Skip to main content

rustc_codegen_llvm/back/
write.rs

1use std::ffi::{CStr, CString};
2use std::io::{self, Write};
3use std::path::{Path, PathBuf};
4use std::ptr::null_mut;
5use std::sync::Arc;
6use std::{fs, slice, str};
7
8use libc::{c_char, c_int, c_void, size_t};
9use rustc_codegen_ssa::back::link::ensure_removed;
10use rustc_codegen_ssa::back::versioned_llvm_target;
11use rustc_codegen_ssa::back::write::{
12    BitcodeSection, CodegenContext, EmitObj, InlineAsmError, ModuleConfig, SharedEmitter,
13    TargetMachineFactoryConfig, TargetMachineFactoryFn,
14};
15use rustc_codegen_ssa::base::wants_wasm_eh;
16use rustc_codegen_ssa::common::TypeKind;
17use rustc_codegen_ssa::traits::*;
18use rustc_codegen_ssa::{CompiledModule, ModuleCodegen, ModuleKind};
19use rustc_data_structures::profiling::SelfProfilerRef;
20use rustc_data_structures::small_c_str::SmallCStr;
21use rustc_errors::{DiagCtxt, DiagCtxtHandle, Level};
22use rustc_fs_util::{link_or_copy, path_to_c_string};
23use rustc_middle::ty::TyCtxt;
24use rustc_session::Session;
25use rustc_session::config::{self, Lto, OutputType, Passes, SplitDwarfKind, SwitchWithOptPath};
26use rustc_span::{BytePos, InnerSpan, Pos, RemapPathScopeComponents, SpanData, SyntaxContext, sym};
27use rustc_target::spec::{
28    Arch, CodeModel, FloatAbi, RelocModel, SanitizerSet, SplitDebuginfo, TlsModel,
29};
30use tracing::{debug, trace};
31
32use crate::back::lto::ThinBuffer;
33use crate::back::owned_target_machine::OwnedTargetMachine;
34use crate::back::profiling::{
35    LlvmSelfProfiler, selfprofile_after_pass_callback, selfprofile_before_pass_callback,
36};
37use crate::builder::SBuilder;
38use crate::builder::gpu_offload::scalar_width;
39use crate::common::AsCCharPtr;
40use crate::errors::{
41    CopyBitcode, FromLlvmDiag, FromLlvmOptimizationDiag, LlvmError, UnknownCompression,
42    WithLlvmError, WriteBytecode,
43};
44use crate::llvm::diagnostic::OptimizationDiagnosticKind::*;
45use crate::llvm::{self, DiagnosticInfo};
46use crate::type_::llvm_type_ptr;
47use crate::{LlvmCodegenBackend, ModuleLlvm, SimpleCx, attributes, base, common, llvm_util};
48
49pub(crate) fn llvm_err<'a>(dcx: DiagCtxtHandle<'_>, err: LlvmError<'a>) -> ! {
50    match llvm::last_error() {
51        Some(llvm_err) => dcx.emit_fatal(WithLlvmError(err, llvm_err)),
52        None => dcx.emit_fatal(err),
53    }
54}
55
56fn write_output_file<'ll>(
57    dcx: DiagCtxtHandle<'_>,
58    target: &'ll llvm::TargetMachine,
59    no_builtins: bool,
60    m: &'ll llvm::Module,
61    output: &Path,
62    dwo_output: Option<&Path>,
63    file_type: llvm::FileType,
64    self_profiler_ref: &SelfProfilerRef,
65    verify_llvm_ir: bool,
66) {
67    {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_llvm/src/back/write.rs:67",
                        "rustc_codegen_llvm::back::write", ::tracing::Level::DEBUG,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_llvm/src/back/write.rs"),
                        ::tracing_core::__macro_support::Option::Some(67u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_codegen_llvm::back::write"),
                        ::tracing_core::field::FieldSet::new(&["message"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&format_args!("write_output_file output={0:?} dwo_output={1:?}",
                                                    output, dwo_output) as &dyn Value))])
            });
    } else { ; }
};debug!("write_output_file output={:?} dwo_output={:?}", output, dwo_output);
68    let output_c = path_to_c_string(output);
69    let dwo_output_c;
70    let dwo_output_ptr = if let Some(dwo_output) = dwo_output {
71        dwo_output_c = path_to_c_string(dwo_output);
72        dwo_output_c.as_ptr()
73    } else {
74        std::ptr::null()
75    };
76    let result = unsafe {
77        let pm = llvm::LLVMCreatePassManager();
78        llvm::LLVMAddAnalysisPasses(target, pm);
79        llvm::LLVMRustAddLibraryInfo(target, pm, m, no_builtins);
80        llvm::LLVMRustWriteOutputFile(
81            target,
82            pm,
83            m,
84            output_c.as_ptr(),
85            dwo_output_ptr,
86            file_type,
87            verify_llvm_ir,
88        )
89    };
90
91    // Record artifact sizes for self-profiling
92    if result == llvm::LLVMRustResult::Success {
93        let artifact_kind = match file_type {
94            llvm::FileType::ObjectFile => "object_file",
95            llvm::FileType::AssemblyFile => "assembly_file",
96        };
97        record_artifact_size(self_profiler_ref, artifact_kind, output);
98        if let Some(dwo_file) = dwo_output {
99            record_artifact_size(self_profiler_ref, "dwo_file", dwo_file);
100        }
101    }
102
103    result.into_result().unwrap_or_else(|()| llvm_err(dcx, LlvmError::WriteOutput { path: output }))
104}
105
106pub(crate) fn create_informational_target_machine(
107    sess: &Session,
108    only_base_features: bool,
109) -> OwnedTargetMachine {
110    let config = TargetMachineFactoryConfig { split_dwarf_file: None, output_obj_file: None };
111    // Can't use query system here quite yet because this function is invoked before the query
112    // system/tcx is set up.
113    let features = llvm_util::global_llvm_features(sess, only_base_features);
114    target_machine_factory(sess, config::OptLevel::No, &features)(config)
115        .unwrap_or_else(|err| llvm_err(sess.dcx(), err))
116}
117
118pub(crate) fn create_target_machine(tcx: TyCtxt<'_>, mod_name: &str) -> OwnedTargetMachine {
119    let split_dwarf_file = if tcx.sess.target_can_use_split_dwarf() {
120        tcx.output_filenames(()).split_dwarf_path(
121            tcx.sess.split_debuginfo(),
122            tcx.sess.opts.unstable_opts.split_dwarf_kind,
123            mod_name,
124            tcx.sess.invocation_temp.as_deref(),
125        )
126    } else {
127        None
128    };
129
130    let output_obj_file = Some(tcx.output_filenames(()).temp_path_for_cgu(
131        OutputType::Object,
132        mod_name,
133        tcx.sess.invocation_temp.as_deref(),
134    ));
135    let config = TargetMachineFactoryConfig { split_dwarf_file, output_obj_file };
136
137    target_machine_factory(
138        tcx.sess,
139        tcx.backend_optimization_level(()),
140        tcx.global_backend_features(()),
141    )(config)
142    .unwrap_or_else(|err| llvm_err(tcx.dcx(), err))
143}
144
145fn to_llvm_opt_settings(cfg: config::OptLevel) -> (llvm::CodeGenOptLevel, llvm::CodeGenOptSize) {
146    use self::config::OptLevel::*;
147    match cfg {
148        No => (llvm::CodeGenOptLevel::None, llvm::CodeGenOptSizeNone),
149        Less => (llvm::CodeGenOptLevel::Less, llvm::CodeGenOptSizeNone),
150        More => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeNone),
151        Aggressive => (llvm::CodeGenOptLevel::Aggressive, llvm::CodeGenOptSizeNone),
152        Size => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeDefault),
153        SizeMin => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeAggressive),
154    }
155}
156
157fn to_pass_builder_opt_level(cfg: config::OptLevel) -> llvm::PassBuilderOptLevel {
158    use config::OptLevel::*;
159    match cfg {
160        No => llvm::PassBuilderOptLevel::O0,
161        Less => llvm::PassBuilderOptLevel::O1,
162        More => llvm::PassBuilderOptLevel::O2,
163        Aggressive => llvm::PassBuilderOptLevel::O3,
164        Size => llvm::PassBuilderOptLevel::Os,
165        SizeMin => llvm::PassBuilderOptLevel::Oz,
166    }
167}
168
169fn to_llvm_relocation_model(relocation_model: RelocModel) -> llvm::RelocModel {
170    match relocation_model {
171        RelocModel::Static => llvm::RelocModel::Static,
172        // LLVM doesn't have a PIE relocation model, it represents PIE as PIC with an extra
173        // attribute.
