rustc_middle/mir/mod.rs
1//! MIR datatypes and passes. See the [rustc dev guide] for more info.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
4
5use std::borrow::Cow;
6use std::fmt::{self, Debug, Formatter};
7use std::iter;
8use std::ops::{Index, IndexMut};
9
10pub use basic_blocks::{BasicBlocks, SwitchTargetValue};
11use either::Either;
12use polonius_engine::Atom;
13use rustc_abi::{FieldIdx, VariantIdx};
14pub use rustc_ast::{Mutability, Pinnedness};
15use rustc_data_structures::fx::{FxHashMap, FxHashSet};
16use rustc_data_structures::graph::dominators::Dominators;
17use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg};
18use rustc_hir::def::{CtorKind, Namespace};
19use rustc_hir::def_id::{CRATE_DEF_ID, DefId};
20use rustc_hir::{
21 self as hir, BindingMode, ByRef, CoroutineDesugaring, CoroutineKind, HirId, ImplicitSelfKind,
22};
23use rustc_index::bit_set::DenseBitSet;
24use rustc_index::{Idx, IndexSlice, IndexVec};
25use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
26use rustc_serialize::{Decodable, Encodable};
27use rustc_span::source_map::Spanned;
28use rustc_span::{DUMMY_SP, Span, Symbol};
29use tracing::{debug, trace};
30
31pub use self::query::*;
32use crate::mir::interpret::{AllocRange, Scalar};
33use crate::ty::codec::{TyDecoder, TyEncoder};
34use crate::ty::print::{FmtPrinter, Printer, pretty_print_const, with_no_trimmed_paths};
35use crate::ty::{
36 self, GenericArg, GenericArgsRef, Instance, InstanceKind, List, Ty, TyCtxt, TypeVisitableExt,
37 TypingEnv, UserTypeAnnotationIndex,
38};
39
40mod basic_blocks;
41mod consts;
42pub mod coverage;
43mod generic_graph;
44pub mod generic_graphviz;
45pub mod graphviz;
46pub mod interpret;
47pub mod mono;
48pub mod pretty;
49mod query;
50mod statement;
51mod syntax;
52mod terminator;
53
54pub mod loops;
55pub mod traversal;
56pub mod visit;
57
58pub use consts::*;
59use pretty::pretty_print_const_value;
60pub use statement::*;
61pub use syntax::*;
62pub use terminator::*;
63
64pub use self::generic_graph::graphviz_safe_def_name;
65pub use self::graphviz::write_mir_graphviz;
66pub use self::pretty::{MirDumper, PassWhere, display_allocation, write_mir_pretty};
67
68/// Types for locals
69pub type LocalDecls<'tcx> = IndexSlice<Local, LocalDecl<'tcx>>;
70
71pub trait HasLocalDecls<'tcx> {
72 fn local_decls(&self) -> &LocalDecls<'tcx>;
73}
74
75impl<'tcx> HasLocalDecls<'tcx> for IndexVec<Local, LocalDecl<'tcx>> {
76 #[inline]
77 fn local_decls(&self) -> &LocalDecls<'tcx> {
78 self
79 }
80}
81
82impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
83 #[inline]
84 fn local_decls(&self) -> &LocalDecls<'tcx> {
85 self
86 }
87}
88
89impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
90 #[inline]
91 fn local_decls(&self) -> &LocalDecls<'tcx> {
92 &self.local_decls
93 }
94}
95
96impl MirPhase {
97 pub fn name(&self) -> &'static str {
98 match *self {
99 MirPhase::Built => "built",
100 MirPhase::Analysis(AnalysisPhase::Initial) => "analysis",
101 MirPhase::Analysis(AnalysisPhase::PostCleanup) => "analysis-post-cleanup",
102 MirPhase::Runtime(RuntimePhase::Initial) => "runtime",
103 MirPhase::Runtime(RuntimePhase::PostCleanup) => "runtime-post-cleanup",
104 MirPhase::Runtime(RuntimePhase::Optimized) => "runtime-optimized",
105 }
106 }
107
108 /// Gets the (dialect, phase) index of the current `MirPhase`. Both numbers
109 /// are 1-indexed.
110 pub fn index(&self) -> (usize, usize) {
111 match *self {
112 MirPhase::Built => (1, 1),
113 MirPhase::Analysis(analysis_phase) => (2, 1 + analysis_phase as usize),
114 MirPhase::Runtime(runtime_phase) => (3, 1 + runtime_phase as usize),
115 }
116 }
117}
118
119/// Where a specific `mir::Body` comes from.
120#[derive(Copy, Clone, Debug, PartialEq, Eq)]
121#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable, TypeVisitable)]
122pub struct MirSource<'tcx> {
123 pub instance: InstanceKind<'tcx>,
124
125 /// If `Some`, this is a promoted rvalue within the parent function.
126 pub promoted: Option<Promoted>,
127}
128
129impl<'tcx> MirSource<'tcx> {
130 pub fn item(def_id: DefId) -> Self {
131 MirSource { instance: InstanceKind::Item(def_id), promoted: None }
132 }
133
134 pub fn from_instance(instance: InstanceKind<'tcx>) -> Self {
135 MirSource { instance, promoted: None }
136 }
137
138 #[inline]
139 pub fn def_id(&self) -> DefId {
140 self.instance.def_id()
141 }
142}
143
144/// Additional information carried by a MIR body when it is lowered from a coroutine.
145/// This information is modified as it is lowered during the `StateTransform` MIR pass,
146/// so not all fields will be active at a given time. For example, the `yield_ty` is
147/// taken out of the field after yields are turned into returns, and the `coroutine_drop`
148/// body is only populated after the state transform pass.
149#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
150pub struct CoroutineInfo<'tcx> {
151 /// The yield type of the function. This field is removed after the state transform pass.
152 pub yield_ty: Option<Ty<'tcx>>,
153
154 /// The resume type of the function. This field is removed after the state transform pass.
155 pub resume_ty: Option<Ty<'tcx>>,
156
157 /// Coroutine drop glue. This field is populated after the state transform pass.
158 pub coroutine_drop: Option<Body<'tcx>>,
159
160 /// Coroutine async drop glue.
161 pub coroutine_drop_async: Option<Body<'tcx>>,
162
163 /// When coroutine has sync drop, this is async proxy calling `coroutine_drop` sync impl.
164 pub coroutine_drop_proxy_async: Option<Body<'tcx>>,
165
166 /// The layout of a coroutine. Produced by the state transformation.
167 pub coroutine_layout: Option<CoroutineLayout<'tcx>>,
168
169 /// If this is a coroutine then record the type of source expression that caused this coroutine
170 /// to be created.
171 pub coroutine_kind: CoroutineKind,
172}
173
174impl<'tcx> CoroutineInfo<'tcx> {
175 // Sets up `CoroutineInfo` for a pre-coroutine-transform MIR body.
176 pub fn initial(
177 coroutine_kind: CoroutineKind,
178 yield_ty: Ty<'tcx>,
179 resume_ty: Ty<'tcx>,
180 ) -> CoroutineInfo<'tcx> {
181 CoroutineInfo {
182 coroutine_kind,
183 yield_ty: Some(yield_ty),
184 resume_ty: Some(resume_ty),
185 coroutine_drop: None,
186 coroutine_drop_async: None,
187 coroutine_drop_proxy_async: None,
188 coroutine_layout: None,
189 }
190 }
191}
192
193/// Some item that needs to monomorphize successfully for a MIR body to be considered well-formed.
194#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, HashStable, TyEncodable, TyDecodable)]
195#[derive(TypeFoldable, TypeVisitable)]
196pub enum MentionedItem<'tcx> {
197 /// A function that gets called. We don't necessarily know its precise type yet, since it can be
198 /// hidden behind a generic.
199 Fn(Ty<'tcx>),
200 /// A type that has its drop shim called.
