rustc_hir_typeck/
coercion.rs

1//! # Type Coercion
2//!
3//! Under certain circumstances we will coerce from one type to another,
4//! for example by auto-borrowing. This occurs in situations where the
5//! compiler has a firm 'expected type' that was supplied from the user,
6//! and where the actual type is similar to that expected type in purpose
7//! but not in representation (so actual subtyping is inappropriate).
8//!
9//! ## Reborrowing
10//!
11//! Note that if we are expecting a reference, we will *reborrow*
12//! even if the argument provided was already a reference. This is
13//! useful for freezing mut things (that is, when the expected type is &T
14//! but you have &mut T) and also for avoiding the linearity
15//! of mut things (when the expected is &mut T and you have &mut T). See
16//! the various `tests/ui/coerce/*.rs` tests for
17//! examples of where this is useful.
18//!
19//! ## Subtle note
20//!
21//! When inferring the generic arguments of functions, the argument
22//! order is relevant, which can lead to the following edge case:
23//!
24//! ```ignore (illustrative)
25//! fn foo<T>(a: T, b: T) {
26//!     // ...
27//! }
28//!
29//! foo(&7i32, &mut 7i32);
30//! // This compiles, as we first infer `T` to be `&i32`,
31//! // and then coerce `&mut 7i32` to `&7i32`.
32//!
33//! foo(&mut 7i32, &7i32);
34//! // This does not compile, as we first infer `T` to be `&mut i32`
35//! // and are then unable to coerce `&7i32` to `&mut i32`.
36//! ```
37
38use std::ops::Deref;
39
40use rustc_abi::ExternAbi;
41use rustc_attr_parsing::InlineAttr;
42use rustc_errors::codes::*;
43use rustc_errors::{Applicability, Diag, struct_span_code_err};
44use rustc_hir::def_id::{DefId, LocalDefId};
45use rustc_hir::{self as hir, LangItem};
46use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
47use rustc_infer::infer::relate::RelateResult;
48use rustc_infer::infer::{Coercion, DefineOpaqueTypes, InferOk, InferResult};
49use rustc_infer::traits::{
50    IfExpressionCause, MatchExpressionArmCause, Obligation, PredicateObligation,
51    PredicateObligations,
52};
53use rustc_middle::span_bug;
54use rustc_middle::ty::adjustment::{
55    Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, PointerCoercion,
56};
57use rustc_middle::ty::error::TypeError;
58use rustc_middle::ty::{self, AliasTy, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt};
59use rustc_span::{BytePos, DUMMY_SP, DesugaringKind, Span};
60use rustc_trait_selection::infer::InferCtxtExt as _;
61use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
62use rustc_trait_selection::traits::{
63    self, NormalizeExt, ObligationCause, ObligationCauseCode, ObligationCtxt,
64};
65use smallvec::{SmallVec, smallvec};
66use tracing::{debug, instrument};
67
68use crate::FnCtxt;
69use crate::errors::SuggestBoxingForReturnImplTrait;
70
71struct Coerce<'a, 'tcx> {
72    fcx: &'a FnCtxt<'a, 'tcx>,
73    cause: ObligationCause<'tcx>,
74    use_lub: bool,
75    /// Determines whether or not allow_two_phase_borrow is set on any
76    /// autoref adjustments we create while coercing. We don't want to
77    /// allow deref coercions to create two-phase borrows, at least initially,
78    /// but we do need two-phase borrows for function argument reborrows.
79    /// See #47489 and #48598
80    /// See docs on the "AllowTwoPhase" type for a more detailed discussion
81    allow_two_phase: AllowTwoPhase,
82    /// Whether we allow `NeverToAny` coercions. This is unsound if we're
83    /// coercing a place expression without it counting as a read in the MIR.
84    /// This is a side-effect of HIR not really having a great distinction
85    /// between places and values.
86    coerce_never: bool,
87}
88
89impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
90    type Target = FnCtxt<'a, 'tcx>;
91    fn deref(&self) -> &Self::Target {
92        self.fcx
93    }
94}
95
96type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;
97
98/// Coercing a mutable reference to an immutable works, while
99/// coercing `&T` to `&mut T` should be forbidden.
100fn coerce_mutbls<'tcx>(
101    from_mutbl: hir::Mutability,
102    to_mutbl: hir::Mutability,
103) -> RelateResult<'tcx, ()> {
104    if from_mutbl >= to_mutbl { Ok(()) } else { Err(TypeError::Mutability) }
105}
106
107/// Do not require any adjustments, i.e. coerce `x -> x`.
108fn identity(_: Ty<'_>) -> Vec<Adjustment<'_>> {
109    vec![]
110}
111
112fn simple<'tcx>(kind: Adjust) -> impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>> {
113    move |target| vec![Adjustment { kind, target }]
114}
115
116/// This always returns `Ok(...)`.
117fn success<'tcx>(
118    adj: Vec<Adjustment<'tcx>>,
119    target: Ty<'tcx>,
120    obligations: PredicateObligations<'tcx>,
121) -> CoerceResult<'tcx> {
122    Ok(InferOk { value: (adj, target), obligations })
123}
124
125impl<'f, 'tcx> Coerce<'f, 'tcx> {
126    fn new(
127        fcx: &'f FnCtxt<'f, 'tcx>,
128        cause: ObligationCause<'tcx>,
129        allow_two_phase: AllowTwoPhase,
130        coerce_never: bool,
131    ) -> Self {
132        Coerce { fcx, cause, allow_two_phase, use_lub: false, coerce_never }
133    }
134
135    fn unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
136        debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
137        self.commit_if_ok(|_| {
138            let at = self.at(&self.cause, self.fcx.param_env);
139
140            let res = if self.use_lub {
141                at.lub(b, a)
142            } else {
143                at.sup(DefineOpaqueTypes::Yes, b, a)
144                    .map(|InferOk { value: (), obligations }| InferOk { value: b, obligations })
145            };
146
147            // In the new solver, lazy norm may allow us to shallowly equate
148            // more types, but we emit possibly impossible-to-satisfy obligations.
149            // Filter these cases out to make sure our coercion is more accurate.
150            match res {
151                Ok(InferOk { value, obligations }) if self.next_trait_solver() => {
152                    let ocx = ObligationCtxt::new(self);
153                    ocx.register_obligations(obligations);
154                    if ocx.select_where_possible().is_empty() {
155                        Ok(InferOk { value, obligations: ocx.into_pending_obligations() })
156                    } else {
157                        Err(TypeError::Mismatch)
158                    }
159                }
160                res => res,
161            }
162        })
163    }
164
165    /// Unify two types (using sub or lub) and produce a specific coercion.
166    fn unify_and<F>(&self, a: Ty<'tcx>, b: Ty<'tcx>, f: F) -> CoerceResult<'tcx>
167    where
168        F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
169    {
170        self.unify(a, b)
171            .and_then(|InferOk { value: ty, obligations }| success(f(ty), ty, obligations))
172    }
173
174    #[instrument(skip(self))]
175    fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
176        // First, remove any resolved type variables (at the top level, at least):
177        let a = self.shallow_resolve(a);
178        let b = self.shallow_resolve(b);
179        debug!("Coerce.tys({:?} => {:?})", a, b);
180
181        // Coercing from `!` to any type is allowed:
182        if a.is_never() {
183            if self.coerce_never {
184                return success(simple(Adjust::NeverToAny)(b), b, PredicateObligations::new());
185            } else {
186                // Otherwise the only coercion we can do is unification.
187                return self.unify_and(a, b, identity);
188            }
189        }
190
191        // Coercing *from* an unresolved inference variable means that
192        // we have no information about the source type. This will always
193        // ultimately fall back to some form of subtyping.
194        if a.is_ty_var() {
195            return self.coerce_from_inference_variable(a, b, identity);
196        }
197
198        // Consider coercing the subtype to a DST
199        //
200        // NOTE: this is wrapped in a `commit_if_ok` because it creates
201        // a "spurious" type variable, and we don't want to have that
202        // type variable in memory if the coercion fails.
203        let unsize = self.commit_if_ok(|_| self.coerce_unsized(a, b));
204        match unsize {
205            Ok(_) => {
206                debug!("coerce: unsize successful");
207                return unsize;
208            }
209            Err(error) => {
210                debug!(?error, "coerce: unsize failed");
211            }
212        }
213
214        // Examine the supertype and consider type-specific coercions, such
215        // as auto-borrowing, coercing pointer mutability, a `dyn*` coercion,
216        // or pin-ergonomics.
217        match *b.kind() {
218            ty::RawPtr(_, b_mutbl) => {
219                return self.coerce_raw_ptr(a, b, b_mutbl);
220            }
221            ty::Ref(r_b, _, mutbl_b) => {
222                return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
223            }
224            ty::Dynamic(predicates, region, ty::DynStar) if self.tcx.features().dyn_star() => {
225                return self.coerce_dyn_star(a, b, predicates, region);
226            }
227            ty::Adt(pin, _)
228                if self.tcx.features().pin_ergonomics()
229                    && self.tcx.is_lang_item(pin.did(), hir::LangItem::Pin) =>
230            {
231                let pin_coerce = self.commit_if_ok(|_| self.coerce_pin_ref(a, b));
232                if pin_coerce.is_ok() {
233                    return pin_coerce;
234                }
235            }
236            _ => {}
237        }
238
239        match *a.kind() {
240            ty::FnDef(..) => {
241                // Function items are coercible to any closure
242                // type; function pointers are not (that would
243                // require double indirection).
244                // Additionally, we permit coercion of function
245                // items to drop the unsafe qualifier.
246                self.coerce_from_fn_item(a, b)
247            }
248            ty::FnPtr(a_sig_tys, a_hdr) => {
249                // We permit coercion of fn pointers to drop the
250                // unsafe qualifier.
251                self.coerce_from_fn_pointer(a, a_sig_tys.with(a_hdr), b)
252            }
253            ty::Closure(closure_def_id_a, args_a) => {
254                // Non-capturing closures are coercible to
255                // function pointers or unsafe function pointers.
256                // It cannot convert closures that require unsafe.
257                self.coerce_closure_to_fn(a, closure_def_id_a, args_a, b)
258            }
259            _ => {
260                // Otherwise, just use unification rules.