174        RelocModel::Pic | RelocModel::Pie => llvm::RelocModel::PIC,
175        RelocModel::DynamicNoPic => llvm::RelocModel::DynamicNoPic,
176        RelocModel::Ropi => llvm::RelocModel::ROPI,
177        RelocModel::Rwpi => llvm::RelocModel::RWPI,
178        RelocModel::RopiRwpi => llvm::RelocModel::ROPI_RWPI,
179    }
180}
181
182pub(crate) fn to_llvm_code_model(code_model: Option<CodeModel>) -> llvm::CodeModel {
183    match code_model {
184        Some(CodeModel::Tiny) => llvm::CodeModel::Tiny,
185        Some(CodeModel::Small) => llvm::CodeModel::Small,
186        Some(CodeModel::Kernel) => llvm::CodeModel::Kernel,
187        Some(CodeModel::Medium) => llvm::CodeModel::Medium,
188        Some(CodeModel::Large) => llvm::CodeModel::Large,
189        None => llvm::CodeModel::None,
190    }
191}
192
193fn to_llvm_float_abi(float_abi: Option<FloatAbi>) -> llvm::FloatAbi {
194    match float_abi {
195        None => llvm::FloatAbi::Default,
196        Some(FloatAbi::Soft) => llvm::FloatAbi::Soft,
197        Some(FloatAbi::Hard) => llvm::FloatAbi::Hard,
198    }
199}
200
201pub(crate) fn target_machine_factory(
202    sess: &Session,
203    optlvl: config::OptLevel,
204    target_features: &[String],
205) -> TargetMachineFactoryFn<LlvmCodegenBackend> {
206    // Self-profile timer for creating a _factory_.
207    let _prof_timer = sess.prof.generic_activity("target_machine_factory");
208
209    let reloc_model = to_llvm_relocation_model(sess.relocation_model());
210
211    let (opt_level, _) = to_llvm_opt_settings(optlvl);
212    let float_abi = if sess.target.arch == Arch::Arm && sess.opts.cg.soft_float {
213        llvm::FloatAbi::Soft
214    } else {
215        // `validate_commandline_args_with_session_available` has already warned about this being
216        // ignored. Let's make sure LLVM doesn't suddenly start using this flag on more targets.
217        to_llvm_float_abi(sess.target.llvm_floatabi)
218    };
219
220    let ffunction_sections =
221        sess.opts.unstable_opts.function_sections.unwrap_or(sess.target.function_sections);
222    let fdata_sections = ffunction_sections;
223    let funique_section_names = !sess.opts.unstable_opts.no_unique_section_names;
224
225    let code_model = to_llvm_code_model(sess.code_model());
226
227    let mut singlethread = sess.target.singlethread;
228
229    // On the wasm target once the `atomics` feature is enabled that means that
230    // we're no longer single-threaded, or otherwise we don't want LLVM to
231    // lower atomic operations to single-threaded operations.
232    if singlethread && sess.target.is_like_wasm && sess.target_features.contains(&sym::atomics) {
233        singlethread = false;
234    }
235
236    let triple = SmallCStr::new(&versioned_llvm_target(sess));
237    let cpu = SmallCStr::new(llvm_util::target_cpu(sess));
238    let features = CString::new(target_features.join(",")).unwrap();
239    let abi = SmallCStr::new(&sess.target.llvm_abiname);
240    let trap_unreachable =
241        sess.opts.unstable_opts.trap_unreachable.unwrap_or(sess.target.trap_unreachable);
242    let emit_stack_size_section = sess.opts.unstable_opts.emit_stack_sizes;
243
244    let verbose_asm = sess.opts.unstable_opts.verbose_asm;
245    let relax_elf_relocations =
246        sess.opts.unstable_opts.relax_elf_relocations.unwrap_or(sess.target.relax_elf_relocations);
247
248    let use_init_array =
249        !sess.opts.unstable_opts.use_ctors_section.unwrap_or(sess.target.use_ctors_section);
250
251    let path_mapping = sess.source_map().path_mapping().clone();
252    let working_dir = sess.source_map().working_dir().clone();
253
254    let use_emulated_tls = #[allow(non_exhaustive_omitted_patterns)] match sess.tls_model() {
    TlsModel::Emulated => true,
    _ => false,
}matches!(sess.tls_model(), TlsModel::Emulated);
255
256    let debuginfo_compression = match sess.opts.unstable_opts.debuginfo_compression {
257        config::DebugInfoCompression::None => llvm::CompressionKind::None,
258        config::DebugInfoCompression::Zlib => {
259            if llvm::LLVMRustLLVMHasZlibCompression() {
260                llvm::CompressionKind::Zlib
261            } else {
262                sess.dcx().emit_warn(UnknownCompression { algorithm: "zlib" });
263                llvm::CompressionKind::None
264            }
265        }
266        config::DebugInfoCompression::Zstd => {
267            if llvm::LLVMRustLLVMHasZstdCompression() {
268                llvm::CompressionKind::Zstd
269            } else {
270                sess.dcx().emit_warn(UnknownCompression { algorithm: "zstd" });
271                llvm::CompressionKind::None
272            }
273        }
274    };
275
276    let use_wasm_eh = wants_wasm_eh(sess);
277
278    let large_data_threshold = sess.opts.unstable_opts.large_data_threshold.unwrap_or(0);
279
280    let prof = SelfProfilerRef::clone(&sess.prof);
281    Arc::new(move |config: TargetMachineFactoryConfig| {
282        // Self-profile timer for invoking a factory to create a target machine.
283        let _prof_timer = prof.generic_activity("target_machine_factory_inner");
284
285        let path_to_cstring_helper = |path: Option<PathBuf>| -> CString {
286            let path = path.unwrap_or_default();
287            let path = path_mapping
288                .to_real_filename(&working_dir, path)
289                .path(RemapPathScopeComponents::DEBUGINFO)
290                .to_string_lossy()
291                .into_owned();
292            CString::new(path).unwrap()
293        };
294
295        let split_dwarf_file = path_to_cstring_helper(config.split_dwarf_file);
296        let output_obj_file = path_to_cstring_helper(config.output_obj_file);
297
298        OwnedTargetMachine::new(
299            &triple,
300            &cpu,
301            &features,
302            &abi,
303            code_model,
304            reloc_model,
305            opt_level,
306            float_abi,
307            ffunction_sections,
308            fdata_sections,
309            funique_section_names,
310            trap_unreachable,
311            singlethread,
312            verbose_asm,
313            emit_stack_size_section,
314            relax_elf_relocations,
315            use_init_array,
316            &split_dwarf_file,
317            &output_obj_file,
318            debuginfo_compression,
319            use_emulated_tls,
320            use_wasm_eh,
321            large_data_threshold,
322        )
323    })
324}
325
326pub(crate) fn save_temp_bitcode(
327    cgcx: &CodegenContext<LlvmCodegenBackend>,
328    module: &ModuleCodegen<ModuleLlvm>,
329    name: &str,
330) {
331    if !cgcx.save_temps {
332        return;
333    }
334    let ext = ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0}.bc", name))
    })format!("{name}.bc");
335    let path = cgcx.output_filenames.temp_path_ext_for_cgu(
336        &ext,
337        &module.name,
338        cgcx.invocation_temp.as_deref(),
339    );
340    write_bitcode_to_file(module, &path)
341}
342
343fn write_bitcode_to_file(module: &ModuleCodegen<ModuleLlvm>, path: &Path) {
344    unsafe {
345        let path = path_to_c_string(&path);
346        let llmod = module.module_llvm.llmod();
347        llvm::LLVMWriteBitcodeToFile(llmod, path.as_ptr());
348    }
349}
350
351/// In what context is a diagnostic handler being attached to a codegen unit?