201 Drop(Ty<'tcx>),
202 /// Unsizing casts might require vtables, so we have to record them.
203 UnsizeCast { source_ty: Ty<'tcx>, target_ty: Ty<'tcx> },
204 /// A closure that is coerced to a function pointer.
205 Closure(Ty<'tcx>),
206}
207
208/// The lowered representation of a single function.
209#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
210pub struct Body<'tcx> {
211 /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
212 /// that indexes into this vector.
213 pub basic_blocks: BasicBlocks<'tcx>,
214
215 /// Records how far through the "desugaring and optimization" process this particular
216 /// MIR has traversed. This is particularly useful when inlining, since in that context
217 /// we instantiate the promoted constants and add them to our promoted vector -- but those
218 /// promoted items have already been optimized, whereas ours have not. This field allows
219 /// us to see the difference and forego optimization on the inlined promoted items.
220 pub phase: MirPhase,
221
222 /// How many passes we have executed since starting the current phase. Used for debug output.
223 pub pass_count: usize,
224
225 pub source: MirSource<'tcx>,
226
227 /// A list of source scopes; these are referenced by statements
228 /// and used for debuginfo. Indexed by a `SourceScope`.
229 pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
230
231 /// Additional information carried by a MIR body when it is lowered from a coroutine.
232 ///
233 /// Note that the coroutine drop shim, any promoted consts, and other synthetic MIR
234 /// bodies that come from processing a coroutine body are not typically coroutines
235 /// themselves, and should probably set this to `None` to avoid carrying redundant
236 /// information.
237 pub coroutine: Option<Box<CoroutineInfo<'tcx>>>,
238
239 /// Declarations of locals.
240 ///
241 /// The first local is the return value pointer, followed by `arg_count`
242 /// locals for the function arguments, followed by any user-declared
243 /// variables and temporaries.
244 pub local_decls: IndexVec<Local, LocalDecl<'tcx>>,
245
246 /// User type annotations.
247 pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
248
249 /// The number of arguments this function takes.
250 ///
251 /// Starting at local 1, `arg_count` locals will be provided by the caller
252 /// and can be assumed to be initialized.
253 ///
254 /// If this MIR was built for a constant, this will be 0.
255 pub arg_count: usize,
256
257 /// Mark an argument local (which must be a tuple) as getting passed as
258 /// its individual components at the LLVM level.
259 ///
260 /// This is used for the "rust-call" ABI.
261 pub spread_arg: Option<Local>,
262
263 /// Debug information pertaining to user variables, including captures.
264 pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
265
266 /// A span representing this MIR, for error reporting.
267 pub span: Span,
268
269 /// Constants that are required to evaluate successfully for this MIR to be well-formed.
270 /// We hold in this field all the constants we are not able to evaluate yet.
271 /// `None` indicates that the list has not been computed yet.
272 ///
273 /// This is soundness-critical, we make a guarantee that all consts syntactically mentioned in a
274 /// function have successfully evaluated if the function ever gets executed at runtime.
275 pub required_consts: Option<Vec<ConstOperand<'tcx>>>,
276
277 /// Further items that were mentioned in this function and hence *may* become monomorphized,
278 /// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
279 /// collector recursively traverses all "mentioned" items and evaluates all their
280 /// `required_consts`.
281 /// `None` indicates that the list has not been computed yet.
282 ///
283 /// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
284 /// All that's relevant is that this set is optimization-level-independent, and that it includes
285 /// everything that the collector would consider "used". (For example, we currently compute this
286 /// set after drop elaboration, so some drop calls that can never be reached are not considered
287 /// "mentioned".) See the documentation of `CollectionMode` in
288 /// `compiler/rustc_monomorphize/src/collector.rs` for more context.
289 pub mentioned_items: Option<Vec<Spanned<MentionedItem<'tcx>>>>,
290
291 /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
292 ///
293 /// Note that this does not actually mean that this body is not computable right now.
294 /// The repeat count in the following example is polymorphic, but can still be evaluated
295 /// without knowing anything about the type parameter `T`.
296 ///
297 /// ```rust
298 /// fn test<T>() {
299 /// let _ = [0; size_of::<*mut T>()];
300 /// }
301 /// ```
302 ///
303 /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
304 /// removed the last mention of all generic params. We do not want to rely on optimizations and
305 /// potentially allow things like `[u8; size_of::<T>() * 0]` due to this.
306 pub is_polymorphic: bool,
307
308 /// The phase at which this MIR should be "injected" into the compilation process.
309 ///
310 /// Everything that comes before this `MirPhase` should be skipped.
311 ///
312 /// This is only `Some` if the function that this body comes from was annotated with `rustc_custom_mir`.
313 pub injection_phase: Option<MirPhase>,
314
315 pub tainted_by_errors: Option<ErrorGuaranteed>,
316
317 /// Coverage information collected from THIR/MIR during MIR building,
318 /// to be used by the `InstrumentCoverage` pass.
319 ///
320 /// Only present if coverage is enabled and this function is eligible.
321 /// Boxed to limit space overhead in non-coverage builds.
322 #[type_foldable(identity)]
323 #[type_visitable(ignore)]
324 pub coverage_info_hi: Option<Box<coverage::CoverageInfoHi>>,
325
326 /// Per-function coverage information added by the `InstrumentCoverage`
327 /// pass, to be used in conjunction with the coverage statements injected
328 /// into this body's blocks.
329 ///
330 /// If `-Cinstrument-coverage` is not active, or if an individual function
331 /// is not eligible for coverage, then this should always be `None`.
332 #[type_foldable(identity)]
333 #[type_visitable(ignore)]
334 pub function_coverage_info: Option<Box<coverage::FunctionCoverageInfo>>,
335}
336
337impl<'tcx> Body<'tcx> {
338 pub fn new(
339 source: MirSource<'tcx>,
340 basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
341 source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
342 local_decls: IndexVec<Local, LocalDecl<'tcx>>,
343 user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
344 arg_count: usize,
345 var_debug_info: Vec<VarDebugInfo<'tcx>>,
346 span: Span,
347 coroutine: Option<Box<CoroutineInfo<'tcx>>>,
348 tainted_by_errors: Option<ErrorGuaranteed>,
349 ) -> Self {
350 // We need `arg_count` locals, and one for the return place.
351 assert!(
352 local_decls.len() > arg_count,
353 "expected at least {} locals, got {}",
354 arg_count + 1,
355 local_decls.len()
356 );
357
358 let mut body = Body {
359 phase: MirPhase::Built,
360 pass_count: 0,
361 source,
362 basic_blocks: BasicBlocks::new(basic_blocks),
363 source_scopes,
364 coroutine,
365 local_decls,
366 user_type_annotations,
367 arg_count,
368 spread_arg: None,
369 var_debug_info,
370 span,
371 required_consts: None,
372 mentioned_items: None,
373 is_polymorphic: false,
374 injection_phase: None,
375 tainted_by_errors,
376 coverage_info_hi: None,
377 function_coverage_info: None,
378 };
379 body.is_polymorphic = body.has_non_region_param();
380 body
381 }
382
383 /// Returns a partially initialized MIR body containing only a list of basic blocks.
384 ///
385 /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
386 /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
387 /// crate.
388 pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
389 let mut body = Body {
390 phase: MirPhase::Built,
391 pass_count: 0,
392 source: MirSource::item(CRATE_DEF_ID.to_def_id()),
393 basic_blocks: BasicBlocks::new(basic_blocks),
394 source_scopes: IndexVec::new(),
395 coroutine: None,
396 local_decls: IndexVec::new(),
397 user_type_annotations: IndexVec::new(),
398 arg_count: 0,
399 spread_arg: None,
400 span: DUMMY_SP,
401 required_consts: None,
402 mentioned_items: None,
403 var_debug_info: Vec::new(),
404 is_polymorphic: false,
405 injection_phase: None,
406 tainted_by_errors: None,
407 coverage_info_hi: None,
408 function_coverage_info: None,
409 };
410 body.is_polymorphic = body.has_non_region_param();
411 body
412 }
413
414 #[inline]
415 pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
416 self.basic_blocks.as_mut()
417 }
418
419 pub fn typing_env(&self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
420 match self.phase {
421 // FIXME(#132279): we should reveal the opaques defined in the body during analysis.