261                self.unify_and(a, b, identity)
262            }
263        }
264    }
265
266    /// Coercing *from* an inference variable. In this case, we have no information
267    /// about the source type, so we can't really do a true coercion and we always
268    /// fall back to subtyping (`unify_and`).
269    fn coerce_from_inference_variable(
270        &self,
271        a: Ty<'tcx>,
272        b: Ty<'tcx>,
273        make_adjustments: impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
274    ) -> CoerceResult<'tcx> {
275        debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
276        assert!(a.is_ty_var() && self.shallow_resolve(a) == a);
277        assert!(self.shallow_resolve(b) == b);
278
279        if b.is_ty_var() {
280            // Two unresolved type variables: create a `Coerce` predicate.
281            let target_ty = if self.use_lub { self.next_ty_var(self.cause.span) } else { b };
282
283            let mut obligations = PredicateObligations::with_capacity(2);
284            for &source_ty in &[a, b] {
285                if source_ty != target_ty {
286                    obligations.push(Obligation::new(
287                        self.tcx(),
288                        self.cause.clone(),
289                        self.param_env,
290                        ty::Binder::dummy(ty::PredicateKind::Coerce(ty::CoercePredicate {
291                            a: source_ty,
292                            b: target_ty,
293                        })),
294                    ));
295                }
296            }
297
298            debug!(
299                "coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
300                target_ty, obligations
301            );
302            let adjustments = make_adjustments(target_ty);
303            InferResult::Ok(InferOk { value: (adjustments, target_ty), obligations })
304        } else {
305            // One unresolved type variable: just apply subtyping, we may be able
306            // to do something useful.
307            self.unify_and(a, b, make_adjustments)
308        }
309    }
310
311    /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
312    /// To match `A` with `B`, autoderef will be performed,
313    /// calling `deref`/`deref_mut` where necessary.
314    fn coerce_borrowed_pointer(
315        &self,
316        a: Ty<'tcx>,
317        b: Ty<'tcx>,
318        r_b: ty::Region<'tcx>,
319        mutbl_b: hir::Mutability,
320    ) -> CoerceResult<'tcx> {
321        debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
322
323        // If we have a parameter of type `&M T_a` and the value
324        // provided is `expr`, we will be adding an implicit borrow,
325        // meaning that we convert `f(expr)` to `f(&M *expr)`. Therefore,
326        // to type check, we will construct the type that `&M*expr` would
327        // yield.
328
329        let (r_a, mt_a) = match *a.kind() {
330            ty::Ref(r_a, ty, mutbl) => {
331                let mt_a = ty::TypeAndMut { ty, mutbl };
332                coerce_mutbls(mt_a.mutbl, mutbl_b)?;
333                (r_a, mt_a)
334            }
335            _ => return self.unify_and(a, b, identity),
336        };
337
338        let span = self.cause.span;
339
340        let mut first_error = None;
341        let mut r_borrow_var = None;
342        let mut autoderef = self.autoderef(span, a);
343        let mut found = None;
344
345        for (referent_ty, autoderefs) in autoderef.by_ref() {
346            if autoderefs == 0 {
347                // Don't let this pass, otherwise it would cause
348                // &T to autoref to &&T.
349                continue;
350            }
351
352            // At this point, we have deref'd `a` to `referent_ty`. So
353            // imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
354            // In the autoderef loop for `&'a mut Vec<T>`, we would get
355            // three callbacks:
356            //
357            // - `&'a mut Vec<T>` -- 0 derefs, just ignore it
358            // - `Vec<T>` -- 1 deref
359            // - `[T]` -- 2 deref
360            //
361            // At each point after the first callback, we want to
362            // check to see whether this would match out target type
363            // (`&'b mut [T]`) if we autoref'd it. We can't just
364            // compare the referent types, though, because we still
365            // have to consider the mutability. E.g., in the case
366            // we've been considering, we have an `&mut` reference, so
367            // the `T` in `[T]` needs to be unified with equality.
368            //
369            // Therefore, we construct reference types reflecting what
370            // the types will be after we do the final auto-ref and
371            // compare those. Note that this means we use the target
372            // mutability [1], since it may be that we are coercing
373            // from `&mut T` to `&U`.
374            //
375            // One fine point concerns the region that we use. We
376            // choose the region such that the region of the final
377            // type that results from `unify` will be the region we
378            // want for the autoref:
379            //
380            // - if in sub mode, that means we want to use `'b` (the
381            //   region from the target reference) for both
382            //   pointers [2]. This is because sub mode (somewhat
383            //   arbitrarily) returns the subtype region. In the case
384            //   where we are coercing to a target type, we know we
385            //   want to use that target type region (`'b`) because --
386            //   for the program to type-check -- it must be the
387            //   smaller of the two.
388            //   - One fine point. It may be surprising that we can
389            //     use `'b` without relating `'a` and `'b`. The reason
390            //     that this is ok is that what we produce is
391            //     effectively a `&'b *x` expression (if you could
392            //     annotate the region of a borrow), and regionck has
393            //     code that adds edges from the region of a borrow
394            //     (`'b`, here) into the regions in the borrowed
395            //     expression (`*x`, here). (Search for "link".)
396            // - if in lub mode, things can get fairly complicated. The
397            //   easiest thing is just to make a fresh
398            //   region variable [4], which effectively means we defer
399            //   the decision to region inference (and regionck, which will add
400            //   some more edges to this variable). However, this can wind up
401            //   creating a crippling number of variables in some cases --
402            //   e.g., #32278 -- so we optimize one particular case [3].
403            //   Let me try to explain with some examples:
404            //   - The "running example" above represents the simple case,
405            //     where we have one `&` reference at the outer level and
406            //     ownership all the rest of the way down. In this case,
407            //     we want `LUB('a, 'b)` as the resulting region.
408            //   - However, if there are nested borrows, that region is
409            //     too strong. Consider a coercion from `&'a &'x Rc<T>` to
410            //     `&'b T`. In this case, `'a` is actually irrelevant.
411            //     The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
412            //     we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
413            //     (The errors actually show up in borrowck, typically, because
414            //     this extra edge causes the region `'a` to be inferred to something
415            //     too big, which then results in borrowck errors.)
416            //   - We could track the innermost shared reference, but there is already
417            //     code in regionck that has the job of creating links between
418            //     the region of a borrow and the regions in the thing being
419            //     borrowed (here, `'a` and `'x`), and it knows how to handle
420            //     all the various cases. So instead we just make a region variable
421            //     and let regionck figure it out.
422            let r = if !self.use_lub {
423                r_b // [2] above
424            } else if autoderefs == 1 {
425                r_a // [3] above
426            } else {
427                if r_borrow_var.is_none() {
428                    // create var lazily, at most once
429                    let coercion = Coercion(span);
430                    let r = self.next_region_var(coercion);
431                    r_borrow_var = Some(r); // [4] above
432                }
433                r_borrow_var.unwrap()
434            };
435            let derefd_ty_a = Ty::new_ref(
436                self.tcx,
437                r,
438                referent_ty,
439                mutbl_b, // [1] above
440            );
441            match self.unify(derefd_ty_a, b) {
442                Ok(ok) => {
443                    found = Some(ok);
444                    break;
445                }
446                Err(err) => {
447                    if first_error.is_none() {
448                        first_error = Some(err);
449                    }
450                }
451            }
452        }
453
454        // Extract type or return an error. We return the first error
455        // we got, which should be from relating the "base" type
456        // (e.g., in example above, the failure from relating `Vec<T>`
457        // to the target type), since that should be the least
458        // confusing.
459        let Some(InferOk { value: ty, mut obligations }) = found else {
460            if let Some(first_error) = first_error {
461                debug!("coerce_borrowed_pointer: failed with err = {:?}", first_error);
462                return Err(first_error);
463            } else {
464                // This may happen in the new trait solver since autoderef requires
465                // the pointee to be structurally normalizable, or else it'll just bail.
466                // So when we have a type like `&<not well formed>`, then we get no
467                // autoderef steps (even though there should be at least one). That means
468                // we get no type mismatches, since the loop above just exits early.
469                return Err(TypeError::Mismatch);
470            }
471        };
472
473        if ty == a && mt_a.mutbl.is_not() && autoderef.step_count() == 1 {
474            // As a special case, if we would produce `&'a *x`, that's
475            // a total no-op. We end up with the type `&'a T` just as
476            // we started with. In that case, just skip it
477            // altogether. This is just an optimization.
478            //
479            // Note that for `&mut`, we DO want to reborrow --
480            // otherwise, this would be a move, which might be an
481            // error. For example `foo(self.x)` where `self` and
482            // `self.x` both have `&mut `type would be a move of
483            // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
484            // which is a borrow.
485            assert!(mutbl_b.is_not()); // can only coerce &T -> &U
486            return success(vec![], ty, obligations);
487        }
488
489        let InferOk { value: mut adjustments, obligations: o } =
490            self.adjust_steps_as_infer_ok(&autoderef);
491        obligations.extend(o);
492        obligations.extend(autoderef.into_obligations());
493
494        // Now apply the autoref. We have to extract the region out of
495        // the final ref type we got.
496        let ty::Ref(..) = ty.kind() else {
497            span_bug!(span, "expected a ref type, got {:?}", ty);
498        };
499        let mutbl = AutoBorrowMutability::new(mutbl_b, self.allow_two_phase);
500        adjustments.push(Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)), target: ty });
501
502        debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
503
504        success(adjustments, ty, obligations)
505    }
506
507    /// Performs [unsized coercion] by emulating a fulfillment loop on a
508    /// `CoerceUnsized` goal until all `CoerceUnsized` and `Unsize` goals
509    /// are successfully selected.
510    ///
511    /// [unsized coercion](https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions)
512    #[instrument(skip(self), level = "debug")]
513    fn coerce_unsized(&self, mut source: Ty<'tcx>, mut target: Ty<'tcx>) -> CoerceResult<'tcx> {
514        source = self.shallow_resolve(source);
515        target = self.shallow_resolve(target);
516        debug!(?source, ?target);
517
518        // We don't apply any coercions incase either the source or target
519        // aren't sufficiently well known but tend to instead just equate
520        // them both.