352pub(crate) enum CodegenDiagnosticsStage {
353    /// Prelink optimization stage.
354    Opt,
355    /// LTO/ThinLTO postlink optimization stage.
356    LTO,
357    /// Code generation.
358    Codegen,
359}
360
361pub(crate) struct DiagnosticHandlers<'a> {
362    data: *mut (&'a CodegenContext<LlvmCodegenBackend>, &'a SharedEmitter),
363    llcx: &'a llvm::Context,
364    old_handler: Option<&'a llvm::DiagnosticHandler>,
365}
366
367impl<'a> DiagnosticHandlers<'a> {
368    pub(crate) fn new(
369        cgcx: &'a CodegenContext<LlvmCodegenBackend>,
370        shared_emitter: &'a SharedEmitter,
371        llcx: &'a llvm::Context,
372        module: &ModuleCodegen<ModuleLlvm>,
373        stage: CodegenDiagnosticsStage,
374    ) -> Self {
375        let remark_passes_all: bool;
376        let remark_passes: Vec<CString>;
377        match &cgcx.remark {
378            Passes::All => {
379                remark_passes_all = true;
380                remark_passes = Vec::new();
381            }
382            Passes::Some(passes) => {
383                remark_passes_all = false;
384                remark_passes =
385                    passes.iter().map(|name| CString::new(name.as_str()).unwrap()).collect();
386            }
387        };
388        let remark_passes: Vec<*const c_char> =
389            remark_passes.iter().map(|name: &CString| name.as_ptr()).collect();
390        let remark_file = cgcx
391            .remark_dir
392            .as_ref()
393            // Use the .opt.yaml file suffix, which is supported by LLVM's opt-viewer.
394            .map(|dir| {
395                let stage_suffix = match stage {
396                    CodegenDiagnosticsStage::Codegen => "codegen",
397                    CodegenDiagnosticsStage::Opt => "opt",
398                    CodegenDiagnosticsStage::LTO => "lto",
399                };
400                dir.join(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0}.{1}.opt.yaml", module.name,
                stage_suffix))
    })format!("{}.{stage_suffix}.opt.yaml", module.name))
401            })
402            .and_then(|dir| dir.to_str().and_then(|p| CString::new(p).ok()));
403
404        let pgo_available = cgcx.module_config.pgo_use.is_some();
405        let data = Box::into_raw(Box::new((cgcx, shared_emitter)));
406        unsafe {
407            let old_handler = llvm::LLVMRustContextGetDiagnosticHandler(llcx);
408            llvm::LLVMRustContextConfigureDiagnosticHandler(
409                llcx,
410                diagnostic_handler,
411                data.cast(),
412                remark_passes_all,
413                remark_passes.as_ptr(),
414                remark_passes.len(),
415                // The `as_ref()` is important here, otherwise the `CString` will be dropped
416                // too soon!
417                remark_file.as_ref().map(|dir| dir.as_ptr()).unwrap_or(std::ptr::null()),
418                pgo_available,
419            );
420            DiagnosticHandlers { data, llcx, old_handler }
421        }
422    }
423}
424
425impl<'a> Drop for DiagnosticHandlers<'a> {
426    fn drop(&mut self) {
427        unsafe {
428            llvm::LLVMRustContextSetDiagnosticHandler(self.llcx, self.old_handler);
429            drop(Box::from_raw(self.data));
430        }
431    }
432}
433
434fn report_inline_asm(
435    cgcx: &CodegenContext<LlvmCodegenBackend>,
436    msg: String,
437    level: llvm::DiagnosticLevel,
438    cookie: u64,
439    source: Option<(String, Vec<InnerSpan>)>,
440) -> InlineAsmError {
441    // In LTO build we may get srcloc values from other crates which are invalid
442    // since they use a different source map. To be safe we just suppress these
443    // in LTO builds.
444    let span = if cookie == 0 || #[allow(non_exhaustive_omitted_patterns)] match cgcx.lto {
    Lto::Fat | Lto::Thin => true,
    _ => false,
}matches!(cgcx.lto, Lto::Fat | Lto::Thin) {
445        SpanData::default()
446    } else {
447        SpanData {
448            lo: BytePos::from_u32(cookie as u32),
449            hi: BytePos::from_u32((cookie >> 32) as u32),
450            ctxt: SyntaxContext::root(),
451            parent: None,
452        }
453    };
454    let level = match level {
455        llvm::DiagnosticLevel::Error => Level::Error,
456        llvm::DiagnosticLevel::Warning => Level::Warning,
457        llvm::DiagnosticLevel::Note | llvm::DiagnosticLevel::Remark => Level::Note,
458    };
459    let msg = msg.trim_prefix("error: ").to_string();
460    InlineAsmError { span, msg, level, source }
461}
462
463unsafe extern "C" fn diagnostic_handler(info: &DiagnosticInfo, user: *mut c_void) {
464    if user.is_null() {
465        return;
466    }
467    let (cgcx, shared_emitter) =
468        unsafe { *(user as *const (&CodegenContext<LlvmCodegenBackend>, &SharedEmitter)) };
469
470    let dcx = DiagCtxt::new(Box::new(shared_emitter.clone()));
471    let dcx = dcx.handle();
472
473    match unsafe { llvm::diagnostic::Diagnostic::unpack(info) } {
474        llvm::diagnostic::InlineAsm(inline) => {
475            // FIXME use dcx
476            shared_emitter.inline_asm_error(report_inline_asm(
477                cgcx,
478                inline.message,
479                inline.level,
480                inline.cookie,
481                inline.source,
482            ));
483        }
484
485        llvm::diagnostic::Optimization(opt) => {
486            dcx.emit_note(FromLlvmOptimizationDiag {
487                filename: &opt.filename,
488                line: opt.line,
489                column: opt.column,
490                pass_name: &opt.pass_name,
491                kind: match opt.kind {
492                    OptimizationRemark => "success",
493                    OptimizationMissed | OptimizationFailure => "missed",
494                    OptimizationAnalysis
495                    | OptimizationAnalysisFPCommute
496                    | OptimizationAnalysisAliasing => "analysis",
497                    OptimizationRemarkOther => "other",
498                },
499                message: &opt.message,
500            });
501        }
502        llvm::diagnostic::PGO(diagnostic_ref) | llvm::diagnostic::Linker(diagnostic_ref) => {
503            let message = llvm::build_string(|s| unsafe {
504                llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
505            })
506            .expect("non-UTF8 diagnostic");
507            dcx.emit_warn(FromLlvmDiag { message });
508        }
509        llvm::diagnostic::Unsupported(diagnostic_ref) => {
510            let message = llvm::build_string(|s| unsafe {
511                llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
512            })
513            .expect("non-UTF8 diagnostic");
514            dcx.emit_err(FromLlvmDiag { message });
515        }
516        llvm::diagnostic::UnknownDiagnostic(..) => {}
517    }
518}
519
520fn get_pgo_gen_path(config: &ModuleConfig) -> Option<CString> {
521    match config.pgo_gen {
522        SwitchWithOptPath::Enabled(ref opt_dir_path) => {
523            let path = if let Some(dir_path) = opt_dir_path {
524                dir_path.join("default_%m.profraw")
525            } else {
526                PathBuf::from("default_%m.profraw")
527            };
528
529            Some(CString::new(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0}", path.display()))
    })format!("{}", path.display())).unwrap())
530        }
531        SwitchWithOptPath::Disabled => None,
532    }
533}
534
535fn get_pgo_use_path(config: &ModuleConfig) -> Option<CString> {
536    config
537        .pgo_use
538        .as_ref()
539        .map(|path_buf| CString::new(path_buf.to_string_lossy().as_bytes()).unwrap())
540}
541
542fn get_pgo_sample_use_path(config: &ModuleConfig) -> Option<CString> {
543    config
544        .pgo_sample_use
545        .as_ref()
546        .map(|path_buf| CString::new(path_buf.to_string_lossy().as_bytes()).unwrap())
547}
548
549fn get_instr_profile_output_path(config: &ModuleConfig) -> Option<CString> {
550    config.instrument_coverage.then(|| c"default_%m_%p.profraw".to_owned())
551}
552
553// PreAD will run llvm opts but disable size increasing opts (vectorization, loop unrolling)
554// DuringAD is the same as above, but also runs the enzyme opt and autodiff passes.