422 MirPhase::Built | MirPhase::Analysis(_) => TypingEnv {
423 typing_mode: ty::TypingMode::non_body_analysis(),
424 param_env: tcx.param_env(self.source.def_id()),
425 },
426 MirPhase::Runtime(_) => TypingEnv::post_analysis(tcx, self.source.def_id()),
427 }
428 }
429
430 #[inline]
431 pub fn local_kind(&self, local: Local) -> LocalKind {
432 let index = local.as_usize();
433 if index == 0 {
434 debug_assert!(
435 self.local_decls[local].mutability == Mutability::Mut,
436 "return place should be mutable"
437 );
438
439 LocalKind::ReturnPointer
440 } else if index < self.arg_count + 1 {
441 LocalKind::Arg
442 } else {
443 LocalKind::Temp
444 }
445 }
446
447 /// Returns an iterator over all user-declared mutable locals.
448 #[inline]
449 pub fn mut_vars_iter(&self) -> impl Iterator<Item = Local> {
450 (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
451 let local = Local::new(index);
452 let decl = &self.local_decls[local];
453 (decl.is_user_variable() && decl.mutability.is_mut()).then_some(local)
454 })
455 }
456
457 /// Returns an iterator over all user-declared mutable arguments and locals.
458 #[inline]
459 pub fn mut_vars_and_args_iter(&self) -> impl Iterator<Item = Local> {
460 (1..self.local_decls.len()).filter_map(move |index| {
461 let local = Local::new(index);
462 let decl = &self.local_decls[local];
463 if (decl.is_user_variable() || index < self.arg_count + 1)
464 && decl.mutability == Mutability::Mut
465 {
466 Some(local)
467 } else {
468 None
469 }
470 })
471 }
472
473 /// Returns an iterator over all function arguments.
474 #[inline]
475 pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator + use<> {
476 (1..self.arg_count + 1).map(Local::new)
477 }
478
479 /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
480 /// locals that are neither arguments nor the return place).
481 #[inline]
482 pub fn vars_and_temps_iter(
483 &self,
484 ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
485 (self.arg_count + 1..self.local_decls.len()).map(Local::new)
486 }
487
488 #[inline]
489 pub fn drain_vars_and_temps(&mut self) -> impl Iterator<Item = LocalDecl<'tcx>> {
490 self.local_decls.drain(self.arg_count + 1..)
491 }
492
493 /// Returns the source info associated with `location`.
494 pub fn source_info(&self, location: Location) -> &SourceInfo {
495 let block = &self[location.block];
496 let stmts = &block.statements;
497 let idx = location.statement_index;
498 if idx < stmts.len() {
499 &stmts[idx].source_info
500 } else {
501 assert_eq!(idx, stmts.len());
502 &block.terminator().source_info
503 }
504 }
505
506 /// Returns the return type; it always return first element from `local_decls` array.
507 #[inline]
508 pub fn return_ty(&self) -> Ty<'tcx> {
509 self.local_decls[RETURN_PLACE].ty
510 }
511
512 /// Returns the return type; it always return first element from `local_decls` array.
513 #[inline]
514 pub fn bound_return_ty(&self) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
515 ty::EarlyBinder::bind(self.local_decls[RETURN_PLACE].ty)
516 }
517
518 /// Gets the location of the terminator for the given block.
519 #[inline]
520 pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
521 Location { block: bb, statement_index: self[bb].statements.len() }
522 }
523
524 pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
525 let Location { block, statement_index } = location;
526 let block_data = &self.basic_blocks[block];
527 block_data
528 .statements
529 .get(statement_index)
530 .map(Either::Left)
531 .unwrap_or_else(|| Either::Right(block_data.terminator()))
532 }
533
534 #[inline]
535 pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
536 self.coroutine.as_ref().and_then(|coroutine| coroutine.yield_ty)
537 }
538
539 #[inline]
540 pub fn resume_ty(&self) -> Option<Ty<'tcx>> {
541 self.coroutine.as_ref().and_then(|coroutine| coroutine.resume_ty)
542 }
543
544 /// Prefer going through [`TyCtxt::coroutine_layout`] rather than using this directly.
545 #[inline]
546 pub fn coroutine_layout_raw(&self) -> Option<&CoroutineLayout<'tcx>> {
547 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_layout.as_ref())
548 }
549
550 #[inline]
551 pub fn coroutine_drop(&self) -> Option<&Body<'tcx>> {
552 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop.as_ref())
553 }
554
555 #[inline]
556 pub fn coroutine_drop_async(&self) -> Option<&Body<'tcx>> {
557 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop_async.as_ref())
558 }
559
560 #[inline]
561 pub fn coroutine_requires_async_drop(&self) -> bool {
562 self.coroutine_drop_async().is_some()
563 }
564
565 #[inline]
566 pub fn future_drop_poll(&self) -> Option<&Body<'tcx>> {
567 self.coroutine.as_ref().and_then(|coroutine| {
568 coroutine
569 .coroutine_drop_async
570 .as_ref()
571 .or(coroutine.coroutine_drop_proxy_async.as_ref())
572 })
573 }
574
575 #[inline]
576 pub fn coroutine_kind(&self) -> Option<CoroutineKind> {
577 self.coroutine.as_ref().map(|coroutine| coroutine.coroutine_kind)
578 }
579
580 #[inline]
581 pub fn should_skip(&self) -> bool {
582 let Some(injection_phase) = self.injection_phase else {
583 return false;
584 };
585 injection_phase > self.phase
586 }
587
588 #[inline]
589 pub fn is_custom_mir(&self) -> bool {
590 self.injection_phase.is_some()
591 }
592
593 /// If this basic block ends with a [`TerminatorKind::SwitchInt`] for which we can evaluate the
594 /// discriminant in monomorphization, we return the discriminant bits and the
595 /// [`SwitchTargets`], just so the caller doesn't also have to match on the terminator.
596 fn try_const_mono_switchint<'a>(
597 tcx: TyCtxt<'tcx>,
598 instance: Instance<'tcx>,
599 block: &'a BasicBlockData<'tcx>,
600 ) -> Option<(u128, &'a SwitchTargets)> {
601 // There are two places here we need to evaluate a constant.
602 let eval_mono_const = |constant: &ConstOperand<'tcx>| {
603 // FIXME(#132279): what is this, why are we using an empty environment here.
604 let typing_env = ty::TypingEnv::fully_monomorphized();
605 let mono_literal = instance.instantiate_mir_and_normalize_erasing_regions(
606 tcx,
607 typing_env,
608 crate::ty::EarlyBinder::bind(constant.const_),
609 );
610 mono_literal.try_eval_bits(tcx, typing_env)
611 };
612
613 let TerminatorKind::SwitchInt { discr, targets } = &block.terminator().kind else {
614 return None;
615 };
616
617 // If this is a SwitchInt(const _), then we can just evaluate the constant and return.
618 let discr = match discr {
619 Operand::Constant(constant) => {
620 let bits = eval_mono_const(constant)?;
621 return Some((bits, targets));
622 }
623 Operand::RuntimeChecks(check) => {
624 let bits = check.value(tcx.sess) as u128;
625 return Some((bits, targets));
626 }
627 Operand::Move(place) | Operand::Copy(place) => place,
628 };
629
630 // MIR for `if false` actually looks like this:
631 // _1 = const _
632 // SwitchInt(_1)
633 //
634 // And MIR for if intrinsics::ub_checks() looks like this:
635 // _1 = UbChecks()
636 // SwitchInt(_1)
637 //
638 // So we're going to try to recognize this pattern.
