rustc_hir_typeck/expectation.rs
1use rustc_middle::traits::ObligationCause;
2use rustc_middle::ty::{self, Ty};
3use rustc_span::Span;
4
5use super::Expectation::*;
6use super::FnCtxt;
7
8/// When type-checking an expression, we propagate downward
9/// whatever type hint we are able in the form of an `Expectation`.
10#[derive(Copy, Clone, Debug)]
11pub(crate) enum Expectation<'tcx> {
12 /// We know nothing about what type this expression should have.
13 NoExpectation,
14
15 /// This expression should have the type given (or some subtype).
16 ExpectHasType(Ty<'tcx>),
17
18 /// This expression will be cast to the `Ty`.
19 ExpectCastableToType(Ty<'tcx>),
20
21 /// This rvalue expression will be wrapped in `&` or `Box` and coerced
22 /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
23 ExpectRvalueLikeUnsized(Ty<'tcx>),
24}
25
26impl<'a, 'tcx> Expectation<'tcx> {
27 // Disregard "castable to" expectations because they
28 // can lead us astray. Consider for example `if cond
29 // {22} else {c} as u8` -- if we propagate the
30 // "castable to u8" constraint to 22, it will pick the
31 // type 22u8, which is overly constrained (c might not
32 // be a u8). In effect, the problem is that the
33 // "castable to" expectation is not the tightest thing
34 // we can say, so we want to drop it in this case.
35 // The tightest thing we can say is "must unify with
36 // else branch". Note that in the case of a "has type"
37 // constraint, this limitation does not hold.
38
39 // If the expected type is just a type variable, then don't use
40 // an expected type. Otherwise, we might write parts of the type
41 // when checking the 'then' block which are incompatible with the
42 // 'else' branch.
43 pub(super) fn try_structurally_resolve_and_adjust_for_branches(
44 &self,
45 fcx: &FnCtxt<'a, 'tcx>,
46 span: Span,
47 ) -> Expectation<'tcx> {
48 match *self {
49 ExpectHasType(ety) => {
50 let ety = fcx.try_structurally_resolve_type(span, ety);
51 if !ety.is_ty_var() { ExpectHasType(ety) } else { NoExpectation }
52 }
53 ExpectRvalueLikeUnsized(ety) => ExpectRvalueLikeUnsized(ety),
54 _ => NoExpectation,
55 }
56 }
57
58 /// Provides an expectation for an rvalue expression given an *optional*
59 /// hint, which is not required for type safety (the resulting type might
60 /// be checked higher up, as is the case with `&expr` and `box expr`), but
61 /// is useful in determining the concrete type.
62 ///
63 /// The primary use case is where the expected type is a wide pointer,
64 /// like `&[isize]`. For example, consider the following statement:
65 ///
66 /// let x: &[isize] = &[1, 2, 3];
67 ///
68 /// In this case, the expected type for the `&[1, 2, 3]` expression is
69 /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
70 /// expectation `ExpectHasType([isize])`, that would be too strong --
71 /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
72 /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
73 /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
74 /// which still is useful, because it informs integer literals and the like.
75 /// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
76 /// for examples of where this comes up,.
77 pub(super) fn rvalue_hint(fcx: &FnCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
78 let span = match ty.kind() {
79 ty::Adt(adt_def, _) => fcx.tcx.def_span(adt_def.did()),
80 _ => fcx.tcx.def_span(fcx.body_id),
81 };
82 let cause = ObligationCause::misc(span, fcx.body_id);
83
84 // FIXME: This is not right, even in the old solver...
85 match fcx.tcx.struct_tail_raw(ty, &cause, |ty| ty, || {}).kind() {
86 ty::Slice(_) | ty::Str | ty::Dynamic(..) => ExpectRvalueLikeUnsized(ty),
87 _ => ExpectHasType(ty),
88 }
89 }
90
91 /// Resolves `expected` by a single level if it is a variable. If
92 /// there is no expected type or resolution is not possible (e.g.,
93 /// no constraints yet present), just returns `self`.
94 fn resolve(self, fcx: &FnCtxt<'a, 'tcx>) -> Expectation<'tcx> {
95 match self {
96 NoExpectation => NoExpectation,
97 ExpectCastableToType(t) => ExpectCastableToType(fcx.resolve_vars_if_possible(t)),
98 ExpectHasType(t) => ExpectHasType(fcx.resolve_vars_if_possible(t)),
99 ExpectRvalueLikeUnsized(t) => ExpectRvalueLikeUnsized(fcx.resolve_vars_if_possible(t)),
100 }
101 }
102
103 pub(super) fn to_option(self, fcx: &FnCtxt<'a, 'tcx>) -> Option<Ty<'tcx>> {
104 match self.resolve(fcx) {
105 NoExpectation => None,
106 ExpectCastableToType(ty) | ExpectHasType(ty) | ExpectRvalueLikeUnsized(ty) => Some(ty),
107 }
108 }
109
110 /// It sometimes happens that we want to turn an expectation into
111 /// a **hard constraint** (i.e., something that must be satisfied
112 /// for the program to type-check). `only_has_type` will return
113 /// such a constraint, if it exists.
114 pub(super) fn only_has_type(self, fcx: &FnCtxt<'a, 'tcx>) -> Option<Ty<'tcx>> {
115 match self {
116 ExpectHasType(ty) => Some(fcx.resolve_vars_if_possible(ty)),
117 NoExpectation | ExpectCastableToType(_) | ExpectRvalueLikeUnsized(_) => None,
118 }
119 }
120
121 /// Like `only_has_type`, but instead of returning `None` if no
122 /// hard constraint exists, creates a fresh type variable.
123 pub(super) fn coercion_target_type(self, fcx: &FnCtxt<'a, 'tcx>, span: Span) -> Ty<'tcx> {
124 self.only_has_type(fcx).unwrap_or_else(|| fcx.next_ty_var(span))
125 }
126}