555// PostAD will run all opts, including size increasing opts.
556#[derive(#[automatically_derived]
impl ::core::fmt::Debug for AutodiffStage {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                AutodiffStage::PreAD => "PreAD",
                AutodiffStage::DuringAD => "DuringAD",
                AutodiffStage::PostAD => "PostAD",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for AutodiffStage {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for AutodiffStage {
    #[inline]
    fn eq(&self, other: &AutodiffStage) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
557pub(crate) enum AutodiffStage {
558    PreAD,
559    DuringAD,
560    PostAD,
561}
562
563pub(crate) unsafe fn llvm_optimize(
564    cgcx: &CodegenContext<LlvmCodegenBackend>,
565    dcx: DiagCtxtHandle<'_>,
566    module: &ModuleCodegen<ModuleLlvm>,
567    thin_lto_buffer: Option<&mut *mut llvm::ThinLTOBuffer>,
568    config: &ModuleConfig,
569    opt_level: config::OptLevel,
570    opt_stage: llvm::OptStage,
571    autodiff_stage: AutodiffStage,
572) {
573    // Enzyme:
574    // The whole point of compiler based AD is to differentiate optimized IR instead of unoptimized
575    // source code. However, benchmarks show that optimizations increasing the code size
576    // tend to reduce AD performance. Therefore deactivate them before AD, then differentiate the code
577    // and finally re-optimize the module, now with all optimizations available.
578    // FIXME(ZuseZ4): In a future update we could figure out how to only optimize individual functions getting
579    // differentiated.
580
581    let consider_ad = config.autodiff.contains(&config::AutoDiff::Enable);
582    let run_enzyme = autodiff_stage == AutodiffStage::DuringAD;
583    let print_before_enzyme = config.autodiff.contains(&config::AutoDiff::PrintModBefore);
584    let print_after_enzyme = config.autodiff.contains(&config::AutoDiff::PrintModAfter);
585    let print_passes = config.autodiff.contains(&config::AutoDiff::PrintPasses);
586    let merge_functions;
587    let unroll_loops;
588    let vectorize_slp;
589    let vectorize_loop;
590
591    // When we build rustc with enzyme/autodiff support, we want to postpone size-increasing
592    // optimizations until after differentiation. Our pipeline is thus: (opt + enzyme), (full opt).
593    // We therefore have two calls to llvm_optimize, if autodiff is used.
594    //
595    // We also must disable merge_functions, since autodiff placeholder/dummy bodies tend to be
596    // identical. We run opts before AD, so there is a chance that LLVM will merge our dummies.
597    // In that case, we lack some dummy bodies and can't replace them with the real AD code anymore.
598    // We then would need to abort compilation. This was especially common in test cases.
599    if consider_ad && autodiff_stage != AutodiffStage::PostAD {
600        merge_functions = false;
601        unroll_loops = false;
602        vectorize_slp = false;
603        vectorize_loop = false;
604    } else {
605        unroll_loops =
606            opt_level != config::OptLevel::Size && opt_level != config::OptLevel::SizeMin;
607        merge_functions = config.merge_functions;
608        vectorize_slp = config.vectorize_slp;
609        vectorize_loop = config.vectorize_loop;
610    }
611    {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_llvm/src/back/write.rs:611",
                        "rustc_codegen_llvm::back::write", ::tracing::Level::TRACE,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_llvm/src/back/write.rs"),
                        ::tracing_core::__macro_support::Option::Some(611u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_codegen_llvm::back::write"),
                        ::tracing_core::field::FieldSet::new(&["unroll_loops",
                                        "vectorize_slp", "vectorize_loop", "run_enzyme"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::TRACE <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::TRACE <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&debug(&unroll_loops)
                                            as &dyn Value)),
                                (&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&debug(&vectorize_slp)
                                            as &dyn Value)),
                                (&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&debug(&vectorize_loop)
                                            as &dyn Value)),
                                (&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&debug(&run_enzyme)
                                            as &dyn Value))])
            });
    } else { ; }
};trace!(?unroll_loops, ?vectorize_slp, ?vectorize_loop, ?run_enzyme);
612    if thin_lto_buffer.is_some() {
613        if !#[allow(non_exhaustive_omitted_patterns)] match opt_stage {
            llvm::OptStage::PreLinkNoLTO | llvm::OptStage::PreLinkFatLTO |
                llvm::OptStage::PreLinkThinLTO => true,
            _ => false,
        } {
    {
        ::core::panicking::panic_fmt(format_args!("the bitcode for LTO can only be obtained at the pre-link stage"));
    }
};assert!(
614            matches!(
615                opt_stage,
616                llvm::OptStage::PreLinkNoLTO
617                    | llvm::OptStage::PreLinkFatLTO
618                    | llvm::OptStage::PreLinkThinLTO
619            ),
620            "the bitcode for LTO can only be obtained at the pre-link stage"
621        );
622    }
623    let pgo_gen_path = get_pgo_gen_path(config);
624    let pgo_use_path = get_pgo_use_path(config);
625    let pgo_sample_use_path = get_pgo_sample_use_path(config);
626    let is_lto = opt_stage == llvm::OptStage::ThinLTO || opt_stage == llvm::OptStage::FatLTO;
627    let instr_profile_output_path = get_instr_profile_output_path(config);
628    let sanitize_dataflow_abilist: Vec<_> = config
629        .sanitizer_dataflow_abilist
630        .iter()
631        .map(|file| CString::new(file.as_str()).unwrap())
632        .collect();
633    let sanitize_dataflow_abilist_ptrs: Vec<_> =
634        sanitize_dataflow_abilist.iter().map(|file| file.as_ptr()).collect();
635    // Sanitizer instrumentation is only inserted during the pre-link optimization stage.
636    let sanitizer_options = if !is_lto {
637        Some(llvm::SanitizerOptions {
638            sanitize_address: config.sanitizer.contains(SanitizerSet::ADDRESS),
639            sanitize_address_recover: config.sanitizer_recover.contains(SanitizerSet::ADDRESS),
640            sanitize_cfi: config.sanitizer.contains(SanitizerSet::CFI),
641            sanitize_dataflow: config.sanitizer.contains(SanitizerSet::DATAFLOW),
642            sanitize_dataflow_abilist: sanitize_dataflow_abilist_ptrs.as_ptr(),
643            sanitize_dataflow_abilist_len: sanitize_dataflow_abilist_ptrs.len(),
644            sanitize_kcfi: config.sanitizer.contains(SanitizerSet::KCFI),
645            sanitize_memory: config.sanitizer.contains(SanitizerSet::MEMORY),
646            sanitize_memory_recover: config.sanitizer_recover.contains(SanitizerSet::MEMORY),
647            sanitize_memory_track_origins: config.sanitizer_memory_track_origins as c_int,
648            sanitize_realtime: config.sanitizer.contains(SanitizerSet::REALTIME),
649            sanitize_thread: config.sanitizer.contains(SanitizerSet::THREAD),
650            sanitize_hwaddress: config.sanitizer.contains(SanitizerSet::HWADDRESS),
651            sanitize_hwaddress_recover: config.sanitizer_recover.contains(SanitizerSet::HWADDRESS),
652            sanitize_kernel_address: config.sanitizer.contains(SanitizerSet::KERNELADDRESS),
653            sanitize_kernel_address_recover: config
654                .sanitizer_recover
655                .contains(SanitizerSet::KERNELADDRESS),
656        })
657    } else {
658        None
659    };
660
661    fn handle_offload<'ll>(cx: &'ll SimpleCx<'_>, old_fn: &llvm::Value) {
662        let old_fn_ty = cx.get_type_of_global(old_fn);
663        let old_param_types = cx.func_params_types(old_fn_ty);
664        let old_param_count = old_param_types.len();
665        if old_param_count == 0 {
666            return;
667        }
668
669        let first_param = llvm::get_param(old_fn, 0);
670        let c_name = llvm::get_value_name(first_param);
671        let first_arg_name = str::from_utf8(&c_name).unwrap();
672        // We might call llvm_optimize (and thus this code) multiple times on the same IR,
673        // but we shouldn't add this helper ptr multiple times.