639 //
640 // If we have a SwitchInt on a non-const place, we find the most recent statement that
641 // isn't a storage marker. If that statement is an assignment of a const to our
642 // discriminant place, we evaluate and return the const, as if we've const-propagated it
643 // into the SwitchInt.
644
645 let last_stmt = block.statements.iter().rev().find(|stmt| {
646 !matches!(stmt.kind, StatementKind::StorageDead(_) | StatementKind::StorageLive(_))
647 })?;
648
649 let (place, rvalue) = last_stmt.kind.as_assign()?;
650
651 if discr != place {
652 return None;
653 }
654
655 match rvalue {
656 Rvalue::Use(Operand::Constant(constant)) => {
657 let bits = eval_mono_const(constant)?;
658 Some((bits, targets))
659 }
660 _ => None,
661 }
662 }
663
664 /// For a `Location` in this scope, determine what the "caller location" at that point is. This
665 /// is interesting because of inlining: the `#[track_caller]` attribute of inlined functions
666 /// must be honored. Falls back to the `tracked_caller` value for `#[track_caller]` functions,
667 /// or the function's scope.
668 pub fn caller_location_span<T>(
669 &self,
670 mut source_info: SourceInfo,
671 caller_location: Option<T>,
672 tcx: TyCtxt<'tcx>,
673 from_span: impl FnOnce(Span) -> T,
674 ) -> T {
675 loop {
676 let scope_data = &self.source_scopes[source_info.scope];
677
678 if let Some((callee, callsite_span)) = scope_data.inlined {
679 // Stop inside the most nested non-`#[track_caller]` function,
680 // before ever reaching its caller (which is irrelevant).
681 if !callee.def.requires_caller_location(tcx) {
682 return from_span(source_info.span);
683 }
684 source_info.span = callsite_span;
685 }
686
687 // Skip past all of the parents with `inlined: None`.
688 match scope_data.inlined_parent_scope {
689 Some(parent) => source_info.scope = parent,
690 None => break,
691 }
692 }
693
694 // No inlined `SourceScope`s, or all of them were `#[track_caller]`.
695 caller_location.unwrap_or_else(|| from_span(source_info.span))
696 }
697
698 #[track_caller]
699 pub fn set_required_consts(&mut self, required_consts: Vec<ConstOperand<'tcx>>) {
700 assert!(
701 self.required_consts.is_none(),
702 "required_consts for {:?} have already been set",
703 self.source.def_id()
704 );
705 self.required_consts = Some(required_consts);
706 }
707 #[track_caller]
708 pub fn required_consts(&self) -> &[ConstOperand<'tcx>] {
709 match &self.required_consts {
710 Some(l) => l,
711 None => panic!("required_consts for {:?} have not yet been set", self.source.def_id()),
712 }
713 }
714
715 #[track_caller]
716 pub fn set_mentioned_items(&mut self, mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>) {
717 assert!(
718 self.mentioned_items.is_none(),
719 "mentioned_items for {:?} have already been set",
720 self.source.def_id()
721 );
722 self.mentioned_items = Some(mentioned_items);
723 }
724 #[track_caller]
725 pub fn mentioned_items(&self) -> &[Spanned<MentionedItem<'tcx>>] {
726 match &self.mentioned_items {
727 Some(l) => l,
728 None => panic!("mentioned_items for {:?} have not yet been set", self.source.def_id()),
729 }
730 }
731}
732
733impl<'tcx> Index<BasicBlock> for Body<'tcx> {
734 type Output = BasicBlockData<'tcx>;
735
736 #[inline]
737 fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
738 &self.basic_blocks[index]
739 }
740}
741
742impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
743 #[inline]
744 fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
745 &mut self.basic_blocks.as_mut()[index]
746 }
747}
748
749#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
750pub enum ClearCrossCrate<T> {
751 Clear,
752 Set(T),
753}
754
755impl<T> ClearCrossCrate<T> {
756 pub fn as_ref(&self) -> ClearCrossCrate<&T> {
757 match self {
758 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
759 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
760 }
761 }
762
763 pub fn as_mut(&mut self) -> ClearCrossCrate<&mut T> {
764 match self {
765 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
766 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
767 }
768 }
769
770 pub fn unwrap_crate_local(self) -> T {
771 match self {
772 ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
773 ClearCrossCrate::Set(v) => v,
774 }
775 }
776}
777
778const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
779const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
780
781impl<'tcx, E: TyEncoder<'tcx>, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
782 #[inline]
783 fn encode(&self, e: &mut E) {
784 if E::CLEAR_CROSS_CRATE {
785 return;
786 }
787
788 match *self {
789 ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
790 ClearCrossCrate::Set(ref val) => {
791 TAG_CLEAR_CROSS_CRATE_SET.encode(e);
792 val.encode(e);
793 }
794 }
795 }
796}
797impl<'tcx, D: TyDecoder<'tcx>, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
798 #[inline]
799 fn decode(d: &mut D) -> ClearCrossCrate<T> {
800 if D::CLEAR_CROSS_CRATE {
801 return ClearCrossCrate::Clear;
802 }
803
804 let discr = u8::decode(d);
805
806 match discr {
807 TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
808 TAG_CLEAR_CROSS_CRATE_SET => {
809 let val = T::decode(d);
810 ClearCrossCrate::Set(val)
811 }
812 tag => panic!("Invalid tag for ClearCrossCrate: {tag:?}"),
813 }
814 }
815}
816
817/// Grouped information about the source code origin of a MIR entity.
818/// Intended to be inspected by diagnostics and debuginfo.
819/// Most passes can work with it as a whole, within a single function.
820// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
821// `Hash`. Please ping @bjorn3 if removing them.
822#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
823pub struct SourceInfo {
824 /// The source span for the AST pertaining to this MIR entity.
825 pub span: Span,
826
827 /// The source scope, keeping track of which bindings can be
828 /// seen by debuginfo, active lint levels, etc.
829 pub scope: SourceScope,
830}
831
832impl SourceInfo {
833 #[inline]
834 pub fn outermost(span: Span) -> Self {
835 SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
836 }
837}
838
839///////////////////////////////////////////////////////////////////////////
840// Variables and temps
841
842rustc_index::newtype_index! {
843 #[derive(HashStable)]
844 #[encodable]
845 #[orderable]
846 #[debug_format = "_{}"]
847 pub struct Local {
848 const RETURN_PLACE = 0;
849 }
850}
851
852impl Atom for Local {
853 fn index(self) -> usize {
854 Idx::index(self)
855 }
856}
857
858/// Classifies locals into categories. See `Body::local_kind`.
859#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
860pub enum LocalKind {
861 /// User-declared variable binding or compiler-introduced temporary.
862 Temp,
863 /// Function argument.
864 Arg,
865 /// Location of function's return value.
866 ReturnPointer,
867}
868
869#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
870pub struct VarBindingForm<'tcx> {
871 /// Is variable bound via `x`, `mut x`, `ref x`, `ref mut x`, `mut ref x`, or `mut ref mut x`?
872 pub binding_mode: BindingMode,
873 /// If an explicit type was provided for this variable binding,
874 /// this holds the source Span of that type.
875 ///
876 /// NOTE: if you want to change this to a `HirId`, be wary that
877 /// doing so breaks incremental compilation (as of this writing),
878 /// while a `Span` does not cause our tests to fail.
879 pub opt_ty_info: Option<Span>,
880 /// Place of the RHS of the =, or the subject of the `match` where this
881 /// variable is initialized. None in the case of `let PATTERN;`.
882 /// Some((None, ..)) in the case of and `let [mut] x = ...` because
883 /// (a) the right-hand side isn't evaluated as a place expression.