521        if source.is_ty_var() {
522            debug!("coerce_unsized: source is a TyVar, bailing out");
523            return Err(TypeError::Mismatch);
524        }
525        if target.is_ty_var() {
526            debug!("coerce_unsized: target is a TyVar, bailing out");
527            return Err(TypeError::Mismatch);
528        }
529
530        let traits =
531            (self.tcx.lang_items().unsize_trait(), self.tcx.lang_items().coerce_unsized_trait());
532        let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
533            debug!("missing Unsize or CoerceUnsized traits");
534            return Err(TypeError::Mismatch);
535        };
536
537        // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
538        // a DST unless we have to. This currently comes out in the wash since
539        // we can't unify [T] with U. But to properly support DST, we need to allow
540        // that, at which point we will need extra checks on the target here.
541
542        // Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
543        let reborrow = match (source.kind(), target.kind()) {
544            (&ty::Ref(_, ty_a, mutbl_a), &ty::Ref(_, _, mutbl_b)) => {
545                coerce_mutbls(mutbl_a, mutbl_b)?;
546
547                let coercion = Coercion(self.cause.span);
548                let r_borrow = self.next_region_var(coercion);
549
550                // We don't allow two-phase borrows here, at least for initial
551                // implementation. If it happens that this coercion is a function argument,
552                // the reborrow in coerce_borrowed_ptr will pick it up.
553                let mutbl = AutoBorrowMutability::new(mutbl_b, AllowTwoPhase::No);
554
555                Some((
556                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
557                    Adjustment {
558                        kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)),
559                        target: Ty::new_ref(self.tcx, r_borrow, ty_a, mutbl_b),
560                    },
561                ))
562            }
563            (&ty::Ref(_, ty_a, mt_a), &ty::RawPtr(_, mt_b)) => {
564                coerce_mutbls(mt_a, mt_b)?;
565
566                Some((
567                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
568                    Adjustment {
569                        kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
570                        target: Ty::new_ptr(self.tcx, ty_a, mt_b),
571                    },
572                ))
573            }
574            _ => None,
575        };
576        let coerce_source = reborrow.as_ref().map_or(source, |(_, r)| r.target);
577
578        // Setup either a subtyping or a LUB relationship between
579        // the `CoerceUnsized` target type and the expected type.
580        // We only have the latter, so we use an inference variable
581        // for the former and let type inference do the rest.
582        let coerce_target = self.next_ty_var(self.cause.span);
583        let mut coercion = self.unify_and(coerce_target, target, |target| {
584            let unsize = Adjustment { kind: Adjust::Pointer(PointerCoercion::Unsize), target };
585            match reborrow {
586                None => vec![unsize],
587                Some((ref deref, ref autoref)) => vec![deref.clone(), autoref.clone(), unsize],
588            }
589        })?;
590
591        let mut selcx = traits::SelectionContext::new(self);
592
593        // Create an obligation for `Source: CoerceUnsized<Target>`.
594        let cause = self.cause(self.cause.span, ObligationCauseCode::Coercion { source, target });
595        let root_obligation = Obligation::new(
596            self.tcx,
597            cause.clone(),
598            self.fcx.param_env,
599            ty::TraitRef::new(self.tcx, coerce_unsized_did, [coerce_source, coerce_target]),
600        );
601
602        // If the root `Source: CoerceUnsized<Target>` obligation can't possibly hold,
603        // we don't have to assume that this is unsizing coercion (it will always lead to an error)
604        //
605        // However, we don't want to bail early all the time, since the unholdable obligations
606        // may be interesting for diagnostics (such as trying to coerce `&T` to `&dyn Id<This = U>`),
607        // so we only bail if there (likely) is another way to convert the types.
608        if !self.infcx.predicate_may_hold(&root_obligation) {
609            if let Some(dyn_metadata_adt_def_id) = self.tcx.lang_items().get(LangItem::DynMetadata)
610                && let Some(metadata_type_def_id) = self.tcx.lang_items().get(LangItem::Metadata)
611            {
612                self.probe(|_| {
613                    let ocx = ObligationCtxt::new(&self.infcx);
614
615                    // returns `true` if `<ty as Pointee>::Metadata` is `DynMetadata<_>`
616                    let has_dyn_trait_metadata = |ty| {
617                        let metadata_ty: Result<_, _> = ocx.structurally_normalize_ty(
618                            &ObligationCause::dummy(),
619                            self.fcx.param_env,
620                            Ty::new_alias(
621                                self.tcx,
622                                ty::AliasTyKind::Projection,
623                                AliasTy::new(self.tcx, metadata_type_def_id, [ty]),
624                            ),
625                        );
626
627                        metadata_ty.is_ok_and(|metadata_ty| {
628                            metadata_ty
629                                .ty_adt_def()
630                                .is_some_and(|d| d.did() == dyn_metadata_adt_def_id)
631                        })
632                    };
633
634                    // If both types are raw pointers to a (wrapper over a) trait object,
635                    // this might be a cast like `*const W<dyn Trait> -> *const dyn Trait`.
636                    // So it's better to bail and try that. (even if the cast is not possible, for
637                    // example due to vtables not matching, cast diagnostic will likely still be better)
638                    //
639                    // N.B. use `target`, not `coerce_target` (the latter is a var)
640                    if let &ty::RawPtr(source_pointee, _) = coerce_source.kind()
641                        && let &ty::RawPtr(target_pointee, _) = target.kind()
642                        && has_dyn_trait_metadata(source_pointee)
643                        && has_dyn_trait_metadata(target_pointee)
644                    {
645                        return Err(TypeError::Mismatch);
646                    }
647
648                    Ok(())
649                })?;
650            }
651        }
652
653        // Use a FIFO queue for this custom fulfillment procedure.
654        //
655        // A Vec (or SmallVec) is not a natural choice for a queue. However,
656        // this code path is hot, and this queue usually has a max length of 1
657        // and almost never more than 3. By using a SmallVec we avoid an
658        // allocation, at the (very small) cost of (occasionally) having to
659        // shift subsequent elements down when removing the front element.
660        let mut queue: SmallVec<[PredicateObligation<'tcx>; 4]> = smallvec![root_obligation];
661
662        // Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
663        // emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
664        // inference might unify those two inner type variables later.
665        let traits = [coerce_unsized_did, unsize_did];
666        while !queue.is_empty() {
667            let obligation = queue.remove(0);
668            let trait_pred = match obligation.predicate.kind().no_bound_vars() {
669                Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)))
670                    if traits.contains(&trait_pred.def_id()) =>
671                {
672                    self.resolve_vars_if_possible(trait_pred)
673                }
674                // Eagerly process alias-relate obligations in new trait solver,
675                // since these can be emitted in the process of solving trait goals,
676                // but we need to constrain vars before processing goals mentioning
677                // them.
678                Some(ty::PredicateKind::AliasRelate(..)) => {
679                    let ocx = ObligationCtxt::new(self);
680                    ocx.register_obligation(obligation);
681                    if !ocx.select_where_possible().is_empty() {
682                        return Err(TypeError::Mismatch);
683                    }
684                    coercion.obligations.extend(ocx.into_pending_obligations());
685                    continue;
686                }
687                _ => {
688                    coercion.obligations.push(obligation);
689                    continue;
690                }
691            };
692            debug!("coerce_unsized resolve step: {:?}", trait_pred);
693            match selcx.select(&obligation.with(selcx.tcx(), trait_pred)) {
694                // Uncertain or unimplemented.
695                Ok(None) => {
696                    if trait_pred.def_id() == unsize_did {
697                        let self_ty = trait_pred.self_ty();
698                        let unsize_ty = trait_pred.trait_ref.args[1].expect_ty();
699                        debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
700                        match (self_ty.kind(), unsize_ty.kind()) {
701                            (&ty::Infer(ty::TyVar(v)), ty::Dynamic(..))
702                                if self.type_var_is_sized(v) =>
703                            {
704                                debug!("coerce_unsized: have sized infer {:?}", v);
705                                coercion.obligations.push(obligation);
706                                // `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
707                                // for unsizing.
708                            }
709                            _ => {
710                                // Some other case for `$0: Unsize<Something>`. Note that we
711                                // hit this case even if `Something` is a sized type, so just
712                                // don't do the coercion.
713                                debug!("coerce_unsized: ambiguous unsize");
714                                return Err(TypeError::Mismatch);
715                            }
716                        }
717                    } else {
718                        debug!("coerce_unsized: early return - ambiguous");
719                        return Err(TypeError::Mismatch);
720                    }
721                }
722                Err(traits::Unimplemented) => {
723                    debug!("coerce_unsized: early return - can't prove obligation");
724                    return Err(TypeError::Mismatch);
725                }
726
727                // Dyn-compatibility violations or miscellaneous.
728                Err(err) => {
729                    let guar = self.err_ctxt().report_selection_error(
730                        obligation.clone(),
731                        &obligation,
732                        &err,
733                    );
734                    self.fcx.set_tainted_by_errors(guar);
735                    // Treat this like an obligation and follow through
736                    // with the unsizing - the lack of a coercion should
737                    // be silent, as it causes a type mismatch later.
738                }
739
740                Ok(Some(impl_source)) => queue.extend(impl_source.nested_obligations()),
741            }
742        }
743
744        Ok(coercion)
745    }
746
747    fn coerce_dyn_star(
748        &self,
749        a: Ty<'tcx>,
750        b: Ty<'tcx>,
751        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
752        b_region: ty::Region<'tcx>,
753    ) -> CoerceResult<'tcx> {
754        if !self.tcx.features().dyn_star() {
755            return Err(TypeError::Mismatch);
756        }
757
758        // FIXME(dyn_star): We should probably allow things like casting from
759        // `dyn* Foo + Send` to `dyn* Foo`.
760        if let ty::Dynamic(a_data, _, ty::DynStar) = a.kind()
761            && let ty::Dynamic(b_data, _, ty::DynStar) = b.kind()
762            && a_data.principal_def_id() == b_data.principal_def_id()
763        {
764            return self.unify_and(a, b, |_| vec![]);
765        }
766
767        // Check the obligations of the cast -- for example, when casting
768        // `usize` to `dyn* Clone + 'static`:
769        let obligations = predicates
770            .iter()
771            .map(|predicate| {
772                // For each existential predicate (e.g., `?Self: Clone`) instantiate
773                // the type of the expression (e.g., `usize` in our example above)
774                // and then require that the resulting predicate (e.g., `usize: Clone`)
775                // holds (it does).
