rustc_middle/mir/mod.rs
1//! MIR datatypes and passes. See the [rustc dev guide] for more info.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
4
5use std::borrow::Cow;
6use std::fmt::{self, Debug, Formatter};
7use std::iter;
8use std::ops::{Index, IndexMut};
9
10pub use basic_blocks::{BasicBlocks, SwitchTargetValue};
11use either::Either;
12use polonius_engine::Atom;
13use rustc_abi::{FieldIdx, VariantIdx};
14pub use rustc_ast::Mutability;
15use rustc_data_structures::fx::{FxHashMap, FxHashSet};
16use rustc_data_structures::graph::dominators::Dominators;
17use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg};
18use rustc_hir::def::{CtorKind, Namespace};
19use rustc_hir::def_id::{CRATE_DEF_ID, DefId};
20use rustc_hir::{
21 self as hir, BindingMode, ByRef, CoroutineDesugaring, CoroutineKind, HirId, ImplicitSelfKind,
22};
23use rustc_index::bit_set::DenseBitSet;
24use rustc_index::{Idx, IndexSlice, IndexVec};
25use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
26use rustc_serialize::{Decodable, Encodable};
27use rustc_span::source_map::Spanned;
28use rustc_span::{DUMMY_SP, Span, Symbol};
29use tracing::{debug, trace};
30
31pub use self::query::*;
32use crate::mir::interpret::{AllocRange, Scalar};
33use crate::ty::codec::{TyDecoder, TyEncoder};
34use crate::ty::print::{FmtPrinter, Printer, pretty_print_const, with_no_trimmed_paths};
35use crate::ty::{
36 self, GenericArg, GenericArgsRef, Instance, InstanceKind, List, Ty, TyCtxt, TypeVisitableExt,
37 TypingEnv, UserTypeAnnotationIndex,
38};
39
40mod basic_blocks;
41mod consts;
42pub mod coverage;
43mod generic_graph;
44pub mod generic_graphviz;
45pub mod graphviz;
46pub mod interpret;
47pub mod mono;
48pub mod pretty;
49mod query;
50mod statement;
51mod syntax;
52mod terminator;
53
54pub mod traversal;
55pub mod visit;
56
57pub use consts::*;
58use pretty::pretty_print_const_value;
59pub use statement::*;
60pub use syntax::*;
61pub use terminator::*;
62
63pub use self::generic_graph::graphviz_safe_def_name;
64pub use self::graphviz::write_mir_graphviz;
65pub use self::pretty::{
66 PassWhere, create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty,
67};
68
69/// Types for locals
70pub type LocalDecls<'tcx> = IndexSlice<Local, LocalDecl<'tcx>>;
71
72pub trait HasLocalDecls<'tcx> {
73 fn local_decls(&self) -> &LocalDecls<'tcx>;
74}
75
76impl<'tcx> HasLocalDecls<'tcx> for IndexVec<Local, LocalDecl<'tcx>> {
77 #[inline]
78 fn local_decls(&self) -> &LocalDecls<'tcx> {
79 self
80 }
81}
82
83impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
84 #[inline]
85 fn local_decls(&self) -> &LocalDecls<'tcx> {
86 self
87 }
88}
89
90impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
91 #[inline]
92 fn local_decls(&self) -> &LocalDecls<'tcx> {
93 &self.local_decls
94 }
95}
96
97impl MirPhase {
98 pub fn name(&self) -> &'static str {
99 match *self {
100 MirPhase::Built => "built",
101 MirPhase::Analysis(AnalysisPhase::Initial) => "analysis",
102 MirPhase::Analysis(AnalysisPhase::PostCleanup) => "analysis-post-cleanup",
103 MirPhase::Runtime(RuntimePhase::Initial) => "runtime",
104 MirPhase::Runtime(RuntimePhase::PostCleanup) => "runtime-post-cleanup",
105 MirPhase::Runtime(RuntimePhase::Optimized) => "runtime-optimized",
106 }
107 }
108
109 /// Gets the (dialect, phase) index of the current `MirPhase`. Both numbers
110 /// are 1-indexed.
111 pub fn index(&self) -> (usize, usize) {
112 match *self {
113 MirPhase::Built => (1, 1),
114 MirPhase::Analysis(analysis_phase) => (2, 1 + analysis_phase as usize),
115 MirPhase::Runtime(runtime_phase) => (3, 1 + runtime_phase as usize),
116 }
117 }
118
119 /// Parses a `MirPhase` from a pair of strings. Panics if this isn't possible for any reason.
