rustc_hir_analysis/hir_ty_lowering/generics.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
use rustc_ast::ast::ParamKindOrd;
use rustc_errors::codes::*;
use rustc_errors::{Applicability, Diag, ErrorGuaranteed, MultiSpan, struct_span_code_err};
use rustc_hir as hir;
use rustc_hir::GenericArg;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_middle::ty::{
self, GenericArgsRef, GenericParamDef, GenericParamDefKind, IsSuggestable, Ty,
};
use rustc_session::lint::builtin::LATE_BOUND_LIFETIME_ARGUMENTS;
use rustc_span::symbol::{kw, sym};
use smallvec::SmallVec;
use tracing::{debug, instrument};
use super::{HirTyLowerer, IsMethodCall};
use crate::errors::wrong_number_of_generic_args::{GenericArgsInfo, WrongNumberOfGenericArgs};
use crate::hir_ty_lowering::errors::prohibit_assoc_item_constraint;
use crate::hir_ty_lowering::{
ExplicitLateBound, GenericArgCountMismatch, GenericArgCountResult, GenericArgPosition,
GenericArgsLowerer,
};
/// Report an error that a generic argument did not match the generic parameter that was
/// expected.
fn generic_arg_mismatch_err(
cx: &dyn HirTyLowerer<'_>,
arg: &GenericArg<'_>,
param: &GenericParamDef,
possible_ordering_error: bool,
help: Option<String>,
) -> ErrorGuaranteed {
let tcx = cx.tcx();
let sess = tcx.sess;
let mut err = struct_span_code_err!(
cx.dcx(),
arg.span(),
E0747,
"{} provided when a {} was expected",
arg.descr(),
param.kind.descr(),
);
if let GenericParamDefKind::Const { .. } = param.kind {
if matches!(arg, GenericArg::Type(hir::Ty { kind: hir::TyKind::Infer, .. })) {
err.help("const arguments cannot yet be inferred with `_`");
tcx.disabled_nightly_features(
&mut err,
param.def_id.as_local().map(|local| tcx.local_def_id_to_hir_id(local)),
[(String::new(), sym::generic_arg_infer)],
);
}
}
let add_braces_suggestion = |arg: &GenericArg<'_>, err: &mut Diag<'_>| {
let suggestions = vec![
(arg.span().shrink_to_lo(), String::from("{ ")),
(arg.span().shrink_to_hi(), String::from(" }")),
];
err.multipart_suggestion(
"if this generic argument was intended as a const parameter, \
surround it with braces",
suggestions,
Applicability::MaybeIncorrect,
);
};
// Specific suggestion set for diagnostics
match (arg, ¶m.kind) {
(
GenericArg::Type(hir::Ty {
kind: hir::TyKind::Path(rustc_hir::QPath::Resolved(_, path)),
..
}),
GenericParamDefKind::Const { .. },
) => match path.res {
Res::Err => {
add_braces_suggestion(arg, &mut err);
return err
.with_primary_message("unresolved item provided when a constant was expected")
.emit();
}
Res::Def(DefKind::TyParam, src_def_id) => {
if let Some(param_local_id) = param.def_id.as_local() {
let param_name = tcx.hir().ty_param_name(param_local_id);
let param_type = tcx.type_of(param.def_id).instantiate_identity();
if param_type.is_suggestable(tcx, false) {
err.span_suggestion(
tcx.def_span(src_def_id),
"consider changing this type parameter to a const parameter",
format!("const {param_name}: {param_type}"),
Applicability::MaybeIncorrect,
);
};
}
}
_ => add_braces_suggestion(arg, &mut err),
},
(
GenericArg::Type(hir::Ty { kind: hir::TyKind::Path(_), .. }),
GenericParamDefKind::Const { .. },
) => add_braces_suggestion(arg, &mut err),
(
GenericArg::Type(hir::Ty { kind: hir::TyKind::Array(_, len), .. }),
GenericParamDefKind::Const { .. },
) if tcx.type_of(param.def_id).skip_binder() == tcx.types.usize => {
let snippet = sess.source_map().span_to_snippet(tcx.hir().span(len.hir_id()));
if let Ok(snippet) = snippet {
err.span_suggestion(
arg.span(),
"array type provided where a `usize` was expected, try",
format!("{{ {snippet} }}"),
Applicability::MaybeIncorrect,
);
}
}
(GenericArg::Const(cnst), GenericParamDefKind::Type { .. }) => {
if let hir::ConstArgKind::Path(qpath) = cnst.kind
&& let rustc_hir::QPath::Resolved(_, path) = qpath
&& let Res::Def(DefKind::Fn { .. }, id) = path.res
{
err.help(format!("`{}` is a function item, not a type", tcx.item_name(id)));
err.help("function item types cannot be named directly");
} else if let hir::ConstArgKind::Anon(anon) = cnst.kind
&& let body = tcx.hir().body(anon.body)
&& let rustc_hir::ExprKind::Path(rustc_hir::QPath::Resolved(_, path)) =
body.value.kind
&& let Res::Def(DefKind::Fn { .. }, id) = path.res
{
// FIXME(min_generic_const_args): this branch is dead once new const path lowering
// (for single-segment paths) is no longer gated
err.help(format!("`{}` is a function item, not a type", tcx.item_name(id)));
err.help("function item types cannot be named directly");
}
}
_ => {}
}
let kind_ord = param.kind.to_ord();
let arg_ord = arg.to_ord();
// This note is only true when generic parameters are strictly ordered by their kind.
