rustc_hir_typeck/
coercion.rs

1//! # Type Coercion
2//!
3//! Under certain circumstances we will coerce from one type to another,
4//! for example by auto-borrowing. This occurs in situations where the
5//! compiler has a firm 'expected type' that was supplied from the user,
6//! and where the actual type is similar to that expected type in purpose
7//! but not in representation (so actual subtyping is inappropriate).
8//!
9//! ## Reborrowing
10//!
11//! Note that if we are expecting a reference, we will *reborrow*
12//! even if the argument provided was already a reference. This is
13//! useful for freezing mut things (that is, when the expected type is &T
14//! but you have &mut T) and also for avoiding the linearity
15//! of mut things (when the expected is &mut T and you have &mut T). See
16//! the various `tests/ui/coerce/*.rs` tests for
17//! examples of where this is useful.
18//!
19//! ## Subtle note
20//!
21//! When inferring the generic arguments of functions, the argument
22//! order is relevant, which can lead to the following edge case:
23//!
24//! ```ignore (illustrative)
25//! fn foo<T>(a: T, b: T) {
26//!     // ...
27//! }
28//!
29//! foo(&7i32, &mut 7i32);
30//! // This compiles, as we first infer `T` to be `&i32`,
31//! // and then coerce `&mut 7i32` to `&7i32`.
32//!
33//! foo(&mut 7i32, &7i32);
34//! // This does not compile, as we first infer `T` to be `&mut i32`
35//! // and are then unable to coerce `&7i32` to `&mut i32`.
36//! ```
37
38use std::ops::{ControlFlow, Deref};
39
40use rustc_errors::codes::*;
41use rustc_errors::{Applicability, Diag, struct_span_code_err};
42use rustc_hir::attrs::InlineAttr;
43use rustc_hir::def_id::{DefId, LocalDefId};
44use rustc_hir::{self as hir, LangItem};
45use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
46use rustc_infer::infer::relate::RelateResult;
47use rustc_infer::infer::{DefineOpaqueTypes, InferOk, InferResult, RegionVariableOrigin};
48use rustc_infer::traits::{
49    MatchExpressionArmCause, Obligation, PredicateObligation, PredicateObligations, SelectionError,
50};
51use rustc_middle::span_bug;
52use rustc_middle::ty::adjustment::{
53    Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, PointerCoercion,
54};
55use rustc_middle::ty::error::TypeError;
56use rustc_middle::ty::{self, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt};
57use rustc_span::{BytePos, DUMMY_SP, DesugaringKind, Span};
58use rustc_trait_selection::infer::InferCtxtExt as _;
59use rustc_trait_selection::solve::inspect::{self, InferCtxtProofTreeExt, ProofTreeVisitor};
60use rustc_trait_selection::solve::{Certainty, Goal, NoSolution};
61use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
62use rustc_trait_selection::traits::{
63    self, ImplSource, NormalizeExt, ObligationCause, ObligationCauseCode, ObligationCtxt,
64};
65use smallvec::{SmallVec, smallvec};
66use tracing::{debug, instrument};
67
68use crate::FnCtxt;
69use crate::errors::SuggestBoxingForReturnImplTrait;
70
71struct Coerce<'a, 'tcx> {
72    fcx: &'a FnCtxt<'a, 'tcx>,
73    cause: ObligationCause<'tcx>,
74    use_lub: bool,
75    /// Determines whether or not allow_two_phase_borrow is set on any
76    /// autoref adjustments we create while coercing. We don't want to
77    /// allow deref coercions to create two-phase borrows, at least initially,
78    /// but we do need two-phase borrows for function argument reborrows.
79    /// See #47489 and #48598
80    /// See docs on the "AllowTwoPhase" type for a more detailed discussion
81    allow_two_phase: AllowTwoPhase,
82    /// Whether we allow `NeverToAny` coercions. This is unsound if we're
83    /// coercing a place expression without it counting as a read in the MIR.
84    /// This is a side-effect of HIR not really having a great distinction
85    /// between places and values.
86    coerce_never: bool,
87}
88
89impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
90    type Target = FnCtxt<'a, 'tcx>;
91    fn deref(&self) -> &Self::Target {
92        self.fcx
93    }
94}
95
96type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;
97
98/// Coercing a mutable reference to an immutable works, while
99/// coercing `&T` to `&mut T` should be forbidden.
100fn coerce_mutbls<'tcx>(
101    from_mutbl: hir::Mutability,
102    to_mutbl: hir::Mutability,
103) -> RelateResult<'tcx, ()> {
104    if from_mutbl >= to_mutbl { Ok(()) } else { Err(TypeError::Mutability) }
105}
106
107/// This always returns `Ok(...)`.
108fn success<'tcx>(
109    adj: Vec<Adjustment<'tcx>>,
110    target: Ty<'tcx>,
111    obligations: PredicateObligations<'tcx>,
112) -> CoerceResult<'tcx> {
113    Ok(InferOk { value: (adj, target), obligations })
114}
115
116impl<'f, 'tcx> Coerce<'f, 'tcx> {
117    fn new(
118        fcx: &'f FnCtxt<'f, 'tcx>,
119        cause: ObligationCause<'tcx>,
120        allow_two_phase: AllowTwoPhase,
121        coerce_never: bool,
122    ) -> Self {
123        Coerce { fcx, cause, allow_two_phase, use_lub: false, coerce_never }
124    }
125
126    fn unify_raw(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
127        debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
128        self.commit_if_ok(|_| {
129            let at = self.at(&self.cause, self.fcx.param_env);
130
131            let res = if self.use_lub {
132                at.lub(b, a)
133            } else {
134                at.sup(DefineOpaqueTypes::Yes, b, a)
135                    .map(|InferOk { value: (), obligations }| InferOk { value: b, obligations })
136            };
137
138            // In the new solver, lazy norm may allow us to shallowly equate
139            // more types, but we emit possibly impossible-to-satisfy obligations.
140            // Filter these cases out to make sure our coercion is more accurate.
141            match res {
142                Ok(InferOk { value, obligations }) if self.next_trait_solver() => {
143                    let ocx = ObligationCtxt::new(self);
144                    ocx.register_obligations(obligations);
145                    if ocx.try_evaluate_obligations().is_empty() {
146                        Ok(InferOk { value, obligations: ocx.into_pending_obligations() })
147                    } else {
148                        Err(TypeError::Mismatch)
149                    }
150                }
151                res => res,
152            }
153        })
154    }
155
156    /// Unify two types (using sub or lub).
157    fn unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
158        self.unify_raw(a, b)
159            .and_then(|InferOk { value: ty, obligations }| success(vec![], ty, obligations))
160    }
161
162    /// Unify two types (using sub or lub) and produce a specific coercion.
163    fn unify_and(
164        &self,
165        a: Ty<'tcx>,
166        b: Ty<'tcx>,
167        adjustments: impl IntoIterator<Item = Adjustment<'tcx>>,
168        final_adjustment: Adjust,
169    ) -> CoerceResult<'tcx> {
170        self.unify_raw(a, b).and_then(|InferOk { value: ty, obligations }| {
171            success(
172                adjustments
173                    .into_iter()
174                    .chain(std::iter::once(Adjustment { target: ty, kind: final_adjustment }))
175                    .collect(),
176                ty,
177                obligations,
178            )
179        })
180    }
181
182    #[instrument(skip(self))]
183    fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
184        // First, remove any resolved type variables (at the top level, at least):
185        let a = self.shallow_resolve(a);
186        let b = self.shallow_resolve(b);
187        debug!("Coerce.tys({:?} => {:?})", a, b);
188
189        // Coercing from `!` to any type is allowed:
190        if a.is_never() {
191            if self.coerce_never {
192                return success(
193                    vec![Adjustment { kind: Adjust::NeverToAny, target: b }],
194                    b,
195                    PredicateObligations::new(),
196                );
197            } else {
198                // Otherwise the only coercion we can do is unification.
199                return self.unify(a, b);
200            }
201        }
202
203        // Coercing *from* an unresolved inference variable means that
204        // we have no information about the source type. This will always
205        // ultimately fall back to some form of subtyping.
206        if a.is_ty_var() {
207            return self.coerce_from_inference_variable(a, b);
208        }
209
210        // Consider coercing the subtype to a DST
211        //
212        // NOTE: this is wrapped in a `commit_if_ok` because it creates
213        // a "spurious" type variable, and we don't want to have that
214        // type variable in memory if the coercion fails.
215        let unsize = self.commit_if_ok(|_| self.coerce_unsized(a, b));
216        match unsize {
217            Ok(_) => {
218                debug!("coerce: unsize successful");
219                return unsize;
220            }
221            Err(error) => {
222                debug!(?error, "coerce: unsize failed");
223            }
224        }
225
226        // Examine the supertype and consider type-specific coercions, such
227        // as auto-borrowing, coercing pointer mutability, a `dyn*` coercion,
228        // or pin-ergonomics.
229        match *b.kind() {
230            ty::RawPtr(_, b_mutbl) => {
231                return self.coerce_raw_ptr(a, b, b_mutbl);
232            }
233            ty::Ref(r_b, _, mutbl_b) => {
234                return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
235            }
236            ty::Adt(pin, _)
237                if self.tcx.features().pin_ergonomics()
238                    && self.tcx.is_lang_item(pin.did(), hir::LangItem::Pin) =>
239            {
240                let pin_coerce = self.commit_if_ok(|_| self.coerce_pin_ref(a, b));
241                if pin_coerce.is_ok() {
242                    return pin_coerce;
243                }
244            }
245            _ => {}
246        }
247
248        match *a.kind() {
249            ty::FnDef(..) => {
250                // Function items are coercible to any closure
251                // type; function pointers are not (that would
252                // require double indirection).
253                // Additionally, we permit coercion of function
254                // items to drop the unsafe qualifier.
255                self.coerce_from_fn_item(a, b)
256            }
257            ty::FnPtr(a_sig_tys, a_hdr) => {
258                // We permit coercion of fn pointers to drop the
259                // unsafe qualifier.
260                self.coerce_from_fn_pointer(a_sig_tys.with(a_hdr), b)
261            }
262            ty::Closure(closure_def_id_a, args_a) => {
263                // Non-capturing closures are coercible to
264                // function pointers or unsafe function pointers.
265                // It cannot convert closures that require unsafe.
266                self.coerce_closure_to_fn(a, closure_def_id_a, args_a, b)
267            }
268            _ => {
269                // Otherwise, just use unification rules.
