate in &*self.crates {
1140            cargo.arg("-p").arg(krate);
1141        }
1142
1143        if builder.build.config.enable_bolt_settings && build_compiler.stage == 1 {
1144            // Relocations are required for BOLT to work.
1145            cargo.env("RUSTC_BOLT_LINK_FLAGS", "1");
1146        }
1147
1148        let _guard = builder.msg(
1149            Kind::Build,
1150            format_args!("compiler artifacts{}", crate_description(&self.crates)),
1151            Mode::Rustc,
1152            build_compiler,
1153            target,
1154        );
1155        let stamp = build_stamp::librustc_stamp(builder, build_compiler, target);
1156
1157        run_cargo(
1158            builder,
1159            cargo,
1160            vec![],
1161            &stamp,
1162            vec![],
1163            ArtifactKeepMode::Custom(Box::new(|filename| {
1164                if filename.contains("jemalloc_sys")
1165                    || filename.contains("rustc_public_bridge")
1166                    || filename.contains("rustc_public")
1167                {
1168                    // jemalloc_sys and rustc_public_bridge are not linked into librustc_driver.so,
1169                    // so we need to distribute them as rlib to be able to use them.
1170                    filename.ends_with(".rlib")
1171                } else {
1172                    // Distribute the rest of the rustc crates as rmeta files only to reduce
1173                    // the tarball sizes by about 50%. The object files are linked into
1174                    // librustc_driver.so, so it is still possible to link against them.
1175                    filename.ends_with(".rmeta")
1176                }
1177            })),
1178        );
1179
1180        let target_root_dir = stamp.path().parent().unwrap();
1181        // When building `librustc_driver.so` (like `libLLVM.so`) on linux, it can contain
1182        // unexpected debuginfo from dependencies, for example from the C++ standard library used in
1183        // our LLVM wrapper. Unless we're explicitly requesting `librustc_driver` to be built with
1184        // debuginfo (via the debuginfo level of the executables using it): strip this debuginfo
1185        // away after the fact.
1186        if builder.config.rust_debuginfo_level_rustc == DebuginfoLevel::None
1187            && builder.config.rust_debuginfo_level_tools == DebuginfoLevel::None
1188        {
1189            let rustc_driver = target_root_dir.join("librustc_driver.so");
1190            strip_debug(builder, target, &rustc_driver);
1191        }
1192
1193        if builder.config.rust_debuginfo_level_rustc == DebuginfoLevel::None {
1194            // Due to LTO a lot of debug info from C++ dependencies such as jemalloc can make it into
1195            // our final binaries
1196            strip_debug(builder, target, &target_root_dir.join("rustc-main"));
1197        }
1198
1199        builder.ensure(RustcLink::from_rustc(self));
1200        BuiltRustc { build_compiler }
1201    }
1202
1203    fn metadata(&self) -> Option<StepMetadata> {
1204        Some(StepMetadata::build("rustc", self.target).built_by(self.build_compiler))
1205    }
1206}
1207
1208pub fn rustc_cargo(
1209    builder: &Builder<'_>,
1210    cargo: &mut Cargo,
1211    target: TargetSelection,
1212    build_compiler: &Compiler,
1213    crates: &[String],
1214) {
1215    cargo
1216        .arg("--features")
1217        .arg(builder.rustc_features(builder.kind, target, crates))
1218        .arg("--manifest-path")
1219        .arg(builder.src.join("compiler/rustc/Cargo.toml"));
1220
1221    cargo.rustdocflag("-Zcrate-attr=warn(rust_2018_idioms)");
1222
1223    // If the rustc output is piped to e.g. `head -n1` we want the process to be killed, rather than
1224    // having an error bubble up and cause a panic.
1225    //
1226    // FIXME(jieyouxu): this flag is load-bearing for rustc to not ICE on broken pipes, because
1227    // rustc internally sometimes uses std `println!` -- but std `println!` by default will panic on
1228    // broken pipes, and uncaught panics will manifest as an ICE. The compiler *should* handle this
1229    // properly, but this flag is set in the meantime to paper over the I/O errors.
1230    //
1231    // See <https://github.com/rust-lang/rust/issues/131059> for details.
1232    //
1233    // Also see the discussion for properly handling I/O errors related to broken pipes, i.e. safe
1234    // variants of `println!` in
1235    // <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Internal.20lint.20for.20raw.20.60print!.60.20and.20.60println!.60.3F>.
1236    cargo.rustflag("-Zon-broken-pipe=kill");
1237
1238    // Building with protected visibility reduces the number of dynamic relocations needed, giving
1239    // us a faster startup time. However GNU ld < 2.40 will error if we try to link a shared object
1240    // with direct references to protected symbols, so for now we only use protected symbols if
1241    // linking with LLD is enabled.
1242    if builder.build.config.bootstrap_override_lld.is_used() {
1243        cargo.rustflag("-Zdefault-visibility=protected");
1244    }
1245
1246    if is_lto_stage(build_compiler) {
1247        match builder.config.rust_lto {
1248            RustcLto::Thin | RustcLto::Fat => {
1249                // Since using LTO for optimizing dylibs is currently experimental,
1250                // we need to pass -Zdylib-lto.
1251                cargo.rustflag("-Zdylib-lto");
1252                // Cargo by default passes `-Cembed-bitcode=no` and doesn't pass `-Clto` when
1253                // compiling dylibs (and their dependencies), even when LTO is enabled for the
1254                // crate. Therefore, we need to override `-Clto` and `-Cembed-bitcode` here.
1255                let lto_type = match builder.config.rust_lto {
1256                    RustcLto::Thin => "thin",
1257                    RustcLto::Fat => "fat",
1258                    _ => unreachable!(),
1259                };
1260                cargo.rustflag(&format!("-Clto={lto_type}"));
1261                cargo.rustflag("-Cembed-bitcode=yes");
1262            }
1263            RustcLto::ThinLocal => { /* Do nothing, this is the default */ }
1264            RustcLto::Off => {
1265                cargo.rustflag("-Clto=off");
1266            }
1267        }
1268    } else if builder.config.rust_lto == RustcLto::Off {
1269        cargo.rustflag("-Clto=off");
1270    }
1271
1272    // With LLD, we can use ICF (identical code folding) to reduce the executable size
1273    // of librustc_driver/rustc and to improve i-cache utilization.
1274    //
1275    // -Wl,[link options] doesn't work on MSVC. However, /OPT:ICF (technically /OPT:REF,ICF)
1276    // is already on by default in MSVC optimized builds, which is interpreted as --icf=all:
1277    // https://github.com/llvm/llvm-project/blob/3329cec2f79185bafd678f310fafadba2a8c76d2/lld/COFF/Driver.cpp#L1746
1278    // https://github.com/rust-lang/rust/blob/f22819bcce4abaff7d1246a56eec493418f9f4ee/compiler/rustc_codegen_ssa/src/back/linker.rs#L827
1279    if builder.config.bootstrap_override_lld.is_used() && !build_compiler.host.is_msvc() {
1280        cargo.rustflag("-Clink-args=-Wl,--icf=all");
1281    }
1282
1283    if builder.config.rust_profile_use.is_some() && builder.config.rust_profile_generate.is_some() {
1284        panic!("Cannot use and generate PGO profiles at the same time");
1285    }
1286    let is_collecting = if let Some(path) = &builder.config.rust_profile_generate {
1287        if build_compiler.stage == 1 {
1288            cargo.rustflag(&format!("-Cprofile-generate={path}"));
1289            // Apparently necessary to avoid overflowing the counters during
1290            // a Cargo build profile
1291            cargo.rustflag("-Cllvm-args=-vp-counters-per-site=4");
1292            true
1293        } else {
1294            false
1295        }
1296    } else if let Some(path) = &builder.config.rust_profile_use {
1297        if build_compiler.stage == 1 {
1298            cargo.rustflag(&format!("-Cprofile-use={path}"));
1299            if builder.is_verbose() {
1300                cargo.rustflag("-Cllvm-args=-pgo-warn-missing-function");
1301            }
1302            true
1303        } else {
1304            false
1305        }
1306    } else {
1307        false
1308    };
1309    if is_collecting {
1310        // Ensure paths to Rust sources are relative, not absolute.
1311        cargo.rustflag(&format!(
1312            "-Cllvm-args=-static-func-strip-dirname-prefix={}",
1313            builder.config.src.components().count()
1314        ));
1315    }
1316
1317    // The stage0 compiler changes infrequently and does not directly depend on code
1318    // in the current working directory. Therefore, caching it with sccache should be
1319    // useful.
1320    // This is only performed for non-incremental builds, as ccache cannot deal with these.
1321    if let Some(ref ccache) = builder.config.ccache
1322        && build_compiler.stage == 0
1323        && !builder.config.incremental
1324    {
1325        cargo.env("RUSTC_WRAPPER", ccache);
1326    }
1327
1328    rustc_cargo_env(builder, cargo, target);
1329}
1330
1331pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
1332    // Set some configuration variables picked up by build scripts and
1333    // the compiler alike
1334    cargo
1335        .env("CFG_RELEASE", builder.rust_release())
1336        .env("CFG_RELEASE_CHANNEL", &builder.config.channel)
1337        .env("CFG_VERSION", builder.rust_version());
1338
1339    // Some tools like Cargo detect their own git information in build scripts. When omit-git-hash
1340    // is enabled in bootstrap.toml, we pass this environment variable to tell build scripts to avoid
1341    // detecting git information on their own.
