miri/shims/unix/linux_like/
sync.rs

1use crate::concurrency::sync::FutexRef;
2use crate::helpers::check_min_vararg_count;
3use crate::*;
4
5struct LinuxFutex {
6    futex: FutexRef,
7}
8
9/// Implementation of the SYS_futex syscall.
10/// `args` is the arguments *including* the syscall number.
11pub fn futex<'tcx>(
12    ecx: &mut MiriInterpCx<'tcx>,
13    varargs: &[OpTy<'tcx>],
14    dest: &MPlaceTy<'tcx>,
15) -> InterpResult<'tcx> {
16    let [addr, op, val] = check_min_vararg_count("`syscall(SYS_futex, ...)`", varargs)?;
17
18    // The first three arguments (after the syscall number itself) are the same to all futex operations:
19    //     (int *addr, int op, int val).
20    // We checked above that these definitely exist.
21    let addr = ecx.read_pointer(addr)?;
22    let op = ecx.read_scalar(op)?.to_i32()?;
23    let val = ecx.read_scalar(val)?.to_i32()?;
24
25    // This is a vararg function so we have to bring our own type for this pointer.
26    let addr = ecx.ptr_to_mplace(addr, ecx.machine.layouts.i32);
27
28    let futex_private = ecx.eval_libc_i32("FUTEX_PRIVATE_FLAG");
29    let futex_wait = ecx.eval_libc_i32("FUTEX_WAIT");
30    let futex_wait_bitset = ecx.eval_libc_i32("FUTEX_WAIT_BITSET");
31    let futex_wake = ecx.eval_libc_i32("FUTEX_WAKE");
32    let futex_wake_bitset = ecx.eval_libc_i32("FUTEX_WAKE_BITSET");
33    let futex_realtime = ecx.eval_libc_i32("FUTEX_CLOCK_REALTIME");
34
35    // FUTEX_PRIVATE enables an optimization that stops it from working across processes.
36    // Miri doesn't support that anyway, so we ignore that flag.
37    match op & !futex_private {
38        // FUTEX_WAIT: (int *addr, int op = FUTEX_WAIT, int val, const timespec *timeout)
39        // Blocks the thread if *addr still equals val. Wakes up when FUTEX_WAKE is called on the same address,
40        // or *timeout expires. `timeout == null` for an infinite timeout.
41        //
42        // FUTEX_WAIT_BITSET: (int *addr, int op = FUTEX_WAIT_BITSET, int val, const timespec *timeout, int *_ignored, unsigned int bitset)
43        // This is identical to FUTEX_WAIT, except:
44        //  - The timeout is absolute rather than relative.
45        //  - You can specify the bitset to selecting what WAKE operations to respond to.
46        op if op & !futex_realtime == futex_wait || op & !futex_realtime == futex_wait_bitset => {
47            let wait_bitset = op & !futex_realtime == futex_wait_bitset;
48
49            let (timeout, bitset) = if wait_bitset {
50                let [_, _, _, timeout, uaddr2, bitset] = check_min_vararg_count(
51                    "`syscall(SYS_futex, FUTEX_WAIT_BITSET, ...)`",
52                    varargs,
53                )?;
54                let _timeout = ecx.read_pointer(timeout)?;
55                let _uaddr2 = ecx.read_pointer(uaddr2)?;
56                (timeout, ecx.read_scalar(bitset)?.to_u32()?)