674        // FIXME(offload): This could break if the user calls his first argument `dyn_ptr`.
675        if first_arg_name == "dyn_ptr" {
676            return;
677        }
678
679        // Create the new parameter list, with ptr as the first argument
680        let mut new_param_types = Vec::with_capacity(old_param_count as usize + 1);
681        new_param_types.push(cx.type_ptr());
682
683        // This relies on undocumented LLVM knowledge that scalars must be passed as i64
684        for &old_ty in &old_param_types {
685            let new_ty = match cx.type_kind(old_ty) {
686                TypeKind::Half | TypeKind::Float | TypeKind::Double | TypeKind::Integer => {
687                    cx.type_i64()
688                }
689                _ => old_ty,
690            };
691            new_param_types.push(new_ty);
692        }
693
694        // Create the new function type
695        let ret_ty = unsafe { llvm::LLVMGetReturnType(old_fn_ty) };
696        let new_fn_ty = cx.type_func(&new_param_types, ret_ty);
697
698        // Create the new function, with a temporary .offload name to avoid a name collision.
699        let old_fn_name = String::from_utf8(llvm::get_value_name(old_fn)).unwrap();
700        let new_fn_name = ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0}.offload", &old_fn_name))
    })format!("{}.offload", &old_fn_name);
701        let new_fn = cx.add_func(&new_fn_name, new_fn_ty);
702        let a0 = llvm::get_param(new_fn, 0);
703        llvm::set_value_name(a0, CString::new("dyn_ptr").unwrap().as_bytes());
704
705        let bb = SBuilder::append_block(cx, new_fn, "entry");
706        let mut builder = SBuilder::build(cx, bb);
707
708        let mut old_args_rebuilt = Vec::with_capacity(old_param_types.len());
709
710        for (i, &old_ty) in old_param_types.iter().enumerate() {
711            let new_arg = llvm::get_param(new_fn, (i + 1) as u32);
712
713            let rebuilt = match cx.type_kind(old_ty) {
714                TypeKind::Half | TypeKind::Float | TypeKind::Double | TypeKind::Integer => {
715                    let num_bits = scalar_width(cx, old_ty);
716
717                    let trunc = builder.trunc(new_arg, cx.type_ix(num_bits));
718                    builder.bitcast(trunc, old_ty)
719                }
720                _ => new_arg,
721            };
722
723            old_args_rebuilt.push(rebuilt);
724        }
725
726        builder.ret_void();
727
728        // Here we map the old arguments to the new arguments, with an offset of 1 to make sure
729        // that we don't use the newly added `%dyn_ptr`.
730        unsafe {
731            llvm::LLVMRustOffloadMapper(old_fn, new_fn, old_args_rebuilt.as_ptr());
732        }
733
734        llvm::set_linkage(new_fn, llvm::get_linkage(old_fn));
735        llvm::set_visibility(new_fn, llvm::get_visibility(old_fn));
736
737        // Replace all uses of old_fn with new_fn (RAUW)
738        unsafe {
739            llvm::LLVMReplaceAllUsesWith(old_fn, new_fn);
740        }
741        let name = llvm::get_value_name(old_fn);
742        unsafe {
743            llvm::LLVMDeleteFunction(old_fn);
744        }
745        // Now we can re-use the old name, without name collision.
746        llvm::set_value_name(new_fn, &name);
747    }
748
749    if cgcx.target_is_like_gpu && config.offload.contains(&config::Offload::Device) {
750        let cx =
751            SimpleCx::new(module.module_llvm.llmod(), module.module_llvm.llcx, cgcx.pointer_size);
752        for func in cx.get_functions() {
753            let offload_kernel = "offload-kernel";
754            if attributes::has_string_attr(func, offload_kernel) {
755                handle_offload(&cx, func);
756            }
757            attributes::remove_string_attr_from_llfn(func, offload_kernel);
758        }
759    }
760
761    let mut llvm_profiler = cgcx
762        .prof
763        .llvm_recording_enabled()
764        .then(|| LlvmSelfProfiler::new(cgcx.prof.get_self_profiler().unwrap()));
765
766    let llvm_selfprofiler =
767        llvm_profiler.as_mut().map(|s| s as *mut _ as *mut c_void).unwrap_or(std::ptr::null_mut());
768
769    let extra_passes = if !is_lto { config.passes.join(",") } else { "".to_string() };
770
771    let llvm_plugins = config.llvm_plugins.join(",");
772
773    let enzyme_fn = if consider_ad {
774        let wrapper = llvm::EnzymeWrapper::get_instance();
775        wrapper.registerEnzymeAndPassPipeline
776    } else {
777        std::ptr::null()
778    };
779
780    let result = unsafe {
781        llvm::LLVMRustOptimize(
782            module.module_llvm.llmod(),
783            &*module.module_llvm.tm.raw(),
784            to_pass_builder_opt_level(opt_level),
785            opt_stage,
786            cgcx.use_linker_plugin_lto,
787            config.no_prepopulate_passes,
788            config.verify_llvm_ir,
789            config.lint_llvm_ir,
790            thin_lto_buffer,
791            config.emit_thin_lto,
792            config.emit_thin_lto_summary,
793            merge_functions,
794            unroll_loops,
795            vectorize_slp,
796            vectorize_loop,
797            config.no_builtins,
798            config.emit_lifetime_markers,
799            enzyme_fn,
800            print_before_enzyme,
801            print_after_enzyme,
802            print_passes,
803            sanitizer_options.as_ref(),
804            pgo_gen_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
805            pgo_use_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
806            config.instrument_coverage,
807            instr_profile_output_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
808            pgo_sample_use_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
809            config.debug_info_for_profiling,
810            llvm_selfprofiler,
811            selfprofile_before_pass_callback,
812            selfprofile_after_pass_callback,
813            extra_passes.as_c_char_ptr(),
814            extra_passes.len(),
815            llvm_plugins.as_c_char_ptr(),
816            llvm_plugins.len(),
817        )
818    };
819
820    if cgcx.target_is_like_gpu && config.offload.contains(&config::Offload::Device) {
821        let device_path = cgcx.output_filenames.path(OutputType::Object);
822        let device_dir = device_path.parent().unwrap();
823        let device_out = device_dir.join("host.out");
824        let device_out_c = path_to_c_string(device_out.as_path());
825        unsafe {
826            // 1) Bundle device module into offload image host.out (device TM)
827            let ok = llvm::LLVMRustBundleImages(
828                module.module_llvm.llmod(),
829                module.module_llvm.tm.raw(),
830                device_out_c.as_ptr(),
831            );
832            if !ok || !device_out.exists() {
833                dcx.emit_err(crate::errors::OffloadBundleImagesFailed);
834            }
835        }
836    }
837
838    // This assumes that we previously compiled our kernels for a gpu target, which created a
839    // `host.out` artifact. The user is supposed to provide us with a path to this artifact, we
840    // don't need any other artifacts from the previous run. We will embed this artifact into our
841    // LLVM-IR host module, to create a `host.o` ObjectFile, which we will write to disk.
842    // The last, not yet automated steps uses the `clang-linker-wrapper` to process `host.o`.
843    if !cgcx.target_is_like_gpu {
844        if let Some(device_path) = config
845            .offload
846            .iter()
847            .find_map(|o| if let config::Offload::Host(path) = o { Some(path) } else { None })
848        {
849            let device_pathbuf = PathBuf::from(device_path);
850            if device_pathbuf.is_relative() {
851                dcx.emit_err(crate::errors::OffloadWithoutAbsPath);
852            } else if device_pathbuf
853                .file_name()
854                .and_then(|n| n.to_str())
855                .is_some_and(|n| n != "host.out")
856            {
857                dcx.emit_err(crate::errors::OffloadWrongFileName);
858            } else if !device_pathbuf.exists() {
859                dcx.emit_err(crate::errors::OffloadNonexistingPath);
860            }
861            let host_path = cgcx.output_filenames.path(OutputType::Object);
862            let host_dir = host_path.parent().unwrap();
863            let out_obj = host_dir.join("host.o");
864            let host_out_c = path_to_c_string(device_pathbuf.as_path());
865
866            // 2) Finalize host: lib.bc + host.out -> host.o (host TM)
867            // We create a full clone of our LLVM host module, since we will embed the device IR
868            // into it, and this might break caching or incremental compilation otherwise.