1342    if builder.config.omit_git_hash {
1343        cargo.env("CFG_OMIT_GIT_HASH", "1");
1344    }
1345
1346    cargo.env("CFG_DEFAULT_CODEGEN_BACKEND", builder.config.default_codegen_backend(target).name());
1347
1348    let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib"));
1349    let target_config = builder.config.target_config.get(&target);
1350
1351    cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
1352
1353    if let Some(ref ver_date) = builder.rust_info().commit_date() {
1354        cargo.env("CFG_VER_DATE", ver_date);
1355    }
1356    if let Some(ref ver_hash) = builder.rust_info().sha() {
1357        cargo.env("CFG_VER_HASH", ver_hash);
1358    }
1359    if !builder.unstable_features() {
1360        cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
1361    }
1362
1363    // Prefer the current target's own default_linker, else a globally
1364    // specified one.
1365    if let Some(s) = target_config.and_then(|c| c.default_linker.as_ref()) {
1366        cargo.env("CFG_DEFAULT_LINKER", s);
1367    } else if let Some(ref s) = builder.config.rustc_default_linker {
1368        cargo.env("CFG_DEFAULT_LINKER", s);
1369    }
1370
1371    // Enable rustc's env var to use a linker override on Linux when requested.
1372    if let Some(linker) = target_config.map(|c| c.default_linker_linux_override) {
1373        match linker {
1374            DefaultLinuxLinkerOverride::Off => {}
1375            DefaultLinuxLinkerOverride::SelfContainedLldCc => {
1376                cargo.env("CFG_DEFAULT_LINKER_SELF_CONTAINED_LLD_CC", "1");
1377            }
1378        }
1379    }
1380
1381    // The host this new compiler will *run* on.
1382    cargo.env("CFG_COMPILER_HOST_TRIPLE", target.triple);
1383
1384    if builder.config.rust_verify_llvm_ir {
1385        cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
1386    }
1387
1388    // These conditionals represent a tension between three forces:
1389    // - For non-check builds, we need to define some LLVM-related environment
1390    //   variables, requiring LLVM to have been built.
1391    // - For check builds, we want to avoid building LLVM if possible.
1392    // - Check builds and non-check builds should have the same environment if
1393    //   possible, to avoid unnecessary rebuilds due to cache-busting.
1394    //
1395    // Therefore we try to avoid building LLVM for check builds, but only if
1396    // building LLVM would be expensive. If "building" LLVM is cheap
1397    // (i.e. it's already built or is downloadable), we prefer to maintain a
1398    // consistent environment between check and non-check builds.
1399    if builder.config.llvm_enabled(target) {
1400        let building_llvm_is_expensive =
1401            crate::core::build_steps::llvm::prebuilt_llvm_config(builder, target, false)
1402                .should_build();
1403
1404        let skip_llvm = (builder.kind == Kind::Check) && building_llvm_is_expensive;
1405        if !skip_llvm {
1406            rustc_llvm_env(builder, cargo, target)
1407        }
1408    }
1409
1410    // See also the "JEMALLOC_SYS_WITH_LG_PAGE" setting in the tool build step.
1411    if builder.config.jemalloc(target) && env::var_os("JEMALLOC_SYS_WITH_LG_PAGE").is_none() {
1412        // Build jemalloc on AArch64 with support for page sizes up to 64K
1413        // See: https://github.com/rust-lang/rust/pull/135081
1414        if target.starts_with("aarch64") {
1415            cargo.env("JEMALLOC_SYS_WITH_LG_PAGE", "16");
1416        }
1417        // Build jemalloc on LoongArch with support for page sizes up to 16K
1418        else if target.starts_with("loongarch") {
1419            cargo.env("JEMALLOC_SYS_WITH_LG_PAGE", "14");
1420        }
1421    }
1422}
1423
1424/// Pass down configuration from the LLVM build into the build of
1425/// rustc_llvm and rustc_codegen_llvm.
1426///
1427/// Note that this has the side-effect of _building LLVM_, which is sometimes
1428/// unwanted (e.g. for check builds).
1429fn rustc_llvm_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
1430    if builder.config.is_rust_llvm(target) {
1431        cargo.env("LLVM_RUSTLLVM", "1");
1432    }
1433    if builder.config.llvm_enzyme {
1434        cargo.env("LLVM_ENZYME", "1");
1435    }
1436    let llvm::LlvmResult { host_llvm_config, .. } = builder.ensure(llvm::Llvm { target });
1437    if builder.config.llvm_offload {
1438        builder.ensure(llvm::OmpOffload { target });
1439        cargo.env("LLVM_OFFLOAD", "1");
1440    }
1441
1442    cargo.env("LLVM_CONFIG", &host_llvm_config);
1443
1444    // Some LLVM linker flags (-L and -l) may be needed to link `rustc_llvm`. Its build script
1445    // expects these to be passed via the `LLVM_LINKER_FLAGS` env variable, separated by
1446    // whitespace.
1447    //
1448    // For example:
1449    // - on windows, when `clang-cl` is used with instrumentation, we need to manually add
1450    // clang's runtime library resource directory so that the profiler runtime library can be
1451    // found. This is to avoid the linker errors about undefined references to
1452    // `__llvm_profile_instrument_memop` when linking `rustc_driver`.
1453    let mut llvm_linker_flags = String::new();
1454    if builder.config.llvm_profile_generate
1455        && target.is_msvc()
1456        && let Some(ref clang_cl_path) = builder.config.llvm_clang_cl
1457    {
1458        // Add clang's runtime library directory to the search path
1459        let clang_rt_dir = get_clang_cl_resource_dir(builder, clang_cl_path);
1460        llvm_linker_flags.push_str(&format!("-L{}", clang_rt_dir.display()));
1461    }
1462
1463    // The config can also specify its own llvm linker flags.
1464    if let Some(ref s) = builder.config.llvm_ldflags {
1465        if !llvm_linker_flags.is_empty() {
1466            llvm_linker_flags.push(' ');
1467        }
1468        llvm_linker_flags.push_str(s);
1469    }
1470
1471    // Set the linker flags via the env var that `rustc_llvm`'s build script will read.
1472    if !llvm_linker_flags.is_empty() {
1473        cargo.env("LLVM_LINKER_FLAGS", llvm_linker_flags);
1474    }
1475
1476    // Building with a static libstdc++ is only supported on Linux and windows-gnu* right now,
1477    // not for MSVC or macOS
1478    if builder.config.llvm_static_stdcpp
1479        && !target.contains("freebsd")
1480        && !target.is_msvc()
1481        && !target.contains("apple")
1482        && !target.contains("solaris")
1483    {
1484        let libstdcxx_name =
1485            if target.contains("windows-gnullvm") { "libc++.a" } else { "libstdc++.a" };
1486        let file = compiler_file(
1487            builder,
1488            &builder.cxx(target).unwrap(),
1489            target,
1490            CLang::Cxx,
1491            libstdcxx_name,
1492        );
1493        cargo.env("LLVM_STATIC_STDCPP", file);
1494    }
1495    if builder.llvm_link_shared() {
1496        cargo.env("LLVM_LINK_SHARED", "1");
1497    }
1498    if builder.config.llvm_use_libcxx {
1499        cargo.env("LLVM_USE_LIBCXX", "1");
1500    }
1501    if builder.config.llvm_assertions {
1502        cargo.env("LLVM_ASSERTIONS", "1");
1503    }
1504}
1505
1506/// `RustcLink` copies compiler rlibs from a rustc build into a compiler sysroot.
1507/// It works with (potentially up to) three compilers:
1508/// - `build_compiler` is a compiler that built rustc rlibs
1509/// - `sysroot_compiler` is a compiler into whose sysroot we will copy the rlibs
1510///   - In most situations, `build_compiler` == `sysroot_compiler`
1511/// - `target_compiler` is the compiler whose rlibs were built. It is not represented explicitly
1512///   in this step, rather we just read the rlibs from a rustc build stamp of `build_compiler`.
1513///
1514/// This is necessary for tools using `rustc_private`, where the previous compiler will build
1515/// a tool against the next compiler.
1516/// To build a tool against a compiler, the rlibs of that compiler that it links against
1517/// must be in the sysroot of the compiler that's doing the compiling.
1518#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1519struct RustcLink {
1520    /// This compiler **built** some rustc, whose rlibs we will copy into a sysroot.
1521    build_compiler: Compiler,
1522    /// This is the compiler into whose sysroot we want to copy the built rlibs.
1523    /// In most cases, it will correspond to `build_compiler`.
1524    sysroot_compiler: Compiler,
1525    target: TargetSelection,
1526    /// Not actually used; only present to make sure the cache invalidation is correct.
1527    crates: Vec<String>,
1528}
1529
1530impl RustcLink {
1531    /// Copy rlibs from the build compiler that build this `rustc` into the sysroot of that
1532    /// build compiler.
1533    fn from_rustc(rustc: Rustc) -> Self {
1534        Self {
1535            build_compiler: rustc.build_compiler,
1536            sysroot_compiler: rustc.build_compiler,
1537            target: rustc.target,
1538            crates: rustc.crates,
1539        }
1540    }
1541
1542    /// Copy rlibs **built** by `build_compiler` into the sysroot of `sysroot_compiler`.
1543    fn from_build_compiler_and_sysroot(
1544        build_compiler: Compiler,
1545        sysroot_compiler: Compiler,
1546        target: TargetSelection,
1547        crates: Vec<String>,
1548    ) -> Self {
1549        Self { build_compiler, sysroot_compiler, target, crates }
1550    }
1551}
1552
1553impl Step for RustcLink {
1554    type Output = ();
1555
1556    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1557        run.never()
1558    }
1559
1560    /// Same as `StdLink`, only for librustc
1561    fn run(self, builder: &Builder<'_>) {
1562        let build_compiler = self.build_compiler;
1563        let sysroot_compiler = self.sysroot_compiler;
1564        let target = self.target;
1565        add_to_sysroot(
1566            builder,
1567            &builder.sysroot_target_libdir(sysroot_compiler, target),
1568            &builder.sysroot_target_libdir(sysroot_compiler, sysroot_compiler.host),
1569            &build_stamp::librustc_stamp(builder, build_compiler, target),
1570        );
1571    }
1572}
1573
1574/// Set of `libgccjit` dylibs that can be used by `cg_gcc` to compile code for a set of targets.