120 pub fn parse(dialect: String, phase: Option<String>) -> Self {
121 match &*dialect.to_ascii_lowercase() {
122 "built" => {
123 assert!(phase.is_none(), "Cannot specify a phase for `Built` MIR");
124 MirPhase::Built
125 }
126 "analysis" => Self::Analysis(AnalysisPhase::parse(phase)),
127 "runtime" => Self::Runtime(RuntimePhase::parse(phase)),
128 _ => bug!("Unknown MIR dialect: '{}'", dialect),
129 }
130 }
131}
132
133impl AnalysisPhase {
134 pub fn parse(phase: Option<String>) -> Self {
135 let Some(phase) = phase else {
136 return Self::Initial;
137 };
138
139 match &*phase.to_ascii_lowercase() {
140 "initial" => Self::Initial,
141 "post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
142 _ => bug!("Unknown analysis phase: '{}'", phase),
143 }
144 }
145}
146
147impl RuntimePhase {
148 pub fn parse(phase: Option<String>) -> Self {
149 let Some(phase) = phase else {
150 return Self::Initial;
151 };
152
153 match &*phase.to_ascii_lowercase() {
154 "initial" => Self::Initial,
155 "post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
156 "optimized" => Self::Optimized,
157 _ => bug!("Unknown runtime phase: '{}'", phase),
158 }
159 }
160}
161
162/// Where a specific `mir::Body` comes from.
163#[derive(Copy, Clone, Debug, PartialEq, Eq)]
164#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable, TypeVisitable)]
165pub struct MirSource<'tcx> {
166 pub instance: InstanceKind<'tcx>,
167
168 /// If `Some`, this is a promoted rvalue within the parent function.
169 pub promoted: Option<Promoted>,
170}
171
172impl<'tcx> MirSource<'tcx> {
173 pub fn item(def_id: DefId) -> Self {
174 MirSource { instance: InstanceKind::Item(def_id), promoted: None }
175 }
176
177 pub fn from_instance(instance: InstanceKind<'tcx>) -> Self {
178 MirSource { instance, promoted: None }
179 }
180
181 #[inline]
182 pub fn def_id(&self) -> DefId {
183 self.instance.def_id()
184 }
185}
186
187/// Additional information carried by a MIR body when it is lowered from a coroutine.
188/// This information is modified as it is lowered during the `StateTransform` MIR pass,
189/// so not all fields will be active at a given time. For example, the `yield_ty` is
190/// taken out of the field after yields are turned into returns, and the `coroutine_drop`
191/// body is only populated after the state transform pass.
192#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
193pub struct CoroutineInfo<'tcx> {
194 /// The yield type of the function. This field is removed after the state transform pass.
195 pub yield_ty: Option<Ty<'tcx>>,
196
197 /// The resume type of the function. This field is removed after the state transform pass.
198 pub resume_ty: Option<Ty<'tcx>>,
199
200 /// Coroutine drop glue. This field is populated after the state transform pass.
201 pub coroutine_drop: Option<Body<'tcx>>,
202
203 /// The layout of a coroutine. This field is populated after the state transform pass.
204 pub coroutine_layout: Option<CoroutineLayout<'tcx>>,
205
206 /// If this is a coroutine then record the type of source expression that caused this coroutine
207 /// to be created.
208 pub coroutine_kind: CoroutineKind,
209}
210
211impl<'tcx> CoroutineInfo<'tcx> {
212 // Sets up `CoroutineInfo` for a pre-coroutine-transform MIR body.
213 pub fn initial(
214 coroutine_kind: CoroutineKind,
215 yield_ty: Ty<'tcx>,
216 resume_ty: Ty<'tcx>,
217 ) -> CoroutineInfo<'tcx> {
218 CoroutineInfo {
219 coroutine_kind,
220 yield_ty: Some(yield_ty),
221 resume_ty: Some(resume_ty),
222 coroutine_drop: None,
223 coroutine_layout: None,
224 }
225 }
226}
227
228/// Some item that needs to monomorphize successfully for a MIR body to be considered well-formed.
229#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, HashStable, TyEncodable, TyDecodable)]
230#[derive(TypeFoldable, TypeVisitable)]
231pub enum MentionedItem<'tcx> {
232 /// A function that gets called. We don't necessarily know its precise type yet, since it can be
233 /// hidden behind a generic.
234 Fn(Ty<'tcx>),
235 /// A type that has its drop shim called.
236 Drop(Ty<'tcx>),
237 /// Unsizing casts might require vtables, so we have to record them.