776                let predicate = predicate.with_self_ty(self.tcx, a);
777                Obligation::new(self.tcx, self.cause.clone(), self.param_env, predicate)
778            })
779            .chain([
780                // Enforce the region bound (e.g., `usize: 'static`, in our example).
781                Obligation::new(
782                    self.tcx,
783                    self.cause.clone(),
784                    self.param_env,
785                    ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
786                        ty::OutlivesPredicate(a, b_region),
787                    ))),
788                ),
789                // Enforce that the type is `usize`/pointer-sized.
790                Obligation::new(
791                    self.tcx,
792                    self.cause.clone(),
793                    self.param_env,
794                    ty::TraitRef::new(
795                        self.tcx,
796                        self.tcx
797                            .require_lang_item(hir::LangItem::PointerLike, Some(self.cause.span)),
798                        [a],
799                    ),
800                ),
801            ])
802            .collect();
803
804        Ok(InferOk {
805            value: (
806                vec![Adjustment { kind: Adjust::Pointer(PointerCoercion::DynStar), target: b }],
807                b,
808            ),
809            obligations,
810        })
811    }
812
813    /// Applies reborrowing for `Pin`
814    ///
815    /// We currently only support reborrowing `Pin<&mut T>` as `Pin<&mut T>`. This is accomplished
816    /// by inserting a call to `Pin::as_mut` during MIR building.
817    ///
818    /// In the future we might want to support other reborrowing coercions, such as:
819    /// - `Pin<&mut T>` as `Pin<&T>`
820    /// - `Pin<&T>` as `Pin<&T>`
821    /// - `Pin<Box<T>>` as `Pin<&T>`
822    /// - `Pin<Box<T>>` as `Pin<&mut T>`
823    #[instrument(skip(self), level = "trace")]
824    fn coerce_pin_ref(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
825        // We need to make sure the two types are compatible for coercion.
826        // Then we will build a ReborrowPin adjustment and return that as an InferOk.
827
828        // Right now we can only reborrow if this is a `Pin<&mut T>`.
829        let extract_pin_mut = |ty: Ty<'tcx>| {
830            // Get the T out of Pin<T>
831            let (pin, ty) = match ty.kind() {
832                ty::Adt(pin, args) if self.tcx.is_lang_item(pin.did(), hir::LangItem::Pin) => {
833                    (*pin, args[0].expect_ty())
834                }
835                _ => {
836                    debug!("can't reborrow {:?} as pinned", ty);
837                    return Err(TypeError::Mismatch);
838                }
839            };
840            // Make sure the T is something we understand (just `&mut U` for now)
841            match ty.kind() {
842                ty::Ref(region, ty, mutbl) => Ok((pin, *region, *ty, *mutbl)),
843                _ => {
844                    debug!("can't reborrow pin of inner type {:?}", ty);
845                    Err(TypeError::Mismatch)
846                }
847            }
848        };
849
850        let (pin, a_region, a_ty, mut_a) = extract_pin_mut(a)?;
851        let (_, _, _b_ty, mut_b) = extract_pin_mut(b)?;
852
853        coerce_mutbls(mut_a, mut_b)?;
854
855        // update a with b's mutability since we'll be coercing mutability
856        let a = Ty::new_adt(
857            self.tcx,
858            pin,
859            self.tcx.mk_args(&[Ty::new_ref(self.tcx, a_region, a_ty, mut_b).into()]),
860        );
861
862        // To complete the reborrow, we need to make sure we can unify the inner types, and if so we
863        // add the adjustments.
864        self.unify_and(a, b, |_inner_ty| {
865            vec![Adjustment { kind: Adjust::ReborrowPin(mut_b), target: b }]
866        })
867    }
868
869    fn coerce_from_safe_fn<F, G>(
870        &self,
871        a: Ty<'tcx>,
872        fn_ty_a: ty::PolyFnSig<'tcx>,
873        b: Ty<'tcx>,
874        to_unsafe: F,
875        normal: G,
876    ) -> CoerceResult<'tcx>
877    where
878        F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
879        G: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
880    {
881        self.commit_if_ok(|snapshot| {
882            let outer_universe = self.infcx.universe();
883
884            let result = if let ty::FnPtr(_, hdr_b) = b.kind()
885                && fn_ty_a.safety().is_safe()
886                && hdr_b.safety.is_unsafe()
887            {
888                let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
889                self.unify_and(unsafe_a, b, to_unsafe)
890            } else {
891                self.unify_and(a, b, normal)
892            };
893
894            // FIXME(#73154): This is a hack. Currently LUB can generate
895            // unsolvable constraints. Additionally, it returns `a`
896            // unconditionally, even when the "LUB" is `b`. In the future, we
897            // want the coerced type to be the actual supertype of these two,
898            // but for now, we want to just error to ensure we don't lock
899            // ourselves into a specific behavior with NLL.
900            self.leak_check(outer_universe, Some(snapshot))?;
901
902            result
903        })
904    }
905
906    fn coerce_from_fn_pointer(
907        &self,
908        a: Ty<'tcx>,
909        fn_ty_a: ty::PolyFnSig<'tcx>,
910        b: Ty<'tcx>,
911    ) -> CoerceResult<'tcx> {
912        //! Attempts to coerce from the type of a Rust function item
913        //! into a closure or a `proc`.
914        //!
915
916        let b = self.shallow_resolve(b);
917        debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);
918
919        self.coerce_from_safe_fn(
920            a,
921            fn_ty_a,
922            b,
923            simple(Adjust::Pointer(PointerCoercion::UnsafeFnPointer)),
924            identity,
925        )
926    }
927
928    fn coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
929        //! Attempts to coerce from the type of a Rust function item
930        //! into a closure or a `proc`.
931
932        let b = self.shallow_resolve(b);
933        let InferOk { value: b, mut obligations } =
934            self.at(&self.cause, self.param_env).normalize(b);
935        debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
936
937        match b.kind() {
938            ty::FnPtr(_, b_hdr) => {
939                let mut a_sig = a.fn_sig(self.tcx);
940                if let ty::FnDef(def_id, _) = *a.kind() {
941                    // Intrinsics are not coercible to function pointers
942                    if self.tcx.intrinsic(def_id).is_some() {
943                        return Err(TypeError::IntrinsicCast);
944                    }
945
946                    let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
947                    if matches!(fn_attrs.inline, InlineAttr::Force { .. }) {
948                        return Err(TypeError::ForceInlineCast);
949                    }
950
951                    if b_hdr.safety.is_safe()
952                        && self.tcx.codegen_fn_attrs(def_id).safe_target_features
953                    {
954                        // Allow the coercion if the current function has all the features that would be
955                        // needed to call the coercee safely.
956                        if let Some(safe_sig) = self.tcx.adjust_target_feature_sig(
957                            def_id,
958                            a_sig,
959                            self.fcx.body_id.into(),
960                        ) {
961                            a_sig = safe_sig;
962                        } else {
963                            return Err(TypeError::TargetFeatureCast(def_id));
964                        }
965                    }
966                }
967
968                let InferOk { value: a_sig, obligations: o1 } =
969                    self.at(&self.cause, self.param_env).normalize(a_sig);
970                obligations.extend(o1);
971
972                let a_fn_pointer = Ty::new_fn_ptr(self.tcx, a_sig);
973                let InferOk { value, obligations: o2 } = self.coerce_from_safe_fn(
974                    a_fn_pointer,
975                    a_sig,
976                    b,
977                    |unsafe_ty| {
978                        vec![
979                            Adjustment {
980                                kind: Adjust::Pointer(PointerCoercion::ReifyFnPointer),
981                                target: a_fn_pointer,
982                            },
983                            Adjustment {
984                                kind: Adjust::Pointer(PointerCoercion::UnsafeFnPointer),
985                                target: unsafe_ty,
986                            },
987                        ]
988                    },
989                    simple(Adjust::Pointer(PointerCoercion::ReifyFnPointer)),
990                )?;
991
992                obligations.extend(o2);
993                Ok(InferOk { value, obligations })
994            }
995            _ => self.unify_and(a, b, identity),
996        }
997    }
998
999    fn coerce_closure_to_fn(
1000        &self,
1001        a: Ty<'tcx>,
1002        closure_def_id_a: DefId,
1003        args_a: GenericArgsRef<'tcx>,
1004        b: Ty<'tcx>,
1005    ) -> CoerceResult<'tcx> {
1006        //! Attempts to coerce from the type of a non-capturing closure
1007        //! into a function pointer.
1008        //!
1009
1010        let b = self.shallow_resolve(b);
1011
1012        match b.kind() {
1013            // At this point we haven't done capture analysis, which means
1014            // that the ClosureArgs just contains an inference variable instead
1015            // of tuple of captured types.
1016            //
1017            // All we care here is if any variable is being captured and not the exact paths,
1018            // so we check `upvars_mentioned` for root variables being captured.
1019            ty::FnPtr(_, hdr)
1020                if self
1021                    .tcx
1022                    .upvars_mentioned(closure_def_id_a.expect_local())
1023                    .is_none_or(|u| u.is_empty()) =>
1024            {
1025                // We coerce the closure, which has fn type
1026                //     `extern "rust-call" fn((arg0,arg1,...)) -> _`
1027                // to
1028                //     `fn(arg0,arg1,...) -> _`
1029                // or
1030                //     `unsafe fn(arg0,arg1,...) -> _`
1031                let closure_sig = args_a.as_closure().sig();
1032                let safety = hdr.safety;
1033                let pointer_ty =
1034                    Ty::new_fn_ptr(self.tcx, self.tcx.signature_unclosure(closure_sig, safety));
1035                debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
1036                self.unify_and(
1037                    pointer_ty,
1038                    b,
1039                    simple(Adjust::Pointer(PointerCoercion::ClosureFnPointer(safety))),
1040                )
1041            }
1042            _ => self.unify_and(a, b, identity),
1043        }
1044    }
1045
1046    fn coerce_raw_ptr(
1047        &self,
1048        a: Ty<'tcx>,
1049        b: Ty<'tcx>,
1050        mutbl_b: hir::Mutability,
1051    ) -> CoerceResult<'tcx> {
1052        debug!("coerce_raw_ptr(a={:?}, b={:?})", a, b);
1053
1054        let (is_ref, mt_a) = match *a.kind() {
1055            ty::Ref(_, ty, mutbl) => (true, ty::TypeAndMut { ty, mutbl }),
1056            ty::RawPtr(ty, mutbl) => (false, ty::TypeAndMut { ty, mutbl }),
1057            _ => return self.unify_and(a, b, identity),
1058        };
1059        coerce_mutbls(mt_a.mutbl, mutbl_b)?;
1060
1061        // Check that the types which they point at are compatible.