884 /// (b) it gives a way to separate this case from the remaining cases
885 /// for diagnostics.
886 pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
887 /// The span of the pattern in which this variable was bound.
888 pub pat_span: Span,
889 /// A binding can be introduced multiple times, with or patterns:
890 /// `Foo::A { x } | Foo::B { z: x }`. This stores information for each of those introductions.
891 pub introductions: Vec<VarBindingIntroduction>,
892}
893
894#[derive(Clone, Debug, TyEncodable, TyDecodable)]
895pub enum BindingForm<'tcx> {
896 /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
897 Var(VarBindingForm<'tcx>),
898 /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
899 ImplicitSelf(ImplicitSelfKind),
900 /// Reference used in a guard expression to ensure immutability.
901 RefForGuard(Local),
902}
903
904#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
905pub struct VarBindingIntroduction {
906 /// Where this additional introduction happened.
907 pub span: Span,
908 /// Is that introduction a shorthand struct pattern, i.e. `Foo { x }`.
909 pub is_shorthand: bool,
910}
911
912mod binding_form_impl {
913 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
914 use rustc_query_system::ich::StableHashingContext;
915
916 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
917 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
918 use super::BindingForm::*;
919 std::mem::discriminant(self).hash_stable(hcx, hasher);
920
921 match self {
922 Var(binding) => binding.hash_stable(hcx, hasher),
923 ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
924 RefForGuard(local) => local.hash_stable(hcx, hasher),
925 }
926 }
927 }
928}
929
930/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
931/// created during evaluation of expressions in a block tail
932/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
933///
934/// It is used to improve diagnostics when such temporaries are
935/// involved in borrow_check errors, e.g., explanations of where the
936/// temporaries come from, when their destructors are run, and/or how
937/// one might revise the code to satisfy the borrow checker's rules.
938#[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
939pub struct BlockTailInfo {
940 /// If `true`, then the value resulting from evaluating this tail
941 /// expression is ignored by the block's expression context.
942 ///
943 /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
944 /// but not e.g., `let _x = { ...; tail };`
945 pub tail_result_is_ignored: bool,
946
947 /// `Span` of the tail expression.
948 pub span: Span,
949}
950
951/// A MIR local.
952///
953/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
954/// argument, or the return place.
955#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
956pub struct LocalDecl<'tcx> {
957 /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
958 ///
959 /// Temporaries and the return place are always mutable.
960 pub mutability: Mutability,
961
962 pub local_info: ClearCrossCrate<Box<LocalInfo<'tcx>>>,
963
964 /// The type of this local.
965 pub ty: Ty<'tcx>,
966
967 /// If the user manually ascribed a type to this variable,
968 /// e.g., via `let x: T`, then we carry that type here. The MIR
969 /// borrow checker needs this information since it can affect
970 /// region inference.
971 pub user_ty: Option<Box<UserTypeProjections>>,
972
973 /// The *syntactic* (i.e., not visibility) source scope the local is defined
974 /// in. If the local was defined in a let-statement, this
975 /// is *within* the let-statement, rather than outside
976 /// of it.
977 ///
978 /// This is needed because the visibility source scope of locals within
979 /// a let-statement is weird.
980 ///
981 /// The reason is that we want the local to be *within* the let-statement
982 /// for lint purposes, but we want the local to be *after* the let-statement
983 /// for names-in-scope purposes.
984 ///
985 /// That's it, if we have a let-statement like the one in this
986 /// function:
987 ///
988 /// ```
989 /// fn foo(x: &str) {
990 /// #[allow(unused_mut)]
991 /// let mut x: u32 = {
992 /// //^ one unused mut
993 /// let mut y: u32 = x.parse().unwrap();
994 /// y + 2
995 /// };
996 /// drop(x);
997 /// }
998 /// ```
999 ///
1000 /// Then, from a lint point of view, the declaration of `x: u32`
1001 /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
1002 /// lint scopes are the same as the AST/HIR nesting.
1003 ///
1004 /// However, from a name lookup point of view, the scopes look more like
1005 /// as if the let-statements were `match` expressions:
1006 ///
1007 /// ```
1008 /// fn foo(x: &str) {
1009 /// match {
1010 /// match x.parse::<u32>().unwrap() {
1011 /// y => y + 2
1012 /// }
1013 /// } {
1014 /// x => drop(x)
1015 /// };
1016 /// }
1017 /// ```
1018 ///
1019 /// We care about the name-lookup scopes for debuginfo - if the
1020 /// debuginfo instruction pointer is at the call to `x.parse()`, we
1021 /// want `x` to refer to `x: &str`, but if it is at the call to
1022 /// `drop(x)`, we want it to refer to `x: u32`.
1023 ///
1024 /// To allow both uses to work, we need to have more than a single scope
1025 /// for a local. We have the `source_info.scope` represent the "syntactic"
1026 /// lint scope (with a variable being under its let block) while the
1027 /// `var_debug_info.source_info.scope` represents the "local variable"
1028 /// scope (where the "rest" of a block is under all prior let-statements).
1029 ///
1030 /// The end result looks like this:
1031 ///
1032 /// ```text
1033 /// ROOT SCOPE
1034 /// │{ argument x: &str }
1035 /// │
1036 /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
1037 /// │ │ // in practice because I'm lazy.
1038 /// │ │
1039 /// │ │← x.source_info.scope
1040 /// │ │← `x.parse().unwrap()`
1041 /// │ │
1042 /// │ │ │← y.source_info.scope
1043 /// │ │
1044 /// │ │ │{ let y: u32 }
1045 /// │ │ │
1046 /// │ │ │← y.var_debug_info.source_info.scope
1047 /// │ │ │← `y + 2`
1048 /// │
1049 /// │ │{ let x: u32 }
1050 /// │ │← x.var_debug_info.source_info.scope
1051 /// │ │← `drop(x)` // This accesses `x: u32`.
1052 /// ```
1053 pub source_info: SourceInfo,
1054}
1055
1056/// Extra information about a some locals that's used for diagnostics and for
1057/// classifying variables into local variables, statics, etc, which is needed e.g.
1058/// for borrow checking.
1059///
1060/// Not used for non-StaticRef temporaries, the return place, or anonymous
1061/// function parameters.
1062#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1063pub enum LocalInfo<'tcx> {
1064 /// A user-defined local variable or function parameter
1065 ///
1066 /// The `BindingForm` is solely used for local diagnostics when generating
1067 /// warnings/errors when compiling the current crate, and therefore it need
1068 /// not be visible across crates.
1069 User(BindingForm<'tcx>),
1070 /// A temporary created that references the static with the given `DefId`.
1071 StaticRef { def_id: DefId, is_thread_local: bool },
1072 /// A temporary created that references the const with the given `DefId`
1073 ConstRef { def_id: DefId },
1074 /// A temporary created during the creation of an aggregate
1075 /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
1076 AggregateTemp,
1077 /// A temporary created for evaluation of some subexpression of some block's tail expression
1078 /// (with no intervening statement context).
1079 BlockTailTemp(BlockTailInfo),
1080 /// A temporary created during evaluating `if` predicate, possibly for pattern matching for `let`s,
1081 /// and subject to Edition 2024 temporary lifetime rules
1082 IfThenRescopeTemp { if_then: HirId },
1083 /// A temporary created during the pass `Derefer` treated as a transparent alias
1084 /// for the place its copied from by analysis passes such as `AddRetag` and `ElaborateDrops`.
1085 ///
1086 /// It may only be written to by a `CopyForDeref` and otherwise only accessed through a deref.
1087 /// In runtime MIR, it is replaced with a normal `Boring` local.
1088 DerefTemp,
1089 /// A temporary created for borrow checking.
1090 FakeBorrow,
1091 /// A local without anything interesting about it.