270                self.unify(a, b)
271            }
272        }
273    }
274
275    /// Coercing *from* an inference variable. In this case, we have no information
276    /// about the source type, so we can't really do a true coercion and we always
277    /// fall back to subtyping (`unify_and`).
278    fn coerce_from_inference_variable(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
279        debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
280        debug_assert!(a.is_ty_var() && self.shallow_resolve(a) == a);
281        debug_assert!(self.shallow_resolve(b) == b);
282
283        if b.is_ty_var() {
284            // Two unresolved type variables: create a `Coerce` predicate.
285            let target_ty = if self.use_lub { self.next_ty_var(self.cause.span) } else { b };
286
287            let mut obligations = PredicateObligations::with_capacity(2);
288            for &source_ty in &[a, b] {
289                if source_ty != target_ty {
290                    obligations.push(Obligation::new(
291                        self.tcx(),
292                        self.cause.clone(),
293                        self.param_env,
294                        ty::Binder::dummy(ty::PredicateKind::Coerce(ty::CoercePredicate {
295                            a: source_ty,
296                            b: target_ty,
297                        })),
298                    ));
299                }
300            }
301
302            debug!(
303                "coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
304                target_ty, obligations
305            );
306            success(vec![], target_ty, obligations)
307        } else {
308            // One unresolved type variable: just apply subtyping, we may be able
309            // to do something useful.
310            self.unify(a, b)
311        }
312    }
313
314    /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
315    /// To match `A` with `B`, autoderef will be performed,
316    /// calling `deref`/`deref_mut` where necessary.
317    fn coerce_borrowed_pointer(
318        &self,
319        a: Ty<'tcx>,
320        b: Ty<'tcx>,
321        r_b: ty::Region<'tcx>,
322        mutbl_b: hir::Mutability,
323    ) -> CoerceResult<'tcx> {
324        debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
325        debug_assert!(self.shallow_resolve(a) == a);
326        debug_assert!(self.shallow_resolve(b) == b);
327
328        // If we have a parameter of type `&M T_a` and the value
329        // provided is `expr`, we will be adding an implicit borrow,
330        // meaning that we convert `f(expr)` to `f(&M *expr)`. Therefore,
331        // to type check, we will construct the type that `&M*expr` would
332        // yield.
333
334        let (r_a, mt_a) = match *a.kind() {
335            ty::Ref(r_a, ty, mutbl) => {
336                let mt_a = ty::TypeAndMut { ty, mutbl };
337                coerce_mutbls(mt_a.mutbl, mutbl_b)?;
338                (r_a, mt_a)
339            }
340            _ => return self.unify(a, b),
341        };
342
343        let span = self.cause.span;
344
345        let mut first_error = None;
346        let mut r_borrow_var = None;
347        let mut autoderef = self.autoderef(span, a);
348        let mut found = None;
349
350        for (referent_ty, autoderefs) in autoderef.by_ref() {
351            if autoderefs == 0 {
352                // Don't let this pass, otherwise it would cause
353                // &T to autoref to &&T.
354                continue;
355            }
356
357            // At this point, we have deref'd `a` to `referent_ty`. So
358            // imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
359            // In the autoderef loop for `&'a mut Vec<T>`, we would get
360            // three callbacks:
361            //
362            // - `&'a mut Vec<T>` -- 0 derefs, just ignore it
363            // - `Vec<T>` -- 1 deref
364            // - `[T]` -- 2 deref
365            //
366            // At each point after the first callback, we want to
367            // check to see whether this would match out target type
368            // (`&'b mut [T]`) if we autoref'd it. We can't just
369            // compare the referent types, though, because we still
370            // have to consider the mutability. E.g., in the case
371            // we've been considering, we have an `&mut` reference, so
372            // the `T` in `[T]` needs to be unified with equality.
373            //
374            // Therefore, we construct reference types reflecting what
375            // the types will be after we do the final auto-ref and
376            // compare those. Note that this means we use the target
377            // mutability [1], since it may be that we are coercing
378            // from `&mut T` to `&U`.
379            //
380            // One fine point concerns the region that we use. We
381            // choose the region such that the region of the final
382            // type that results from `unify` will be the region we
383            // want for the autoref:
384            //
385            // - if in sub mode, that means we want to use `'b` (the
386            //   region from the target reference) for both
387            //   pointers [2]. This is because sub mode (somewhat
388            //   arbitrarily) returns the subtype region. In the case
389            //   where we are coercing to a target type, we know we
390            //   want to use that target type region (`'b`) because --
391            //   for the program to type-check -- it must be the
392            //   smaller of the two.
393            //   - One fine point. It may be surprising that we can
394            //     use `'b` without relating `'a` and `'b`. The reason
395            //     that this is ok is that what we produce is
396            //     effectively a `&'b *x` expression (if you could
397            //     annotate the region of a borrow), and regionck has
398            //     code that adds edges from the region of a borrow
399            //     (`'b`, here) into the regions in the borrowed
400            //     expression (`*x`, here). (Search for "link".)
401            // - if in lub mode, things can get fairly complicated. The
402            //   easiest thing is just to make a fresh
403            //   region variable [4], which effectively means we defer
404            //   the decision to region inference (and regionck, which will add
405            //   some more edges to this variable). However, this can wind up
406            //   creating a crippling number of variables in some cases --
407            //   e.g., #32278 -- so we optimize one particular case [3].
408            //   Let me try to explain with some examples:
409            //   - The "running example" above represents the simple case,
410            //     where we have one `&` reference at the outer level and
411            //     ownership all the rest of the way down. In this case,
412            //     we want `LUB('a, 'b)` as the resulting region.
413            //   - However, if there are nested borrows, that region is
414            //     too strong. Consider a coercion from `&'a &'x Rc<T>` to
415            //     `&'b T`. In this case, `'a` is actually irrelevant.
416            //     The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
417            //     we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
418            //     (The errors actually show up in borrowck, typically, because
419            //     this extra edge causes the region `'a` to be inferred to something
420            //     too big, which then results in borrowck errors.)
421            //   - We could track the innermost shared reference, but there is already
422            //     code in regionck that has the job of creating links between
423            //     the region of a borrow and the regions in the thing being
424            //     borrowed (here, `'a` and `'x`), and it knows how to handle
425            //     all the various cases. So instead we just make a region variable
426            //     and let regionck figure it out.
427            let r = if !self.use_lub {
428                r_b // [2] above
429            } else if autoderefs == 1 {
430                r_a // [3] above
431            } else {
432                if r_borrow_var.is_none() {
433                    // create var lazily, at most once
434                    let coercion = RegionVariableOrigin::Coercion(span);
435                    let r = self.next_region_var(coercion);
436                    r_borrow_var = Some(r); // [4] above
437                }
438                r_borrow_var.unwrap()
439            };
440            let derefd_ty_a = Ty::new_ref(
441                self.tcx,
442                r,
443                referent_ty,
444                mutbl_b, // [1] above
445            );
446            match self.unify_raw(derefd_ty_a, b) {
447                Ok(ok) => {
448                    found = Some(ok);
449                    break;
450                }
451                Err(err) => {
452                    if first_error.is_none() {
453                        first_error = Some(err);
454                    }
455                }
456            }
457        }
458
459        // Extract type or return an error. We return the first error
460        // we got, which should be from relating the "base" type
461        // (e.g., in example above, the failure from relating `Vec<T>`
462        // to the target type), since that should be the least
463        // confusing.
464        let Some(InferOk { value: ty, mut obligations }) = found else {
465            if let Some(first_error) = first_error {
466                debug!("coerce_borrowed_pointer: failed with err = {:?}", first_error);
467                return Err(first_error);
468            } else {
469                // This may happen in the new trait solver since autoderef requires
470                // the pointee to be structurally normalizable, or else it'll just bail.
471                // So when we have a type like `&<not well formed>`, then we get no
472                // autoderef steps (even though there should be at least one). That means
473                // we get no type mismatches, since the loop above just exits early.
474                return Err(TypeError::Mismatch);
475            }
476        };
477
478        if ty == a && mt_a.mutbl.is_not() && autoderef.step_count() == 1 {
479            // As a special case, if we would produce `&'a *x`, that's
480            // a total no-op. We end up with the type `&'a T` just as
481            // we started with. In that case, just skip it
482            // altogether. This is just an optimization.
483            //
484            // Note that for `&mut`, we DO want to reborrow --
485            // otherwise, this would be a move, which might be an
486            // error. For example `foo(self.x)` where `self` and
487            // `self.x` both have `&mut `type would be a move of
488            // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
489            // which is a borrow.
490            assert!(mutbl_b.is_not()); // can only coerce &T -> &U
491            return success(vec![], ty, obligations);
492        }
493
494        let InferOk { value: mut adjustments, obligations: o } =
495            self.adjust_steps_as_infer_ok(&autoderef);
496        obligations.extend(o);
497        obligations.extend(autoderef.into_obligations());
498
499        // Now apply the autoref. We have to extract the region out of
500        // the final ref type we got.
501        let ty::Ref(..) = ty.kind() else {
502            span_bug!(span, "expected a ref type, got {:?}", ty);
503        };
504        let mutbl = AutoBorrowMutability::new(mutbl_b, self.allow_two_phase);
505        adjustments.push(Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)), target: ty });
506
507        debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
508
509        success(adjustments, ty, obligations)
510    }
511
512    /// Performs [unsized coercion] by emulating a fulfillment loop on a
513    /// `CoerceUnsized` goal until all `CoerceUnsized` and `Unsize` goals
514    /// are successfully selected.
515    ///
516    /// [unsized coercion](https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions)
517    #[instrument(skip(self), level = "debug")]
518    fn coerce_unsized(&self, source: Ty<'tcx>, target: Ty<'tcx>) -> CoerceResult<'tcx> {
519        debug!(?source, ?target);
520        debug_assert!(self.shallow_resolve(source) == source);
521        debug_assert!(self.shallow_resolve(target) == target);
522
523        // We don't apply any coercions incase either the source or target
524        // aren't sufficiently well known but tend to instead just equate
525        // them both.
526        if source.is_ty_var() {
527            debug!("coerce_unsized: source is a TyVar, bailing out");
528            return Err(TypeError::Mismatch);
529        }
530        if target.is_ty_var() {
531            debug!("coerce_unsized: target is a TyVar, bailing out");
532            return Err(TypeError::Mismatch);
533        }
534
535        // This is an optimization because coercion is one of the most common
536        // operations that we do in typeck, since it happens at every assignment
537        // and call arg (among other positions).
538        //
539        // These targets are known to never be RHS in `LHS: CoerceUnsized<RHS>`.
