rustdoc/html/render/span_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
use std::path::{Path, PathBuf};
use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{ExprKind, HirId, Item, ItemKind, Mod, Node};
use rustc_middle::hir::nested_filter;
use rustc_middle::ty::TyCtxt;
use rustc_span::hygiene::MacroKind;
use rustc_span::{BytePos, ExpnKind, Span};
use crate::clean::{self, PrimitiveType, rustc_span};
use crate::html::sources;
/// This enum allows us to store two different kinds of information:
///
/// In case the `span` definition comes from the same crate, we can simply get the `span` and use
/// it as is.
///
/// Otherwise, we store the definition `DefId` and will generate a link to the documentation page
/// instead of the source code directly.
#[derive(Debug)]
pub(crate) enum LinkFromSrc {
Local(clean::Span),
External(DefId),
Primitive(PrimitiveType),
Doc(DefId),
}
/// This function will do at most two things:
///
/// 1. Generate a `span` correspondence map which links an item `span` to its definition `span`.
/// 2. Collect the source code files.
///
/// It returns the `krate`, the source code files and the `span` correspondence map.
///
/// Note about the `span` correspondence map: the keys are actually `(lo, hi)` of `span`s. We don't
/// need the `span` context later on, only their position, so instead of keeping a whole `Span`, we
/// only keep the `lo` and `hi`.
pub(crate) fn collect_spans_and_sources(
tcx: TyCtxt<'_>,
krate: &clean::Crate,
src_root: &Path,
include_sources: bool,
generate_link_to_definition: bool,
) -> (FxIndexMap<PathBuf, String>, FxHashMap<Span, LinkFromSrc>) {
if include_sources {
let mut visitor = SpanMapVisitor { tcx, matches: FxHashMap::default() };
if generate_link_to_definition {
tcx.hir().walk_toplevel_module(&mut visitor);
}
let sources = sources::collect_local_sources(tcx, src_root, krate);
(sources, visitor.matches)
} else {
(Default::default(), Default::default())
}
}
struct SpanMapVisitor<'tcx> {
pub(crate) tcx: TyCtxt<'tcx>,
pub(crate) matches: FxHashMap<Span, LinkFromSrc>,
}
impl SpanMapVisitor<'_> {
/// This function is where we handle `hir::Path` elements and add them into the "span map".
fn handle_path(&mut self, path: &rustc_hir::Path<'_>) {
match path.res {
// FIXME: For now, we handle `DefKind` if it's not a `DefKind::TyParam`.
// Would be nice to support them too alongside the other `DefKind`
// (such as primitive types!).
Res::Def(kind, def_id) if kind != DefKind::TyParam => {
let link = if def_id.as_local().is_some() {
LinkFromSrc::Local(rustc_span(def_id, self.tcx))
} else {
LinkFromSrc::External(def_id)
};
// In case the path ends with generics, we remove them from the span.
let span = path
.segments
.last()
.map(|last| {
// In `use` statements, the included item is not in the path segments.
// However, it doesn't matter because you can't have generics on `use`
// statements.
if path.span.contains(last.ident.span) {
path.span.with_hi(last.ident.span.hi())
} else {
path.span
}
})
.unwrap_or(path.span);
self.matches.insert(span, link);
}
Res::Local(_) => {
if let Some(span) = self.tcx.hir().res_span(path.res) {
self.matches.insert(path.span, LinkFromSrc::Local(clean::Span::new(span)));
}
}
Res::PrimTy(p) => {
// FIXME: Doesn't handle "path-like" primitives like arrays or tuples.
self.matches.insert(path.span, LinkFromSrc::Primitive(PrimitiveType::from(p)));
}
Res::Err => {}
_ => {}
}
}
/// Used to generate links on items' definition to go to their documentation page.
pub(crate) fn extract_info_from_hir_id(&mut self, hir_id: HirId) {
if let Node::Item(item) = self.tcx.hir_node(hir_id) {
if let Some(span) = self.tcx.def_ident_span(item.owner_id) {
let cspan = clean::Span::new(span);
// If the span isn't from the current crate, we ignore it.
if cspan.inner().is_dummy() || cspan.cnum(self.tcx.sess) != LOCAL_CRATE {
return;
}
self.matches.insert(span, LinkFromSrc::Doc(item.owner_id.to_def_id()));
}
}
}
/// Adds the macro call into the span map. Returns `true` if the `span` was inside a macro
/// expansion, whether or not it was added to the span map.
///
/// The idea for the macro support is to check if the current `Span` comes from expansion. If
/// so, we loop until we find the macro definition by using `outer_expn_data` in a loop.