1092 Boring,
1093}
1094
1095impl<'tcx> LocalDecl<'tcx> {
1096 pub fn local_info(&self) -> &LocalInfo<'tcx> {
1097 self.local_info.as_ref().unwrap_crate_local()
1098 }
1099
1100 /// Returns `true` only if local is a binding that can itself be
1101 /// made mutable via the addition of the `mut` keyword, namely
1102 /// something like the occurrences of `x` in:
1103 /// - `fn foo(x: Type) { ... }`,
1104 /// - `let x = ...`,
1105 /// - or `match ... { C(x) => ... }`
1106 pub fn can_be_made_mutable(&self) -> bool {
1107 matches!(
1108 self.local_info(),
1109 LocalInfo::User(
1110 BindingForm::Var(VarBindingForm { binding_mode: BindingMode(ByRef::No, _), .. })
1111 | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
1112 )
1113 )
1114 }
1115
1116 /// Returns `true` if local is definitely not a `ref ident` or
1117 /// `ref mut ident` binding. (Such bindings cannot be made into
1118 /// mutable bindings, but the inverse does not necessarily hold).
1119 pub fn is_nonref_binding(&self) -> bool {
1120 matches!(
1121 self.local_info(),
1122 LocalInfo::User(
1123 BindingForm::Var(VarBindingForm { binding_mode: BindingMode(ByRef::No, _), .. })
1124 | BindingForm::ImplicitSelf(_),
1125 )
1126 )
1127 }
1128
1129 /// Returns `true` if this variable is a named variable or function
1130 /// parameter declared by the user.
1131 #[inline]
1132 pub fn is_user_variable(&self) -> bool {
1133 matches!(self.local_info(), LocalInfo::User(_))
1134 }
1135
1136 /// Returns `true` if this is a reference to a variable bound in a `match`
1137 /// expression that is used to access said variable for the guard of the
1138 /// match arm.
1139 pub fn is_ref_for_guard(&self) -> bool {
1140 matches!(self.local_info(), LocalInfo::User(BindingForm::RefForGuard(_)))
1141 }
1142
1143 /// Returns `Some` if this is a reference to a static item that is used to
1144 /// access that static.
1145 pub fn is_ref_to_static(&self) -> bool {
1146 matches!(self.local_info(), LocalInfo::StaticRef { .. })
1147 }
1148
1149 /// Returns `Some` if this is a reference to a thread-local static item that is used to
1150 /// access that static.
1151 pub fn is_ref_to_thread_local(&self) -> bool {
1152 match self.local_info() {
1153 LocalInfo::StaticRef { is_thread_local, .. } => *is_thread_local,
1154 _ => false,
1155 }
1156 }
1157
1158 /// Returns `true` if this is a DerefTemp
1159 pub fn is_deref_temp(&self) -> bool {
1160 match self.local_info() {
1161 LocalInfo::DerefTemp => true,
1162 _ => false,
1163 }
1164 }
1165
1166 /// Returns `true` is the local is from a compiler desugaring, e.g.,
1167 /// `__next` from a `for` loop.
1168 #[inline]
1169 pub fn from_compiler_desugaring(&self) -> bool {
1170 self.source_info.span.desugaring_kind().is_some()
1171 }
1172
1173 /// Creates a new `LocalDecl` for a temporary, mutable.
1174 #[inline]
1175 pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
1176 Self::with_source_info(ty, SourceInfo::outermost(span))
1177 }
1178
1179 /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
1180 #[inline]
1181 pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
1182 LocalDecl {
1183 mutability: Mutability::Mut,
1184 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::Boring)),
1185 ty,
1186 user_ty: None,
1187 source_info,
1188 }
1189 }
1190
1191 /// Converts `self` into same `LocalDecl` except tagged as immutable.
1192 #[inline]
1193 pub fn immutable(mut self) -> Self {
1194 self.mutability = Mutability::Not;
1195 self
1196 }
1197}
1198
1199#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1200pub enum VarDebugInfoContents<'tcx> {
1201 /// This `Place` only contains projection which satisfy `can_use_in_debuginfo`.
1202 Place(Place<'tcx>),
1203 Const(ConstOperand<'tcx>),
1204}
1205
1206impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
1207 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
1208 match self {
1209 VarDebugInfoContents::Const(c) => write!(fmt, "{c}"),
1210 VarDebugInfoContents::Place(p) => write!(fmt, "{p:?}"),
1211 }
1212 }
1213}
1214
1215#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1216pub struct VarDebugInfoFragment<'tcx> {
1217 /// Type of the original user variable.
1218 /// This cannot contain a union or an enum.
1219 pub ty: Ty<'tcx>,
1220
1221 /// Where in the composite user variable this fragment is,
1222 /// represented as a "projection" into the composite variable.
1223 /// At lower levels, this corresponds to a byte/bit range.
1224 ///
1225 /// This can only contain `PlaceElem::Field`.
1226 // FIXME support this for `enum`s by either using DWARF's
1227 // more advanced control-flow features (unsupported by LLVM?)
1228 // to match on the discriminant, or by using custom type debuginfo
1229 // with non-overlapping variants for the composite variable.
1230 pub projection: Vec<PlaceElem<'tcx>>,
1231}
1232
1233/// Debug information pertaining to a user variable.
1234#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1235pub struct VarDebugInfo<'tcx> {
1236 pub name: Symbol,
1237
1238 /// Source info of the user variable, including the scope
1239 /// within which the variable is visible (to debuginfo)
1240 /// (see `LocalDecl`'s `source_info` field for more details).
1241 pub source_info: SourceInfo,
1242
1243 /// The user variable's data is split across several fragments,
1244 /// each described by a `VarDebugInfoFragment`.
1245 /// See DWARF 5's "2.6.1.2 Composite Location Descriptions"
1246 /// and LLVM's `DW_OP_LLVM_fragment` for more details on
1247 /// the underlying debuginfo feature this relies on.
1248 pub composite: Option<Box<VarDebugInfoFragment<'tcx>>>,
1249
1250 /// Where the data for this user variable is to be found.
1251 pub value: VarDebugInfoContents<'tcx>,
1252
1253 /// When present, indicates what argument number this variable is in the function that it
1254 /// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
1255 /// argument number in the original function before it was inlined.
1256 pub argument_index: Option<u16>,
1257}
1258
1259///////////////////////////////////////////////////////////////////////////
1260// BasicBlock
1261
1262rustc_index::newtype_index! {
1263 /// A node in the MIR [control-flow graph][CFG].
1264 ///
1265 /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
1266 /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
1267 /// as an edge in a graph between basic blocks.
1268 ///
1269 /// Basic blocks consist of a series of [statements][Statement], ending with a
1270 /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
1271 /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
1272 /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
1273 /// needed because some analyses require that there are no critical edges in the CFG.
1274 ///
1275 /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
1276 /// the actual data that a basic block holds is in [`BasicBlockData`].
1277 ///
1278 /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
1279 ///
1280 /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
1281 /// [data-flow analyses]:
1282 /// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
1283 /// [`CriticalCallEdges`]: ../../rustc_mir_transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
1284 /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
1285 #[derive(HashStable)]
1286 #[encodable]
1287 #[orderable]
1288 #[debug_format = "bb{}"]
1289 pub struct BasicBlock {
1290 const START_BLOCK = 0;
1291 }
1292}
1293
1294impl BasicBlock {
1295 pub fn start_location(self) -> Location {
1296 Location { block: self, statement_index: 0 }
1297 }
1298}
1299
1300///////////////////////////////////////////////////////////////////////////
1301// BasicBlockData
1302
1303/// Data for a basic block, including a list of its statements.
1304///
1305/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
1306#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1307#[non_exhaustive]
1308pub struct BasicBlockData<'tcx> {
1309 /// List of statements in this block.
1310 pub statements: Vec<Statement<'tcx>>,
1311
1312 /// All debuginfos happen before the statement.
1313 /// Put debuginfos here when the last statement is eliminated.