869            let llmod2 = llvm::LLVMCloneModule(module.module_llvm.llmod());
870            let ok =
871                unsafe { llvm::LLVMRustOffloadEmbedBufferInModule(llmod2, host_out_c.as_ptr()) };
872            if !ok {
873                dcx.emit_err(crate::errors::OffloadEmbedFailed);
874            }
875            write_output_file(
876                dcx,
877                module.module_llvm.tm.raw(),
878                config.no_builtins,
879                llmod2,
880                &out_obj,
881                None,
882                llvm::FileType::ObjectFile,
883                &cgcx.prof,
884                true,
885            );
886            // We ignore cgcx.save_temps here and unconditionally always keep our `host.out` artifact.
887            // Otherwise, recompiling the host code would fail since we deleted that device artifact
888            // in the previous host compilation, which would be confusing at best.
889        }
890    }
891    result.into_result().unwrap_or_else(|()| llvm_err(dcx, LlvmError::RunLlvmPasses))
892}
893
894// Unsafe due to LLVM calls.
895pub(crate) fn optimize(
896    cgcx: &CodegenContext<LlvmCodegenBackend>,
897    shared_emitter: &SharedEmitter,
898    module: &mut ModuleCodegen<ModuleLlvm>,
899    config: &ModuleConfig,
900) {
901    let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_optimize", &*module.name);
902
903    let dcx = DiagCtxt::new(Box::new(shared_emitter.clone()));
904    let dcx = dcx.handle();
905
906    let llcx = &*module.module_llvm.llcx;
907    let _handlers =
908        DiagnosticHandlers::new(cgcx, shared_emitter, llcx, module, CodegenDiagnosticsStage::Opt);
909
910    if config.emit_no_opt_bc {
911        let out = cgcx.output_filenames.temp_path_ext_for_cgu(
912            "no-opt.bc",
913            &module.name,
914            cgcx.invocation_temp.as_deref(),
915        );
916        write_bitcode_to_file(module, &out)
917    }
918
919    // FIXME(ZuseZ4): support SanitizeHWAddress and prevent illegal/unsupported opts
920
921    if let Some(opt_level) = config.opt_level {
922        let opt_stage = match cgcx.lto {
923            Lto::Fat => llvm::OptStage::PreLinkFatLTO,
924            Lto::Thin | Lto::ThinLocal => llvm::OptStage::PreLinkThinLTO,
925            _ if cgcx.use_linker_plugin_lto => llvm::OptStage::PreLinkThinLTO,
926            _ => llvm::OptStage::PreLinkNoLTO,
927        };
928
929        // If we know that we will later run AD, then we disable vectorization and loop unrolling.
930        // Otherwise we pretend AD is already done and run the normal opt pipeline (=PostAD).
931        let consider_ad = config.autodiff.contains(&config::AutoDiff::Enable);
932        let autodiff_stage = if consider_ad { AutodiffStage::PreAD } else { AutodiffStage::PostAD };
933        // The embedded bitcode is used to run LTO/ThinLTO.
934        // The bitcode obtained during the `codegen` phase is no longer suitable for performing LTO.
935        // It may have undergone LTO due to ThinLocal, so we need to obtain the embedded bitcode at
936        // this point.
937        let mut thin_lto_buffer = if (module.kind == ModuleKind::Regular
938            && config.emit_obj == EmitObj::ObjectCode(BitcodeSection::Full))
939            || config.emit_thin_lto_summary
940        {
941            Some(null_mut())
942        } else {
943            None
944        };
945        unsafe {
946            llvm_optimize(
947                cgcx,
948                dcx,
949                module,
950                thin_lto_buffer.as_mut(),
951                config,
952                opt_level,
953                opt_stage,
954                autodiff_stage,
955            )
956        };
957        if let Some(thin_lto_buffer) = thin_lto_buffer {
958            let thin_lto_buffer = unsafe { ThinBuffer::from_raw_ptr(thin_lto_buffer) };
959            module.thin_lto_buffer = Some(thin_lto_buffer.data().to_vec());
960            let bc_summary_out = cgcx.output_filenames.temp_path_for_cgu(
961                OutputType::ThinLinkBitcode,
962                &module.name,
963                cgcx.invocation_temp.as_deref(),
964            );
965            if config.emit_thin_lto_summary
966                && let Some(thin_link_bitcode_filename) = bc_summary_out.file_name()
967            {
968                let summary_data = thin_lto_buffer.thin_link_data();
969                cgcx.prof.artifact_size(
970                    "llvm_bitcode_summary",
971                    thin_link_bitcode_filename.to_string_lossy(),
972                    summary_data.len() as u64,
973                );
974                let _timer = cgcx.prof.generic_activity_with_arg(
975                    "LLVM_module_codegen_emit_bitcode_summary",
976                    &*module.name,
977                );
978                if let Err(err) = fs::write(&bc_summary_out, summary_data) {
979                    dcx.emit_err(WriteBytecode { path: &bc_summary_out, err });
980                }
981            }
982        }
983    }
984}
985
986pub(crate) fn codegen(
987    cgcx: &CodegenContext<LlvmCodegenBackend>,
988    shared_emitter: &SharedEmitter,
989    module: ModuleCodegen<ModuleLlvm>,
990    config: &ModuleConfig,
991) -> CompiledModule {
992    let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_codegen", &*module.name);
993
994    let dcx = DiagCtxt::new(Box::new(shared_emitter.clone()));
995    let dcx = dcx.handle();
996
997    {
998        let llmod = module.module_llvm.llmod();
999        let llcx = &*module.module_llvm.llcx;
1000        let tm = &*module.module_llvm.tm;
1001        let _handlers = DiagnosticHandlers::new(
1002            cgcx,
1003            shared_emitter,
1004            llcx,
1005            &module,
1006            CodegenDiagnosticsStage::Codegen,
1007        );
1008
1009        if cgcx.msvc_imps_needed {
1010            create_msvc_imps(cgcx, llcx, llmod);
1011        }
1012
1013        // Note that if object files are just LLVM bitcode we write bitcode,
1014        // copy it to the .o file, and delete the bitcode if it wasn't
1015        // otherwise requested.