if possible_ordering_error && kind_ord.cmp(&arg_ord) != core::cmp::Ordering::Equal {
let (first, last) = if kind_ord < arg_ord {
(param.kind.descr(), arg.descr())
} else {
(arg.descr(), param.kind.descr())
};
err.note(format!("{first} arguments must be provided before {last} arguments"));
if let Some(help) = help {
err.help(help);
}
}
err.emit()
}
/// Lower generic arguments from the HIR to the [`rustc_middle::ty`] representation.
///
/// This is a rather complex function. Let us try to explain the role
/// of each of its parameters:
///
/// To start, we are given the `def_id` of the thing whose generic parameters we
/// are creating, and a partial set of arguments `parent_args`. In general,
/// the generic arguments for an item begin with arguments for all the "parents"
/// of that item -- e.g., for a method it might include the parameters from the impl.
///
/// Therefore, the method begins by walking down these parents,
/// starting with the outermost parent and proceed inwards until
/// it reaches `def_id`. For each parent `P`, it will check `parent_args`
/// first to see if the parent's arguments are listed in there. If so,
/// we can append those and move on. Otherwise, it uses the provided
/// [`GenericArgsLowerer`] `ctx` which has the following methods:
///
/// - `args_for_def_id`: given the `DefId` `P`, supplies back the
/// generic arguments that were given to that parent from within
/// the path; so e.g., if you have `<T as Foo>::Bar`, the `DefId`
/// might refer to the trait `Foo`, and the arguments might be
/// `[T]`. The boolean value indicates whether to infer values
/// for arguments whose values were not explicitly provided.
/// - `provided_kind`: given the generic parameter and the value
/// from `args_for_def_id`, creating a `GenericArg`.
/// - `inferred_kind`: if no parameter was provided, and inference
/// is enabled, then creates a suitable inference variable.
pub fn lower_generic_args<'tcx: 'a, 'a>(
cx: &dyn HirTyLowerer<'tcx>,
def_id: DefId,
parent_args: &[ty::GenericArg<'tcx>],
has_self: bool,
self_ty: Option<Ty<'tcx>>,
arg_count: &GenericArgCountResult,
ctx: &mut impl GenericArgsLowerer<'a, 'tcx>,
) -> GenericArgsRef<'tcx> {
let tcx = cx.tcx();
// Collect the segments of the path; we need to instantiate arguments
// for parameters throughout the entire path (wherever there are
// generic parameters).
let mut parent_defs = tcx.generics_of(def_id);
let count = parent_defs.count();
let mut stack = vec![(def_id, parent_defs)];
while let Some(def_id) = parent_defs.parent {
parent_defs = tcx.generics_of(def_id);
stack.push((def_id, parent_defs));
}
// We manually build up the generic arguments, rather than using convenience
// methods in `rustc_middle/src/ty/generic_args.rs`, so that we can iterate over the arguments and
// parameters in lock-step linearly, instead of trying to match each pair.
let mut args: SmallVec<[ty::GenericArg<'tcx>; 8]> = SmallVec::with_capacity(count);
// Iterate over each segment of the path.
while let Some((def_id, defs)) = stack.pop() {
let mut params = defs.own_params.iter().peekable();
// If we have already computed the generic arguments for parents,
// we can use those directly.
while let Some(¶m) = params.peek() {
if let Some(&kind) = parent_args.get(param.index as usize) {
args.push(kind);
params.next();
} else {
break;
}
}
// `Self` is handled first, unless it's been handled in `parent_args`.