1575/// `libgccjit` requires a separate build for each `(host, target)` pair.
1576/// So if you are on linux-x64 and build for linux-aarch64, you will need at least:
1577/// - linux-x64 -> linux-x64 libgccjit (for building host code like proc macros)
1578/// - linux-x64 -> linux-aarch64 libgccjit (for the aarch64 target code)
1579#[derive(Clone)]
1580pub struct GccDylibSet {
1581    dylibs: BTreeMap<GccTargetPair, GccOutput>,
1582}
1583
1584impl GccDylibSet {
1585    /// Build a set of libgccjit dylibs that will be executed on `host` and will generate code for
1586    /// each specified target.
1587    pub fn build(
1588        builder: &Builder<'_>,
1589        host: TargetSelection,
1590        targets: Vec<TargetSelection>,
1591    ) -> Self {
1592        let dylibs = targets
1593            .iter()
1594            .map(|t| GccTargetPair::for_target_pair(host, *t))
1595            .map(|target_pair| (target_pair, builder.ensure(Gcc { target_pair })))
1596            .collect();
1597        Self { dylibs }
1598    }
1599
1600    /// Install the libgccjit dylibs to the corresponding target directories of the given compiler.
1601    /// cg_gcc know how to search for the libgccjit dylibs in these directories, according to the
1602    /// (host, target) pair that is being compiled by rustc and cg_gcc.
1603    pub fn install_to(&self, builder: &Builder<'_>, compiler: Compiler) {
1604        if builder.config.dry_run() {
1605            return;
1606        }
1607
1608        // <rustc>/lib/<host-target>/codegen-backends
1609        let cg_sysroot = builder.sysroot_codegen_backends(compiler);
1610
1611        for (target_pair, libgccjit) in &self.dylibs {
1612            assert_eq!(
1613                target_pair.host(),
1614                compiler.host,
1615                "Trying to install libgccjit ({target_pair}) to a compiler with a different host ({})",
1616                compiler.host
1617            );
1618            let libgccjit_path = libgccjit.libgccjit();
1619
1620            // If we build libgccjit ourselves, then `libgccjit` can actually be a symlink.
1621            // In that case, we have to resolve it first, otherwise we'd create a symlink to a
1622            // symlink, which wouldn't work.
1623            let libgccjit_path = t!(
1624                libgccjit_path.canonicalize(),
1625                format!("Cannot find libgccjit at {}", libgccjit_path.display())
1626            );
1627
1628            let dst = cg_sysroot.join(libgccjit_path_relative_to_cg_dir(target_pair, libgccjit));
1629            t!(std::fs::create_dir_all(dst.parent().unwrap()));
1630            builder.copy_link(&libgccjit_path, &dst, FileType::NativeLibrary);
1631        }
1632    }
1633}
1634
1635/// Returns a path where libgccjit.so should be stored, **relative** to the
1636/// **codegen backend directory**.
1637pub fn libgccjit_path_relative_to_cg_dir(
1638    target_pair: &GccTargetPair,
1639    libgccjit: &GccOutput,
1640) -> PathBuf {
1641    let target_filename = libgccjit.libgccjit().file_name().unwrap().to_str().unwrap();
1642
1643    // <cg-dir>/lib/<target>/libgccjit.so
1644    Path::new("lib").join(target_pair.target()).join(target_filename)
1645}
1646
1647/// Output of the `compile::GccCodegenBackend` step.
1648///
1649/// It contains a build stamp with the path to the built cg_gcc dylib.
1650#[derive(Clone)]
1651pub struct GccCodegenBackendOutput {
1652    stamp: BuildStamp,
1653}
1654
1655impl GccCodegenBackendOutput {
1656    pub fn stamp(&self) -> &BuildStamp {
1657        &self.stamp
1658    }
1659}
1660
1661/// Builds the GCC codegen backend (`cg_gcc`).
1662/// Note that this **does not** build libgccjit, which is a dependency of cg_gcc.
1663/// That has to be built separately, because a separate copy of libgccjit is required
1664/// for each (host, target) compilation pair.
1665/// cg_gcc goes to great lengths to ensure that it does not *directly* link to libgccjit,
1666/// so we respect that here and allow building cg_gcc without building libgccjit itself.
1667#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1668pub struct GccCodegenBackend {
1669    compilers: RustcPrivateCompilers,
1670    target: TargetSelection,
1671}
1672
1673impl GccCodegenBackend {
1674    /// Build `cg_gcc` that will run on the given host target.
1675    pub fn for_target(compilers: RustcPrivateCompilers, target: TargetSelection) -> Self {
1676        Self { compilers, target }
1677    }
1678}
1679
1680impl Step for GccCodegenBackend {
1681    type Output = GccCodegenBackendOutput;
1682
1683    const IS_HOST: bool = true;
1684
1685    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1686        run.alias("rustc_codegen_gcc").alias("cg_gcc")
1687    }
1688
1689    fn make_run(run: RunConfig<'_>) {
1690        let compilers = RustcPrivateCompilers::new(run.builder, run.builder.top_stage, run.target);
1691        run.builder.ensure(GccCodegenBackend::for_target(compilers, run.target));
1692    }
1693
1694    fn run(self, builder: &Builder<'_>) -> Self::Output {
1695        let host = self.compilers.target();
1696        let build_compiler = self.compilers.build_compiler();
1697
1698        let stamp = build_stamp::codegen_backend_stamp(
1699            builder,
1700            build_compiler,
1701            host,
1702            &CodegenBackendKind::Gcc,
1703        );
1704
1705        if builder.config.keep_stage.contains(&build_compiler.stage) && stamp.path().exists() {
1706            trace!("`keep-stage` requested");
1707            builder.info(
1708                "WARNING: Using a potentially old codegen backend. \
1709                This may not behave well.",
1710            );
1711            // Codegen backends are linked separately from this step today, so we don't do
1712            // anything here.
1713            return GccCodegenBackendOutput { stamp };
1714        }
1715
1716        let mut cargo = builder::Cargo::new(
1717            builder,
1718            build_compiler,
1719            Mode::Codegen,
1720            SourceType::InTree,
1721            host,
1722            Kind::Build,
1723        );
1724        cargo.arg("--manifest-path").arg(builder.src.join("compiler/rustc_codegen_gcc/Cargo.toml"));
1725        rustc_cargo_env(builder, &mut cargo, host);
1726
1727        let _guard =
1728            builder.msg(Kind::Build, "codegen backend gcc", Mode::Codegen, build_compiler, host);
1729        let files = run_cargo(builder, cargo, vec![], &stamp, vec![], ArtifactKeepMode::OnlyRlib);
1730
1731        GccCodegenBackendOutput {
1732            stamp: write_codegen_backend_stamp(stamp, files, builder.config.dry_run()),
1733        }
1734    }
1735
1736    fn metadata(&self) -> Option<StepMetadata> {
1737        Some(
1738            StepMetadata::build("rustc_codegen_gcc", self.compilers.target())
1739                .built_by(self.compilers.build_compiler()),
1740        )
1741    }
1742}
1743
1744#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1745pub struct CraneliftCodegenBackend {
1746    pub compilers: RustcPrivateCompilers,
1747}
1748
1749impl Step for CraneliftCodegenBackend {
1750    type Output = BuildStamp;
1751    const IS_HOST: bool = true;
1752
1753    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1754        run.alias("rustc_codegen_cranelift").alias("cg_clif")
1755    }
1756
1757    fn make_run(run: RunConfig<'_>) {
1758        run.builder.ensure(CraneliftCodegenBackend {
1759            compilers: RustcPrivateCompilers::new(run.builder, run.builder.top_stage, run.target),
1760        });
1761    }
1762
1763    fn run(self, builder: &Builder<'_>) -> Self::Output {
1764        let target = self.compilers.target();
1765        let build_compiler = self.compilers.build_compiler();
1766
1767        let stamp = build_stamp::codegen_backend_stamp(
1768            builder,
1769            build_compiler,
1770            target,
1771            &CodegenBackendKind::Cranelift,
1772        );
1773
1774        if builder.config.keep_stage.contains(&build_compiler.stage) {
1775            trace!("`keep-stage` requested");
1776            builder.info(
1777                "WARNING: Using a potentially old codegen backend. \
1778                This may not behave well.",
1779            );
1780            // Codegen backends are linked separately from this step today, so we don't do
1781            // anything here.
1782            return stamp;
1783        }
1784
1785        let mut cargo = builder::Cargo::new(
1786            builder,
1787            build_compiler,
1788            Mode::Codegen,
1789            SourceType::InTree,
1790            target,
1791            Kind::Build,
1792        );
1793        cargo
1794            .arg("--manifest-path")
1795            .arg(builder.src.join("compiler/rustc_codegen_cranelift/Cargo.toml"));
1796        rustc_cargo_env(builder, &mut cargo, target);
1797
1798        let _guard = builder.msg(
1799            Kind::Build,
1800            "codegen backend cranelift",
1801            Mode::Codegen,
1802            build_compiler,
1803            target,
1804        );
1805        let files = run_cargo(builder, cargo, vec![], &stamp, vec![], ArtifactKeepMode::OnlyRlib);
1806        write_codegen_backend_stamp(stamp, files, builder.config.dry_run())
1807    }
1808
1809    fn metadata(&self) -> Option<StepMetadata> {
1810        Some(
1811            StepMetadata::build("rustc_codegen_cranelift", self.compilers.target())
1812                .built_by(self.compilers.build_compiler()),
1813        )
1814    }
1815}
1816
1817/// Write filtered `files` into the passed build stamp and returns it.