/// Finally, we get the information about the macro itself (`span` if "local", `DefId`
/// otherwise) and store it inside the span map.
fn handle_macro(&mut self, span: Span) -> bool {
if !span.from_expansion() {
return false;
}
// So if the `span` comes from a macro expansion, we need to get the original
// macro's `DefId`.
let mut data = span.ctxt().outer_expn_data();
let mut call_site = data.call_site;
// Macros can expand to code containing macros, which will in turn be expanded, etc.
// So the idea here is to "go up" until we're back to code that was generated from
// macro expansion so that we can get the `DefId` of the original macro that was at the
// origin of this expansion.
while call_site.from_expansion() {
data = call_site.ctxt().outer_expn_data();
call_site = data.call_site;
}
let macro_name = match data.kind {
ExpnKind::Macro(MacroKind::Bang, macro_name) => macro_name,
// Even though we don't handle this kind of macro, this `data` still comes from
// expansion so we return `true` so we don't go any deeper in this code.
_ => return true,
};
let link_from_src = match data.macro_def_id {
Some(macro_def_id) => {
if macro_def_id.is_local() {
LinkFromSrc::Local(clean::Span::new(data.def_site))
} else {
LinkFromSrc::External(macro_def_id)
}
}
None => return true,
};
let new_span = data.call_site;
let macro_name = macro_name.as_str();
// The "call_site" includes the whole macro with its "arguments". We only want
// the macro name.
let new_span = new_span.with_hi(new_span.lo() + BytePos(macro_name.len() as u32));
self.matches.insert(new_span, link_from_src);
true
}
fn handle_call(&mut self, hir_id: HirId, expr_hir_id: Option<HirId>, span: Span) {
let hir = self.tcx.hir();
let body_id = hir.enclosing_body_owner(hir_id);
// FIXME: this is showing error messages for parts of the code that are not
// compiled (because of cfg)!
//
// See discussion in https://github.com/rust-lang/rust/issues/69426#issuecomment-1019412352
let typeck_results = self.tcx.typeck_body(hir.body_owned_by(body_id).id());
// Interestingly enough, for method calls, we need the whole expression whereas for static
// method/function calls, we need the call expression specifically.
if let Some(def_id) = typeck_results.type_dependent_def_id(expr_hir_id.unwrap_or(hir_id)) {
let link = if def_id.as_local().is_some() {
LinkFromSrc::Local(rustc_span(def_id, self.tcx))
} else {
LinkFromSrc::External(def_id)
};
self.matches.insert(span, link);
}
}
}
impl<'tcx> Visitor<'tcx> for SpanMapVisitor<'tcx> {
type NestedFilter = nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_path(&mut self, path: &rustc_hir::Path<'tcx>, _id: HirId) {
if self.handle_macro(path.span) {
return;
}
self.handle_path(path);
intravisit::walk_path(self, path);
}
fn visit_mod(&mut self, m: &'tcx Mod<'tcx>, span: Span, id: HirId) {
// To make the difference between "mod foo {}" and "mod foo;". In case we "import" another
// file, we want to link to it. Otherwise no need to create a link.
if !span.overlaps(m.spans.inner_span) {
// Now that we confirmed it's a file import, we want to get the span for the module
// name only and not all the "mod foo;".
if let Node::Item(item) = self.tcx.hir_node(id) {
self.matches.insert(
item.ident.span,
LinkFromSrc::Local(clean::Span::new(m.spans.inner_span)),
);
}
} else {
// If it's a "mod foo {}", we want to look to its documentation page.
self.extract_info_from_hir_id(id);
}
intravisit::walk_mod(self, m, id);
}
fn visit_expr(&mut self, expr: &'tcx rustc_hir::Expr<'tcx>) {
match expr.kind {
ExprKind::MethodCall(segment, ..) => {
self.handle_call(segment.hir_id, Some(expr.hir_id), segment.ident.span)
}
ExprKind::Call(call, ..) => self.handle_call(call.hir_id, None, call.span),
_ => {
if self.handle_macro(expr.span) {
// We don't want to go deeper into the macro.
return;
}
}
}
intravisit::walk_expr(self, expr);
}
fn visit_item(&mut self, item: &'tcx Item<'tcx>) {
match item.kind {
ItemKind::Static(_, _, _)
| ItemKind::Const(_, _, _)
| ItemKind::Fn(_, _, _)
| ItemKind::Macro(_, _)
| ItemKind::TyAlias(_, _)
| ItemKind::Enum(_, _)
| ItemKind::Struct(_, _)
| ItemKind::Union(_, _)
| ItemKind::Trait(_, _, _, _, _)
| ItemKind::TraitAlias(_, _) => self.extract_info_from_hir_id(item.hir_id()),
ItemKind::Impl(_)
| ItemKind::Use(_, _)
| ItemKind::ExternCrate(_)
| ItemKind::ForeignMod { .. }
| ItemKind::GlobalAsm(_)
// We already have "visit_mod" above so no need to check it here.
| ItemKind::Mod(_) => {}
}
intravisit::walk_item(self, item);
}
}