1062        let a_raw = Ty::new_ptr(self.tcx, mt_a.ty, mutbl_b);
1063        // Although references and raw ptrs have the same
1064        // representation, we still register an Adjust::DerefRef so that
1065        // regionck knows that the region for `a` must be valid here.
1066        if is_ref {
1067            self.unify_and(a_raw, b, |target| {
1068                vec![
1069                    Adjustment { kind: Adjust::Deref(None), target: mt_a.ty },
1070                    Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)), target },
1071                ]
1072            })
1073        } else if mt_a.mutbl != mutbl_b {
1074            self.unify_and(a_raw, b, simple(Adjust::Pointer(PointerCoercion::MutToConstPointer)))
1075        } else {
1076            self.unify_and(a_raw, b, identity)
1077        }
1078    }
1079}
1080
1081impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
1082    /// Attempt to coerce an expression to a type, and return the
1083    /// adjusted type of the expression, if successful.
1084    /// Adjustments are only recorded if the coercion succeeded.
1085    /// The expressions *must not* have any preexisting adjustments.
1086    pub(crate) fn coerce(
1087        &self,
1088        expr: &'tcx hir::Expr<'tcx>,
1089        expr_ty: Ty<'tcx>,
1090        mut target: Ty<'tcx>,
1091        allow_two_phase: AllowTwoPhase,
1092        cause: Option<ObligationCause<'tcx>>,
1093    ) -> RelateResult<'tcx, Ty<'tcx>> {
1094        let source = self.try_structurally_resolve_type(expr.span, expr_ty);
1095        if self.next_trait_solver() {
1096            target = self.try_structurally_resolve_type(
1097                cause.as_ref().map_or(expr.span, |cause| cause.span),
1098                target,
1099            );
1100        }
1101        debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
1102
1103        let cause =
1104            cause.unwrap_or_else(|| self.cause(expr.span, ObligationCauseCode::ExprAssignable));
1105        let coerce = Coerce::new(
1106            self,
1107            cause,
1108            allow_two_phase,
1109            self.expr_guaranteed_to_constitute_read_for_never(expr),
1110        );
1111        let ok = self.commit_if_ok(|_| coerce.coerce(source, target))?;
1112
1113        let (adjustments, _) = self.register_infer_ok_obligations(ok);
1114        self.apply_adjustments(expr, adjustments);
1115        Ok(if let Err(guar) = expr_ty.error_reported() {
1116            Ty::new_error(self.tcx, guar)
1117        } else {
1118            target
1119        })
1120    }
1121
1122    /// Probe whether `expr_ty` can be coerced to `target_ty`. This has no side-effects,
1123    /// and may return false positives if types are not yet fully constrained by inference.
1124    ///
1125    /// Returns false if the coercion is not possible, or if the coercion creates any
1126    /// sub-obligations that result in errors.
1127    ///
1128    /// This should only be used for diagnostics.
1129    pub(crate) fn may_coerce(&self, expr_ty: Ty<'tcx>, target_ty: Ty<'tcx>) -> bool {
1130        let cause = self.cause(DUMMY_SP, ObligationCauseCode::ExprAssignable);
1131        // We don't ever need two-phase here since we throw out the result of the coercion.
1132        // We also just always set `coerce_never` to true, since this is a heuristic.
1133        let coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No, true);
1134        self.probe(|_| {
1135            // Make sure to structurally resolve the types, since we use
1136            // the `TyKind`s heavily in coercion.
1137            let ocx = ObligationCtxt::new(self);
1138            let structurally_resolve = |ty| {
1139                let ty = self.shallow_resolve(ty);
1140                if self.next_trait_solver()
1141                    && let ty::Alias(..) = ty.kind()
1142                {
1143                    ocx.structurally_normalize_ty(&cause, self.param_env, ty)
1144                } else {
1145                    Ok(ty)
1146                }
1147            };
1148            let Ok(expr_ty) = structurally_resolve(expr_ty) else {
1149                return false;
1150            };
1151            let Ok(target_ty) = structurally_resolve(target_ty) else {
1152                return false;
1153            };
1154
1155            let Ok(ok) = coerce.coerce(expr_ty, target_ty) else {
1156                return false;
1157            };
1158            ocx.register_obligations(ok.obligations);
1159            ocx.select_where_possible().is_empty()
1160        })
1161    }
1162
1163    /// Given a type and a target type, this function will calculate and return
1164    /// how many dereference steps needed to coerce `expr_ty` to `target`. If
1165    /// it's not possible, return `None`.
1166    pub(crate) fn deref_steps_for_suggestion(
1167        &self,
1168        expr_ty: Ty<'tcx>,
1169        target: Ty<'tcx>,
1170    ) -> Option<usize> {
1171        let cause = self.cause(DUMMY_SP, ObligationCauseCode::ExprAssignable);
1172        // We don't ever need two-phase here since we throw out the result of the coercion.
1173        let coerce = Coerce::new(self, cause, AllowTwoPhase::No, true);
1174        coerce
1175            .autoderef(DUMMY_SP, expr_ty)
1176            .find_map(|(ty, steps)| self.probe(|_| coerce.unify(ty, target)).ok().map(|_| steps))
1177    }
1178
1179    /// Given a type, this function will calculate and return the type given
1180    /// for `<Ty as Deref>::Target` only if `Ty` also implements `DerefMut`.
1181    ///
1182    /// This function is for diagnostics only, since it does not register
1183    /// trait or region sub-obligations. (presumably we could, but it's not
1184    /// particularly important for diagnostics...)
1185    pub(crate) fn deref_once_mutably_for_diagnostic(&self, expr_ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
1186        self.autoderef(DUMMY_SP, expr_ty).silence_errors().nth(1).and_then(|(deref_ty, _)| {
1187            self.infcx
1188                .type_implements_trait(
1189                    self.tcx.lang_items().deref_mut_trait()?,
1190                    [expr_ty],
1191                    self.param_env,
1192                )
1193                .may_apply()
1194                .then_some(deref_ty)
1195        })
1196    }
1197
1198    /// Given some expressions, their known unified type and another expression,
1199    /// tries to unify the types, potentially inserting coercions on any of the
1200    /// provided expressions and returns their LUB (aka "common supertype").
1201    ///
1202    /// This is really an internal helper. From outside the coercion
1203    /// module, you should instantiate a `CoerceMany` instance.
1204    fn try_find_coercion_lub<E>(
1205        &self,
1206        cause: &ObligationCause<'tcx>,
1207        exprs: &[E],
1208        prev_ty: Ty<'tcx>,
1209        new: &hir::Expr<'_>,
1210        new_ty: Ty<'tcx>,
1211    ) -> RelateResult<'tcx, Ty<'tcx>>
1212    where
1213        E: AsCoercionSite,
1214    {
1215        let prev_ty = self.try_structurally_resolve_type(cause.span, prev_ty);
1216        let new_ty = self.try_structurally_resolve_type(new.span, new_ty);
1217        debug!(
1218            "coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
1219            prev_ty,
1220            new_ty,
1221            exprs.len()
1222        );
1223
1224        // The following check fixes #88097, where the compiler erroneously
1225        // attempted to coerce a closure type to itself via a function pointer.
1226        if prev_ty == new_ty {
1227            return Ok(prev_ty);
1228        }
1229
1230        let is_force_inline = |ty: Ty<'tcx>| {
1231            if let ty::FnDef(did, _) = ty.kind() {
1232                matches!(self.tcx.codegen_fn_attrs(did).inline, InlineAttr::Force { .. })
1233            } else {
1234                false
1235            }
1236        };
1237        if is_force_inline(prev_ty) || is_force_inline(new_ty) {
1238            return Err(TypeError::ForceInlineCast);
1239        }
1240
1241        // Special-case that coercion alone cannot handle:
1242        // Function items or non-capturing closures of differing IDs or GenericArgs.
1243        let (a_sig, b_sig) = {
1244            let is_capturing_closure = |ty: Ty<'tcx>| {
1245                if let &ty::Closure(closure_def_id, _args) = ty.kind() {
1246                    self.tcx.upvars_mentioned(closure_def_id.expect_local()).is_some()
1247                } else {
1248                    false
1249                }
1250            };
1251            if is_capturing_closure(prev_ty) || is_capturing_closure(new_ty) {
1252                (None, None)
1253            } else {
1254                match (prev_ty.kind(), new_ty.kind()) {
1255                    (ty::FnDef(..), ty::FnDef(..)) => {
1256                        // Don't reify if the function types have a LUB, i.e., they
1257                        // are the same function and their parameters have a LUB.
1258                        match self
1259                            .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
1260                        {
1261                            // We have a LUB of prev_ty and new_ty, just return it.
1262                            Ok(ok) => return Ok(self.register_infer_ok_obligations(ok)),
1263                            Err(_) => {
1264                                (Some(prev_ty.fn_sig(self.tcx)), Some(new_ty.fn_sig(self.tcx)))
1265                            }
1266                        }
1267                    }
1268                    (ty::Closure(_, args), ty::FnDef(..)) => {
1269                        let b_sig = new_ty.fn_sig(self.tcx);
1270                        let a_sig =
1271                            self.tcx.signature_unclosure(args.as_closure().sig(), b_sig.safety());
1272                        (Some(a_sig), Some(b_sig))
1273                    }
1274                    (ty::FnDef(..), ty::Closure(_, args)) => {
1275                        let a_sig = prev_ty.fn_sig(self.tcx);
1276                        let b_sig =
1277                            self.tcx.signature_unclosure(args.as_closure().sig(), a_sig.safety());
1278                        (Some(a_sig), Some(b_sig))
1279                    }
1280                    (ty::Closure(_, args_a), ty::Closure(_, args_b)) => (
1281                        Some(
1282                            self.tcx
1283                                .signature_unclosure(args_a.as_closure().sig(), hir::Safety::Safe),
1284                        ),
1285                        Some(
1286                            self.tcx
1287                                .signature_unclosure(args_b.as_closure().sig(), hir::Safety::Safe),
1288                        ),
1289                    ),
1290                    _ => (None, None),
1291                }
1292            }
1293        };
1294        if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
1295            // Intrinsics are not coercible to function pointers.