1016
1017        let bc_out = cgcx.output_filenames.temp_path_for_cgu(
1018            OutputType::Bitcode,
1019            &module.name,
1020            cgcx.invocation_temp.as_deref(),
1021        );
1022        let obj_out = cgcx.output_filenames.temp_path_for_cgu(
1023            OutputType::Object,
1024            &module.name,
1025            cgcx.invocation_temp.as_deref(),
1026        );
1027
1028        if config.bitcode_needed() {
1029            if config.emit_bc || config.emit_obj == EmitObj::Bitcode {
1030                let thin = {
1031                    let _timer = cgcx.prof.generic_activity_with_arg(
1032                        "LLVM_module_codegen_make_bitcode",
1033                        &*module.name,
1034                    );
1035                    ThinBuffer::new(llmod, config.emit_thin_lto)
1036                };
1037                let data = thin.data();
1038                let _timer = cgcx
1039                    .prof
1040                    .generic_activity_with_arg("LLVM_module_codegen_emit_bitcode", &*module.name);
1041                if let Some(bitcode_filename) = bc_out.file_name() {
1042                    cgcx.prof.artifact_size(
1043                        "llvm_bitcode",
1044                        bitcode_filename.to_string_lossy(),
1045                        data.len() as u64,
1046                    );
1047                }
1048                if let Err(err) = fs::write(&bc_out, data) {
1049                    dcx.emit_err(WriteBytecode { path: &bc_out, err });
1050                }
1051            }
1052
1053            if config.embed_bitcode() && module.kind == ModuleKind::Regular {
1054                let _timer = cgcx
1055                    .prof
1056                    .generic_activity_with_arg("LLVM_module_codegen_embed_bitcode", &*module.name);
1057                let thin_bc =
1058                    module.thin_lto_buffer.as_deref().expect("cannot find embedded bitcode");
1059                embed_bitcode(cgcx, llcx, llmod, &thin_bc);
1060            }
1061        }
1062
1063        if config.emit_ir {
1064            let _timer =
1065                cgcx.prof.generic_activity_with_arg("LLVM_module_codegen_emit_ir", &*module.name);
1066            let out = cgcx.output_filenames.temp_path_for_cgu(
1067                OutputType::LlvmAssembly,
1068                &module.name,
1069                cgcx.invocation_temp.as_deref(),
1070            );
1071            let out_c = path_to_c_string(&out);
1072
1073            extern "C" fn demangle_callback(
1074                input_ptr: *const c_char,
1075                input_len: size_t,
1076                output_ptr: *mut c_char,
1077                output_len: size_t,
1078            ) -> size_t {
1079                let input =
1080                    unsafe { slice::from_raw_parts(input_ptr as *const u8, input_len as usize) };
1081
1082                let Ok(input) = str::from_utf8(input) else { return 0 };
1083
1084                let output = unsafe {
1085                    slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
1086                };
1087                let mut cursor = io::Cursor::new(output);
1088
1089                let Ok(demangled) = rustc_demangle::try_demangle(input) else { return 0 };
1090
1091                if cursor.write_fmt(format_args!("{0:#}", demangled))write!(cursor, "{demangled:#}").is_err() {
1092                    // Possible only if provided buffer is not big enough
1093                    return 0;
1094                }
1095
1096                cursor.position() as size_t
1097            }
1098
1099            let result =
1100                unsafe { llvm::LLVMRustPrintModule(llmod, out_c.as_ptr(), demangle_callback) };
1101
1102            if result == llvm::LLVMRustResult::Success {
1103                record_artifact_size(&cgcx.prof, "llvm_ir", &out);
1104            }
1105
1106            result
1107                .into_result()
1108                .unwrap_or_else(|()| llvm_err(dcx, LlvmError::WriteIr { path: &out }));
1109        }
1110
1111        if config.emit_asm {
1112            let _timer =
1113                cgcx.prof.generic_activity_with_arg("LLVM_module_codegen_emit_asm", &*module.name);
1114            let path = cgcx.output_filenames.temp_path_for_cgu(
1115                OutputType::Assembly,
1116                &module.name,
1117                cgcx.invocation_temp.as_deref(),
1118            );
1119
1120            // We can't use the same module for asm and object code output,
1121            // because that triggers various errors like invalid IR or broken
1122            // binaries. So we must clone the module to produce the asm output
1123            // if we are also producing object code.
1124            let llmod = if let EmitObj::ObjectCode(_) = config.emit_obj {
1125                llvm::LLVMCloneModule(llmod)
1126            } else {
1127                llmod
1128            };
1129            write_output_file(
1130                dcx,
1131                tm.raw(),
1132                config.no_builtins,
1133                llmod,
1134                &path,
1135                None,
1136                llvm::FileType::AssemblyFile,
1137                &cgcx.prof,
1138                config.verify_llvm_ir,
1139            );
1140        }
1141
1142        match config.emit_obj {
1143            EmitObj::ObjectCode(_) => {
1144                let _timer = cgcx
1145                    .prof
1146                    .generic_activity_with_arg("LLVM_module_codegen_emit_obj", &*module.name);
1147
1148                let dwo_out = cgcx
1149                    .output_filenames
1150                    .temp_path_dwo_for_cgu(&module.name, cgcx.invocation_temp.as_deref());
1151                let dwo_out = match (cgcx.split_debuginfo, cgcx.split_dwarf_kind) {
1152                    // Don't change how DWARF is emitted when disabled.
1153                    (SplitDebuginfo::Off, _) => None,
1154                    // Don't provide a DWARF object path if split debuginfo is enabled but this is
1155                    // a platform that doesn't support Split DWARF.
1156                    _ if !cgcx.target_can_use_split_dwarf => None,
1157                    // Don't provide a DWARF object path in single mode, sections will be written
1158                    // into the object as normal but ignored by linker.
1159                    (_, SplitDwarfKind::Single) => None,
1160                    // Emit (a subset of the) DWARF into a separate dwarf object file in split
1161                    // mode.
1162                    (_, SplitDwarfKind::Split) => Some(dwo_out.as_path()),
1163                };
1164
1165                write_output_file(
1166                    dcx,
1167                    tm.raw(),
1168                    config.no_builtins,
1169                    llmod,
1170                    &obj_out,
1171                    dwo_out,
1172                    llvm::FileType::ObjectFile,
1173                    &cgcx.prof,
1174                    config.verify_llvm_ir,
1175                );
1176            }
1177
1178            EmitObj::Bitcode => {
1179                {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_llvm/src/back/write.rs:1179",
                        "rustc_codegen_llvm::back::write", ::tracing::Level::DEBUG,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_llvm/src/back/write.rs"),
                        ::tracing_core::__macro_support::Option::Some(1179u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_codegen_llvm::back::write"),
                        ::tracing_core::field::FieldSet::new(&["message"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&format_args!("copying bitcode {0:?} to obj {1:?}",
                                                    bc_out, obj_out) as &dyn Value))])
            });
    } else { ; }
};debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
1180                if let Err(err) = link_or_copy(&bc_out, &obj_out) {
1181                    dcx.emit_err(CopyBitcode { err });
1182                }
1183
1184                if !config.emit_bc {
1185                    {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_llvm/src/back/write.rs:1185",
                        "rustc_codegen_llvm::back::write", ::tracing::Level::DEBUG,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_llvm/src/back/write.rs"),
                        ::tracing_core::__macro_support::Option::Some(1185u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_codegen_llvm::back::write"),
                        ::tracing_core::field::FieldSet::new(&["message"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&format_args!("removing_bitcode {0:?}",
                                                    bc_out) as &dyn Value))])
            });
    } else { ; }
};debug!("removing_bitcode {:?}", bc_out);
1186                    ensure_removed(dcx, &bc_out);
1187                }
1188            }
1189
1190            EmitObj::None => {}
1191        }
1192
1193        record_llvm_cgu_instructions_stats(&cgcx.prof, &module.name, llmod);
1194    }
1195
1196    // `.dwo` files are only emitted if:
1197    //
1198    // - Object files are being emitted (i.e. bitcode only or metadata only compilations will not
1199    //   produce dwarf objects, even if otherwise enabled)
1200    // - Target supports Split DWARF
1201    // - Split debuginfo is enabled
1202    // - Split DWARF kind is `split` (i.e. debuginfo is split into `.dwo` files, not different
1203    //   sections in the `.o` files).
1204    let dwarf_object_emitted = #[allow(non_exhaustive_omitted_patterns)] match config.emit_obj {
    EmitObj::ObjectCode(_) => true,
    _ => false,
}matches!(config.emit_obj, EmitObj::ObjectCode(_))
1205        && cgcx.target_can_use_split_dwarf
1206        && cgcx.split_debuginfo != SplitDebuginfo::Off
1207        && cgcx.split_dwarf_kind == SplitDwarfKind::Split;
1208    module.into_compiled_module(
1209        config.emit_obj != EmitObj::None,
1210        dwarf_object_emitted,
1211        config.emit_bc,
1212        config.emit_asm,
1213        config.emit_ir,
1214        &cgcx.output_filenames,
1215        cgcx.invocation_temp.as_deref(),
1216    )
1217}
1218
1219fn create_section_with_flags_asm(section_name: &str, section_flags: &str, data: &[u8]) -> Vec<u8> {
1220    let mut asm = ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!(".section {0},\"{1}\"\n",
                section_name, section_flags))
    })format!(".section {section_name},\"{section_flags}\"\n").into_bytes();
1221    asm.extend_from_slice(b".ascii \"");
1222    asm.reserve(data.len());
1223    for &byte in data {
1224        if byte == b'\\' || byte == b'"' {
1225            asm.push(b'\\');
1226            asm.push(byte);
1227        } else if byte < 0x20 || byte >= 0x80 {
1228            // Avoid non UTF-8 inline assembly. Use octal escape sequence, because it is fixed
1229            // width, while hex escapes will consume following characters.