238 UnsizeCast { source_ty: Ty<'tcx>, target_ty: Ty<'tcx> },
239 /// A closure that is coerced to a function pointer.
240 Closure(Ty<'tcx>),
241}
242
243/// The lowered representation of a single function.
244#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
245pub struct Body<'tcx> {
246 /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
247 /// that indexes into this vector.
248 pub basic_blocks: BasicBlocks<'tcx>,
249
250 /// Records how far through the "desugaring and optimization" process this particular
251 /// MIR has traversed. This is particularly useful when inlining, since in that context
252 /// we instantiate the promoted constants and add them to our promoted vector -- but those
253 /// promoted items have already been optimized, whereas ours have not. This field allows
254 /// us to see the difference and forego optimization on the inlined promoted items.
255 pub phase: MirPhase,
256
257 /// How many passses we have executed since starting the current phase. Used for debug output.
258 pub pass_count: usize,
259
260 pub source: MirSource<'tcx>,
261
262 /// A list of source scopes; these are referenced by statements
263 /// and used for debuginfo. Indexed by a `SourceScope`.
264 pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
265
266 /// Additional information carried by a MIR body when it is lowered from a coroutine.
267 ///
268 /// Note that the coroutine drop shim, any promoted consts, and other synthetic MIR
269 /// bodies that come from processing a coroutine body are not typically coroutines
270 /// themselves, and should probably set this to `None` to avoid carrying redundant
271 /// information.
272 pub coroutine: Option<Box<CoroutineInfo<'tcx>>>,
273
274 /// Declarations of locals.
275 ///
276 /// The first local is the return value pointer, followed by `arg_count`
277 /// locals for the function arguments, followed by any user-declared
278 /// variables and temporaries.
279 pub local_decls: IndexVec<Local, LocalDecl<'tcx>>,
280
281 /// User type annotations.
282 pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
283
284 /// The number of arguments this function takes.
285 ///
286 /// Starting at local 1, `arg_count` locals will be provided by the caller
287 /// and can be assumed to be initialized.
288 ///
289 /// If this MIR was built for a constant, this will be 0.
290 pub arg_count: usize,
291
292 /// Mark an argument local (which must be a tuple) as getting passed as
293 /// its individual components at the LLVM level.
294 ///
295 /// This is used for the "rust-call" ABI.
296 pub spread_arg: Option<Local>,
297
298 /// Debug information pertaining to user variables, including captures.
299 pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
300
301 /// A span representing this MIR, for error reporting.
302 pub span: Span,
303
304 /// Constants that are required to evaluate successfully for this MIR to be well-formed.
305 /// We hold in this field all the constants we are not able to evaluate yet.
306 /// `None` indicates that the list has not been computed yet.
307 ///
308 /// This is soundness-critical, we make a guarantee that all consts syntactically mentioned in a
309 /// function have successfully evaluated if the function ever gets executed at runtime.
310 pub required_consts: Option<Vec<ConstOperand<'tcx>>>,
311
312 /// Further items that were mentioned in this function and hence *may* become monomorphized,
313 /// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
314 /// collector recursively traverses all "mentioned" items and evaluates all their
315 /// `required_consts`.
316 /// `None` indicates that the list has not been computed yet.
317 ///
318 /// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
319 /// All that's relevant is that this set is optimization-level-independent, and that it includes
320 /// everything that the collector would consider "used". (For example, we currently compute this
321 /// set after drop elaboration, so some drop calls that can never be reached are not considered
322 /// "mentioned".) See the documentation of `CollectionMode` in
323 /// `compiler/rustc_monomorphize/src/collector.rs` for more context.
324 pub mentioned_items: Option<Vec<Spanned<MentionedItem<'tcx>>>>,
325
326 /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
327 ///
328 /// Note that this does not actually mean that this body is not computable right now.
329 /// The repeat count in the following example is polymorphic, but can still be evaluated
330 /// without knowing anything about the type parameter `T`.
331 ///
332 /// ```rust
333 /// fn test<T>() {
334 /// let _ = [0; size_of::<*mut T>()];
335 /// }
336 /// ```
337 ///
338 /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
339 /// removed the last mention of all generic params. We do not want to rely on optimizations and
340 /// potentially allow things like `[u8; size_of::<T>() * 0]` due to this.
341 pub is_polymorphic: bool,
342
343 /// The phase at which this MIR should be "injected" into the compilation process.
344 ///
345 /// Everything that comes before this `MirPhase` should be skipped.
346 ///
347 /// This is only `Some` if the function that this body comes from was annotated with `rustc_custom_mir`.