1296            if a_sig.abi() == ExternAbi::RustIntrinsic || b_sig.abi() == ExternAbi::RustIntrinsic {
1297                return Err(TypeError::IntrinsicCast);
1298            }
1299            // The signature must match.
1300            let (a_sig, b_sig) = self.normalize(new.span, (a_sig, b_sig));
1301            let sig = self
1302                .at(cause, self.param_env)
1303                .lub(a_sig, b_sig)
1304                .map(|ok| self.register_infer_ok_obligations(ok))?;
1305
1306            // Reify both sides and return the reified fn pointer type.
1307            let fn_ptr = Ty::new_fn_ptr(self.tcx, sig);
1308            let prev_adjustment = match prev_ty.kind() {
1309                ty::Closure(..) => {
1310                    Adjust::Pointer(PointerCoercion::ClosureFnPointer(a_sig.safety()))
1311                }
1312                ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
1313                _ => span_bug!(cause.span, "should not try to coerce a {prev_ty} to a fn pointer"),
1314            };
1315            let next_adjustment = match new_ty.kind() {
1316                ty::Closure(..) => {
1317                    Adjust::Pointer(PointerCoercion::ClosureFnPointer(b_sig.safety()))
1318                }
1319                ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
1320                _ => span_bug!(new.span, "should not try to coerce a {new_ty} to a fn pointer"),
1321            };
1322            for expr in exprs.iter().map(|e| e.as_coercion_site()) {
1323                self.apply_adjustments(
1324                    expr,
1325                    vec![Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }],
1326                );
1327            }
1328            self.apply_adjustments(new, vec![Adjustment { kind: next_adjustment, target: fn_ptr }]);
1329            return Ok(fn_ptr);
1330        }
1331
1332        // Configure a Coerce instance to compute the LUB.
1333        // We don't allow two-phase borrows on any autorefs this creates since we
1334        // probably aren't processing function arguments here and even if we were,
1335        // they're going to get autorefed again anyway and we can apply 2-phase borrows
1336        // at that time.
1337        //
1338        // NOTE: we set `coerce_never` to `true` here because coercion LUBs only
1339        // operate on values and not places, so a never coercion is valid.
1340        let mut coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No, true);
1341        coerce.use_lub = true;
1342
1343        // First try to coerce the new expression to the type of the previous ones,
1344        // but only if the new expression has no coercion already applied to it.
1345        let mut first_error = None;
1346        if !self.typeck_results.borrow().adjustments().contains_key(new.hir_id) {
1347            let result = self.commit_if_ok(|_| coerce.coerce(new_ty, prev_ty));
1348            match result {
1349                Ok(ok) => {
1350                    let (adjustments, target) = self.register_infer_ok_obligations(ok);
1351                    self.apply_adjustments(new, adjustments);
1352                    debug!(
1353                        "coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
1354                        new_ty, prev_ty, target
1355                    );
1356                    return Ok(target);
1357                }
1358                Err(e) => first_error = Some(e),
1359            }
1360        }
1361
1362        match self.commit_if_ok(|_| coerce.coerce(prev_ty, new_ty)) {
1363            Err(_) => {
1364                // Avoid giving strange errors on failed attempts.
1365                if let Some(e) = first_error {
1366                    Err(e)
1367                } else {
1368                    Err(self
1369                        .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
1370                        .unwrap_err())
1371                }
1372            }
1373            Ok(ok) => {
1374                let (adjustments, target) = self.register_infer_ok_obligations(ok);
1375                for expr in exprs {
1376                    let expr = expr.as_coercion_site();
1377                    self.apply_adjustments(expr, adjustments.clone());
1378                }
1379                debug!(
1380                    "coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
1381                    prev_ty, new_ty, target
1382                );
1383                Ok(target)
1384            }
1385        }
1386    }
1387}
1388
1389/// Check whether `ty` can be coerced to `output_ty`.
1390/// Used from clippy.
1391pub fn can_coerce<'tcx>(
1392    tcx: TyCtxt<'tcx>,
1393    param_env: ty::ParamEnv<'tcx>,
1394    body_id: LocalDefId,
1395    ty: Ty<'tcx>,
1396    output_ty: Ty<'tcx>,
1397) -> bool {
1398    let root_ctxt = crate::typeck_root_ctxt::TypeckRootCtxt::new(tcx, body_id);
1399    let fn_ctxt = FnCtxt::new(&root_ctxt, param_env, body_id);
1400    fn_ctxt.may_coerce(ty, output_ty)
1401}
1402
1403/// CoerceMany encapsulates the pattern you should use when you have
1404/// many expressions that are all getting coerced to a common
1405/// type. This arises, for example, when you have a match (the result
1406/// of each arm is coerced to a common type). It also arises in less
1407/// obvious places, such as when you have many `break foo` expressions
1408/// that target the same loop, or the various `return` expressions in
1409/// a function.
1410///
1411/// The basic protocol is as follows:
1412///
1413/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
1414///   This will also serve as the "starting LUB". The expectation is
1415///   that this type is something which all of the expressions *must*
1416///   be coercible to. Use a fresh type variable if needed.
1417/// - For each expression whose result is to be coerced, invoke `coerce()` with.
1418///   - In some cases we wish to coerce "non-expressions" whose types are implicitly
1419///     unit. This happens for example if you have a `break` with no expression,
1420///     or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
1421///   - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
1422///     from you so that you don't have to worry your pretty head about it.
1423///     But if an error is reported, the final type will be `err`.
1424///   - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
1425///     previously coerced expressions.
1426/// - When all done, invoke `complete()`. This will return the LUB of
1427///   all your expressions.
1428///   - WARNING: I don't believe this final type is guaranteed to be
1429///     related to your initial `expected_ty` in any particular way,
1430///     although it will typically be a subtype, so you should check it.
1431///   - Invoking `complete()` may cause us to go and adjust the "adjustments" on
1432///     previously coerced expressions.
1433///
1434/// Example:
1435///
1436/// ```ignore (illustrative)
1437/// let mut coerce = CoerceMany::new(expected_ty);
1438/// for expr in exprs {
1439///     let expr_ty = fcx.check_expr_with_expectation(expr, expected);
1440///     coerce.coerce(fcx, &cause, expr, expr_ty);
1441/// }
1442/// let final_ty = coerce.complete(fcx);
1443/// ```
1444pub(crate) struct CoerceMany<'tcx, 'exprs, E: AsCoercionSite> {
1445    expected_ty: Ty<'tcx>,
1446    final_ty: Option<Ty<'tcx>>,
1447    expressions: Expressions<'tcx, 'exprs, E>,
1448    pushed: usize,
1449}
1450
1451/// The type of a `CoerceMany` that is storing up the expressions into
1452/// a buffer. We use this in `check/mod.rs` for things like `break`.
1453pub(crate) type DynamicCoerceMany<'tcx> = CoerceMany<'tcx, 'tcx, &'tcx hir::Expr<'tcx>>;
1454
1455enum Expressions<'tcx, 'exprs, E: AsCoercionSite> {
1456    Dynamic(Vec<&'tcx hir::Expr<'tcx>>),
1457    UpFront(&'exprs [E]),
1458}
1459
1460impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
1461    /// The usual case; collect the set of expressions dynamically.
1462    /// If the full set of coercion sites is known before hand,
1463    /// consider `with_coercion_sites()` instead to avoid allocation.
1464    pub(crate) fn new(expected_ty: Ty<'tcx>) -> Self {
1465        Self::make(expected_ty, Expressions::Dynamic(vec![]))
1466    }
1467
1468    /// As an optimization, you can create a `CoerceMany` with a
1469    /// preexisting slice of expressions. In this case, you are
1470    /// expected to pass each element in the slice to `coerce(...)` in
1471    /// order. This is used with arrays in particular to avoid
1472    /// needlessly cloning the slice.
1473    pub(crate) fn with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self {
1474        Self::make(expected_ty, Expressions::UpFront(coercion_sites))
1475    }
1476
1477    fn make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self {
1478        CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
1479    }
1480
1481    /// Returns the "expected type" with which this coercion was
1482    /// constructed. This represents the "downward propagated" type
1483    /// that was given to us at the start of typing whatever construct
1484    /// we are typing (e.g., the match expression).
1485    ///
1486    /// Typically, this is used as the expected type when
1487    /// type-checking each of the alternative expressions whose types
1488    /// we are trying to merge.
1489    pub(crate) fn expected_ty(&self) -> Ty<'tcx> {
1490        self.expected_ty
1491    }
1492
1493    /// Returns the current "merged type", representing our best-guess
1494    /// at the LUB of the expressions we've seen so far (if any). This
1495    /// isn't *final* until you call `self.complete()`, which will return
1496    /// the merged type.
1497    pub(crate) fn merged_ty(&self) -> Ty<'tcx> {
1498        self.final_ty.unwrap_or(self.expected_ty)
1499    }
1500
1501    /// Indicates that the value generated by `expression`, which is
1502    /// of type `expression_ty`, is one of the possibilities that we
1503    /// could coerce from. This will record `expression`, and later
1504    /// calls to `coerce` may come back and add adjustments and things
1505    /// if necessary.
1506    pub(crate) fn coerce<'a>(
1507        &mut self,
1508        fcx: &FnCtxt<'a, 'tcx>,
1509        cause: &ObligationCause<'tcx>,
1510        expression: &'tcx hir::Expr<'tcx>,
1511        expression_ty: Ty<'tcx>,
1512    ) {
1513        self.coerce_inner(fcx, cause, Some(expression), expression_ty, |_| {}, false)
1514    }
1515
1516    /// Indicates that one of the inputs is a "forced unit". This
1517    /// occurs in a case like `if foo { ... };`, where the missing else
1518    /// generates a "forced unit". Another example is a `loop { break;
1519    /// }`, where the `break` has no argument expression. We treat
1520    /// these cases slightly differently for error-reporting
1521    /// purposes. Note that these tend to correspond to cases where
1522    /// the `()` expression is implicit in the source, and hence we do
1523    /// not take an expression argument.