540        // That's because these are built-in types for which a core-provided impl
541        // doesn't exist, and for which a user-written impl is invalid.
542        //
543        // This is technically incomplete when users write impossible bounds like
544        // `where T: CoerceUnsized<usize>`, for example, but that trait is unstable
545        // and coercion is allowed to be incomplete. The only case where this matters
546        // is impossible bounds.
547        //
548        // Note that some of these types implement `LHS: Unsize<RHS>`, but they
549        // do not implement *`CoerceUnsized`* which is the root obligation of the
550        // check below.
551        match target.kind() {
552            ty::Bool
553            | ty::Char
554            | ty::Int(_)
555            | ty::Uint(_)
556            | ty::Float(_)
557            | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
558            | ty::Str
559            | ty::Array(_, _)
560            | ty::Slice(_)
561            | ty::FnDef(_, _)
562            | ty::FnPtr(_, _)
563            | ty::Dynamic(_, _)
564            | ty::Closure(_, _)
565            | ty::CoroutineClosure(_, _)
566            | ty::Coroutine(_, _)
567            | ty::CoroutineWitness(_, _)
568            | ty::Never
569            | ty::Tuple(_) => return Err(TypeError::Mismatch),
570            _ => {}
571        }
572        // Additionally, we ignore `&str -> &str` coercions, which happen very
573        // commonly since strings are one of the most used argument types in Rust,
574        // we do coercions when type checking call expressions.
575        if let ty::Ref(_, source_pointee, ty::Mutability::Not) = *source.kind()
576            && source_pointee.is_str()
577            && let ty::Ref(_, target_pointee, ty::Mutability::Not) = *target.kind()
578            && target_pointee.is_str()
579        {
580            return Err(TypeError::Mismatch);
581        }
582
583        let traits =
584            (self.tcx.lang_items().unsize_trait(), self.tcx.lang_items().coerce_unsized_trait());
585        let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
586            debug!("missing Unsize or CoerceUnsized traits");
587            return Err(TypeError::Mismatch);
588        };
589
590        // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
591        // a DST unless we have to. This currently comes out in the wash since
592        // we can't unify [T] with U. But to properly support DST, we need to allow
593        // that, at which point we will need extra checks on the target here.
594
595        // Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
596        let reborrow = match (source.kind(), target.kind()) {
597            (&ty::Ref(_, ty_a, mutbl_a), &ty::Ref(_, _, mutbl_b)) => {
598                coerce_mutbls(mutbl_a, mutbl_b)?;
599
600                let coercion = RegionVariableOrigin::Coercion(self.cause.span);
601                let r_borrow = self.next_region_var(coercion);
602
603                // We don't allow two-phase borrows here, at least for initial
604                // implementation. If it happens that this coercion is a function argument,
605                // the reborrow in coerce_borrowed_ptr will pick it up.
606                let mutbl = AutoBorrowMutability::new(mutbl_b, AllowTwoPhase::No);
607
608                Some((
609                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
610                    Adjustment {
611                        kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)),
612                        target: Ty::new_ref(self.tcx, r_borrow, ty_a, mutbl_b),
613                    },
614                ))
615            }
616            (&ty::Ref(_, ty_a, mt_a), &ty::RawPtr(_, mt_b)) => {
617                coerce_mutbls(mt_a, mt_b)?;
618
619                Some((
620                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
621                    Adjustment {
622                        kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
623                        target: Ty::new_ptr(self.tcx, ty_a, mt_b),
624                    },
625                ))
626            }
627            _ => None,
628        };
629        let coerce_source = reborrow.as_ref().map_or(source, |(_, r)| r.target);
630
631        // Setup either a subtyping or a LUB relationship between
632        // the `CoerceUnsized` target type and the expected type.
633        // We only have the latter, so we use an inference variable
634        // for the former and let type inference do the rest.
635        let coerce_target = self.next_ty_var(self.cause.span);
636
637        let mut coercion = self.unify_and(
638            coerce_target,
639            target,
640            reborrow.into_iter().flat_map(|(deref, autoref)| [deref, autoref]),
641            Adjust::Pointer(PointerCoercion::Unsize),
642        )?;
643
644        // Create an obligation for `Source: CoerceUnsized<Target>`.
645        let cause = self.cause(self.cause.span, ObligationCauseCode::Coercion { source, target });
646        let pred = ty::TraitRef::new(self.tcx, coerce_unsized_did, [coerce_source, coerce_target]);
647        let obligation = Obligation::new(self.tcx, cause, self.fcx.param_env, pred);
648
649        if self.next_trait_solver() {
650            coercion.obligations.push(obligation);
651
652            if self
653                .infcx
654                .visit_proof_tree(
655                    Goal::new(self.tcx, self.param_env, pred),
656                    &mut CoerceVisitor { fcx: self.fcx, span: self.cause.span },
657                )
658                .is_break()
659            {
660                return Err(TypeError::Mismatch);
661            }
662        } else {
663            self.coerce_unsized_old_solver(
664                obligation,
665                &mut coercion,
666                coerce_unsized_did,
667                unsize_did,
668            )?;
669        }
670
671        Ok(coercion)
672    }
673
674    fn coerce_unsized_old_solver(
675        &self,
676        obligation: Obligation<'tcx, ty::Predicate<'tcx>>,
677        coercion: &mut InferOk<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>,
678        coerce_unsized_did: DefId,
679        unsize_did: DefId,
680    ) -> Result<(), TypeError<'tcx>> {
681        let mut selcx = traits::SelectionContext::new(self);
682        // Use a FIFO queue for this custom fulfillment procedure.
683        //
684        // A Vec (or SmallVec) is not a natural choice for a queue. However,
685        // this code path is hot, and this queue usually has a max length of 1
686        // and almost never more than 3. By using a SmallVec we avoid an
687        // allocation, at the (very small) cost of (occasionally) having to
688        // shift subsequent elements down when removing the front element.
689        let mut queue: SmallVec<[PredicateObligation<'tcx>; 4]> = smallvec![obligation];
690
691        // Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
692        // emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
693        // inference might unify those two inner type variables later.
694        let traits = [coerce_unsized_did, unsize_did];
695        while !queue.is_empty() {
696            let obligation = queue.remove(0);
697            let trait_pred = match obligation.predicate.kind().no_bound_vars() {
698                Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)))
699                    if traits.contains(&trait_pred.def_id()) =>
700                {
701                    self.resolve_vars_if_possible(trait_pred)
702                }
703                // Eagerly process alias-relate obligations in new trait solver,
704                // since these can be emitted in the process of solving trait goals,
705                // but we need to constrain vars before processing goals mentioning
706                // them.
707                Some(ty::PredicateKind::AliasRelate(..)) => {
708                    let ocx = ObligationCtxt::new(self);
709                    ocx.register_obligation(obligation);
710                    if !ocx.try_evaluate_obligations().is_empty() {
711                        return Err(TypeError::Mismatch);
712                    }
713                    coercion.obligations.extend(ocx.into_pending_obligations());
714                    continue;
715                }
716                _ => {
717                    coercion.obligations.push(obligation);
718                    continue;
719                }
720            };
721            debug!("coerce_unsized resolve step: {:?}", trait_pred);
722            match selcx.select(&obligation.with(selcx.tcx(), trait_pred)) {
723                // Uncertain or unimplemented.
724                Ok(None) => {
725                    if trait_pred.def_id() == unsize_did {
726                        let self_ty = trait_pred.self_ty();
727                        let unsize_ty = trait_pred.trait_ref.args[1].expect_ty();
728                        debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
729                        match (self_ty.kind(), unsize_ty.kind()) {
730                            (&ty::Infer(ty::TyVar(v)), ty::Dynamic(..))
731                                if self.type_var_is_sized(v) =>
732                            {
733                                debug!("coerce_unsized: have sized infer {:?}", v);
734                                coercion.obligations.push(obligation);
735                                // `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
736                                // for unsizing.
737                            }
738                            _ => {
739                                // Some other case for `$0: Unsize<Something>`. Note that we
740                                // hit this case even if `Something` is a sized type, so just
741                                // don't do the coercion.
742                                debug!("coerce_unsized: ambiguous unsize");
743                                return Err(TypeError::Mismatch);
744                            }
745                        }
746                    } else {
747                        debug!("coerce_unsized: early return - ambiguous");
748                        return Err(TypeError::Mismatch);
749                    }
750                }
751                Err(SelectionError::Unimplemented) => {
752                    debug!("coerce_unsized: early return - can't prove obligation");
753                    return Err(TypeError::Mismatch);
754                }
755
756                Err(SelectionError::TraitDynIncompatible(_)) => {
757                    // Dyn compatibility errors in coercion will *always* be due to the
758                    // fact that the RHS of the coercion is a non-dyn compatible `dyn Trait`
759                    // written in source somewhere (otherwise we will never have lowered
760                    // the dyn trait from HIR to middle).
761                    //
762                    // There's no reason to emit yet another dyn compatibility error,
763                    // especially since the span will differ slightly and thus not be
764                    // deduplicated at all!
765                    self.fcx.set_tainted_by_errors(
766                        self.fcx
767                            .dcx()
768                            .span_delayed_bug(self.cause.span, "dyn compatibility during coercion"),
769                    );
770                }
771                Err(err) => {
772                    let guar = self.err_ctxt().report_selection_error(
773                        obligation.clone(),
774                        &obligation,
775                        &err,
776                    );
777                    self.fcx.set_tainted_by_errors(guar);
778                    // Treat this like an obligation and follow through
779                    // with the unsizing - the lack of a coercion should
780                    // be silent, as it causes a type mismatch later.
781                }
782                Ok(Some(ImplSource::UserDefined(impl_source))) => {
783                    queue.extend(impl_source.nested);
784                    // Certain incoherent `CoerceUnsized` implementations may cause ICEs,
785                    // so check the impl's validity. Taint the body so that we don't try
786                    // to evaluate these invalid coercions in CTFE. We only need to do this
787                    // for local impls, since upstream impls should be valid.
788                    if impl_source.impl_def_id.is_local()
789                        && let Err(guar) =
790                            self.tcx.ensure_ok().coerce_unsized_info(impl_source.impl_def_id)
791                    {
792                        self.fcx.set_tainted_by_errors(guar);
793                    }
794                }
795                Ok(Some(impl_source)) => queue.extend(impl_source.nested_obligations()),
796            }
797        }
798
799        Ok(())
800    }
801
802    /// Applies reborrowing for `Pin`
803    ///
804    /// We currently only support reborrowing `Pin<&mut T>` as `Pin<&mut T>`. This is accomplished
805    /// by inserting a call to `Pin::as_mut` during MIR building.