1818fn write_codegen_backend_stamp(
1819    mut stamp: BuildStamp,
1820    files: Vec<PathBuf>,
1821    dry_run: bool,
1822) -> BuildStamp {
1823    if dry_run {
1824        return stamp;
1825    }
1826
1827    let mut files = files.into_iter().filter(|f| {
1828        let filename = f.file_name().unwrap().to_str().unwrap();
1829        is_dylib(f) && filename.contains("rustc_codegen_")
1830    });
1831    let codegen_backend = match files.next() {
1832        Some(f) => f,
1833        None => panic!("no dylibs built for codegen backend?"),
1834    };
1835    if let Some(f) = files.next() {
1836        panic!("codegen backend built two dylibs:\n{}\n{}", codegen_backend.display(), f.display());
1837    }
1838
1839    let codegen_backend = codegen_backend.to_str().unwrap();
1840    stamp = stamp.add_stamp(codegen_backend);
1841    t!(stamp.write());
1842    stamp
1843}
1844
1845/// Creates the `codegen-backends` folder for a compiler that's about to be
1846/// assembled as a complete compiler.
1847///
1848/// This will take the codegen artifacts recorded in the given `stamp` and link them
1849/// into an appropriate location for `target_compiler` to be a functional
1850/// compiler.
1851fn copy_codegen_backends_to_sysroot(
1852    builder: &Builder<'_>,
1853    stamp: BuildStamp,
1854    target_compiler: Compiler,
1855) {
1856    // Note that this step is different than all the other `*Link` steps in
1857    // that it's not assembling a bunch of libraries but rather is primarily
1858    // moving the codegen backend into place. The codegen backend of rustc is
1859    // not linked into the main compiler by default but is rather dynamically
1860    // selected at runtime for inclusion.
1861    //
1862    // Here we're looking for the output dylib of the `CodegenBackend` step and
1863    // we're copying that into the `codegen-backends` folder.
1864    let dst = builder.sysroot_codegen_backends(target_compiler);
1865    t!(fs::create_dir_all(&dst), dst);
1866
1867    if builder.config.dry_run() {
1868        return;
1869    }
1870
1871    if stamp.path().exists() {
1872        let file = get_codegen_backend_file(&stamp);
1873        builder.copy_link(
1874            &file,
1875            &dst.join(normalize_codegen_backend_name(builder, &file)),
1876            FileType::NativeLibrary,
1877        );
1878    }
1879}
1880
1881/// Gets the path to a dynamic codegen backend library from its build stamp.
1882pub fn get_codegen_backend_file(stamp: &BuildStamp) -> PathBuf {
1883    PathBuf::from(t!(fs::read_to_string(stamp.path())))
1884}
1885
1886/// Normalize the name of a dynamic codegen backend library.
1887pub fn normalize_codegen_backend_name(builder: &Builder<'_>, path: &Path) -> String {
1888    let filename = path.file_name().unwrap().to_str().unwrap();
1889    // change e.g. `librustc_codegen_cranelift-xxxxxx.so` to
1890    // `librustc_codegen_cranelift-release.so`
1891    let dash = filename.find('-').unwrap();
1892    let dot = filename.find('.').unwrap();
1893    format!("{}-{}{}", &filename[..dash], builder.rust_release(), &filename[dot..])
1894}
1895
1896pub fn compiler_file(
1897    builder: &Builder<'_>,
1898    compiler: &Path,
1899    target: TargetSelection,
1900    c: CLang,
1901    file: &str,
1902) -> PathBuf {
1903    if builder.config.dry_run() {
1904        return PathBuf::new();
1905    }
1906    let mut cmd = command(compiler);
1907    cmd.args(builder.cc_handled_clags(target, c));
1908    cmd.args(builder.cc_unhandled_cflags(target, GitRepo::Rustc, c));
1909    cmd.arg(format!("-print-file-name={file}"));
1910    let out = cmd.run_capture_stdout(builder).stdout();
1911    PathBuf::from(out.trim())
1912}
1913
1914#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1915pub struct Sysroot {
1916    pub compiler: Compiler,
1917    /// See [`Std::force_recompile`].
1918    force_recompile: bool,
1919}
1920
1921impl Sysroot {
1922    pub(crate) fn new(compiler: Compiler) -> Self {
1923        Sysroot { compiler, force_recompile: false }
1924    }
1925}
1926
1927impl Step for Sysroot {
1928    type Output = PathBuf;
1929
1930    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1931        run.never()
1932    }
1933
1934    /// Returns the sysroot that `compiler` is supposed to use.
1935    /// For the stage0 compiler, this is stage0-sysroot (because of the initial std build).
1936    /// For all other stages, it's the same stage directory that the compiler lives in.
1937    fn run(self, builder: &Builder<'_>) -> PathBuf {
1938        let compiler = self.compiler;
1939        let host_dir = builder.out.join(compiler.host);
1940
1941        let sysroot_dir = |stage| {
1942            if stage == 0 {
1943                host_dir.join("stage0-sysroot")
1944            } else if self.force_recompile && stage == compiler.stage {
1945                host_dir.join(format!("stage{stage}-test-sysroot"))
1946            } else if builder.download_rustc() && compiler.stage != builder.top_stage {
1947                host_dir.join("ci-rustc-sysroot")
1948            } else {
1949                host_dir.join(format!("stage{stage}"))
1950            }
1951        };
1952        let sysroot = sysroot_dir(compiler.stage);
1953        trace!(stage = ?compiler.stage, ?sysroot);
1954
1955        builder.do_if_verbose(|| {
1956            println!("Removing sysroot {} to avoid caching bugs", sysroot.display())
1957        });
1958        let _ = fs::remove_dir_all(&sysroot);
1959        t!(fs::create_dir_all(&sysroot));
1960
1961        // In some cases(see https://github.com/rust-lang/rust/issues/109314), when the stage0
1962        // compiler relies on more recent version of LLVM than the stage0 compiler, it may not
1963        // be able to locate the correct LLVM in the sysroot. This situation typically occurs
1964        // when we upgrade LLVM version while the stage0 compiler continues to use an older version.
1965        //
1966        // Make sure to add the correct version of LLVM into the stage0 sysroot.
1967        if compiler.stage == 0 {
1968            dist::maybe_install_llvm_target(builder, compiler.host, &sysroot);
1969        }
1970
1971        // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
1972        if builder.download_rustc() && compiler.stage != 0 {
1973            assert_eq!(
1974                builder.config.host_target, compiler.host,
1975                "Cross-compiling is not yet supported with `download-rustc`",
1976            );
1977
1978            // #102002, cleanup old toolchain folders when using download-rustc so people don't use them by accident.
1979            for stage in 0..=2 {
1980                if stage != compiler.stage {
1981                    let dir = sysroot_dir(stage);
1982                    if !dir.ends_with("ci-rustc-sysroot") {
1983                        let _ = fs::remove_dir_all(dir);
1984                    }
1985                }
1986            }
1987
1988            // Copy the compiler into the correct sysroot.
1989            // NOTE(#108767): We intentionally don't copy `rustc-dev` artifacts until they're requested with `builder.ensure(Rustc)`.
1990            // This fixes an issue where we'd have multiple copies of libc in the sysroot with no way to tell which to load.
1991            // There are a few quirks of bootstrap that interact to make this reliable:
1992            // 1. The order `Step`s are run is hard-coded in `builder.rs` and not configurable. This
1993            //    avoids e.g. reordering `test::UiFulldeps` before `test::Ui` and causing the latter to
1994            //    fail because of duplicate metadata.
1995            // 2. The sysroot is deleted and recreated between each invocation, so running `x test
1996            //    ui-fulldeps && x test ui` can't cause failures.
1997            let mut filtered_files = Vec::new();
1998            let mut add_filtered_files = |suffix, contents| {
1999                for path in contents {
2000                    let path = Path::new(&path);
2001                    if path.parent().is_some_and(|parent| parent.ends_with(suffix)) {
2002                        filtered_files.push(path.file_name().unwrap().to_owned());
2003                    }
2004                }
2005            };
2006            let suffix = format!("lib/rustlib/{}/lib", compiler.host);
2007            add_filtered_files(suffix.as_str(), builder.config.ci_rustc_dev_contents());
2008            // NOTE: we can't copy std eagerly because `stage2-test-sysroot` needs to have only the
2009            // newly compiled std, not the downloaded std.
2010            add_filtered_files("lib", builder.config.ci_rust_std_contents());
2011
2012            let filtered_extensions = [
2013                OsStr::new("rmeta"),
2014                OsStr::new("rlib"),
2015                // FIXME: this is wrong when compiler.host != build, but we don't support that today
2016                OsStr::new(std::env::consts::DLL_EXTENSION),
2017            ];
2018            let ci_rustc_dir = builder.config.ci_rustc_dir();
2019            builder.cp_link_filtered(&ci_rustc_dir, &sysroot, &|path| {
2020                if path.extension().is_none_or(|ext| !filtered_extensions.contains(&ext)) {
2021                    return true;
2022                }
2023                if !path.parent().is_none_or(|p| p.ends_with(&suffix)) {
2024                    return true;
2025                }
2026                filtered_files.iter().all(|f| f != path.file_name().unwrap())
2027            });
2028        }
2029
2030        // Symlink the source root into the same location inside the sysroot,
2031        // where `rust-src` component would go (`$sysroot/lib/rustlib/src/rust`),
2032        // so that any tools relying on `rust-src` also work for local builds,
2033        // and also for translating the virtual `/rustc/$hash` back to the real
2034        // directory (for running tests with `rust.remap-debuginfo = true`).