348 pub injection_phase: Option<MirPhase>,
349
350 pub tainted_by_errors: Option<ErrorGuaranteed>,
351
352 /// Coverage information collected from THIR/MIR during MIR building,
353 /// to be used by the `InstrumentCoverage` pass.
354 ///
355 /// Only present if coverage is enabled and this function is eligible.
356 /// Boxed to limit space overhead in non-coverage builds.
357 #[type_foldable(identity)]
358 #[type_visitable(ignore)]
359 pub coverage_info_hi: Option<Box<coverage::CoverageInfoHi>>,
360
361 /// Per-function coverage information added by the `InstrumentCoverage`
362 /// pass, to be used in conjunction with the coverage statements injected
363 /// into this body's blocks.
364 ///
365 /// If `-Cinstrument-coverage` is not active, or if an individual function
366 /// is not eligible for coverage, then this should always be `None`.
367 #[type_foldable(identity)]
368 #[type_visitable(ignore)]
369 pub function_coverage_info: Option<Box<coverage::FunctionCoverageInfo>>,
370}
371
372impl<'tcx> Body<'tcx> {
373 pub fn new(
374 source: MirSource<'tcx>,
375 basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
376 source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
377 local_decls: IndexVec<Local, LocalDecl<'tcx>>,
378 user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
379 arg_count: usize,
380 var_debug_info: Vec<VarDebugInfo<'tcx>>,
381 span: Span,
382 coroutine: Option<Box<CoroutineInfo<'tcx>>>,
383 tainted_by_errors: Option<ErrorGuaranteed>,
384 ) -> Self {
385 // We need `arg_count` locals, and one for the return place.
386 assert!(
387 local_decls.len() > arg_count,
388 "expected at least {} locals, got {}",
389 arg_count + 1,
390 local_decls.len()
391 );
392
393 let mut body = Body {
394 phase: MirPhase::Built,
395 pass_count: 0,
396 source,
397 basic_blocks: BasicBlocks::new(basic_blocks),
398 source_scopes,
399 coroutine,
400 local_decls,
401 user_type_annotations,
402 arg_count,
403 spread_arg: None,
404 var_debug_info,
405 span,
406 required_consts: None,
407 mentioned_items: None,
408 is_polymorphic: false,
409 injection_phase: None,
410 tainted_by_errors,
411 coverage_info_hi: None,
412 function_coverage_info: None,
413 };
414 body.is_polymorphic = body.has_non_region_param();
415 body
416 }
417
418 /// Returns a partially initialized MIR body containing only a list of basic blocks.
419 ///
420 /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
421 /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
422 /// crate.
423 pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
424 let mut body = Body {
425 phase: MirPhase::Built,
426 pass_count: 0,
427 source: MirSource::item(CRATE_DEF_ID.to_def_id()),
428 basic_blocks: BasicBlocks::new(basic_blocks),
429 source_scopes: IndexVec::new(),
430 coroutine: None,
431 local_decls: IndexVec::new(),
432 user_type_annotations: IndexVec::new(),
433 arg_count: 0,
434 spread_arg: None,
435 span: DUMMY_SP,
436 required_consts: None,
437 mentioned_items: None,
438 var_debug_info: Vec::new(),
439 is_polymorphic: false,
440 injection_phase: None,
441 tainted_by_errors: None,
442 coverage_info_hi: None,
443 function_coverage_info: None,
444 };
445 body.is_polymorphic = body.has_non_region_param();
446 body
447 }
448
449 #[inline]
450 pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
451 self.basic_blocks.as_mut()
452 }
453
454 pub fn typing_env(&self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
455 match self.phase {
456 // FIXME(#132279): we should reveal the opaques defined in the body during analysis.
457 MirPhase::Built | MirPhase::Analysis(_) => TypingEnv {
458 typing_mode: ty::TypingMode::non_body_analysis(),
459 param_env: tcx.param_env(self.source.def_id()),
460 },
461 MirPhase::Runtime(_) => TypingEnv::post_analysis(tcx, self.source.def_id()),
462 }
463 }
464
465 #[inline]
466 pub fn local_kind(&self, local: Local) -> LocalKind {
467 let index = local.as_usize();
468 if index == 0 {
469 debug_assert!(
470 self.local_decls[local].mutability == Mutability::Mut,
471 "return place should be mutable"
472 );
473
474 LocalKind::ReturnPointer
475 } else if index < self.arg_count + 1 {
476 LocalKind::Arg
477 } else {
478 LocalKind::Temp
479 }
480 }
481
482 /// Returns an iterator over all user-declared mutable locals.