806    ///
807    /// In the future we might want to support other reborrowing coercions, such as:
808    /// - `Pin<&mut T>` as `Pin<&T>`
809    /// - `Pin<&T>` as `Pin<&T>`
810    /// - `Pin<Box<T>>` as `Pin<&T>`
811    /// - `Pin<Box<T>>` as `Pin<&mut T>`
812    #[instrument(skip(self), level = "trace")]
813    fn coerce_pin_ref(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
814        debug_assert!(self.shallow_resolve(a) == a);
815        debug_assert!(self.shallow_resolve(b) == b);
816
817        // We need to make sure the two types are compatible for coercion.
818        // Then we will build a ReborrowPin adjustment and return that as an InferOk.
819
820        // Right now we can only reborrow if this is a `Pin<&mut T>`.
821        let extract_pin_mut = |ty: Ty<'tcx>| {
822            // Get the T out of Pin<T>
823            let (pin, ty) = match ty.kind() {
824                ty::Adt(pin, args) if self.tcx.is_lang_item(pin.did(), hir::LangItem::Pin) => {
825                    (*pin, args[0].expect_ty())
826                }
827                _ => {
828                    debug!("can't reborrow {:?} as pinned", ty);
829                    return Err(TypeError::Mismatch);
830                }
831            };
832            // Make sure the T is something we understand (just `&mut U` for now)
833            match ty.kind() {
834                ty::Ref(region, ty, mutbl) => Ok((pin, *region, *ty, *mutbl)),
835                _ => {
836                    debug!("can't reborrow pin of inner type {:?}", ty);
837                    Err(TypeError::Mismatch)
838                }
839            }
840        };
841
842        let (pin, a_region, a_ty, mut_a) = extract_pin_mut(a)?;
843        let (_, _, _b_ty, mut_b) = extract_pin_mut(b)?;
844
845        coerce_mutbls(mut_a, mut_b)?;
846
847        // update a with b's mutability since we'll be coercing mutability
848        let a = Ty::new_adt(
849            self.tcx,
850            pin,
851            self.tcx.mk_args(&[Ty::new_ref(self.tcx, a_region, a_ty, mut_b).into()]),
852        );
853
854        // To complete the reborrow, we need to make sure we can unify the inner types, and if so we
855        // add the adjustments.
856        self.unify_and(a, b, [], Adjust::ReborrowPin(mut_b))
857    }
858
859    fn coerce_from_safe_fn(
860        &self,
861        fn_ty_a: ty::PolyFnSig<'tcx>,
862        b: Ty<'tcx>,
863        adjustment: Option<Adjust>,
864    ) -> CoerceResult<'tcx> {
865        debug_assert!(self.shallow_resolve(b) == b);
866
867        self.commit_if_ok(|snapshot| {
868            let outer_universe = self.infcx.universe();
869
870            let result = if let ty::FnPtr(_, hdr_b) = b.kind()
871                && fn_ty_a.safety().is_safe()
872                && hdr_b.safety.is_unsafe()
873            {
874                let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
875                self.unify_and(
876                    unsafe_a,
877                    b,
878                    adjustment
879                        .map(|kind| Adjustment { kind, target: Ty::new_fn_ptr(self.tcx, fn_ty_a) }),
880                    Adjust::Pointer(PointerCoercion::UnsafeFnPointer),
881                )
882            } else {
883                let a = Ty::new_fn_ptr(self.tcx, fn_ty_a);
884                match adjustment {
885                    Some(adjust) => self.unify_and(a, b, [], adjust),
886                    None => self.unify(a, b),
887                }
888            };
889
890            // FIXME(#73154): This is a hack. Currently LUB can generate
891            // unsolvable constraints. Additionally, it returns `a`
892            // unconditionally, even when the "LUB" is `b`. In the future, we
893            // want the coerced type to be the actual supertype of these two,
894            // but for now, we want to just error to ensure we don't lock
895            // ourselves into a specific behavior with NLL.
896            self.leak_check(outer_universe, Some(snapshot))?;
897
898            result
899        })
900    }
901
902    fn coerce_from_fn_pointer(
903        &self,
904        fn_ty_a: ty::PolyFnSig<'tcx>,
905        b: Ty<'tcx>,
906    ) -> CoerceResult<'tcx> {
907        debug!(?fn_ty_a, ?b, "coerce_from_fn_pointer");
908        debug_assert!(self.shallow_resolve(b) == b);
909
910        self.coerce_from_safe_fn(fn_ty_a, b, None)
911    }
912
913    fn coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
914        debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
915        debug_assert!(self.shallow_resolve(a) == a);
916        debug_assert!(self.shallow_resolve(b) == b);
917
918        let InferOk { value: b, mut obligations } =
919            self.at(&self.cause, self.param_env).normalize(b);
920
921        match b.kind() {
922            ty::FnPtr(_, b_hdr) => {
923                let mut a_sig = a.fn_sig(self.tcx);
924                if let ty::FnDef(def_id, _) = *a.kind() {
925                    // Intrinsics are not coercible to function pointers
926                    if self.tcx.intrinsic(def_id).is_some() {
927                        return Err(TypeError::IntrinsicCast);
928                    }
929
930                    let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
931                    if matches!(fn_attrs.inline, InlineAttr::Force { .. }) {
932                        return Err(TypeError::ForceInlineCast);
933                    }
934
935                    if b_hdr.safety.is_safe()
936                        && self.tcx.codegen_fn_attrs(def_id).safe_target_features
937                    {
938                        // Allow the coercion if the current function has all the features that would be
939                        // needed to call the coercee safely.
940                        if let Some(safe_sig) = self.tcx.adjust_target_feature_sig(
941                            def_id,
942                            a_sig,
943                            self.fcx.body_id.into(),
944                        ) {
945                            a_sig = safe_sig;
946                        } else {
947                            return Err(TypeError::TargetFeatureCast(def_id));
948                        }
949                    }
950                }
951
952                let InferOk { value: a_sig, obligations: o1 } =
953                    self.at(&self.cause, self.param_env).normalize(a_sig);
954                obligations.extend(o1);
955
956                let InferOk { value, obligations: o2 } = self.coerce_from_safe_fn(
957                    a_sig,
958                    b,
959                    Some(Adjust::Pointer(PointerCoercion::ReifyFnPointer)),
960                )?;
961
962                obligations.extend(o2);
963                Ok(InferOk { value, obligations })
964            }
965            _ => self.unify(a, b),
966        }
967    }
968
969    /// Attempts to coerce from the type of a non-capturing closure
970    /// into a function pointer.
971    fn coerce_closure_to_fn(
972        &self,
973        a: Ty<'tcx>,
974        closure_def_id_a: DefId,
975        args_a: GenericArgsRef<'tcx>,
976        b: Ty<'tcx>,
977    ) -> CoerceResult<'tcx> {
978        debug_assert!(self.shallow_resolve(a) == a);
979        debug_assert!(self.shallow_resolve(b) == b);
980
981        match b.kind() {
982            // At this point we haven't done capture analysis, which means
983            // that the ClosureArgs just contains an inference variable instead
984            // of tuple of captured types.
985            //
986            // All we care here is if any variable is being captured and not the exact paths,
987            // so we check `upvars_mentioned` for root variables being captured.
988            ty::FnPtr(_, hdr)
989                if self
990                    .tcx
991                    .upvars_mentioned(closure_def_id_a.expect_local())
992                    .is_none_or(|u| u.is_empty()) =>
993            {
994                // We coerce the closure, which has fn type
995                //     `extern "rust-call" fn((arg0,arg1,...)) -> _`
996                // to
997                //     `fn(arg0,arg1,...) -> _`
998                // or
999                //     `unsafe fn(arg0,arg1,...) -> _`
1000                let closure_sig = args_a.as_closure().sig();
1001                let safety = hdr.safety;
1002                let pointer_ty =
1003                    Ty::new_fn_ptr(self.tcx, self.tcx.signature_unclosure(closure_sig, safety));
1004                debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
1005                self.unify_and(
1006                    pointer_ty,
1007                    b,
1008                    [],
1009                    Adjust::Pointer(PointerCoercion::ClosureFnPointer(safety)),
1010                )
1011            }
1012            _ => self.unify(a, b),
1013        }
1014    }
1015
1016    fn coerce_raw_ptr(
1017        &self,
1018        a: Ty<'tcx>,
1019        b: Ty<'tcx>,
1020        mutbl_b: hir::Mutability,
1021    ) -> CoerceResult<'tcx> {
1022        debug!("coerce_raw_ptr(a={:?}, b={:?})", a, b);
1023        debug_assert!(self.shallow_resolve(a) == a);
1024        debug_assert!(self.shallow_resolve(b) == b);
1025
1026        let (is_ref, mt_a) = match *a.kind() {
1027            ty::Ref(_, ty, mutbl) => (true, ty::TypeAndMut { ty, mutbl }),
1028            ty::RawPtr(ty, mutbl) => (false, ty::TypeAndMut { ty, mutbl }),
1029            _ => return self.unify(a, b),
1030        };
1031        coerce_mutbls(mt_a.mutbl, mutbl_b)?;
1032
1033        // Check that the types which they point at are compatible.
1034        let a_raw = Ty::new_ptr(self.tcx, mt_a.ty, mutbl_b);
1035        // Although references and raw ptrs have the same
1036        // representation, we still register an Adjust::DerefRef so that
1037        // regionck knows that the region for `a` must be valid here.
1038        if is_ref {
1039            self.unify_and(
1040                a_raw,
1041                b,
1042                [Adjustment { kind: Adjust::Deref(None), target: mt_a.ty }],
1043                Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)),
1044            )
1045        } else if mt_a.mutbl != mutbl_b {
1046            self.unify_and(a_raw, b, [], Adjust::Pointer(PointerCoercion::MutToConstPointer))
1047        } else {
1048            self.unify(a_raw, b)
1049        }
1050    }
1051}
1052
1053impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
1054    /// Attempt to coerce an expression to a type, and return the
1055    /// adjusted type of the expression, if successful.
1056    /// Adjustments are only recorded if the coercion succeeded.
1057    /// The expressions *must not* have any preexisting adjustments.