1524    ///
1525    /// The `augment_error` gives you a chance to extend the error
1526    /// message, in case any results (e.g., we use this to suggest
1527    /// removing a `;`).
1528    pub(crate) fn coerce_forced_unit<'a>(
1529        &mut self,
1530        fcx: &FnCtxt<'a, 'tcx>,
1531        cause: &ObligationCause<'tcx>,
1532        augment_error: impl FnOnce(&mut Diag<'_>),
1533        label_unit_as_expected: bool,
1534    ) {
1535        self.coerce_inner(
1536            fcx,
1537            cause,
1538            None,
1539            fcx.tcx.types.unit,
1540            augment_error,
1541            label_unit_as_expected,
1542        )
1543    }
1544
1545    /// The inner coercion "engine". If `expression` is `None`, this
1546    /// is a forced-unit case, and hence `expression_ty` must be
1547    /// `Nil`.
1548    #[instrument(skip(self, fcx, augment_error, label_expression_as_expected), level = "debug")]
1549    pub(crate) fn coerce_inner<'a>(
1550        &mut self,
1551        fcx: &FnCtxt<'a, 'tcx>,
1552        cause: &ObligationCause<'tcx>,
1553        expression: Option<&'tcx hir::Expr<'tcx>>,
1554        mut expression_ty: Ty<'tcx>,
1555        augment_error: impl FnOnce(&mut Diag<'_>),
1556        label_expression_as_expected: bool,
1557    ) {
1558        // Incorporate whatever type inference information we have
1559        // until now; in principle we might also want to process
1560        // pending obligations, but doing so should only improve
1561        // compatibility (hopefully that is true) by helping us
1562        // uncover never types better.
1563        if expression_ty.is_ty_var() {
1564            expression_ty = fcx.infcx.shallow_resolve(expression_ty);
1565        }
1566
1567        // If we see any error types, just propagate that error
1568        // upwards.
1569        if let Err(guar) = (expression_ty, self.merged_ty()).error_reported() {
1570            self.final_ty = Some(Ty::new_error(fcx.tcx, guar));
1571            return;
1572        }
1573
1574        let (expected, found) = if label_expression_as_expected {
1575            // In the case where this is a "forced unit", like
1576            // `break`, we want to call the `()` "expected"
1577            // since it is implied by the syntax.
1578            // (Note: not all force-units work this way.)"
1579            (expression_ty, self.merged_ty())
1580        } else {
1581            // Otherwise, the "expected" type for error
1582            // reporting is the current unification type,
1583            // which is basically the LUB of the expressions
1584            // we've seen so far (combined with the expected
1585            // type)
1586            (self.merged_ty(), expression_ty)
1587        };
1588
1589        // Handle the actual type unification etc.
1590        let result = if let Some(expression) = expression {
1591            if self.pushed == 0 {
1592                // Special-case the first expression we are coercing.
1593                // To be honest, I'm not entirely sure why we do this.
1594                // We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
1595                fcx.coerce(
1596                    expression,
1597                    expression_ty,
1598                    self.expected_ty,
1599                    AllowTwoPhase::No,
1600                    Some(cause.clone()),
1601                )
1602            } else {
1603                match self.expressions {
1604                    Expressions::Dynamic(ref exprs) => fcx.try_find_coercion_lub(
1605                        cause,
1606                        exprs,
1607                        self.merged_ty(),
1608                        expression,
1609                        expression_ty,
1610                    ),
1611                    Expressions::UpFront(coercion_sites) => fcx.try_find_coercion_lub(
1612                        cause,
1613                        &coercion_sites[0..self.pushed],
1614                        self.merged_ty(),
1615                        expression,
1616                        expression_ty,
1617                    ),
1618                }
1619            }
1620        } else {
1621            // this is a hack for cases where we default to `()` because
1622            // the expression etc has been omitted from the source. An
1623            // example is an `if let` without an else:
1624            //
1625            //     if let Some(x) = ... { }
1626            //
1627            // we wind up with a second match arm that is like `_ =>
1628            // ()`. That is the case we are considering here. We take
1629            // a different path to get the right "expected, found"
1630            // message and so forth (and because we know that
1631            // `expression_ty` will be unit).
1632            //
1633            // Another example is `break` with no argument expression.
1634            assert!(expression_ty.is_unit(), "if let hack without unit type");
1635            fcx.at(cause, fcx.param_env)
1636                .eq(
1637                    // needed for tests/ui/type-alias-impl-trait/issue-65679-inst-opaque-ty-from-val-twice.rs
1638                    DefineOpaqueTypes::Yes,
1639                    expected,
1640                    found,
1641                )
1642                .map(|infer_ok| {
1643                    fcx.register_infer_ok_obligations(infer_ok);
1644                    expression_ty
1645                })
1646        };
1647
1648        debug!(?result);
1649        match result {
1650            Ok(v) => {
1651                self.final_ty = Some(v);
1652                if let Some(e) = expression {
1653                    match self.expressions {
1654                        Expressions::Dynamic(ref mut buffer) => buffer.push(e),
1655                        Expressions::UpFront(coercion_sites) => {
1656                            // if the user gave us an array to validate, check that we got
1657                            // the next expression in the list, as expected
1658                            assert_eq!(
1659                                coercion_sites[self.pushed].as_coercion_site().hir_id,
1660                                e.hir_id
1661                            );
1662                        }
1663                    }
1664                    self.pushed += 1;
1665                }
1666            }
1667            Err(coercion_error) => {
1668                // Mark that we've failed to coerce the types here to suppress
1669                // any superfluous errors we might encounter while trying to
1670                // emit or provide suggestions on how to fix the initial error.
1671                fcx.set_tainted_by_errors(
1672                    fcx.dcx().span_delayed_bug(cause.span, "coercion error but no error emitted"),
1673                );
1674                let (expected, found) = fcx.resolve_vars_if_possible((expected, found));
1675
1676                let mut err;
1677                let mut unsized_return = false;
1678                match *cause.code() {
1679                    ObligationCauseCode::ReturnNoExpression => {
1680                        err = struct_span_code_err!(
1681                            fcx.dcx(),
1682                            cause.span,
1683                            E0069,
1684                            "`return;` in a function whose return type is not `()`"
1685                        );
1686                        if let Some(value) = fcx.err_ctxt().ty_kind_suggestion(fcx.param_env, found)
1687                        {
1688                            err.span_suggestion_verbose(
1689                                cause.span.shrink_to_hi(),
1690                                "give the `return` a value of the expected type",
1691                                format!(" {value}"),
1692                                Applicability::HasPlaceholders,
1693                            );
1694                        }
1695                        err.span_label(cause.span, "return type is not `()`");
1696                    }
1697                    ObligationCauseCode::BlockTailExpression(blk_id, ..) => {
1698                        err = self.report_return_mismatched_types(
1699                            cause,
1700                            expected,
1701                            found,
1702                            coercion_error,
1703                            fcx,
1704                            blk_id,
1705                            expression,
1706                        );
1707                        if !fcx.tcx.features().unsized_locals() {
1708                            unsized_return = self.is_return_ty_definitely_unsized(fcx);
1709                        }
1710                    }
1711                    ObligationCauseCode::ReturnValue(return_expr_id) => {
1712                        err = self.report_return_mismatched_types(
1713                            cause,
1714                            expected,
1715                            found,
1716                            coercion_error,
1717                            fcx,
1718                            return_expr_id,
1719                            expression,
1720                        );
1721                        if !fcx.tcx.features().unsized_locals() {
1722                            unsized_return = self.is_return_ty_definitely_unsized(fcx);
1723                        }
1724                    }
1725                    ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
1726                        arm_span,
1727                        arm_ty,
1728                        prior_arm_ty,
1729                        ref prior_non_diverging_arms,
1730                        tail_defines_return_position_impl_trait: Some(rpit_def_id),
1731                        ..
1732                    }) => {
1733                        err = fcx.err_ctxt().report_mismatched_types(
1734                            cause,
1735                            fcx.param_env,
1736                            expected,
1737                            found,
1738                            coercion_error,
1739                        );
1740                        // Check that we're actually in the second or later arm
1741                        if prior_non_diverging_arms.len() > 0 {
1742                            self.suggest_boxing_tail_for_return_position_impl_trait(
1743                                fcx,
1744                                &mut err,
1745                                rpit_def_id,
1746                                arm_ty,
1747                                prior_arm_ty,
1748                                prior_non_diverging_arms
1749                                    .iter()
1750                                    .chain(std::iter::once(&arm_span))
1751                                    .copied(),
1752                            );
1753                        }
1754                    }
1755                    ObligationCauseCode::IfExpression(box IfExpressionCause {
1756                        then_id,
1757                        else_id,
1758                        then_ty,
1759                        else_ty,
1760                        tail_defines_return_position_impl_trait: Some(rpit_def_id),
1761                        ..
1762                    }) => {
1763                        err = fcx.err_ctxt().report_mismatched_types(
1764                            cause,
1765                            fcx.param_env,
1766                            expected,
1767                            found,
1768                            coercion_error,
1769                        );
1770                        let then_span = fcx.find_block_span_from_hir_id(then_id);
1771                        let else_span = fcx.find_block_span_from_hir_id(else_id);
1772                        // don't suggest wrapping either blocks in `if .. {} else {}`
1773                        let is_empty_arm = |id| {
1774                            let hir::Node::Block(blk) = fcx.tcx.hir_node(id) else {
1775                                return false;
1776                            };
1777                            if blk.expr.is_some() || !blk.stmts.is_empty() {
1778                                return false;
1779                            }
1780                            let Some((_, hir::Node::Expr(expr))) =
1781                                fcx.tcx.hir_parent_iter(id).nth(1)
1782                            else {
1783                                return false;
1784                            };
1785                            matches!(expr.kind, hir::ExprKind::If(..))