2035        if compiler.stage != 0 {
2036            let sysroot_lib_rustlib_src = sysroot.join("lib/rustlib/src");
2037            t!(fs::create_dir_all(&sysroot_lib_rustlib_src));
2038            let sysroot_lib_rustlib_src_rust = sysroot_lib_rustlib_src.join("rust");
2039            if let Err(e) =
2040                symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_src_rust)
2041            {
2042                eprintln!(
2043                    "ERROR: creating symbolic link `{}` to `{}` failed with {}",
2044                    sysroot_lib_rustlib_src_rust.display(),
2045                    builder.src.display(),
2046                    e,
2047                );
2048                if builder.config.rust_remap_debuginfo {
2049                    eprintln!(
2050                        "ERROR: some `tests/ui` tests will fail when lacking `{}`",
2051                        sysroot_lib_rustlib_src_rust.display(),
2052                    );
2053                }
2054                build_helper::exit!(1);
2055            }
2056        }
2057
2058        // rustc-src component is already part of CI rustc's sysroot
2059        if !builder.download_rustc() {
2060            let sysroot_lib_rustlib_rustcsrc = sysroot.join("lib/rustlib/rustc-src");
2061            t!(fs::create_dir_all(&sysroot_lib_rustlib_rustcsrc));
2062            let sysroot_lib_rustlib_rustcsrc_rust = sysroot_lib_rustlib_rustcsrc.join("rust");
2063            if let Err(e) =
2064                symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_rustcsrc_rust)
2065            {
2066                eprintln!(
2067                    "ERROR: creating symbolic link `{}` to `{}` failed with {}",
2068                    sysroot_lib_rustlib_rustcsrc_rust.display(),
2069                    builder.src.display(),
2070                    e,
2071                );
2072                build_helper::exit!(1);
2073            }
2074        }
2075
2076        sysroot
2077    }
2078}
2079
2080/// Prepare a compiler sysroot.
2081///
2082/// The sysroot may contain various things useful for running the compiler, like linkers and
2083/// linker wrappers (LLD, LLVM bitcode linker, etc.).
2084///
2085/// This will assemble a compiler in `build/$target/stage$stage`.
2086#[derive(Debug, Clone, PartialEq, Eq, Hash)]
2087pub struct Assemble {
2088    /// The compiler which we will produce in this step. Assemble itself will
2089    /// take care of ensuring that the necessary prerequisites to do so exist,
2090    /// that is, this can be e.g. a stage2 compiler and Assemble will build
2091    /// the previous stages for you.
2092    pub target_compiler: Compiler,
2093}
2094
2095impl Step for Assemble {
2096    type Output = Compiler;
2097    const IS_HOST: bool = true;
2098
2099    fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
2100        run.path("compiler/rustc").path("compiler")
2101    }
2102
2103    fn make_run(run: RunConfig<'_>) {
2104        run.builder.ensure(Assemble {
2105            target_compiler: run.builder.compiler(run.builder.top_stage, run.target),
2106        });
2107    }
2108
2109    fn run(self, builder: &Builder<'_>) -> Compiler {
2110        let target_compiler = self.target_compiler;
2111
2112        if target_compiler.stage == 0 {
2113            trace!("stage 0 build compiler is always available, simply returning");
2114            assert_eq!(
2115                builder.config.host_target, target_compiler.host,
2116                "Cannot obtain compiler for non-native build triple at stage 0"
2117            );
2118            // The stage 0 compiler for the build triple is always pre-built.
2119            return target_compiler;
2120        }
2121
2122        // We prepend this bin directory to the user PATH when linking Rust binaries. To
2123        // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
2124        let libdir = builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2125        let libdir_bin = libdir.parent().unwrap().join("bin");
2126        t!(fs::create_dir_all(&libdir_bin));
2127
2128        if builder.config.llvm_enabled(target_compiler.host) {
2129            trace!("target_compiler.host" = ?target_compiler.host, "LLVM enabled");
2130
2131            let target = target_compiler.host;
2132            let llvm::LlvmResult { host_llvm_config, .. } = builder.ensure(llvm::Llvm { target });
2133            if !builder.config.dry_run() && builder.config.llvm_tools_enabled {
2134                trace!("LLVM tools enabled");
2135
2136                let host_llvm_bin_dir = command(&host_llvm_config)
2137                    .arg("--bindir")
2138                    .cached()
2139                    .run_capture_stdout(builder)
2140                    .stdout()
2141                    .trim()
2142                    .to_string();
2143
2144                let llvm_bin_dir = if target == builder.host_target {
2145                    PathBuf::from(host_llvm_bin_dir)
2146                } else {
2147                    // If we're cross-compiling, we cannot run the target llvm-config in order to
2148                    // figure out where binaries are located. We thus have to guess.
2149                    let external_llvm_config = builder
2150                        .config
2151                        .target_config
2152                        .get(&target)
2153                        .and_then(|t| t.llvm_config.clone());
2154                    if let Some(external_llvm_config) = external_llvm_config {
2155                        // If we have an external LLVM, just hope that the bindir is the directory
2156                        // where the LLVM config is located
2157                        external_llvm_config.parent().unwrap().to_path_buf()
2158                    } else {
2159                        // If we have built LLVM locally, then take the path of the host bindir
2160                        // relative to its output build directory, and then apply it to the target
2161                        // LLVM output build directory.
2162                        let host_llvm_out = builder.llvm_out(builder.host_target);
2163                        let target_llvm_out = builder.llvm_out(target);
2164                        if let Ok(relative_path) =
2165                            Path::new(&host_llvm_bin_dir).strip_prefix(host_llvm_out)
2166                        {
2167                            target_llvm_out.join(relative_path)
2168                        } else {
2169                            // This is the most desperate option, just replace the host target with
2170                            // the actual target in the directory path...
2171                            PathBuf::from(
2172                                host_llvm_bin_dir
2173                                    .replace(&*builder.host_target.triple, &target.triple),
2174                            )
2175                        }
2176                    }
2177                };
2178
2179                // Since we've already built the LLVM tools, install them to the sysroot.
2180                // This is the equivalent of installing the `llvm-tools-preview` component via
2181                // rustup, and lets developers use a locally built toolchain to
2182                // build projects that expect llvm tools to be present in the sysroot
2183                // (e.g. the `bootimage` crate).
2184
2185                #[cfg(feature = "tracing")]
2186                let _llvm_tools_span =
2187                    span!(tracing::Level::TRACE, "installing llvm tools to sysroot", ?libdir_bin)
2188                        .entered();
2189                for tool in LLVM_TOOLS {
2190                    trace!("installing `{tool}`");
2191                    let tool_exe = exe(tool, target_compiler.host);
2192                    let src_path = llvm_bin_dir.join(&tool_exe);
2193
2194                    // When using `download-ci-llvm`, some of the tools may not exist, so skip trying to copy them.
2195                    if !src_path.exists() && builder.config.llvm_from_ci {
2196                        eprintln!("{} does not exist; skipping copy", src_path.display());
2197                        continue;
2198                    }
2199
2200                    // There is a chance that these tools are being installed from an external LLVM.
2201                    // Use `Builder::resolve_symlink_and_copy` instead of `Builder::copy_link` to ensure
2202                    // we are copying the original file not the symlinked path, which causes issues for
2203                    // tarball distribution.
2204                    //
2205                    // See https://github.com/rust-lang/rust/issues/135554.
2206                    builder.resolve_symlink_and_copy(&src_path, &libdir_bin.join(&tool_exe));
2207                }
2208            }
2209        }
2210
2211        let maybe_install_llvm_bitcode_linker = || {
2212            if builder.config.llvm_bitcode_linker_enabled {
2213                trace!("llvm-bitcode-linker enabled, installing");
2214                let llvm_bitcode_linker = builder.ensure(
2215                    crate::core::build_steps::tool::LlvmBitcodeLinker::from_target_compiler(
2216                        builder,
2217                        target_compiler,
2218                    ),
2219                );
2220
2221                // Copy the llvm-bitcode-linker to the self-contained binary directory
2222                let bindir_self_contained = builder
2223                    .sysroot(target_compiler)
2224                    .join(format!("lib/rustlib/{}/bin/self-contained", target_compiler.host));
2225                let tool_exe = exe("llvm-bitcode-linker", target_compiler.host);
2226
2227                t!(fs::create_dir_all(&bindir_self_contained));
2228                builder.copy_link(
2229                    &llvm_bitcode_linker.tool_path,
2230                    &bindir_self_contained.join(tool_exe),
2231                    FileType::Executable,
2232                );
2233            }
2234        };
2235
2236        // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
2237        if builder.download_rustc() {
2238            trace!("`download-rustc` requested, reusing CI compiler for stage > 0");
2239
2240            builder.std(target_compiler, target_compiler.host);
2241            let sysroot =
2242                builder.ensure(Sysroot { compiler: target_compiler, force_recompile: false });
2243            // Ensure that `libLLVM.so` ends up in the newly created target directory,
2244            // so that tools using `rustc_private` can use it.
2245            dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
2246            // Lower stages use `ci-rustc-sysroot`, not stageN
2247            if target_compiler.stage == builder.top_stage {
2248                builder.info(&format!("Creating a sysroot for stage{stage} compiler (use `rustup toolchain link 'name' build/host/stage{stage}`)", stage = target_compiler.stage));
2249            }
2250
2251            // FIXME: this is incomplete, we do not copy a bunch of other stuff to the downloaded
2252            // sysroot...
2253            maybe_install_llvm_bitcode_linker();
2254
2255            return target_compiler;
2256        }
2257
2258        // Get the compiler that we'll use to bootstrap ourselves.
2259        //
2260        // Note that this is where the recursive nature of the bootstrap
2261        // happens, as this will request the previous stage's compiler on
2262        // downwards to stage 0.
2263        //
2264        // Also note that we're building a compiler for the host platform. We
2265        // only assume that we can run `build` artifacts, which means that to
2266        // produce some other architecture compiler we need to start from
2267        // `build` to get there.
2268        //
2269        // FIXME: It may be faster if we build just a stage 1 compiler and then
2270        //        use that to bootstrap this compiler forward.