1314 pub after_last_stmt_debuginfos: StmtDebugInfos<'tcx>,
1315
1316 /// Terminator for this block.
1317 ///
1318 /// N.B., this should generally ONLY be `None` during construction.
1319 /// Therefore, you should generally access it via the
1320 /// `terminator()` or `terminator_mut()` methods. The only
1321 /// exception is that certain passes, such as `simplify_cfg`, swap
1322 /// out the terminator temporarily with `None` while they continue
1323 /// to recurse over the set of basic blocks.
1324 pub terminator: Option<Terminator<'tcx>>,
1325
1326 /// If true, this block lies on an unwind path. This is used
1327 /// during codegen where distinct kinds of basic blocks may be
1328 /// generated (particularly for MSVC cleanup). Unwind blocks must
1329 /// only branch to other unwind blocks.
1330 pub is_cleanup: bool,
1331}
1332
1333impl<'tcx> BasicBlockData<'tcx> {
1334 pub fn new(terminator: Option<Terminator<'tcx>>, is_cleanup: bool) -> BasicBlockData<'tcx> {
1335 BasicBlockData::new_stmts(Vec::new(), terminator, is_cleanup)
1336 }
1337
1338 pub fn new_stmts(
1339 statements: Vec<Statement<'tcx>>,
1340 terminator: Option<Terminator<'tcx>>,
1341 is_cleanup: bool,
1342 ) -> BasicBlockData<'tcx> {
1343 BasicBlockData {
1344 statements,
1345 after_last_stmt_debuginfos: StmtDebugInfos::default(),
1346 terminator,
1347 is_cleanup,
1348 }
1349 }
1350
1351 /// Accessor for terminator.
1352 ///
1353 /// Terminator may not be None after construction of the basic block is complete. This accessor
1354 /// provides a convenient way to reach the terminator.
1355 #[inline]
1356 pub fn terminator(&self) -> &Terminator<'tcx> {
1357 self.terminator.as_ref().expect("invalid terminator state")
1358 }
1359
1360 #[inline]
1361 pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
1362 self.terminator.as_mut().expect("invalid terminator state")
1363 }
1364
1365 /// Does the block have no statements and an unreachable terminator?
1366 #[inline]
1367 pub fn is_empty_unreachable(&self) -> bool {
1368 self.statements.is_empty() && matches!(self.terminator().kind, TerminatorKind::Unreachable)
1369 }
1370
1371 /// Like [`Terminator::successors`] but tries to use information available from the [`Instance`]
1372 /// to skip successors like the `false` side of an `if const {`.
1373 ///
1374 /// This is used to implement [`traversal::mono_reachable`] and
1375 /// [`traversal::mono_reachable_reverse_postorder`].
1376 pub fn mono_successors(&self, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Successors<'_> {
1377 if let Some((bits, targets)) = Body::try_const_mono_switchint(tcx, instance, self) {
1378 targets.successors_for_value(bits)
1379 } else {
1380 self.terminator().successors()
1381 }
1382 }
1383
1384 pub fn retain_statements<F>(&mut self, mut f: F)
1385 where
1386 F: FnMut(&Statement<'tcx>) -> bool,
1387 {
1388 // Place debuginfos into the next retained statement,
1389 // this `debuginfos` variable is used to cache debuginfos between two retained statements.
1390 let mut debuginfos = StmtDebugInfos::default();
1391 self.statements.retain_mut(|stmt| {
1392 let retain = f(stmt);
1393 if retain {
1394 stmt.debuginfos.prepend(&mut debuginfos);
1395 } else {
1396 debuginfos.append(&mut stmt.debuginfos);
1397 }
1398 retain
1399 });
1400 self.after_last_stmt_debuginfos.prepend(&mut debuginfos);
1401 }
1402
1403 pub fn strip_nops(&mut self) {
1404 self.retain_statements(|stmt| !matches!(stmt.kind, StatementKind::Nop))
1405 }
1406
1407 pub fn drop_debuginfo(&mut self) {
1408 self.after_last_stmt_debuginfos.drop_debuginfo();
1409 for stmt in self.statements.iter_mut() {
1410 stmt.debuginfos.drop_debuginfo();
1411 }
1412 }
1413}
1414
1415///////////////////////////////////////////////////////////////////////////
1416// Scopes
1417
1418rustc_index::newtype_index! {
1419 #[derive(HashStable)]
1420 #[encodable]
1421 #[debug_format = "scope[{}]"]
1422 pub struct SourceScope {
1423 const OUTERMOST_SOURCE_SCOPE = 0;
1424 }
1425}
1426
1427impl SourceScope {
1428 /// Finds the original HirId this MIR item came from.
1429 /// This is necessary after MIR optimizations, as otherwise we get a HirId
1430 /// from the function that was inlined instead of the function call site.
1431 pub fn lint_root(
1432 self,
1433 source_scopes: &IndexSlice<SourceScope, SourceScopeData<'_>>,
1434 ) -> Option<HirId> {
1435 let mut data = &source_scopes[self];
1436 // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
1437 // does not work as I thought it would. Needs more investigation and documentation.
1438 while data.inlined.is_some() {
1439 trace!(?data);
1440 data = &source_scopes[data.parent_scope.unwrap()];
1441 }
1442 trace!(?data);
1443 match &data.local_data {
1444 ClearCrossCrate::Set(data) => Some(data.lint_root),
1445 ClearCrossCrate::Clear => None,
1446 }
1447 }
1448
1449 /// The instance this source scope was inlined from, if any.
1450 #[inline]
1451 pub fn inlined_instance<'tcx>(
1452 self,
1453 source_scopes: &IndexSlice<SourceScope, SourceScopeData<'tcx>>,
1454 ) -> Option<ty::Instance<'tcx>> {
1455 let scope_data = &source_scopes[self];
1456 if let Some((inlined_instance, _)) = scope_data.inlined {
1457 Some(inlined_instance)
1458 } else if let Some(inlined_scope) = scope_data.inlined_parent_scope {
1459 Some(source_scopes[inlined_scope].inlined.unwrap().0)
1460 } else {
1461 None
1462 }
1463 }
1464}
1465
1466#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1467pub struct SourceScopeData<'tcx> {
1468 pub span: Span,
1469 pub parent_scope: Option<SourceScope>,
1470
1471 /// Whether this scope is the root of a scope tree of another body,
1472 /// inlined into this body by the MIR inliner.
1473 /// `ty::Instance` is the callee, and the `Span` is the call site.
1474 pub inlined: Option<(ty::Instance<'tcx>, Span)>,
1475
1476 /// Nearest (transitive) parent scope (if any) which is inlined.
1477 /// This is an optimization over walking up `parent_scope`
1478 /// until a scope with `inlined: Some(...)` is found.
1479 pub inlined_parent_scope: Option<SourceScope>,
1480
1481 /// Crate-local information for this source scope, that can't (and
1482 /// needn't) be tracked across crates.
1483 pub local_data: ClearCrossCrate<SourceScopeLocalData>,
1484}
1485
1486#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
1487pub struct SourceScopeLocalData {
1488 /// An `HirId` with lint levels equivalent to this scope's lint levels.
1489 pub lint_root: HirId,
1490}
1491
1492/// A collection of projections into user types.
1493///
1494/// They are projections because a binding can occur a part of a
1495/// parent pattern that has been ascribed a type.
1496///
1497/// It's a collection because there can be multiple type ascriptions on
1498/// the path from the root of the pattern down to the binding itself.
1499///
1500/// An example:
1501///
1502/// ```ignore (illustrative)
1503/// struct S<'a>((i32, &'a str), String);
1504/// let S((_, w): (i32, &'static str), _): S = ...;
1505/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
1506/// // --------------------------------- ^ (2)
1507/// ```
1508///
1509/// The highlights labelled `(1)` show the subpattern `(_, w)` being
1510/// ascribed the type `(i32, &'static str)`.