1058    pub(crate) fn coerce(
1059        &self,
1060        expr: &'tcx hir::Expr<'tcx>,
1061        expr_ty: Ty<'tcx>,
1062        mut target: Ty<'tcx>,
1063        allow_two_phase: AllowTwoPhase,
1064        cause: Option<ObligationCause<'tcx>>,
1065    ) -> RelateResult<'tcx, Ty<'tcx>> {
1066        let source = self.try_structurally_resolve_type(expr.span, expr_ty);
1067        if self.next_trait_solver() {
1068            target = self.try_structurally_resolve_type(
1069                cause.as_ref().map_or(expr.span, |cause| cause.span),
1070                target,
1071            );
1072        }
1073        debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
1074
1075        let cause =
1076            cause.unwrap_or_else(|| self.cause(expr.span, ObligationCauseCode::ExprAssignable));
1077        let coerce = Coerce::new(
1078            self,
1079            cause,
1080            allow_two_phase,
1081            self.expr_guaranteed_to_constitute_read_for_never(expr),
1082        );
1083        let ok = self.commit_if_ok(|_| coerce.coerce(source, target))?;
1084
1085        let (adjustments, _) = self.register_infer_ok_obligations(ok);
1086        self.apply_adjustments(expr, adjustments);
1087        Ok(if let Err(guar) = expr_ty.error_reported() {
1088            Ty::new_error(self.tcx, guar)
1089        } else {
1090            target
1091        })
1092    }
1093
1094    /// Probe whether `expr_ty` can be coerced to `target_ty`. This has no side-effects,
1095    /// and may return false positives if types are not yet fully constrained by inference.
1096    ///
1097    /// Returns false if the coercion is not possible, or if the coercion creates any
1098    /// sub-obligations that result in errors.
1099    ///
1100    /// This should only be used for diagnostics.
1101    pub(crate) fn may_coerce(&self, expr_ty: Ty<'tcx>, target_ty: Ty<'tcx>) -> bool {
1102        let cause = self.cause(DUMMY_SP, ObligationCauseCode::ExprAssignable);
1103        // We don't ever need two-phase here since we throw out the result of the coercion.
1104        // We also just always set `coerce_never` to true, since this is a heuristic.
1105        let coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No, true);
1106        self.probe(|_| {
1107            // Make sure to structurally resolve the types, since we use
1108            // the `TyKind`s heavily in coercion.
1109            let ocx = ObligationCtxt::new(self);
1110            let structurally_resolve = |ty| {
1111                let ty = self.shallow_resolve(ty);
1112                if self.next_trait_solver()
1113                    && let ty::Alias(..) = ty.kind()
1114                {
1115                    ocx.structurally_normalize_ty(&cause, self.param_env, ty)
1116                } else {
1117                    Ok(ty)
1118                }
1119            };
1120            let Ok(expr_ty) = structurally_resolve(expr_ty) else {
1121                return false;
1122            };
1123            let Ok(target_ty) = structurally_resolve(target_ty) else {
1124                return false;
1125            };
1126
1127            let Ok(ok) = coerce.coerce(expr_ty, target_ty) else {
1128                return false;
1129            };
1130            ocx.register_obligations(ok.obligations);
1131            ocx.try_evaluate_obligations().is_empty()
1132        })
1133    }
1134
1135    /// Given a type and a target type, this function will calculate and return
1136    /// how many dereference steps needed to coerce `expr_ty` to `target`. If
1137    /// it's not possible, return `None`.
1138    pub(crate) fn deref_steps_for_suggestion(
1139        &self,
1140        expr_ty: Ty<'tcx>,
1141        target: Ty<'tcx>,
1142    ) -> Option<usize> {
1143        let cause = self.cause(DUMMY_SP, ObligationCauseCode::ExprAssignable);
1144        // We don't ever need two-phase here since we throw out the result of the coercion.
1145        let coerce = Coerce::new(self, cause, AllowTwoPhase::No, true);
1146        coerce.autoderef(DUMMY_SP, expr_ty).find_map(|(ty, steps)| {
1147            self.probe(|_| coerce.unify_raw(ty, target)).ok().map(|_| steps)
1148        })
1149    }
1150
1151    /// Given a type, this function will calculate and return the type given
1152    /// for `<Ty as Deref>::Target` only if `Ty` also implements `DerefMut`.
1153    ///
1154    /// This function is for diagnostics only, since it does not register
1155    /// trait or region sub-obligations. (presumably we could, but it's not
1156    /// particularly important for diagnostics...)
1157    pub(crate) fn deref_once_mutably_for_diagnostic(&self, expr_ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
1158        self.autoderef(DUMMY_SP, expr_ty).silence_errors().nth(1).and_then(|(deref_ty, _)| {
1159            self.infcx
1160                .type_implements_trait(
1161                    self.tcx.lang_items().deref_mut_trait()?,
1162                    [expr_ty],
1163                    self.param_env,
1164                )
1165                .may_apply()
1166                .then_some(deref_ty)
1167        })
1168    }
1169
1170    /// Given some expressions, their known unified type and another expression,
1171    /// tries to unify the types, potentially inserting coercions on any of the
1172    /// provided expressions and returns their LUB (aka "common supertype").
1173    ///
1174    /// This is really an internal helper. From outside the coercion
1175    /// module, you should instantiate a `CoerceMany` instance.
1176    fn try_find_coercion_lub<E>(
1177        &self,
1178        cause: &ObligationCause<'tcx>,
1179        exprs: &[E],
1180        prev_ty: Ty<'tcx>,
1181        new: &hir::Expr<'_>,
1182        new_ty: Ty<'tcx>,
1183    ) -> RelateResult<'tcx, Ty<'tcx>>
1184    where
1185        E: AsCoercionSite,
1186    {
1187        let prev_ty = self.try_structurally_resolve_type(cause.span, prev_ty);
1188        let new_ty = self.try_structurally_resolve_type(new.span, new_ty);
1189        debug!(
1190            "coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
1191            prev_ty,
1192            new_ty,
1193            exprs.len()
1194        );
1195
1196        // The following check fixes #88097, where the compiler erroneously
1197        // attempted to coerce a closure type to itself via a function pointer.
1198        if prev_ty == new_ty {
1199            return Ok(prev_ty);
1200        }
1201
1202        let is_force_inline = |ty: Ty<'tcx>| {
1203            if let ty::FnDef(did, _) = ty.kind() {
1204                matches!(self.tcx.codegen_fn_attrs(did).inline, InlineAttr::Force { .. })
1205            } else {
1206                false
1207            }
1208        };
1209        if is_force_inline(prev_ty) || is_force_inline(new_ty) {
1210            return Err(TypeError::ForceInlineCast);
1211        }
1212
1213        // Special-case that coercion alone cannot handle:
1214        // Function items or non-capturing closures of differing IDs or GenericArgs.
1215        let (a_sig, b_sig) = {
1216            let is_capturing_closure = |ty: Ty<'tcx>| {
1217                if let &ty::Closure(closure_def_id, _args) = ty.kind() {
1218                    self.tcx.upvars_mentioned(closure_def_id.expect_local()).is_some()
1219                } else {
1220                    false
1221                }
1222            };
1223            if is_capturing_closure(prev_ty) || is_capturing_closure(new_ty) {
1224                (None, None)
1225            } else {
1226                match (prev_ty.kind(), new_ty.kind()) {
1227                    (ty::FnDef(..), ty::FnDef(..)) => {
1228                        // Don't reify if the function types have a LUB, i.e., they
1229                        // are the same function and their parameters have a LUB.
1230                        match self.commit_if_ok(|_| {
1231                            // We need to eagerly handle nested obligations due to lazy norm.
1232                            if self.next_trait_solver() {
1233                                let ocx = ObligationCtxt::new(self);
1234                                let value = ocx.lub(cause, self.param_env, prev_ty, new_ty)?;
1235                                if ocx.try_evaluate_obligations().is_empty() {
1236                                    Ok(InferOk {
1237                                        value,
1238                                        obligations: ocx.into_pending_obligations(),
1239                                    })
1240                                } else {
1241                                    Err(TypeError::Mismatch)
1242                                }
1243                            } else {
1244                                self.at(cause, self.param_env).lub(prev_ty, new_ty)
1245                            }
1246                        }) {
1247                            // We have a LUB of prev_ty and new_ty, just return it.
1248                            Ok(ok) => return Ok(self.register_infer_ok_obligations(ok)),
1249                            Err(_) => {
1250                                (Some(prev_ty.fn_sig(self.tcx)), Some(new_ty.fn_sig(self.tcx)))
1251                            }
1252                        }
1253                    }
1254                    (ty::Closure(_, args), ty::FnDef(..)) => {
1255                        let b_sig = new_ty.fn_sig(self.tcx);
1256                        let a_sig =
1257                            self.tcx.signature_unclosure(args.as_closure().sig(), b_sig.safety());
1258                        (Some(a_sig), Some(b_sig))
1259                    }
1260                    (ty::FnDef(..), ty::Closure(_, args)) => {
1261                        let a_sig = prev_ty.fn_sig(self.tcx);
1262                        let b_sig =
1263                            self.tcx.signature_unclosure(args.as_closure().sig(), a_sig.safety());
1264                        (Some(a_sig), Some(b_sig))
1265                    }
1266                    (ty::Closure(_, args_a), ty::Closure(_, args_b)) => (
1267                        Some(
1268                            self.tcx
1269                                .signature_unclosure(args_a.as_closure().sig(), hir::Safety::Safe),
1270                        ),
1271                        Some(
1272                            self.tcx
1273                                .signature_unclosure(args_b.as_closure().sig(), hir::Safety::Safe),
1274                        ),
1275                    ),
1276                    _ => (None, None),
1277                }
1278            }
1279        };
1280        if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
1281            // The signature must match.
1282            let (a_sig, b_sig) = self.normalize(new.span, (a_sig, b_sig));
1283            let sig = self
1284                .at(cause, self.param_env)
1285                .lub(a_sig, b_sig)
1286                .map(|ok| self.register_infer_ok_obligations(ok))?;
1287
1288            // Reify both sides and return the reified fn pointer type.
1289            let fn_ptr = Ty::new_fn_ptr(self.tcx, sig);
1290            let prev_adjustment = match prev_ty.kind() {
1291                ty::Closure(..) => {
1292                    Adjust::Pointer(PointerCoercion::ClosureFnPointer(a_sig.safety()))
1293                }
1294                ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
1295                _ => span_bug!(cause.span, "should not try to coerce a {prev_ty} to a fn pointer"),
1296            };
1297            let next_adjustment = match new_ty.kind() {
1298                ty::Closure(..) => {
1299                    Adjust::Pointer(PointerCoercion::ClosureFnPointer(b_sig.safety()))
1300                }
1301                ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
1302                _ => span_bug!(new.span, "should not try to coerce a {new_ty} to a fn pointer"),
1303            };
1304            for expr in exprs.iter().map(|e| e.as_coercion_site()) {
1305                self.apply_adjustments(
1306                    expr,
1307                    vec![Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }],
1308                );
1309            }
1310            self.apply_adjustments(new, vec![Adjustment { kind: next_adjustment, target: fn_ptr }]);
1311            return Ok(fn_ptr);
1312        }
1313
1314        // Configure a Coerce instance to compute the LUB.