57            } else {
58                let [_, _, _, timeout] =
59                    check_min_vararg_count("`syscall(SYS_futex, FUTEX_WAIT, ...)`", varargs)?;
60                (timeout, u32::MAX)
61            };
62
63            if bitset == 0 {
64                return ecx.set_last_error_and_return(LibcError("EINVAL"), dest);
65            }
66
67            let timeout = ecx.deref_pointer_as(timeout, ecx.libc_ty_layout("timespec"))?;
68            let timeout = if ecx.ptr_is_null(timeout.ptr())? {
69                None
70            } else {
71                let duration = match ecx.read_timespec(&timeout)? {
72                    Some(duration) => duration,
73                    None => {
74                        return ecx.set_last_error_and_return(LibcError("EINVAL"), dest);
75                    }
76                };
77                let timeout_clock = if op & futex_realtime == futex_realtime {
78                    ecx.check_no_isolation(
79                        "`futex` syscall with `op=FUTEX_WAIT` and non-null timeout with `FUTEX_CLOCK_REALTIME`",
80                    )?;
81                    TimeoutClock::RealTime
82                } else {
83                    TimeoutClock::Monotonic
84                };
85                let timeout_anchor = if wait_bitset {
86                    // FUTEX_WAIT_BITSET uses an absolute timestamp.
87                    TimeoutAnchor::Absolute
88                } else {
89                    // FUTEX_WAIT uses a relative timestamp.
90                    TimeoutAnchor::Relative
91                };
92                Some((timeout_clock, timeout_anchor, duration))
93            };
94            // There may be a concurrent thread changing the value of addr
95            // and then invoking the FUTEX_WAKE syscall. It is critical that the
96            // effects of this and the other thread are correctly observed,
97            // otherwise we will deadlock.
98            //
99            // There are two scenarios to consider, depending on whether WAIT or WAKE goes first:
100            // 1. If we (FUTEX_WAIT) execute first, we'll push ourselves into the waiters queue and
101            //    go to sleep. They (FUTEX_WAKE) will see us in the queue and wake us up. It doesn't
102            //    matter how the addr write is ordered.
103            // 2. If they (FUTEX_WAKE) execute first, that means the addr write is also before us
104            //    (FUTEX_WAIT). It is crucial that we observe addr's new value. If we see an
105            //    outdated value that happens to equal the expected val, then we'll put ourselves to
106            //    sleep with no one to wake us up, so we end up with a deadlock. This is prevented
107            //    by having a SeqCst fence inside FUTEX_WAKE syscall, and another SeqCst fence here
108            //    in FUTEX_WAIT. The atomic read on addr after the SeqCst fence is guaranteed not to
109            //    see any value older than the addr write immediately before calling FUTEX_WAKE.
110            //    We'll see futex_val != val and return without sleeping.
111            //
112            //    Note that the fences do not create any happens-before relationship.
113            //    The read sees the write immediately before the fence not because
114            //    one happens after the other, but is instead due to a guarantee unique
115            //    to SeqCst fences that restricts what an atomic read placed AFTER the
116            //    fence can see. The read still has to be atomic, otherwise it's a data
117            //    race. This guarantee cannot be achieved with acquire-release fences
118            //    since they only talk about reads placed BEFORE a fence - and places
119            //    no restrictions on what the read itself can see, only that there is
120            //    a happens-before between the fences IF the read happens to see the
121            //    right value. This is useless to us, since we need the read itself
122            //    to see an up-to-date value.
123            //
124            // The above case distinction is valid since both FUTEX_WAIT and FUTEX_WAKE
125            // contain a SeqCst fence, therefore inducing a total order between the operations.
126            // It is also critical that the fence, the atomic load, and the comparison in FUTEX_WAIT
127            // altogether happen atomically. If the other thread's fence in FUTEX_WAKE
128            // gets interleaved after our fence, then we lose the guarantee on the
129            // atomic load being up-to-date; if the other thread's write on addr and FUTEX_WAKE
130            // call are interleaved after the load but before the comparison, then we get a TOCTOU
131            // race condition, and go to sleep thinking the other thread will wake us up,
132            // even though they have already finished.
133            //
134            // Thankfully, preemptions cannot happen inside a Miri shim, so we do not need to
135            // do anything special to guarantee fence-load-comparison atomicity.
136            ecx.atomic_fence(AtomicFenceOrd::SeqCst)?;
137            // Read an `i32` through the pointer, regardless of any wrapper types.
138            // It's not uncommon for `addr` to be passed as another type than `*mut i32`, such as `*const AtomicI32`.