if has_self {
if let Some(¶m) = params.peek() {
if param.index == 0 {
if let GenericParamDefKind::Type { .. } = param.kind {
assert_eq!(&args[..], &[]);
args.push(
self_ty
.map(|ty| ty.into())
.unwrap_or_else(|| ctx.inferred_kind(&args, param, true)),
);
params.next();
}
}
}
}
// Check whether this segment takes generic arguments and the user has provided any.
let (generic_args, infer_args) = ctx.args_for_def_id(def_id);
let mut args_iter =
generic_args.iter().flat_map(|generic_args| generic_args.args.iter()).peekable();
// If we encounter a type or const when we expect a lifetime, we infer the lifetimes.
// If we later encounter a lifetime, we know that the arguments were provided in the
// wrong order. `force_infer_lt` records the type or const that forced lifetimes to be
// inferred, so we can use it for diagnostics later.
let mut force_infer_lt = None;
loop {
// We're going to iterate through the generic arguments that the user
// provided, matching them with the generic parameters we expect.
// Mismatches can occur as a result of elided lifetimes, or for malformed
// input. We try to handle both sensibly.
match (args_iter.peek(), params.peek()) {
(Some(&arg), Some(¶m)) => {
match (arg, ¶m.kind, arg_count.explicit_late_bound) {
(GenericArg::Lifetime(_), GenericParamDefKind::Lifetime, _)
| (
GenericArg::Type(_) | GenericArg::Infer(_),
GenericParamDefKind::Type { .. },
_,
)
| (
GenericArg::Const(_) | GenericArg::Infer(_),
GenericParamDefKind::Const { .. },
_,
) => {
args.push(ctx.provided_kind(&args, param, arg));
args_iter.next();
params.next();
}
(
GenericArg::Infer(_) | GenericArg::Type(_) | GenericArg::Const(_),
GenericParamDefKind::Lifetime,
_,
) => {
// We expected a lifetime argument, but got a type or const
// argument. That means we're inferring the lifetimes.
args.push(ctx.inferred_kind(&args, param, infer_args));
force_infer_lt = Some((arg, param));
params.next();
}
(GenericArg::Lifetime(_), _, ExplicitLateBound::Yes) => {
// We've come across a lifetime when we expected something else in
// the presence of explicit late bounds. This is most likely
// due to the presence of the explicit bound so we're just going to
// ignore it.
args_iter.next();
}
(_, _, _) => {
// We expected one kind of parameter, but the user provided
// another. This is an error. However, if we already know that
// the arguments don't match up with the parameters, we won't issue
// an additional error, as the user already knows what's wrong.
if arg_count.correct.is_ok() {
// We're going to iterate over the parameters to sort them out, and
// show that order to the user as a possible order for the parameters
let mut param_types_present = defs
.own_params
.iter()
.map(|param| (param.kind.to_ord(), param.clone()))
.collect::<Vec<(ParamKindOrd, GenericParamDef)>>();
param_types_present.sort_by_key(|(ord, _)| *ord);
let (mut param_types_present, ordered_params): (
Vec<ParamKindOrd>,
Vec<GenericParamDef>,
) = param_types_present.into_iter().unzip();
param_types_present.dedup();
generic_arg_mismatch_err(
cx,
arg,
param,
!args_iter.clone().is_sorted_by_key(|arg| arg.to_ord()),
Some(format!(
"reorder the arguments: {}: `<{}>`",
param_types_present
.into_iter()
.map(|ord| format!("{ord}s"))
.collect::<Vec<String>>()
.join(", then "),
ordered_params
.into_iter()
.filter_map(|param| {
if param.name == kw::SelfUpper {
None
} else {
Some(param.name.to_string())
}
})
.collect::<Vec<String>>()
.join(", ")
)),
);
}
// We've reported the error, but we want to make sure that this
// problem doesn't bubble down and create additional, irrelevant
// errors. In this case, we're simply going to ignore the argument
// and any following arguments. The rest of the parameters will be
// inferred.
while args_iter.next().is_some() {}
}
}
}
(Some(&arg), None) => {
// We should never be able to reach this point with well-formed input.
// There are three situations in which we can encounter this issue.
//
// 1. The number of arguments is incorrect. In this case, an error
// will already have been emitted, and we can ignore it.
// 2. There are late-bound lifetime parameters present, yet the
// lifetime arguments have also been explicitly specified by the
// user.