1315        // We don't allow two-phase borrows on any autorefs this creates since we
1316        // probably aren't processing function arguments here and even if we were,
1317        // they're going to get autorefed again anyway and we can apply 2-phase borrows
1318        // at that time.
1319        //
1320        // NOTE: we set `coerce_never` to `true` here because coercion LUBs only
1321        // operate on values and not places, so a never coercion is valid.
1322        let mut coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No, true);
1323        coerce.use_lub = true;
1324
1325        // First try to coerce the new expression to the type of the previous ones,
1326        // but only if the new expression has no coercion already applied to it.
1327        let mut first_error = None;
1328        if !self.typeck_results.borrow().adjustments().contains_key(new.hir_id) {
1329            let result = self.commit_if_ok(|_| coerce.coerce(new_ty, prev_ty));
1330            match result {
1331                Ok(ok) => {
1332                    let (adjustments, target) = self.register_infer_ok_obligations(ok);
1333                    self.apply_adjustments(new, adjustments);
1334                    debug!(
1335                        "coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
1336                        new_ty, prev_ty, target
1337                    );
1338                    return Ok(target);
1339                }
1340                Err(e) => first_error = Some(e),
1341            }
1342        }
1343
1344        match self.commit_if_ok(|_| coerce.coerce(prev_ty, new_ty)) {
1345            Err(_) => {
1346                // Avoid giving strange errors on failed attempts.
1347                if let Some(e) = first_error {
1348                    Err(e)
1349                } else {
1350                    Err(self
1351                        .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
1352                        .unwrap_err())
1353                }
1354            }
1355            Ok(ok) => {
1356                let (adjustments, target) = self.register_infer_ok_obligations(ok);
1357                for expr in exprs {
1358                    let expr = expr.as_coercion_site();
1359                    self.apply_adjustments(expr, adjustments.clone());
1360                }
1361                debug!(
1362                    "coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
1363                    prev_ty, new_ty, target
1364                );
1365                Ok(target)
1366            }
1367        }
1368    }
1369}
1370
1371/// Check whether `ty` can be coerced to `output_ty`.
1372/// Used from clippy.
1373pub fn can_coerce<'tcx>(
1374    tcx: TyCtxt<'tcx>,
1375    param_env: ty::ParamEnv<'tcx>,
1376    body_id: LocalDefId,
1377    ty: Ty<'tcx>,
1378    output_ty: Ty<'tcx>,
1379) -> bool {
1380    let root_ctxt = crate::typeck_root_ctxt::TypeckRootCtxt::new(tcx, body_id);
1381    let fn_ctxt = FnCtxt::new(&root_ctxt, param_env, body_id);
1382    fn_ctxt.may_coerce(ty, output_ty)
1383}
1384
1385/// CoerceMany encapsulates the pattern you should use when you have
1386/// many expressions that are all getting coerced to a common
1387/// type. This arises, for example, when you have a match (the result
1388/// of each arm is coerced to a common type). It also arises in less
1389/// obvious places, such as when you have many `break foo` expressions
1390/// that target the same loop, or the various `return` expressions in
1391/// a function.
1392///
1393/// The basic protocol is as follows:
1394///
1395/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
1396///   This will also serve as the "starting LUB". The expectation is
1397///   that this type is something which all of the expressions *must*
1398///   be coercible to. Use a fresh type variable if needed.
1399/// - For each expression whose result is to be coerced, invoke `coerce()` with.
1400///   - In some cases we wish to coerce "non-expressions" whose types are implicitly
1401///     unit. This happens for example if you have a `break` with no expression,
1402///     or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
1403///   - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
1404///     from you so that you don't have to worry your pretty head about it.
1405///     But if an error is reported, the final type will be `err`.
1406///   - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
1407///     previously coerced expressions.
1408/// - When all done, invoke `complete()`. This will return the LUB of
1409///   all your expressions.
1410///   - WARNING: I don't believe this final type is guaranteed to be
1411///     related to your initial `expected_ty` in any particular way,
1412///     although it will typically be a subtype, so you should check it.
1413///   - Invoking `complete()` may cause us to go and adjust the "adjustments" on
1414///     previously coerced expressions.
1415///
1416/// Example:
1417///
1418/// ```ignore (illustrative)
1419/// let mut coerce = CoerceMany::new(expected_ty);
1420/// for expr in exprs {
1421///     let expr_ty = fcx.check_expr_with_expectation(expr, expected);
1422///     coerce.coerce(fcx, &cause, expr, expr_ty);
1423/// }
1424/// let final_ty = coerce.complete(fcx);
1425/// ```
1426pub(crate) struct CoerceMany<'tcx, 'exprs, E: AsCoercionSite> {
1427    expected_ty: Ty<'tcx>,
1428    final_ty: Option<Ty<'tcx>>,
1429    expressions: Expressions<'tcx, 'exprs, E>,
1430    pushed: usize,
1431}
1432
1433/// The type of a `CoerceMany` that is storing up the expressions into
1434/// a buffer. We use this in `check/mod.rs` for things like `break`.
1435pub(crate) type DynamicCoerceMany<'tcx> = CoerceMany<'tcx, 'tcx, &'tcx hir::Expr<'tcx>>;
1436
1437enum Expressions<'tcx, 'exprs, E: AsCoercionSite> {
1438    Dynamic(Vec<&'tcx hir::Expr<'tcx>>),
1439    UpFront(&'exprs [E]),
1440}
1441
1442impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
1443    /// The usual case; collect the set of expressions dynamically.
1444    /// If the full set of coercion sites is known before hand,
1445    /// consider `with_coercion_sites()` instead to avoid allocation.
1446    pub(crate) fn new(expected_ty: Ty<'tcx>) -> Self {
1447        Self::make(expected_ty, Expressions::Dynamic(vec![]))
1448    }
1449
1450    /// As an optimization, you can create a `CoerceMany` with a
1451    /// preexisting slice of expressions. In this case, you are
1452    /// expected to pass each element in the slice to `coerce(...)` in
1453    /// order. This is used with arrays in particular to avoid
1454    /// needlessly cloning the slice.
1455    pub(crate) fn with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self {
1456        Self::make(expected_ty, Expressions::UpFront(coercion_sites))
1457    }
1458
1459    fn make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self {
1460        CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
1461    }
1462
1463    /// Returns the "expected type" with which this coercion was
1464    /// constructed. This represents the "downward propagated" type
1465    /// that was given to us at the start of typing whatever construct
1466    /// we are typing (e.g., the match expression).
1467    ///
1468    /// Typically, this is used as the expected type when
1469    /// type-checking each of the alternative expressions whose types
1470    /// we are trying to merge.
1471    pub(crate) fn expected_ty(&self) -> Ty<'tcx> {
1472        self.expected_ty
1473    }
1474
1475    /// Returns the current "merged type", representing our best-guess
1476    /// at the LUB of the expressions we've seen so far (if any). This
1477    /// isn't *final* until you call `self.complete()`, which will return
1478    /// the merged type.
1479    pub(crate) fn merged_ty(&self) -> Ty<'tcx> {
1480        self.final_ty.unwrap_or(self.expected_ty)
1481    }
1482
1483    /// Indicates that the value generated by `expression`, which is
1484    /// of type `expression_ty`, is one of the possibilities that we
1485    /// could coerce from. This will record `expression`, and later
1486    /// calls to `coerce` may come back and add adjustments and things
1487    /// if necessary.
1488    pub(crate) fn coerce<'a>(
1489        &mut self,
1490        fcx: &FnCtxt<'a, 'tcx>,
1491        cause: &ObligationCause<'tcx>,
1492        expression: &'tcx hir::Expr<'tcx>,
1493        expression_ty: Ty<'tcx>,
1494    ) {
1495        self.coerce_inner(fcx, cause, Some(expression), expression_ty, |_| {}, false)
1496    }
1497
1498    /// Indicates that one of the inputs is a "forced unit". This
1499    /// occurs in a case like `if foo { ... };`, where the missing else
1500    /// generates a "forced unit". Another example is a `loop { break;
1501    /// }`, where the `break` has no argument expression. We treat
1502    /// these cases slightly differently for error-reporting
1503    /// purposes. Note that these tend to correspond to cases where
1504    /// the `()` expression is implicit in the source, and hence we do
1505    /// not take an expression argument.
1506    ///
1507    /// The `augment_error` gives you a chance to extend the error
1508    /// message, in case any results (e.g., we use this to suggest
1509    /// removing a `;`).
1510    pub(crate) fn coerce_forced_unit<'a>(
1511        &mut self,
1512        fcx: &FnCtxt<'a, 'tcx>,
1513        cause: &ObligationCause<'tcx>,
1514        augment_error: impl FnOnce(&mut Diag<'_>),
1515        label_unit_as_expected: bool,
1516    ) {
1517        self.coerce_inner(
1518            fcx,
1519            cause,
1520            None,
1521            fcx.tcx.types.unit,
1522            augment_error,
1523            label_unit_as_expected,
1524        )
1525    }
1526
1527    /// The inner coercion "engine". If `expression` is `None`, this
1528    /// is a forced-unit case, and hence `expression_ty` must be
1529    /// `Nil`.
1530    #[instrument(skip(self, fcx, augment_error, label_expression_as_expected), level = "debug")]
1531    pub(crate) fn coerce_inner<'a>(
1532        &mut self,
1533        fcx: &FnCtxt<'a, 'tcx>,
1534        cause: &ObligationCause<'tcx>,
1535        expression: Option<&'tcx hir::Expr<'tcx>>,
1536        mut expression_ty: Ty<'tcx>,
1537        augment_error: impl FnOnce(&mut Diag<'_>),
1538        label_expression_as_expected: bool,
1539    ) {
1540        // Incorporate whatever type inference information we have
1541        // until now; in principle we might also want to process
1542        // pending obligations, but doing so should only improve
1543        // compatibility (hopefully that is true) by helping us
1544        // uncover never types better.
1545        if expression_ty.is_ty_var() {
1546            expression_ty = fcx.infcx.shallow_resolve(expression_ty);
1547        }
1548
1549        // If we see any error types, just propagate that error
1550        // upwards.