2271        debug!(
2272            "ensuring build compiler is available: compiler(stage = {}, host = {:?})",
2273            target_compiler.stage - 1,
2274            builder.config.host_target,
2275        );
2276        let build_compiler =
2277            builder.compiler(target_compiler.stage - 1, builder.config.host_target);
2278
2279        // Build enzyme
2280        if builder.config.llvm_enzyme {
2281            debug!("`llvm_enzyme` requested");
2282            let enzyme = builder.ensure(llvm::Enzyme { target: build_compiler.host });
2283            let target_libdir =
2284                builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2285            let target_dst_lib = target_libdir.join(enzyme.enzyme_filename());
2286            builder.copy_link(&enzyme.enzyme_path(), &target_dst_lib, FileType::NativeLibrary);
2287        }
2288
2289        if builder.config.llvm_offload && !builder.config.dry_run() {
2290            debug!("`llvm_offload` requested");
2291            let offload_install = builder.ensure(llvm::OmpOffload { target: build_compiler.host });
2292            if let Some(_llvm_config) = builder.llvm_config(builder.config.host_target) {
2293                let target_libdir =
2294                    builder.sysroot_target_libdir(target_compiler, target_compiler.host);
2295                for p in offload_install.offload_paths() {
2296                    let libname = p.file_name().unwrap();
2297                    let dst_lib = target_libdir.join(libname);
2298                    builder.resolve_symlink_and_copy(&p, &dst_lib);
2299                }
2300                // FIXME(offload): Add amdgcn-amd-amdhsa and nvptx64-nvidia-cuda folder
2301                // This one is slightly more tricky, since we have the same file twice, in two
2302                // subfolders for amdgcn and nvptx64. We'll likely find two more in the future, once
2303                // Intel and Spir-V support lands in offload.
2304            }
2305        }
2306
2307        // Build the libraries for this compiler to link to (i.e., the libraries
2308        // it uses at runtime).
2309        debug!(
2310            ?build_compiler,
2311            "target_compiler.host" = ?target_compiler.host,
2312            "building compiler libraries to link to"
2313        );
2314
2315        // It is possible that an uplift has happened, so we override build_compiler here.
2316        let BuiltRustc { build_compiler } =
2317            builder.ensure(Rustc::new(build_compiler, target_compiler.host));
2318
2319        let stage = target_compiler.stage;
2320        let host = target_compiler.host;
2321        let (host_info, dir_name) = if build_compiler.host == host {
2322            ("".into(), "host".into())
2323        } else {
2324            (format!(" ({host})"), host.to_string())
2325        };
2326        // NOTE: "Creating a sysroot" is somewhat inconsistent with our internal terminology, since
2327        // sysroots can temporarily be empty until we put the compiler inside. However,
2328        // `ensure(Sysroot)` isn't really something that's user facing, so there shouldn't be any
2329        // ambiguity.
2330        let msg = format!(
2331            "Creating a sysroot for stage{stage} compiler{host_info} (use `rustup toolchain link 'name' build/{dir_name}/stage{stage}`)"
2332        );
2333        builder.info(&msg);
2334
2335        // Link in all dylibs to the libdir
2336        let stamp = build_stamp::librustc_stamp(builder, build_compiler, target_compiler.host);
2337        let proc_macros = builder
2338            .read_stamp_file(&stamp)
2339            .into_iter()
2340            .filter_map(|(path, dependency_type)| {
2341                if dependency_type == DependencyType::Host {
2342                    Some(path.file_name().unwrap().to_owned().into_string().unwrap())
2343                } else {
2344                    None
2345                }
2346            })
2347            .collect::<HashSet<_>>();
2348
2349        let sysroot = builder.sysroot(target_compiler);
2350        let rustc_libdir = builder.rustc_libdir(target_compiler);
2351        t!(fs::create_dir_all(&rustc_libdir));
2352        let src_libdir = builder.sysroot_target_libdir(build_compiler, host);
2353        for f in builder.read_dir(&src_libdir) {
2354            let filename = f.file_name().into_string().unwrap();
2355
2356            let is_proc_macro = proc_macros.contains(&filename);
2357            let is_dylib_or_debug = is_dylib(&f.path()) || is_debug_info(&filename);
2358
2359            // If we link statically to stdlib, do not copy the libstd dynamic library file
2360            // FIXME: Also do this for Windows once incremental post-optimization stage0 tests
2361            // work without std.dll (see https://github.com/rust-lang/rust/pull/131188).
2362            let can_be_rustc_dynamic_dep = if builder
2363                .link_std_into_rustc_driver(target_compiler.host)
2364                && !target_compiler.host.is_windows()
2365            {
2366                let is_std = filename.starts_with("std-") || filename.starts_with("libstd-");
2367                !is_std
2368            } else {
2369                true
2370            };
2371
2372            if is_dylib_or_debug && can_be_rustc_dynamic_dep && !is_proc_macro {
2373                builder.copy_link(&f.path(), &rustc_libdir.join(&filename), FileType::Regular);
2374            }
2375        }
2376
2377        {
2378            #[cfg(feature = "tracing")]
2379            let _codegen_backend_span =
2380                span!(tracing::Level::DEBUG, "building requested codegen backends").entered();
2381
2382            for backend in builder.config.enabled_codegen_backends(target_compiler.host) {
2383                // FIXME: this is a horrible hack used to make `x check` work when other codegen
2384                // backends are enabled.
2385                // `x check` will check stage 1 rustc, which copies its rmetas to the stage0 sysroot.
2386                // Then it checks codegen backends, which correctly use these rmetas.
2387                // Then it needs to check std, but for that it needs to build stage 1 rustc.
2388                // This copies the build rmetas into the stage0 sysroot, effectively poisoning it,
2389                // because we then have both check and build rmetas in the same sysroot.
2390                // That would be fine on its own. However, when another codegen backend is enabled,
2391                // then building stage 1 rustc implies also building stage 1 codegen backend (even if
2392                // it isn't used for anything). And since that tries to use the poisoned
2393                // rmetas, it fails to build.
2394                // We don't actually need to build rustc-private codegen backends for checking std,
2395                // so instead we skip that.
2396                // Note: this would be also an issue for other rustc-private tools, but that is "solved"
2397                // by check::Std being last in the list of checked things (see
2398                // `Builder::get_step_descriptions`).
2399                if builder.kind == Kind::Check && builder.top_stage == 1 {
2400                    continue;
2401                }
2402
2403                let prepare_compilers = || {
2404                    RustcPrivateCompilers::from_build_and_target_compiler(
2405                        build_compiler,
2406                        target_compiler,
2407                    )
2408                };
2409
2410                match backend {
2411                    CodegenBackendKind::Cranelift => {
2412                        let stamp = builder
2413                            .ensure(CraneliftCodegenBackend { compilers: prepare_compilers() });
2414                        copy_codegen_backends_to_sysroot(builder, stamp, target_compiler);
2415                    }
2416                    CodegenBackendKind::Gcc => {
2417                        // We need to build cg_gcc for the host target of the compiler which we
2418                        // build here, which is `target_compiler`.
2419                        // But we also need to build libgccjit for some additional targets, in
2420                        // the most general case.
2421                        // 1. We need to build (target_compiler.host, stdlib target) libgccjit
2422                        // for all stdlibs that we build, so that cg_gcc can be used to build code
2423                        // for all those targets.
2424                        // 2. We need to build (target_compiler.host, target_compiler.host)
2425                        // libgccjit, so that the target compiler can compile host code (e.g. proc
2426                        // macros).
2427                        // 3. We need to build (target_compiler.host, host target) libgccjit
2428                        // for all *host targets* that we build, so that cg_gcc can be used to
2429                        // build a (possibly cross-compiled) stage 2+ rustc.
2430                        //
2431                        // Assume that we are on host T1 and we do a stage2 build of rustc for T2.
2432                        // We want the T2 rustc compiler to be able to use cg_gcc and build code
2433                        // for T2 (host) and T3 (target). We also want to build the stage2 compiler
2434                        // itself using cg_gcc.
2435                        // This could correspond to the following bootstrap invocation:
2436                        // `x build rustc --build T1 --host T2 --target T3 --set codegen-backends=['gcc', 'llvm']`
2437                        //
2438                        // For that, we will need the following GCC target pairs:
2439                        // 1. T1 -> T2 (to cross-compile a T2 rustc using cg_gcc running on T1)
2440                        // 2. T2 -> T2 (to build host code with the stage 2 rustc running on T2)
2441                        // 3. T2 -> T3 (to cross-compile code with the stage 2 rustc running on T2)
2442                        //
2443                        // FIXME: this set of targets is *maximal*, in reality we might need
2444                        // less libgccjits at this current build stage. Try to reduce the set of
2445                        // GCC dylibs built below by taking a look at the current stage and whether
2446                        // cg_gcc is used as the default codegen backend.
2447
2448                        // First, the easy part: build cg_gcc
2449                        let compilers = prepare_compilers();
2450                        let cg_gcc = builder
2451                            .ensure(GccCodegenBackend::for_target(compilers, target_compiler.host));
2452                        copy_codegen_backends_to_sysroot(builder, cg_gcc.stamp, target_compiler);
2453
2454                        // Then, the hard part: prepare all required libgccjit dylibs.
2455
2456                        // The left side of the target pairs below is implied. It has to match the
2457                        // host target on which libgccjit will be used, which is the host target of
2458                        // `target_compiler`. We only pass the right side of the target pairs to
2459                        // the `GccDylibSet` constructor.
2460                        let mut targets = HashSet::new();
2461                        // Add all host targets, so that we are able to build host code in this
2462                        // bootstrap invocation using cg_gcc.