// 3. We've inferred some lifetimes, which have been provided later (i.e.
// after a type or const). We want to throw an error in this case.
if arg_count.correct.is_ok()
&& arg_count.explicit_late_bound == ExplicitLateBound::No
{
let kind = arg.descr();
assert_eq!(kind, "lifetime");
let (provided_arg, param) =
force_infer_lt.expect("lifetimes ought to have been inferred");
generic_arg_mismatch_err(cx, provided_arg, param, false, None);
}
break;
}
(None, Some(¶m)) => {
// If there are fewer arguments than parameters, it means
// we're inferring the remaining arguments.
args.push(ctx.inferred_kind(&args, param, infer_args));
params.next();
}
(None, None) => break,
}
}
}
tcx.mk_args(&args)
}
/// Checks that the correct number of generic arguments have been provided.
/// Used specifically for function calls.
pub fn check_generic_arg_count_for_call(
cx: &dyn HirTyLowerer<'_>,
def_id: DefId,
generics: &ty::Generics,
seg: &hir::PathSegment<'_>,
is_method_call: IsMethodCall,
) -> GenericArgCountResult {
let gen_pos = match is_method_call {
IsMethodCall::Yes => GenericArgPosition::MethodCall,
IsMethodCall::No => GenericArgPosition::Value,
};
let has_self = generics.parent.is_none() && generics.has_self;
check_generic_arg_count(cx, def_id, seg, generics, gen_pos, has_self)
}
/// Checks that the correct number of generic arguments have been provided.
/// This is used both for datatypes and function calls.
#[instrument(skip(cx, gen_pos), level = "debug")]
pub(crate) fn check_generic_arg_count(
cx: &dyn HirTyLowerer<'_>,
def_id: DefId,
seg: &hir::PathSegment<'_>,
gen_params: &ty::Generics,
gen_pos: GenericArgPosition,
has_self: bool,
) -> GenericArgCountResult {
let gen_args = seg.args();
let default_counts = gen_params.own_defaults();
let param_counts = gen_params.own_counts();
// Subtracting from param count to ensure type params synthesized from `impl Trait`
// cannot be explicitly specified.
let synth_type_param_count = gen_params
.own_params
.iter()
.filter(|param| matches!(param.kind, ty::GenericParamDefKind::Type { synthetic: true, .. }))
.count();
let named_type_param_count = param_counts.types - has_self as usize - synth_type_param_count;
let synth_const_param_count = gen_params
.own_params
.iter()
.filter(|param| {
matches!(param.kind, ty::GenericParamDefKind::Const { synthetic: true, .. })
})
.count();
let named_const_param_count = param_counts.consts - synth_const_param_count;
let infer_lifetimes =
(gen_pos != GenericArgPosition::Type || seg.infer_args) && !gen_args.has_lifetime_params();
if gen_pos != GenericArgPosition::Type
&& let Some(c) = gen_args.constraints.first()
{
prohibit_assoc_item_constraint(cx, c, None);
}
let explicit_late_bound =
prohibit_explicit_late_bound_lifetimes(cx, gen_params, gen_args, gen_pos);
let mut invalid_args = vec![];
let mut check_lifetime_args = |min_expected_args: usize,
max_expected_args: usize,
provided_args: usize,
late_bounds_ignore: bool| {
if (min_expected_args..=max_expected_args).contains(&provided_args) {
return Ok(());
}
if late_bounds_ignore {
return Ok(());
}
invalid_args.extend(min_expected_args..provided_args);
let gen_args_info = if provided_args > min_expected_args {
let num_redundant_args = provided_args - min_expected_args;
GenericArgsInfo::ExcessLifetimes { num_redundant_args }
} else {
let num_missing_args = min_expected_args - provided_args;
GenericArgsInfo::MissingLifetimes { num_missing_args }
};
let reported = cx.dcx().emit_err(WrongNumberOfGenericArgs::new(
cx.tcx(),
gen_args_info,
seg,
gen_params,
has_self as usize,
gen_args,
def_id,
));
Err(reported)
};
let min_expected_lifetime_args = if infer_lifetimes { 0 } else { param_counts.lifetimes };
let max_expected_lifetime_args = param_counts.lifetimes;
let num_provided_lifetime_args = gen_args.num_lifetime_params();
let lifetimes_correct = check_lifetime_args(
min_expected_lifetime_args,
max_expected_lifetime_args,
num_provided_lifetime_args,
explicit_late_bound == ExplicitLateBound::Yes,
);
let mut check_types_and_consts = |expected_min,
expected_max,
expected_max_with_synth,
provided,
params_offset,
args_offset| {
debug!(
?expected_min,
?expected_max,
?provided,
?params_offset,
?args_offset,
"check_types_and_consts"
);
if (expected_min..=expected_max).contains(&provided) {
return Ok(());
}
let num_default_params = expected_max - expected_min;
let mut all_params_are_binded = false;
let gen_args_info = if provided > expected_max {
invalid_args.extend((expected_max..provided).map(|i| i + args_offset));
let num_redundant_args = provided - expected_max;
// Provide extra note if synthetic arguments like `impl Trait` are specified.