1551        if let Err(guar) = (expression_ty, self.merged_ty()).error_reported() {
1552            self.final_ty = Some(Ty::new_error(fcx.tcx, guar));
1553            return;
1554        }
1555
1556        let (expected, found) = if label_expression_as_expected {
1557            // In the case where this is a "forced unit", like
1558            // `break`, we want to call the `()` "expected"
1559            // since it is implied by the syntax.
1560            // (Note: not all force-units work this way.)"
1561            (expression_ty, self.merged_ty())
1562        } else {
1563            // Otherwise, the "expected" type for error
1564            // reporting is the current unification type,
1565            // which is basically the LUB of the expressions
1566            // we've seen so far (combined with the expected
1567            // type)
1568            (self.merged_ty(), expression_ty)
1569        };
1570
1571        // Handle the actual type unification etc.
1572        let result = if let Some(expression) = expression {
1573            if self.pushed == 0 {
1574                // Special-case the first expression we are coercing.
1575                // To be honest, I'm not entirely sure why we do this.
1576                // We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
1577                fcx.coerce(
1578                    expression,
1579                    expression_ty,
1580                    self.expected_ty,
1581                    AllowTwoPhase::No,
1582                    Some(cause.clone()),
1583                )
1584            } else {
1585                match self.expressions {
1586                    Expressions::Dynamic(ref exprs) => fcx.try_find_coercion_lub(
1587                        cause,
1588                        exprs,
1589                        self.merged_ty(),
1590                        expression,
1591                        expression_ty,
1592                    ),
1593                    Expressions::UpFront(coercion_sites) => fcx.try_find_coercion_lub(
1594                        cause,
1595                        &coercion_sites[0..self.pushed],
1596                        self.merged_ty(),
1597                        expression,
1598                        expression_ty,
1599                    ),
1600                }
1601            }
1602        } else {
1603            // this is a hack for cases where we default to `()` because
1604            // the expression etc has been omitted from the source. An
1605            // example is an `if let` without an else:
1606            //
1607            //     if let Some(x) = ... { }
1608            //
1609            // we wind up with a second match arm that is like `_ =>
1610            // ()`. That is the case we are considering here. We take
1611            // a different path to get the right "expected, found"
1612            // message and so forth (and because we know that
1613            // `expression_ty` will be unit).
1614            //
1615            // Another example is `break` with no argument expression.
1616            assert!(expression_ty.is_unit(), "if let hack without unit type");
1617            fcx.at(cause, fcx.param_env)
1618                .eq(
1619                    // needed for tests/ui/type-alias-impl-trait/issue-65679-inst-opaque-ty-from-val-twice.rs
1620                    DefineOpaqueTypes::Yes,
1621                    expected,
1622                    found,
1623                )
1624                .map(|infer_ok| {
1625                    fcx.register_infer_ok_obligations(infer_ok);
1626                    expression_ty
1627                })
1628        };
1629
1630        debug!(?result);
1631        match result {
1632            Ok(v) => {
1633                self.final_ty = Some(v);
1634                if let Some(e) = expression {
1635                    match self.expressions {
1636                        Expressions::Dynamic(ref mut buffer) => buffer.push(e),
1637                        Expressions::UpFront(coercion_sites) => {
1638                            // if the user gave us an array to validate, check that we got
1639                            // the next expression in the list, as expected
1640                            assert_eq!(
1641                                coercion_sites[self.pushed].as_coercion_site().hir_id,
1642                                e.hir_id
1643                            );
1644                        }
1645                    }
1646                    self.pushed += 1;
1647                }
1648            }
1649            Err(coercion_error) => {
1650                // Mark that we've failed to coerce the types here to suppress
1651                // any superfluous errors we might encounter while trying to
1652                // emit or provide suggestions on how to fix the initial error.
1653                fcx.set_tainted_by_errors(
1654                    fcx.dcx().span_delayed_bug(cause.span, "coercion error but no error emitted"),
1655                );
1656                let (expected, found) = fcx.resolve_vars_if_possible((expected, found));
1657
1658                let mut err;
1659                let mut unsized_return = false;
1660                match *cause.code() {
1661                    ObligationCauseCode::ReturnNoExpression => {
1662                        err = struct_span_code_err!(
1663                            fcx.dcx(),
1664                            cause.span,
1665                            E0069,
1666                            "`return;` in a function whose return type is not `()`"
1667                        );
1668                        if let Some(value) = fcx.err_ctxt().ty_kind_suggestion(fcx.param_env, found)
1669                        {
1670                            err.span_suggestion_verbose(
1671                                cause.span.shrink_to_hi(),
1672                                "give the `return` a value of the expected type",
1673                                format!(" {value}"),
1674                                Applicability::HasPlaceholders,
1675                            );
1676                        }
1677                        err.span_label(cause.span, "return type is not `()`");
1678                    }
1679                    ObligationCauseCode::BlockTailExpression(blk_id, ..) => {
1680                        err = self.report_return_mismatched_types(
1681                            cause,
1682                            expected,
1683                            found,
1684                            coercion_error,
1685                            fcx,
1686                            blk_id,
1687                            expression,
1688                        );
1689                        unsized_return = self.is_return_ty_definitely_unsized(fcx);
1690                    }
1691                    ObligationCauseCode::ReturnValue(return_expr_id) => {
1692                        err = self.report_return_mismatched_types(
1693                            cause,
1694                            expected,
1695                            found,
1696                            coercion_error,
1697                            fcx,
1698                            return_expr_id,
1699                            expression,
1700                        );
1701                        unsized_return = self.is_return_ty_definitely_unsized(fcx);
1702                    }
1703                    ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
1704                        arm_span,
1705                        arm_ty,
1706                        prior_arm_ty,
1707                        ref prior_non_diverging_arms,
1708                        tail_defines_return_position_impl_trait: Some(rpit_def_id),
1709                        ..
1710                    }) => {
1711                        err = fcx.err_ctxt().report_mismatched_types(
1712                            cause,
1713                            fcx.param_env,
1714                            expected,
1715                            found,
1716                            coercion_error,
1717                        );
1718                        // Check that we're actually in the second or later arm
1719                        if prior_non_diverging_arms.len() > 0 {
1720                            self.suggest_boxing_tail_for_return_position_impl_trait(
1721                                fcx,
1722                                &mut err,
1723                                rpit_def_id,
1724                                arm_ty,
1725                                prior_arm_ty,
1726                                prior_non_diverging_arms
1727                                    .iter()
1728                                    .chain(std::iter::once(&arm_span))
1729                                    .copied(),
1730                            );
1731                        }
1732                    }
1733                    ObligationCauseCode::IfExpression {
1734                        expr_id,
1735                        tail_defines_return_position_impl_trait: Some(rpit_def_id),
1736                    } => {
1737                        let hir::Node::Expr(hir::Expr {
1738                            kind: hir::ExprKind::If(_, then_expr, Some(else_expr)),
1739                            ..
1740                        }) = fcx.tcx.hir_node(expr_id)
1741                        else {
1742                            unreachable!();
1743                        };
1744                        err = fcx.err_ctxt().report_mismatched_types(
1745                            cause,
1746                            fcx.param_env,
1747                            expected,
1748                            found,
1749                            coercion_error,
1750                        );
1751                        let then_span = fcx.find_block_span_from_hir_id(then_expr.hir_id);
1752                        let else_span = fcx.find_block_span_from_hir_id(else_expr.hir_id);
1753                        // Don't suggest wrapping whole block in `Box::new`.
1754                        if then_span != then_expr.span && else_span != else_expr.span {
1755                            let then_ty = fcx.typeck_results.borrow().expr_ty(then_expr);
1756                            let else_ty = fcx.typeck_results.borrow().expr_ty(else_expr);
1757                            self.suggest_boxing_tail_for_return_position_impl_trait(
1758                                fcx,
1759                                &mut err,
1760                                rpit_def_id,
1761                                then_ty,
1762                                else_ty,
1763                                [then_span, else_span].into_iter(),
1764                            );
1765                        }
1766                    }
1767                    _ => {
1768                        err = fcx.err_ctxt().report_mismatched_types(
1769                            cause,
1770                            fcx.param_env,
1771                            expected,
1772                            found,
1773                            coercion_error,
1774                        );
1775                    }
1776                }
1777
1778                augment_error(&mut err);
1779
1780                if let Some(expr) = expression {
1781                    if let hir::ExprKind::Loop(
1782                        _,
1783                        _,
1784                        loop_src @ (hir::LoopSource::While | hir::LoopSource::ForLoop),
1785                        _,
1786                    ) = expr.kind
1787                    {
1788                        let loop_type = if loop_src == hir::LoopSource::While {
1789                            "`while` loops"
1790                        } else {
1791                            "`for` loops"
1792                        };
1793
1794                        err.note(format!("{loop_type} evaluate to unit type `()`"));
1795                    }
1796
1797                    fcx.emit_coerce_suggestions(
1798                        &mut err,
1799                        expr,
1800                        found,
1801                        expected,
1802                        None,
1803                        Some(coercion_error),
1804                    );
1805                }
1806
1807                let reported = err.emit_unless_delay(unsized_return);
1808
1809                self.final_ty = Some(Ty::new_error(fcx.tcx, reported));
1810            }
1811        }
1812    }
1813
1814    fn suggest_boxing_tail_for_return_position_impl_trait(
1815        &self,
1816        fcx: &FnCtxt<'_, 'tcx>,
1817        err: &mut Diag<'_>,
1818        rpit_def_id: LocalDefId,
1819        a_ty: Ty<'tcx>,
1820        b_ty: Ty<'tcx>,
1821        arm_spans: impl Iterator<Item = Span>,
1822    ) {
1823        let compatible = |ty: Ty<'tcx>| {
1824            fcx.probe(|_| {
1825                let ocx = ObligationCtxt::new(fcx);
1826                ocx.register_obligations(
1827                    fcx.tcx.item_self_bounds(rpit_def_id).iter_identity().filter_map(|clause| {
1828                        let predicate = clause
1829                            .kind()
1830                            .map_bound(|clause| match clause {
1831                                ty::ClauseKind::Trait(trait_pred) => Some(ty::ClauseKind::Trait(
1832                                    trait_pred.with_replaced_self_ty(fcx.tcx, ty),
1833                                )),
1834                                ty::ClauseKind::Projection(proj_pred) => {
1835                                    Some(ty::ClauseKind::Projection(
1836                                        proj_pred.with_replaced_self_ty(fcx.tcx, ty),
1837                                    ))
1838                                }
1839                                _ => None,
1840                            })
1841                            .transpose()?;
1842                        Some(Obligation::new(
1843                            fcx.tcx,
1844                            ObligationCause::dummy(),
1845                            fcx.param_env,
1846                            predicate,
1847                        ))
1848                    }),
1849                );
1850                ocx.try_evaluate_obligations().is_empty()
1851            })
1852        };
1853
1854        if !compatible(a_ty) || !compatible(b_ty) {
1855            return;
1856        }
1857
1858        let rpid_def_span = fcx.tcx.def_span(rpit_def_id);
1859        err.subdiagnostic(SuggestBoxingForReturnImplTrait::ChangeReturnType {
1860            start_sp: rpid_def_span.with_hi(rpid_def_span.lo() + BytePos(4)),
1861            end_sp: rpid_def_span.shrink_to_hi(),
1862        });
1863
1864        let (starts, ends) =
1865            arm_spans.map(|span| (span.shrink_to_lo(), span.shrink_to_hi())).unzip();
1866        err.subdiagnostic(SuggestBoxingForReturnImplTrait::BoxReturnExpr { starts, ends });
1867    }
1868
1869    fn report_return_mismatched_types<'infcx>(
1870        &self,
1871        cause: &ObligationCause<'tcx>,
1872        expected: Ty<'tcx>,
1873        found: Ty<'tcx>,
1874        ty_err: TypeError<'tcx>,
1875        fcx: &'infcx FnCtxt<'_, 'tcx>,
1876        block_or_return_id: hir::HirId,
1877        expression: Option<&'tcx hir::Expr<'tcx>>,
1878    ) -> Diag<'infcx> {
1879        let mut err =
1880            fcx.err_ctxt().report_mismatched_types(cause, fcx.param_env, expected, found, ty_err);
1881
1882        let due_to_block = matches!(fcx.tcx.hir_node(block_or_return_id), hir::Node::Block(..));
1883        let parent = fcx.tcx.parent_hir_node(block_or_return_id);
1884        if let Some(expr) = expression
1885            && let hir::Node::Expr(&hir::Expr {
1886                kind: hir::ExprKind::Closure(&hir::Closure { body, .. }),
1887                ..