2463                        for target in &builder.hosts {
2464                            targets.insert(*target);
2465                        }
2466                        // Add all stdlib targets, so that the built rustc can produce code for them
2467                        for target in &builder.targets {
2468                            targets.insert(*target);
2469                        }
2470                        // Add the host target of the built rustc itself, so that it can build
2471                        // host code (e.g. proc macros) using cg_gcc.
2472                        targets.insert(compilers.target_compiler().host);
2473
2474                        // Now build all the required libgccjit dylibs
2475                        let dylib_set = GccDylibSet::build(
2476                            builder,
2477                            compilers.target_compiler().host,
2478                            targets.into_iter().collect(),
2479                        );
2480
2481                        // And then copy all the dylibs to the corresponding
2482                        // library sysroots, so that they are available for cg_gcc.
2483                        dylib_set.install_to(builder, target_compiler);
2484                    }
2485                    CodegenBackendKind::Llvm | CodegenBackendKind::Custom(_) => continue,
2486                }
2487            }
2488        }
2489
2490        if builder.config.lld_enabled {
2491            let lld_wrapper =
2492                builder.ensure(crate::core::build_steps::tool::LldWrapper::for_use_by_compiler(
2493                    builder,
2494                    target_compiler,
2495                ));
2496            copy_lld_artifacts(builder, lld_wrapper, target_compiler);
2497        }
2498
2499        if builder.config.llvm_enabled(target_compiler.host) && builder.config.llvm_tools_enabled {
2500            debug!(
2501                "llvm and llvm tools enabled; copying `llvm-objcopy` as `rust-objcopy` to \
2502                workaround faulty homebrew `strip`s"
2503            );
2504
2505            // `llvm-strip` is used by rustc, which is actually just a symlink to `llvm-objcopy`, so
2506            // copy and rename `llvm-objcopy`.
2507            //
2508            // But only do so if llvm-tools are enabled, as bootstrap compiler might not contain any
2509            // LLVM tools, e.g. for cg_clif.
2510            // See <https://github.com/rust-lang/rust/issues/132719>.
2511            let src_exe = exe("llvm-objcopy", target_compiler.host);
2512            let dst_exe = exe("rust-objcopy", target_compiler.host);
2513            builder.copy_link(
2514                &libdir_bin.join(src_exe),
2515                &libdir_bin.join(dst_exe),
2516                FileType::Executable,
2517            );
2518        }
2519
2520        // In addition to `rust-lld` also install `wasm-component-ld` when
2521        // is enabled. This is used by the `wasm32-wasip2` target of Rust.
2522        if builder.tool_enabled("wasm-component-ld") {
2523            let wasm_component = builder.ensure(
2524                crate::core::build_steps::tool::WasmComponentLd::for_use_by_compiler(
2525                    builder,
2526                    target_compiler,
2527                ),
2528            );
2529            builder.copy_link(
2530                &wasm_component.tool_path,
2531                &libdir_bin.join(wasm_component.tool_path.file_name().unwrap()),
2532                FileType::Executable,
2533            );
2534        }
2535
2536        maybe_install_llvm_bitcode_linker();
2537
2538        // Ensure that `libLLVM.so` ends up in the newly build compiler directory,
2539        // so that it can be found when the newly built `rustc` is run.
2540        debug!(
2541            "target_compiler.host" = ?target_compiler.host,
2542            ?sysroot,
2543            "ensuring availability of `libLLVM.so` in compiler directory"
2544        );
2545        dist::maybe_install_llvm_runtime(builder, target_compiler.host, &sysroot);
2546        dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
2547
2548        // Link the compiler binary itself into place
2549        let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
2550        let rustc = out_dir.join(exe("rustc-main", host));
2551        let bindir = sysroot.join("bin");
2552        t!(fs::create_dir_all(bindir));
2553        let compiler = builder.rustc(target_compiler);
2554        debug!(src = ?rustc, dst = ?compiler, "linking compiler binary itself");
2555        builder.copy_link(&rustc, &compiler, FileType::Executable);
2556
2557        target_compiler
2558    }
2559}
2560
2561/// Link some files into a rustc sysroot.
2562///
2563/// For a particular stage this will link the file listed in `stamp` into the
2564/// `sysroot_dst` provided.
2565#[track_caller]
2566pub fn add_to_sysroot(
2567    builder: &Builder<'_>,
2568    sysroot_dst: &Path,
2569    sysroot_host_dst: &Path,
2570    stamp: &BuildStamp,
2571) {
2572    let self_contained_dst = &sysroot_dst.join("self-contained");
2573    t!(fs::create_dir_all(sysroot_dst));
2574    t!(fs::create_dir_all(sysroot_host_dst));
2575    t!(fs::create_dir_all(self_contained_dst));
2576
2577    let mut crates = HashMap::new();
2578    for (path, dependency_type) in builder.read_stamp_file(stamp) {
2579        let filename = path.file_name().unwrap().to_str().unwrap();
2580        let dst = match dependency_type {
2581            DependencyType::Host => {
2582                if sysroot_dst == sysroot_host_dst {
2583                    // Only insert the part before the . to deduplicate different files for the same crate.
2584                    // For example foo-1234.dll and foo-1234.dll.lib.
2585                    crates.insert(filename.split_once('.').unwrap().0.to_owned(), path.clone());
2586                }
2587
2588                sysroot_host_dst
2589            }
2590            DependencyType::Target => {
2591                // Only insert the part before the . to deduplicate different files for the same crate.
2592                // For example foo-1234.dll and foo-1234.dll.lib.
2593                crates.insert(filename.split_once('.').unwrap().0.to_owned(), path.clone());
2594
2595                sysroot_dst
2596            }
2597            DependencyType::TargetSelfContained => self_contained_dst,
2598        };
2599        builder.copy_link(&path, &dst.join(filename), FileType::Regular);
2600    }
2601
2602    // Check that none of the rustc_* crates have multiple versions. Otherwise using them from
2603    // the sysroot would cause ambiguity errors. We do allow rustc_hash however as it is an
2604    // external dependency that we build multiple copies of. It is re-exported by
2605    // rustc_data_structures, so not being able to use extern crate rustc_hash; is not a big
2606    // issue.
2607    let mut seen_crates = HashMap::new();
2608    for (filestem, path) in crates {
2609        if !filestem.contains("rustc_") || filestem.contains("rustc_hash") {
2610            continue;
2611        }
2612        if let Some(other_path) =
2613            seen_crates.insert(filestem.split_once('-').unwrap().0.to_owned(), path.clone())
2614        {
2615            panic!(
2616                "duplicate rustc crate {}\n-  first copy at {}\n- second copy at {}",
2617                filestem.split_once('-').unwrap().0.to_owned(),
2618                other_path.display(),
2619                path.display(),
2620            );
2621        }
2622    }
2623}
2624
2625/// Specifies which rlib/rmeta artifacts outputted by Cargo should be put into the resulting
2626/// build stamp, and thus be included in dist archives and copied into sysroots by default.
2627/// Note that some kinds of artifacts are copied automatically (e.g. native libraries).
2628pub enum ArtifactKeepMode {
2629    /// Only keep .rlib files, ignore .rmeta files
2630    OnlyRlib,
2631    /// Only keep .rmeta files, ignore .rlib files
2632    OnlyRmeta,
2633    /// Keep both .rlib and .rmeta files.
2634    /// This is essentially only useful when using `-Zno-embed-metadata`, in which case both the
2635    /// .rlib and .rmeta files are needed for compilation/linking.
2636    BothRlibAndRmeta,
2637    /// Custom logic for keeping an artifact
2638    /// It receives the filename of an artifact, and returns true if it should be kept.
2639    Custom(Box<dyn Fn(&str) -> bool>),
2640}
2641
2642pub fn run_cargo(
2643    builder: &Builder<'_>,
2644    cargo: Cargo,
2645    tail_args: Vec<String>,
2646    stamp: &BuildStamp,
2647    additional_target_deps: Vec<(PathBuf, DependencyType)>,
2648    artifact_keep_mode: ArtifactKeepMode,
2649) -> Vec<PathBuf> {
2650    // `target_root_dir` looks like $dir/$target/release
2651    let target_root_dir = stamp.path().parent().unwrap();
2652    // `target_deps_dir` looks like $dir/$target/release/deps
2653    let target_deps_dir = target_root_dir.join("deps");
2654    // `host_root_dir` looks like $dir/release
2655    let host_root_dir = target_root_dir
2656        .parent()
2657        .unwrap() // chop off `release`
2658        .parent()
2659        .unwrap() // chop off `$target`
2660        .join(target_root_dir.file_name().unwrap());
2661
2662    // Spawn Cargo slurping up its JSON output. We'll start building up the
2663    // `deps` array of all files it generated along with a `toplevel` array of
2664    // files we need to probe for later.
2665    let mut deps = Vec::new();
2666    let mut toplevel = Vec::new();
2667    let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
2668        let (filenames_vec, crate_types) = match msg {
2669            CargoMessage::CompilerArtifact {
2670                filenames,
2671                target: CargoTarget { crate_types },
2672                ..
2673            } => {
2674                let mut f: Vec<String> = filenames.into_iter().map(|s| s.into_owned()).collect();
2675                f.sort(); // Sort the filenames
2676                (f, crate_types)
2677            }
2678            _ => return,
2679        };
2680        for filename in filenames_vec {
2681            // Skip files like executables
2682            let keep = if filename.ends_with(".lib")
2683                || filename.ends_with(".a")
2684                || is_debug_info(&filename)
2685                || is_dylib(Path::new(&*filename))
2686            {
2687                // Always keep native libraries, rust dylibs and debuginfo
2688                true
2689            } else {
2690                match &artifact_keep_mode {
2691                    ArtifactKeepMode::OnlyRlib => filename.ends_with(".rlib"),
2692                    ArtifactKeepMode::OnlyRmeta => filename.ends_with(".rmeta"),
2693                    ArtifactKeepMode::BothRlibAndRmeta => {
2694                        filename.ends_with(".rmeta") || filename.ends_with(".rlib")
2695                    }
2696                    ArtifactKeepMode::Custom(func) => func(&filename),
2697                }
2698            };
2699
2700            if !keep {
2701                continue;
2702            }
2703
2704            let filename = Path::new(&*filename);
2705
2706            // If this was an output file in the "host dir" we don't actually
2707            // worry about it, it's not relevant for us
2708            if filename.starts_with(&host_root_dir) {
2709                // Unless it's a proc macro used in the compiler
2710                if crate_types.iter().any(|t| t == "proc-macro") {
2711                    // Cargo will compile proc-macros that are part of the rustc workspace twice.