1511///
1512/// The highlights labelled `(2)` show the whole pattern being
1513/// ascribed the type `S`.
1514///
1515/// In this example, when we descend to `w`, we will have built up the
1516/// following two projected types:
1517///
1518/// * base: `S`, projection: `(base.0).1`
1519/// * base: `(i32, &'static str)`, projection: `base.1`
1520///
1521/// The first will lead to the constraint `w: &'1 str` (for some
1522/// inferred region `'1`). The second will lead to the constraint `w:
1523/// &'static str`.
1524#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1525pub struct UserTypeProjections {
1526 pub contents: Vec<UserTypeProjection>,
1527}
1528
1529impl UserTypeProjections {
1530 pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
1531 self.contents.iter()
1532 }
1533}
1534
1535/// Encodes the effect of a user-supplied type annotation on the
1536/// subcomponents of a pattern. The effect is determined by applying the
1537/// given list of projections to some underlying base type. Often,
1538/// the projection element list `projs` is empty, in which case this
1539/// directly encodes a type in `base`. But in the case of complex patterns with
1540/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
1541/// in which case the `projs` vector is used.
1542///
1543/// Examples:
1544///
1545/// * `let x: T = ...` -- here, the `projs` vector is empty.
1546///
1547/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
1548/// `field[0]` (aka `.0`), indicating that the type of `s` is
1549/// determined by finding the type of the `.0` field from `T`.
1550#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
1551#[derive(TypeFoldable, TypeVisitable)]
1552pub struct UserTypeProjection {
1553 pub base: UserTypeAnnotationIndex,
1554 pub projs: Vec<ProjectionKind>,
1555}
1556
1557rustc_index::newtype_index! {
1558 #[derive(HashStable)]
1559 #[encodable]
1560 #[orderable]
1561 #[debug_format = "promoted[{}]"]
1562 pub struct Promoted {}
1563}
1564
1565/// `Location` represents the position of the start of the statement; or, if
1566/// `statement_index` equals the number of statements, then the start of the
1567/// terminator.
1568#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
1569pub struct Location {
1570 /// The block that the location is within.
1571 pub block: BasicBlock,
1572
1573 pub statement_index: usize,
1574}
1575
1576impl fmt::Debug for Location {
1577 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1578 write!(fmt, "{:?}[{}]", self.block, self.statement_index)
1579 }
1580}
1581
1582impl Location {
1583 pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
1584
1585 /// Returns the location immediately after this one within the enclosing block.
1586 ///
1587 /// Note that if this location represents a terminator, then the
1588 /// resulting location would be out of bounds and invalid.
1589 #[inline]
1590 pub fn successor_within_block(&self) -> Location {
1591 Location { block: self.block, statement_index: self.statement_index + 1 }
1592 }
1593
1594 /// Returns `true` if `other` is earlier in the control flow graph than `self`.
1595 pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
1596 // If we are in the same block as the other location and are an earlier statement
1597 // then we are a predecessor of `other`.
1598 if self.block == other.block && self.statement_index < other.statement_index {
1599 return true;
1600 }
1601
1602 let predecessors = body.basic_blocks.predecessors();
1603
1604 // If we're in another block, then we want to check that block is a predecessor of `other`.
1605 let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
1606 let mut visited = FxHashSet::default();
1607
1608 while let Some(block) = queue.pop() {
1609 // If we haven't visited this block before, then make sure we visit its predecessors.
1610 if visited.insert(block) {
1611 queue.extend(predecessors[block].iter().cloned());
1612 } else {
1613 continue;
1614 }
1615
1616 // If we found the block that `self` is in, then we are a predecessor of `other` (since
1617 // we found that block by looking at the predecessors of `other`).
1618 if self.block == block {
1619 return true;
1620 }
1621 }
1622
1623 false
1624 }
1625
1626 #[inline]
1627 pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
1628 if self.block == other.block {
1629 self.statement_index <= other.statement_index
1630 } else {
1631 dominators.dominates(self.block, other.block)
1632 }
1633 }
1634}
1635
1636/// `DefLocation` represents the location of a definition - either an argument or an assignment
1637/// within MIR body.
1638#[derive(Copy, Clone, Debug, PartialEq, Eq)]
1639pub enum DefLocation {
1640 Argument,
1641 Assignment(Location),
1642 CallReturn { call: BasicBlock, target: Option<BasicBlock> },
1643}
1644
1645impl DefLocation {
1646 #[inline]
1647 pub fn dominates(self, location: Location, dominators: &Dominators<BasicBlock>) -> bool {
1648 match self {
1649 DefLocation::Argument => true,
1650 DefLocation::Assignment(def) => {
1651 def.successor_within_block().dominates(location, dominators)
1652 }
1653 DefLocation::CallReturn { target: None, .. } => false,
1654 DefLocation::CallReturn { call, target: Some(target) } => {
1655 // The definition occurs on the call -> target edge. The definition dominates a use
1656 // if and only if the edge is on all paths from the entry to the use.
1657 //
1658 // Note that a call terminator has only one edge that can reach the target, so when
1659 // the call strongly dominates the target, all paths from the entry to the target
1660 // go through the call -> target edge.
1661 call != target
1662 && dominators.dominates(call, target)
1663 && dominators.dominates(target, location.block)
1664 }
1665 }
1666 }
1667}
1668
1669/// Checks if the specified `local` is used as the `self` parameter of a method call
1670/// in the provided `BasicBlock`. If it is, then the `DefId` of the called method is
1671/// returned.
1672pub fn find_self_call<'tcx>(
1673 tcx: TyCtxt<'tcx>,
1674 body: &Body<'tcx>,
1675 local: Local,
1676 block: BasicBlock,
1677) -> Option<(DefId, GenericArgsRef<'tcx>)> {
1678 debug!("find_self_call(local={:?}): terminator={:?}", local, body[block].terminator);
1679 if let Some(Terminator { kind: TerminatorKind::Call { func, args, .. }, .. }) =
1680 &body[block].terminator
1681 && let Operand::Constant(box ConstOperand { const_, .. }) = func
1682 && let ty::FnDef(def_id, fn_args) = *const_.ty().kind()
1683 && let Some(item) = tcx.opt_associated_item(def_id)
1684 && item.is_method()
1685 && let [Spanned { node: Operand::Move(self_place) | Operand::Copy(self_place), .. }, ..] =
1686 **args
1687 {
1688 if self_place.as_local() == Some(local) {
1689 return Some((def_id, fn_args));
1690 }
1691
1692 // Handle the case where `self_place` gets reborrowed.
1693 // This happens when the receiver is `&T`.
1694 for stmt in &body[block].statements {
1695 if let StatementKind::Assign(box (place, rvalue)) = &stmt.kind
1696 && let Some(reborrow_local) = place.as_local()
1697 && self_place.as_local() == Some(reborrow_local)
1698 && let Rvalue::Ref(_, _, deref_place) = rvalue
1699 && let PlaceRef { local: deref_local, projection: [ProjectionElem::Deref] } =
1700 deref_place.as_ref()
1701 && deref_local == local
1702 {
1703 return Some((def_id, fn_args));
1704 }
1705 }
1706 }
1707 None
1708}
1709
1710// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
1711#[cfg(target_pointer_width = "64")]
1712mod size_asserts {
1713 use rustc_data_structures::static_assert_size;
1714
1715 use super::*;
1716 // tidy-alphabetical-start
1717 static_assert_size!(BasicBlockData<'_>, 152);
1718 static_assert_size!(LocalDecl<'_>, 40);
1719 static_assert_size!(SourceScopeData<'_>, 64);
1720 static_assert_size!(Statement<'_>, 56);
1721 static_assert_size!(Terminator<'_>, 96);
1722 static_assert_size!(VarDebugInfo<'_>, 88);
1723 // tidy-alphabetical-end
1724}