139            // We do an acquire read -- it only seems reasonable that if we observe a value here, we
140            // actually establish an ordering with that value.
141            let futex_val = ecx.read_scalar_atomic(&addr, AtomicReadOrd::Acquire)?.to_i32()?;
142            if val == futex_val {
143                // The value still matches, so we block the thread and make it wait for FUTEX_WAKE.
144
145                // This cannot fail since we already did an atomic acquire read on that pointer.
146                // Acquire reads are only allowed on mutable memory.
147                let futex_ref = ecx
148                    .get_sync_or_init(addr.ptr(), |_| LinuxFutex { futex: Default::default() })
149                    .unwrap()
150                    .futex
151                    .clone();
152
153                let dest = dest.clone();
154                ecx.futex_wait(
155                    futex_ref,
156                    bitset,
157                    timeout,
158                    callback!(
159                        @capture<'tcx> {
160                            dest: MPlaceTy<'tcx>,
161                        }
162                        |ecx, unblock: UnblockKind| match unblock {
163                            UnblockKind::Ready => {
164                                ecx.write_int(0, &dest)
165                            }
166                            UnblockKind::TimedOut => {
167                                ecx.set_last_error_and_return(LibcError("ETIMEDOUT"), &dest)
168                            }
169                        }
170                    ),
171                );
172            } else {
173                // The futex value doesn't match the expected value, so we return failure
174                // right away without sleeping: -1 and errno set to EAGAIN.
175                return ecx.set_last_error_and_return(LibcError("EAGAIN"), dest);
176            }
177        }
178        // FUTEX_WAKE: (int *addr, int op = FUTEX_WAKE, int val)
179        // Wakes at most `val` threads waiting on the futex at `addr`.
180        // Returns the amount of threads woken up.
181        // Does not access the futex value at *addr.
182        // FUTEX_WAKE_BITSET: (int *addr, int op = FUTEX_WAKE, int val, const timespect *_unused, int *_unused, unsigned int bitset)
183        // Same as FUTEX_WAKE, but allows you to specify a bitset to select which threads to wake up.
184        op if op == futex_wake || op == futex_wake_bitset => {
185            let Some(futex_ref) =
186                ecx.get_sync_or_init(addr.ptr(), |_| LinuxFutex { futex: Default::default() })
187            else {
188                // No AllocId, or no live allocation at that AllocId.
189                // Return an error code. (That seems nicer than silently doing something non-intuitive.)
190                // This means that if an address gets reused by a new allocation,
191                // we'll use an independent futex queue for this... that seems acceptable.
192                return ecx.set_last_error_and_return(LibcError("EFAULT"), dest);
193            };
194            let futex_ref = futex_ref.futex.clone();
195
196            let bitset = if op == futex_wake_bitset {
197                let [_, _, _, timeout, uaddr2, bitset] = check_min_vararg_count(
198                    "`syscall(SYS_futex, FUTEX_WAKE_BITSET, ...)`",
199                    varargs,
200                )?;
201                let _timeout = ecx.read_pointer(timeout)?;
202                let _uaddr2 = ecx.read_pointer(uaddr2)?;
203                ecx.read_scalar(bitset)?.to_u32()?
204            } else {
205                u32::MAX
206            };
207            if bitset == 0 {
208                return ecx.set_last_error_and_return(LibcError("EINVAL"), dest);
209            }
210            // Together with the SeqCst fence in futex_wait, this makes sure that futex_wait
211            // will see the latest value on addr which could be changed by our caller
212            // before doing the syscall.
213            ecx.atomic_fence(AtomicFenceOrd::SeqCst)?;
214            let woken = ecx.futex_wake(&futex_ref, bitset, val.try_into().unwrap())?;
215            ecx.write_scalar(Scalar::from_target_isize(woken.try_into().unwrap(), ecx), dest)?;
216        }
217        op => throw_unsup_format!("Miri does not support `futex` syscall with op={}", op),
218    }
219
220    interp_ok(())
221}