2712                    // Once as libmacro-hash.so as build dependency and once as libmacro.so as
2713                    // output artifact. Only keep the former to avoid ambiguity when trying to use
2714                    // the proc macro from the sysroot.
2715                    if filename.file_name().unwrap().to_str().unwrap().contains("-") {
2716                        deps.push((filename.to_path_buf(), DependencyType::Host));
2717                    }
2718                }
2719                continue;
2720            }
2721
2722            // If this was output in the `deps` dir then this is a precise file
2723            // name (hash included) so we start tracking it.
2724            if filename.starts_with(&target_deps_dir) {
2725                deps.push((filename.to_path_buf(), DependencyType::Target));
2726                continue;
2727            }
2728
2729            // Otherwise this was a "top level artifact" which right now doesn't
2730            // have a hash in the name, but there's a version of this file in
2731            // the `deps` folder which *does* have a hash in the name. That's
2732            // the one we'll want to we'll probe for it later.
2733            //
2734            // We do not use `Path::file_stem` or `Path::extension` here,
2735            // because some generated files may have multiple extensions e.g.
2736            // `std-<hash>.dll.lib` on Windows. The aforementioned methods only
2737            // split the file name by the last extension (`.lib`) while we need
2738            // to split by all extensions (`.dll.lib`).
2739            let expected_len = t!(filename.metadata()).len();
2740            let filename = filename.file_name().unwrap().to_str().unwrap();
2741            let mut parts = filename.splitn(2, '.');
2742            let file_stem = parts.next().unwrap().to_owned();
2743            let extension = parts.next().unwrap().to_owned();
2744
2745            toplevel.push((file_stem, extension, expected_len));
2746        }
2747    });
2748
2749    if !ok {
2750        crate::exit!(1);
2751    }
2752
2753    if builder.config.dry_run() {
2754        return Vec::new();
2755    }
2756
2757    // Ok now we need to actually find all the files listed in `toplevel`. We've
2758    // got a list of prefix/extensions and we basically just need to find the
2759    // most recent file in the `deps` folder corresponding to each one.
2760    let contents = target_deps_dir
2761        .read_dir()
2762        .unwrap_or_else(|e| panic!("Couldn't read {}: {}", target_deps_dir.display(), e))
2763        .map(|e| t!(e))
2764        .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
2765        .collect::<Vec<_>>();
2766    for (prefix, extension, expected_len) in toplevel {
2767        let candidates = contents.iter().filter(|&(_, filename, meta)| {
2768            meta.len() == expected_len
2769                && filename
2770                    .strip_prefix(&prefix[..])
2771                    .map(|s| s.starts_with('-') && s.ends_with(&extension[..]))
2772                    .unwrap_or(false)
2773        });
2774        let max = candidates.max_by_key(|&(_, _, metadata)| {
2775            metadata.modified().expect("mtime should be available on all relevant OSes")
2776        });
2777        let path_to_add = match max {
2778            Some(triple) => triple.0.to_str().unwrap(),
2779            None => panic!("no output generated for {prefix:?} {extension:?}"),
2780        };
2781        if is_dylib(Path::new(path_to_add)) {
2782            let candidate = format!("{path_to_add}.lib");
2783            let candidate = PathBuf::from(candidate);
2784            if candidate.exists() {
2785                deps.push((candidate, DependencyType::Target));
2786            }
2787        }
2788        deps.push((path_to_add.into(), DependencyType::Target));
2789    }
2790
2791    deps.extend(additional_target_deps);
2792    deps.sort();
2793    let mut new_contents = Vec::new();
2794    for (dep, dependency_type) in deps.iter() {
2795        new_contents.extend(match *dependency_type {
2796            DependencyType::Host => b"h",
2797            DependencyType::Target => b"t",
2798            DependencyType::TargetSelfContained => b"s",
2799        });
2800        new_contents.extend(dep.to_str().unwrap().as_bytes());
2801        new_contents.extend(b"\0");
2802    }
2803    t!(fs::write(stamp.path(), &new_contents));
2804    deps.into_iter().map(|(d, _)| d).collect()
2805}
2806
2807pub fn stream_cargo(
2808    builder: &Builder<'_>,
2809    cargo: Cargo,
2810    tail_args: Vec<String>,
2811    cb: &mut dyn FnMut(CargoMessage<'_>),
2812) -> bool {
2813    let mut cmd = cargo.into_cmd();
2814
2815    // Instruct Cargo to give us json messages on stdout, critically leaving
2816    // stderr as piped so we can get those pretty colors.
2817    let mut message_format = if builder.config.json_output {
2818        String::from("json")
2819    } else {
2820        String::from("json-render-diagnostics")
2821    };
2822    if let Some(s) = &builder.config.rustc_error_format {
2823        message_format.push_str(",json-diagnostic-");
2824        message_format.push_str(s);
2825    }
2826    cmd.arg("--message-format").arg(message_format);
2827
2828    for arg in tail_args {
2829        cmd.arg(arg);
2830    }
2831
2832    builder.do_if_verbose(|| println!("running: {cmd:?}"));
2833
2834    let streaming_command = cmd.stream_capture_stdout(&builder.config.exec_ctx);
2835
2836    let Some(mut streaming_command) = streaming_command else {
2837        return true;
2838    };
2839
2840    // Spawn Cargo slurping up its JSON output. We'll start building up the
2841    // `deps` array of all files it generated along with a `toplevel` array of
2842    // files we need to probe for later.
2843    let stdout = BufReader::new(streaming_command.stdout.take().unwrap());
2844    for line in stdout.lines() {
2845        let line = t!(line);
2846        match serde_json::from_str::<CargoMessage<'_>>(&line) {
2847            Ok(msg) => {
2848                if builder.config.json_output {
2849                    // Forward JSON to stdout.
2850                    println!("{line}");
2851                }
2852                cb(msg)
2853            }
2854            // If this was informational, just print it out and continue
2855            Err(_) => println!("{line}"),
2856        }
2857    }
2858
2859    // Make sure Cargo actually succeeded after we read all of its stdout.
2860    let status = t!(streaming_command.wait(&builder.config.exec_ctx));
2861    if builder.is_verbose() && !status.success() {
2862        eprintln!(
2863            "command did not execute successfully: {cmd:?}\n\
2864                  expected success, got: {status}"
2865        );
2866    }
2867
2868    status.success()
2869}
2870
2871#[derive(Deserialize)]
2872pub struct CargoTarget<'a> {
2873    crate_types: Vec<Cow<'a, str>>,
2874}
2875
2876#[derive(Deserialize)]
2877#[serde(tag = "reason", rename_all = "kebab-case")]
2878pub enum CargoMessage<'a> {
2879    CompilerArtifact { filenames: Vec<Cow<'a, str>>, target: CargoTarget<'a> },
2880    BuildScriptExecuted,
2881    BuildFinished,
2882}
2883
2884pub fn strip_debug(builder: &Builder<'_>, target: TargetSelection, path: &Path) {
2885    // FIXME: to make things simpler for now, limit this to the host and target where we know
2886    // `strip -g` is both available and will fix the issue, i.e. on a x64 linux host that is not
2887    // cross-compiling. Expand this to other appropriate targets in the future.
2888    if target != "x86_64-unknown-linux-gnu"
2889        || !builder.config.is_host_target(target)
2890        || !path.exists()
2891    {
2892        return;
2893    }
2894
2895    let previous_mtime = t!(t!(path.metadata()).modified());
2896    let stamp = BuildStamp::new(path.parent().unwrap())
2897        .with_prefix(path.file_name().unwrap().to_str().unwrap())
2898        .with_prefix("strip")
2899        .add_stamp(previous_mtime.duration_since(SystemTime::UNIX_EPOCH).unwrap().as_nanos());
2900
2901    // Running strip can be relatively expensive (~1s on librustc_driver.so), so we don't rerun it
2902    // if the file is unchanged.
2903    if !stamp.is_up_to_date() {
2904        command("strip").arg("--strip-debug").arg(path).run_capture(builder);
2905    }
2906    t!(stamp.write());
2907
2908    let file = t!(fs::File::open(path));
2909
2910    // After running `strip`, we have to set the file modification time to what it was before,
2911    // otherwise we risk Cargo invalidating its fingerprint and rebuilding the world next time
2912    // bootstrap is invoked.
2913    //
2914    // An example of this is if we run this on librustc_driver.so. In the first invocation:
2915    // - Cargo will build librustc_driver.so (mtime of 1)
2916    // - Cargo will build rustc-main (mtime of 2)
2917    // - Bootstrap will strip librustc_driver.so (changing the mtime to 3).
2918    //
2919    // In the second invocation of bootstrap, Cargo will see that the mtime of librustc_driver.so
2920    // is greater than the mtime of rustc-main, and will rebuild rustc-main. That will then cause
2921    // everything else (standard library, future stages...) to be rebuilt.
2922    t!(file.set_modified(previous_mtime));
2923}
2924
2925/// We only use LTO for stage 2+, to speed up build time of intermediate stages.
2926pub fn is_lto_stage(build_compiler: &Compiler) -> bool {
2927    build_compiler.stage != 0
2928}