1786                        };
1787                        if !is_empty_arm(then_id) && !is_empty_arm(else_id) {
1788                            self.suggest_boxing_tail_for_return_position_impl_trait(
1789                                fcx,
1790                                &mut err,
1791                                rpit_def_id,
1792                                then_ty,
1793                                else_ty,
1794                                [then_span, else_span].into_iter(),
1795                            );
1796                        }
1797                    }
1798                    _ => {
1799                        err = fcx.err_ctxt().report_mismatched_types(
1800                            cause,
1801                            fcx.param_env,
1802                            expected,
1803                            found,
1804                            coercion_error,
1805                        );
1806                    }
1807                }
1808
1809                augment_error(&mut err);
1810
1811                if let Some(expr) = expression {
1812                    if let hir::ExprKind::Loop(
1813                        _,
1814                        _,
1815                        loop_src @ (hir::LoopSource::While | hir::LoopSource::ForLoop),
1816                        _,
1817                    ) = expr.kind
1818                    {
1819                        let loop_type = if loop_src == hir::LoopSource::While {
1820                            "`while` loops"
1821                        } else {
1822                            "`for` loops"
1823                        };
1824
1825                        err.note(format!("{loop_type} evaluate to unit type `()`"));
1826                    }
1827
1828                    fcx.emit_coerce_suggestions(
1829                        &mut err,
1830                        expr,
1831                        found,
1832                        expected,
1833                        None,
1834                        Some(coercion_error),
1835                    );
1836                }
1837
1838                let reported = err.emit_unless(unsized_return);
1839
1840                self.final_ty = Some(Ty::new_error(fcx.tcx, reported));
1841            }
1842        }
1843    }
1844
1845    fn suggest_boxing_tail_for_return_position_impl_trait(
1846        &self,
1847        fcx: &FnCtxt<'_, 'tcx>,
1848        err: &mut Diag<'_>,
1849        rpit_def_id: LocalDefId,
1850        a_ty: Ty<'tcx>,
1851        b_ty: Ty<'tcx>,
1852        arm_spans: impl Iterator<Item = Span>,
1853    ) {
1854        let compatible = |ty: Ty<'tcx>| {
1855            fcx.probe(|_| {
1856                let ocx = ObligationCtxt::new(fcx);
1857                ocx.register_obligations(
1858                    fcx.tcx.item_self_bounds(rpit_def_id).iter_identity().filter_map(|clause| {
1859                        let predicate = clause
1860                            .kind()
1861                            .map_bound(|clause| match clause {
1862                                ty::ClauseKind::Trait(trait_pred) => Some(ty::ClauseKind::Trait(
1863                                    trait_pred.with_self_ty(fcx.tcx, ty),
1864                                )),
1865                                ty::ClauseKind::Projection(proj_pred) => Some(
1866                                    ty::ClauseKind::Projection(proj_pred.with_self_ty(fcx.tcx, ty)),
1867                                ),
1868                                _ => None,
1869                            })
1870                            .transpose()?;
1871                        Some(Obligation::new(
1872                            fcx.tcx,
1873                            ObligationCause::dummy(),
1874                            fcx.param_env,
1875                            predicate,
1876                        ))
1877                    }),
1878                );
1879                ocx.select_where_possible().is_empty()
1880            })
1881        };
1882
1883        if !compatible(a_ty) || !compatible(b_ty) {
1884            return;
1885        }
1886
1887        let rpid_def_span = fcx.tcx.def_span(rpit_def_id);
1888        err.subdiagnostic(SuggestBoxingForReturnImplTrait::ChangeReturnType {
1889            start_sp: rpid_def_span.with_hi(rpid_def_span.lo() + BytePos(4)),
1890            end_sp: rpid_def_span.shrink_to_hi(),
1891        });
1892
1893        let (starts, ends) =
1894            arm_spans.map(|span| (span.shrink_to_lo(), span.shrink_to_hi())).unzip();
1895        err.subdiagnostic(SuggestBoxingForReturnImplTrait::BoxReturnExpr { starts, ends });
1896    }
1897
1898    fn report_return_mismatched_types<'infcx>(
1899        &self,
1900        cause: &ObligationCause<'tcx>,
1901        expected: Ty<'tcx>,
1902        found: Ty<'tcx>,
1903        ty_err: TypeError<'tcx>,
1904        fcx: &'infcx FnCtxt<'_, 'tcx>,
1905        block_or_return_id: hir::HirId,
1906        expression: Option<&'tcx hir::Expr<'tcx>>,
1907    ) -> Diag<'infcx> {
1908        let mut err =
1909            fcx.err_ctxt().report_mismatched_types(cause, fcx.param_env, expected, found, ty_err);
1910
1911        let due_to_block = matches!(fcx.tcx.hir_node(block_or_return_id), hir::Node::Block(..));
1912
1913        let parent_id = fcx.tcx.parent_hir_id(block_or_return_id);
1914        let parent = fcx.tcx.hir_node(parent_id);
1915        if let Some(expr) = expression
1916            && let hir::Node::Expr(&hir::Expr {
1917                kind: hir::ExprKind::Closure(&hir::Closure { body, .. }),
1918                ..
1919            }) = parent
1920            && !matches!(fcx.tcx.hir_body(body).value.kind, hir::ExprKind::Block(..))
1921        {
1922            fcx.suggest_missing_semicolon(&mut err, expr, expected, true);
1923        }
1924        // Verify that this is a tail expression of a function, otherwise the
1925        // label pointing out the cause for the type coercion will be wrong
1926        // as prior return coercions would not be relevant (#57664).
1927        if let Some(expr) = expression
1928            && due_to_block
1929        {
1930            fcx.suggest_missing_semicolon(&mut err, expr, expected, false);
1931            let pointing_at_return_type = fcx.suggest_mismatched_types_on_tail(
1932                &mut err,
1933                expr,
1934                expected,
1935                found,
1936                block_or_return_id,
1937            );
1938            if let Some(cond_expr) = fcx.tcx.hir_get_if_cause(expr.hir_id)
1939                && expected.is_unit()
1940                && !pointing_at_return_type
1941                // If the block is from an external macro or try (`?`) desugaring, then
1942                // do not suggest adding a semicolon, because there's nowhere to put it.
1943                // See issues #81943 and #87051.
1944                && matches!(
1945                    cond_expr.span.desugaring_kind(),
1946                    None | Some(DesugaringKind::WhileLoop)
1947                )
1948                && !cond_expr.span.in_external_macro(fcx.tcx.sess.source_map())
1949                && !matches!(
1950                    cond_expr.kind,
1951                    hir::ExprKind::Match(.., hir::MatchSource::TryDesugar(_))
1952                )
1953            {
1954                err.span_label(cond_expr.span, "expected this to be `()`");
1955                if expr.can_have_side_effects() {
1956                    fcx.suggest_semicolon_at_end(cond_expr.span, &mut err);
1957                }
1958            }
1959        };
1960
1961        // If this is due to an explicit `return`, suggest adding a return type.
1962        if let Some((fn_id, fn_decl)) = fcx.get_fn_decl(block_or_return_id)
1963            && !due_to_block
1964        {
1965            fcx.suggest_missing_return_type(&mut err, fn_decl, expected, found, fn_id);
1966        }
1967
1968        // If this is due to a block, then maybe we forgot a `return`/`break`.
1969        if due_to_block
1970            && let Some(expr) = expression
1971            && let Some(parent_fn_decl) =
1972                fcx.tcx.hir_fn_decl_by_hir_id(fcx.tcx.local_def_id_to_hir_id(fcx.body_id))
1973        {
1974            fcx.suggest_missing_break_or_return_expr(
1975                &mut err,
1976                expr,
1977                parent_fn_decl,
1978                expected,
1979                found,
1980                block_or_return_id,
1981                fcx.body_id,
1982            );
1983        }
1984
1985        let ret_coercion_span = fcx.ret_coercion_span.get();
1986
1987        if let Some(sp) = ret_coercion_span
1988            // If the closure has an explicit return type annotation, or if
1989            // the closure's return type has been inferred from outside
1990            // requirements (such as an Fn* trait bound), then a type error
1991            // may occur at the first return expression we see in the closure
1992            // (if it conflicts with the declared return type). Skip adding a
1993            // note in this case, since it would be incorrect.
1994            && let Some(fn_sig) = fcx.body_fn_sig()
1995            && fn_sig.output().is_ty_var()
1996        {
1997            err.span_note(sp, format!("return type inferred to be `{expected}` here"));
1998        }
1999
2000        err
2001    }
2002
2003    /// Checks whether the return type is unsized via an obligation, which makes
2004    /// sure we consider `dyn Trait: Sized` where clauses, which are trivially
2005    /// false but technically valid for typeck.
2006    fn is_return_ty_definitely_unsized(&self, fcx: &FnCtxt<'_, 'tcx>) -> bool {
2007        if let Some(sig) = fcx.body_fn_sig() {
2008            !fcx.predicate_may_hold(&Obligation::new(
2009                fcx.tcx,
2010                ObligationCause::dummy(),
2011                fcx.param_env,
2012                ty::TraitRef::new(
2013                    fcx.tcx,
2014                    fcx.tcx.require_lang_item(hir::LangItem::Sized, None),
2015                    [sig.output()],
2016                ),
2017            ))
2018        } else {
2019            false
2020        }
2021    }
2022
2023    pub(crate) fn complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx> {
2024        if let Some(final_ty) = self.final_ty {
2025            final_ty
2026        } else {
2027            // If we only had inputs that were of type `!` (or no
2028            // inputs at all), then the final type is `!`.
2029            assert_eq!(self.pushed, 0);
2030            fcx.tcx.types.never
2031        }
2032    }
2033}
2034
2035/// Something that can be converted into an expression to which we can
2036/// apply a coercion.
2037pub(crate) trait AsCoercionSite {
2038    fn as_coercion_site(&self) -> &hir::Expr<'_>;
2039}
2040
2041impl AsCoercionSite for hir::Expr<'_> {
2042    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2043        self
2044    }
2045}
2046
2047impl<'a, T> AsCoercionSite for &'a T
2048where
2049    T: AsCoercionSite,
2050{
2051    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2052        (**self).as_coercion_site()
2053    }
2054}
2055
2056impl AsCoercionSite for ! {
2057    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2058        *self
2059    }
2060}
2061
2062impl AsCoercionSite for hir::Arm<'_> {
2063    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2064        self.body
2065    }
2066}