1230            asm.push(b'\\');
1231            asm.push(b'0' + ((byte >> 6) & 0x7));
1232            asm.push(b'0' + ((byte >> 3) & 0x7));
1233            asm.push(b'0' + ((byte >> 0) & 0x7));
1234        } else {
1235            asm.push(byte);
1236        }
1237    }
1238    asm.extend_from_slice(b"\"\n");
1239    asm
1240}
1241
1242pub(crate) fn bitcode_section_name(cgcx: &CodegenContext<LlvmCodegenBackend>) -> &'static CStr {
1243    if cgcx.target_is_like_darwin {
1244        c"__LLVM,__bitcode"
1245    } else if cgcx.target_is_like_aix {
1246        c".ipa"
1247    } else {
1248        c".llvmbc"
1249    }
1250}
1251
1252/// Embed the bitcode of an LLVM module for LTO in the LLVM module itself.
1253fn embed_bitcode(
1254    cgcx: &CodegenContext<LlvmCodegenBackend>,
1255    llcx: &llvm::Context,
1256    llmod: &llvm::Module,
1257    bitcode: &[u8],
1258) {
1259    // We're adding custom sections to the output object file, but we definitely
1260    // do not want these custom sections to make their way into the final linked
1261    // executable. The purpose of these custom sections is for tooling
1262    // surrounding object files to work with the LLVM IR, if necessary. For
1263    // example rustc's own LTO will look for LLVM IR inside of the object file
1264    // in these sections by default.
1265    //
1266    // To handle this is a bit different depending on the object file format
1267    // used by the backend, broken down into a few different categories:
1268    //
1269    // * Mach-O - this is for macOS. Inspecting the source code for the native
1270    //   linker here shows that the `.llvmbc` and `.llvmcmd` sections are
1271    //   automatically skipped by the linker. In that case there's nothing extra
1272    //   that we need to do here. We do need to make sure that the
1273    //   `__LLVM,__cmdline` section exists even though it is empty as otherwise
1274    //   ld64 rejects the object file.
1275    //
1276    // * Wasm - the native LLD linker is hard-coded to skip `.llvmbc` and
1277    //   `.llvmcmd` sections, so there's nothing extra we need to do.
1278    //
1279    // * COFF - if we don't do anything the linker will by default copy all
1280    //   these sections to the output artifact, not what we want! To subvert
1281    //   this we want to flag the sections we inserted here as
1282    //   `IMAGE_SCN_LNK_REMOVE`.
1283    //
1284    // * ELF - this is very similar to COFF above. One difference is that these
1285    //   sections are removed from the output linked artifact when
1286    //   `--gc-sections` is passed, which we pass by default. If that flag isn't
1287    //   passed though then these sections will show up in the final output.
1288    //   Additionally the flag that we need to set here is `SHF_EXCLUDE`.
1289    //
1290    // * XCOFF - AIX linker ignores content in .ipa and .info if no auxiliary
1291    //   symbol associated with these sections.
1292    //
1293    // Unfortunately, LLVM provides no way to set custom section flags. For ELF
1294    // and COFF we emit the sections using module level inline assembly for that
1295    // reason (see issue #90326 for historical background).
1296
1297    if cgcx.target_is_like_darwin
1298        || cgcx.target_is_like_aix
1299        || cgcx.target_arch == "wasm32"
1300        || cgcx.target_arch == "wasm64"
1301    {
1302        // We don't need custom section flags, create LLVM globals.
1303        let llconst = common::bytes_in_context(llcx, bitcode);
1304        let llglobal = llvm::add_global(llmod, common::val_ty(llconst), c"rustc.embedded.module");
1305        llvm::set_initializer(llglobal, llconst);
1306
1307        llvm::set_section(llglobal, bitcode_section_name(cgcx));
1308        llvm::set_linkage(llglobal, llvm::Linkage::PrivateLinkage);
1309        llvm::LLVMSetGlobalConstant(llglobal, llvm::TRUE);
1310
1311        let llconst = common::bytes_in_context(llcx, &[]);
1312        let llglobal = llvm::add_global(llmod, common::val_ty(llconst), c"rustc.embedded.cmdline");
1313        llvm::set_initializer(llglobal, llconst);
1314        let section = if cgcx.target_is_like_darwin {
1315            c"__LLVM,__cmdline"
1316        } else if cgcx.target_is_like_aix {
1317            c".info"
1318        } else {
1319            c".llvmcmd"
1320        };
1321        llvm::set_section(llglobal, section);
1322        llvm::set_linkage(llglobal, llvm::Linkage::PrivateLinkage);
1323    } else {
1324        // We need custom section flags, so emit module-level inline assembly.
1325        let section_flags = if cgcx.is_pe_coff { "n" } else { "e" };
1326        let asm = create_section_with_flags_asm(".llvmbc", section_flags, bitcode);
1327        llvm::append_module_inline_asm(llmod, &asm);
1328        let asm = create_section_with_flags_asm(".llvmcmd", section_flags, &[]);
1329        llvm::append_module_inline_asm(llmod, &asm);
1330    }
1331}
1332
1333// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
1334// This is required to satisfy `dllimport` references to static data in .rlibs
1335// when using MSVC linker. We do this only for data, as linker can fix up
1336// code references on its own.
1337// See #26591, #27438
1338fn create_msvc_imps(
1339    cgcx: &CodegenContext<LlvmCodegenBackend>,
1340    llcx: &llvm::Context,
1341    llmod: &llvm::Module,
1342) {
1343    if !cgcx.msvc_imps_needed {
1344        return;
1345    }
1346    // The x86 ABI seems to require that leading underscores are added to symbol
1347    // names, so we need an extra underscore on x86. There's also a leading
1348    // '\x01' here which disables LLVM's symbol mangling (e.g., no extra
1349    // underscores added in front).
1350    let prefix = if cgcx.target_arch == "x86" { "\x01__imp__" } else { "\x01__imp_" };
1351
1352    let ptr_ty = llvm_type_ptr(llcx);
1353    let globals = base::iter_globals(llmod)
1354        .filter(|&val| {
1355            llvm::get_linkage(val) == llvm::Linkage::ExternalLinkage && !llvm::is_declaration(val)
1356        })
1357        .filter_map(|val| {
1358            // Exclude some symbols that we know are not Rust symbols.
1359            let name = llvm::get_value_name(val);
1360            if ignored(&name) { None } else { Some((val, name)) }
1361        })
1362        .map(move |(val, name)| {
1363            let mut imp_name = prefix.as_bytes().to_vec();
1364            imp_name.extend(name);
1365            let imp_name = CString::new(imp_name).unwrap();
1366            (imp_name, val)
1367        })
1368        .collect::<Vec<_>>();
1369
1370    for (imp_name, val) in globals {
1371        let imp = llvm::add_global(llmod, ptr_ty, &imp_name);
1372
1373        llvm::set_initializer(imp, val);
1374        llvm::set_linkage(imp, llvm::Linkage::ExternalLinkage);
1375    }
1376
1377    // Use this function to exclude certain symbols from `__imp` generation.
1378    fn ignored(symbol_name: &[u8]) -> bool {
1379        // These are symbols generated by LLVM's profiling instrumentation
1380        symbol_name.starts_with(b"__llvm_profile_")
1381    }
1382}
1383
1384fn record_artifact_size(
1385    self_profiler_ref: &SelfProfilerRef,
1386    artifact_kind: &'static str,
1387    path: &Path,
1388) {
1389    // Don't stat the file if we are not going to record its size.
1390    if !self_profiler_ref.enabled() {
1391        return;
1392    }
1393
1394    if let Some(artifact_name) = path.file_name() {
1395        let file_size = std::fs::metadata(path).map(|m| m.len()).unwrap_or(0);
1396        self_profiler_ref.artifact_size(artifact_kind, artifact_name.to_string_lossy(), file_size);
1397    }
1398}
1399
1400fn record_llvm_cgu_instructions_stats(prof: &SelfProfilerRef, name: &str, llmod: &llvm::Module) {
1401    if !prof.enabled() {
1402        return;
1403    }
1404
1405    let total = unsafe { llvm::LLVMRustModuleInstructionStats(llmod) };
1406    prof.artifact_size("cgu_instructions", name, total);
1407}