1888            }) = parent
1889        {
1890            let needs_block =
1891                !matches!(fcx.tcx.hir_body(body).value.kind, hir::ExprKind::Block(..));
1892            fcx.suggest_missing_semicolon(&mut err, expr, expected, needs_block, true);
1893        }
1894        // Verify that this is a tail expression of a function, otherwise the
1895        // label pointing out the cause for the type coercion will be wrong
1896        // as prior return coercions would not be relevant (#57664).
1897        if let Some(expr) = expression
1898            && due_to_block
1899        {
1900            fcx.suggest_missing_semicolon(&mut err, expr, expected, false, false);
1901            let pointing_at_return_type = fcx.suggest_mismatched_types_on_tail(
1902                &mut err,
1903                expr,
1904                expected,
1905                found,
1906                block_or_return_id,
1907            );
1908            if let Some(cond_expr) = fcx.tcx.hir_get_if_cause(expr.hir_id)
1909                && expected.is_unit()
1910                && !pointing_at_return_type
1911                // If the block is from an external macro or try (`?`) desugaring, then
1912                // do not suggest adding a semicolon, because there's nowhere to put it.
1913                // See issues #81943 and #87051.
1914                && matches!(
1915                    cond_expr.span.desugaring_kind(),
1916                    None | Some(DesugaringKind::WhileLoop)
1917                )
1918                && !cond_expr.span.in_external_macro(fcx.tcx.sess.source_map())
1919                && !matches!(
1920                    cond_expr.kind,
1921                    hir::ExprKind::Match(.., hir::MatchSource::TryDesugar(_))
1922                )
1923            {
1924                err.span_label(cond_expr.span, "expected this to be `()`");
1925                if expr.can_have_side_effects() {
1926                    fcx.suggest_semicolon_at_end(cond_expr.span, &mut err);
1927                }
1928            }
1929        }
1930
1931        // If this is due to an explicit `return`, suggest adding a return type.
1932        if let Some((fn_id, fn_decl)) = fcx.get_fn_decl(block_or_return_id)
1933            && !due_to_block
1934        {
1935            fcx.suggest_missing_return_type(&mut err, fn_decl, expected, found, fn_id);
1936        }
1937
1938        // If this is due to a block, then maybe we forgot a `return`/`break`.
1939        if due_to_block
1940            && let Some(expr) = expression
1941            && let Some(parent_fn_decl) =
1942                fcx.tcx.hir_fn_decl_by_hir_id(fcx.tcx.local_def_id_to_hir_id(fcx.body_id))
1943        {
1944            fcx.suggest_missing_break_or_return_expr(
1945                &mut err,
1946                expr,
1947                parent_fn_decl,
1948                expected,
1949                found,
1950                block_or_return_id,
1951                fcx.body_id,
1952            );
1953        }
1954
1955        let ret_coercion_span = fcx.ret_coercion_span.get();
1956
1957        if let Some(sp) = ret_coercion_span
1958            // If the closure has an explicit return type annotation, or if
1959            // the closure's return type has been inferred from outside
1960            // requirements (such as an Fn* trait bound), then a type error
1961            // may occur at the first return expression we see in the closure
1962            // (if it conflicts with the declared return type). Skip adding a
1963            // note in this case, since it would be incorrect.
1964            && let Some(fn_sig) = fcx.body_fn_sig()
1965            && fn_sig.output().is_ty_var()
1966        {
1967            err.span_note(sp, format!("return type inferred to be `{expected}` here"));
1968        }
1969
1970        err
1971    }
1972
1973    /// Checks whether the return type is unsized via an obligation, which makes
1974    /// sure we consider `dyn Trait: Sized` where clauses, which are trivially
1975    /// false but technically valid for typeck.
1976    fn is_return_ty_definitely_unsized(&self, fcx: &FnCtxt<'_, 'tcx>) -> bool {
1977        if let Some(sig) = fcx.body_fn_sig() {
1978            !fcx.predicate_may_hold(&Obligation::new(
1979                fcx.tcx,
1980                ObligationCause::dummy(),
1981                fcx.param_env,
1982                ty::TraitRef::new(
1983                    fcx.tcx,
1984                    fcx.tcx.require_lang_item(hir::LangItem::Sized, DUMMY_SP),
1985                    [sig.output()],
1986                ),
1987            ))
1988        } else {
1989            false
1990        }
1991    }
1992
1993    pub(crate) fn complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx> {
1994        if let Some(final_ty) = self.final_ty {
1995            final_ty
1996        } else {
1997            // If we only had inputs that were of type `!` (or no
1998            // inputs at all), then the final type is `!`.
1999            assert_eq!(self.pushed, 0);
2000            fcx.tcx.types.never
2001        }
2002    }
2003}
2004
2005/// Something that can be converted into an expression to which we can
2006/// apply a coercion.
2007pub(crate) trait AsCoercionSite {
2008    fn as_coercion_site(&self) -> &hir::Expr<'_>;
2009}
2010
2011impl AsCoercionSite for hir::Expr<'_> {
2012    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2013        self
2014    }
2015}
2016
2017impl<'a, T> AsCoercionSite for &'a T
2018where
2019    T: AsCoercionSite,
2020{
2021    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2022        (**self).as_coercion_site()
2023    }
2024}
2025
2026impl AsCoercionSite for ! {
2027    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2028        *self
2029    }
2030}
2031
2032impl AsCoercionSite for hir::Arm<'_> {
2033    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2034        self.body
2035    }
2036}
2037
2038/// Recursively visit goals to decide whether an unsizing is possible.
2039/// `Break`s when it isn't, and an error should be raised.
2040/// `Continue`s when an unsizing ok based on an implementation of the `Unsize` trait / lang item.
2041struct CoerceVisitor<'a, 'tcx> {
2042    fcx: &'a FnCtxt<'a, 'tcx>,
2043    span: Span,
2044}
2045
2046impl<'tcx> ProofTreeVisitor<'tcx> for CoerceVisitor<'_, 'tcx> {
2047    type Result = ControlFlow<()>;
2048
2049    fn span(&self) -> Span {
2050        self.span
2051    }
2052
2053    fn visit_goal(&mut self, goal: &inspect::InspectGoal<'_, 'tcx>) -> Self::Result {
2054        let Some(pred) = goal.goal().predicate.as_trait_clause() else {
2055            return ControlFlow::Continue(());
2056        };
2057
2058        // Make sure this predicate is referring to either an `Unsize` or `CoerceUnsized` trait,
2059        // Otherwise there's nothing to do.
2060        if !self.fcx.tcx.is_lang_item(pred.def_id(), LangItem::Unsize)
2061            && !self.fcx.tcx.is_lang_item(pred.def_id(), LangItem::CoerceUnsized)
2062        {
2063            return ControlFlow::Continue(());
2064        }
2065
2066        match goal.result() {
2067            // If we prove the `Unsize` or `CoerceUnsized` goal, continue recursing.
2068            Ok(Certainty::Yes) => ControlFlow::Continue(()),
2069            Err(NoSolution) => {
2070                // Even if we find no solution, continue recursing if we find a single candidate
2071                // for which we're shallowly certain it holds to get the right error source.
2072                if let [only_candidate] = &goal.candidates()[..]
2073                    && only_candidate.shallow_certainty() == Certainty::Yes
2074                {
2075                    only_candidate.visit_nested_no_probe(self)
2076                } else {
2077                    ControlFlow::Break(())
2078                }
2079            }
2080            Ok(Certainty::Maybe { .. }) => {
2081                // FIXME: structurally normalize?
2082                if self.fcx.tcx.is_lang_item(pred.def_id(), LangItem::Unsize)
2083                    && let ty::Dynamic(..) = pred.skip_binder().trait_ref.args.type_at(1).kind()
2084                    && let ty::Infer(ty::TyVar(vid)) = *pred.self_ty().skip_binder().kind()
2085                    && self.fcx.type_var_is_sized(vid)
2086                {
2087                    // We get here when trying to unsize a type variable to a `dyn Trait`,
2088                    // knowing that that variable is sized. Unsizing definitely has to happen in that case.
2089                    // If the variable weren't sized, we may not need an unsizing coercion.
2090                    // In general, we don't want to add coercions too eagerly since it makes error messages much worse.
2091                    ControlFlow::Continue(())
2092                } else if let Some(cand) = goal.unique_applicable_candidate()
2093                    && cand.shallow_certainty() == Certainty::Yes
2094                {
2095                    cand.visit_nested_no_probe(self)
2096                } else {
2097                    ControlFlow::Break(())
2098                }
2099            }
2100        }
2101    }
2102}