let synth_provided = provided <= expected_max_with_synth;
GenericArgsInfo::ExcessTypesOrConsts {
num_redundant_args,
num_default_params,
args_offset,
synth_provided,
}
} else {
// Check if associated type bounds are incorrectly written in impl block header like:
// ```
// trait Foo<T> {}
// impl Foo<T: Default> for u8 {}
// ```
let parent_is_impl_block = cx
.tcx()
.hir()
.parent_owner_iter(seg.hir_id)
.next()
.is_some_and(|(_, owner_node)| owner_node.is_impl_block());
if parent_is_impl_block {
let constraint_names: Vec<_> =
gen_args.constraints.iter().map(|b| b.ident.name).collect();
let param_names: Vec<_> = gen_params
.own_params
.iter()
.filter(|param| !has_self || param.index != 0) // Assumes `Self` will always be the first parameter
.map(|param| param.name)
.collect();
if constraint_names == param_names {
// We set this to true and delay emitting `WrongNumberOfGenericArgs`
// to provide a succinct error for cases like issue #113073
all_params_are_binded = true;
};
}
let num_missing_args = expected_max - provided;
GenericArgsInfo::MissingTypesOrConsts {
num_missing_args,
num_default_params,
args_offset,
}
};
debug!(?gen_args_info);
let reported = gen_args.has_err().unwrap_or_else(|| {
cx.dcx()
.create_err(WrongNumberOfGenericArgs::new(
cx.tcx(),
gen_args_info,
seg,
gen_params,
params_offset,
gen_args,
def_id,
))
.emit_unless(all_params_are_binded)
});
Err(reported)
};
let args_correct = {
let expected_min = if seg.infer_args {
0
} else {
param_counts.consts + named_type_param_count
- default_counts.types
- default_counts.consts
};
debug!(?expected_min);
debug!(arg_counts.lifetimes=?gen_args.num_lifetime_params());
let provided = gen_args.num_generic_params();
check_types_and_consts(
expected_min,
named_const_param_count + named_type_param_count,
named_const_param_count + named_type_param_count + synth_type_param_count,
provided,
param_counts.lifetimes + has_self as usize,
gen_args.num_lifetime_params(),
)
};
GenericArgCountResult {
explicit_late_bound,
correct: lifetimes_correct
.and(args_correct)
.map_err(|reported| GenericArgCountMismatch { reported, invalid_args }),
}
}
/// Prohibits explicit lifetime arguments if late-bound lifetime parameters
/// are present. This is used both for datatypes and function calls.
pub(crate) fn prohibit_explicit_late_bound_lifetimes(
cx: &dyn HirTyLowerer<'_>,
def: &ty::Generics,
args: &hir::GenericArgs<'_>,
position: GenericArgPosition,
) -> ExplicitLateBound {
let param_counts = def.own_counts();
let infer_lifetimes = position != GenericArgPosition::Type && !args.has_lifetime_params();
if infer_lifetimes {
return ExplicitLateBound::No;
}
if let Some(span_late) = def.has_late_bound_regions {
let msg = "cannot specify lifetime arguments explicitly \
if late bound lifetime parameters are present";
let note = "the late bound lifetime parameter is introduced here";
let span = args.args[0].span();
if position == GenericArgPosition::Value
&& args.num_lifetime_params() != param_counts.lifetimes
{
struct_span_code_err!(cx.dcx(), span, E0794, "{}", msg)
.with_span_note(span_late, note)
.emit();
} else {
let mut multispan = MultiSpan::from_span(span);
multispan.push_span_label(span_late, note);
cx.tcx().node_span_lint(
LATE_BOUND_LIFETIME_ARGUMENTS,
args.args[0].hir_id(),
multispan,
|lint| {
lint.primary_message(msg);
},
);
}
ExplicitLateBound::Yes
} else {
ExplicitLateBound::No
}
}