483 #[inline]
484 pub fn mut_vars_iter(&self) -> impl Iterator<Item = Local> {
485 (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
486 let local = Local::new(index);
487 let decl = &self.local_decls[local];
488 (decl.is_user_variable() && decl.mutability.is_mut()).then_some(local)
489 })
490 }
491
492 /// Returns an iterator over all user-declared mutable arguments and locals.
493 #[inline]
494 pub fn mut_vars_and_args_iter(&self) -> impl Iterator<Item = Local> {
495 (1..self.local_decls.len()).filter_map(move |index| {
496 let local = Local::new(index);
497 let decl = &self.local_decls[local];
498 if (decl.is_user_variable() || index < self.arg_count + 1)
499 && decl.mutability == Mutability::Mut
500 {
501 Some(local)
502 } else {
503 None
504 }
505 })
506 }
507
508 /// Returns an iterator over all function arguments.
509 #[inline]
510 pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
511 (1..self.arg_count + 1).map(Local::new)
512 }
513
514 /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
515 /// locals that are neither arguments nor the return place).
516 #[inline]
517 pub fn vars_and_temps_iter(
518 &self,
519 ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
520 (self.arg_count + 1..self.local_decls.len()).map(Local::new)
521 }
522
523 #[inline]
524 pub fn drain_vars_and_temps(&mut self) -> impl Iterator<Item = LocalDecl<'tcx>> {
525 self.local_decls.drain(self.arg_count + 1..)
526 }
527
528 /// Returns the source info associated with `location`.
529 pub fn source_info(&self, location: Location) -> &SourceInfo {
530 let block = &self[location.block];
531 let stmts = &block.statements;
532 let idx = location.statement_index;
533 if idx < stmts.len() {
534 &stmts[idx].source_info
535 } else {
536 assert_eq!(idx, stmts.len());
537 &block.terminator().source_info
538 }
539 }
540
541 /// Returns the return type; it always return first element from `local_decls` array.
542 #[inline]
543 pub fn return_ty(&self) -> Ty<'tcx> {
544 self.local_decls[RETURN_PLACE].ty
545 }
546
547 /// Returns the return type; it always return first element from `local_decls` array.
548 #[inline]
549 pub fn bound_return_ty(&self) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
550 ty::EarlyBinder::bind(self.local_decls[RETURN_PLACE].ty)
551 }
552
553 /// Gets the location of the terminator for the given block.
554 #[inline]
555 pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
556 Location { block: bb, statement_index: self[bb].statements.len() }
557 }
558
559 pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
560 let Location { block, statement_index } = location;
561 let block_data = &self.basic_blocks[block];
562 block_data
563 .statements
564 .get(statement_index)
565 .map(Either::Left)
566 .unwrap_or_else(|| Either::Right(block_data.terminator()))
567 }
568
569 #[inline]
570 pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
571 self.coroutine.as_ref().and_then(|coroutine| coroutine.yield_ty)
572 }
573
574 #[inline]
575 pub fn resume_ty(&self) -> Option<Ty<'tcx>> {
576 self.coroutine.as_ref().and_then(|coroutine| coroutine.resume_ty)
577 }
578
579 /// Prefer going through [`TyCtxt::coroutine_layout`] rather than using this directly.
580 #[inline]
581 pub fn coroutine_layout_raw(&self) -> Option<&CoroutineLayout<'tcx>> {
582 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_layout.as_ref())
583 }
584
585 #[inline]
586 pub fn coroutine_drop(&self) -> Option<&Body<'tcx>> {
587 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop.as_ref())
588 }
589
590 #[inline]
591 pub fn coroutine_kind(&self) -> Option<CoroutineKind> {
592 self.coroutine.as_ref().map(|coroutine| coroutine.coroutine_kind)
593 }
594
595 #[inline]
596 pub fn should_skip(&self) -> bool {
597 let Some(injection_phase) = self.injection_phase else {
598 return false;
599 };
600 injection_phase > self.phase
601 }
602
603 #[inline]
604 pub fn is_custom_mir(&self) -> bool {
605 self.injection_phase.is_some()
606 }
607
608 /// If this basic block ends with a [`TerminatorKind::SwitchInt`] for which we can evaluate the
609 /// discriminant in monomorphization, we return the discriminant bits and the
610 /// [`SwitchTargets`], just so the caller doesn't also have to match on the terminator.
611 fn try_const_mono_switchint<'a>(
612 tcx: TyCtxt<'tcx>,
613 instance: Instance<'tcx>,
614 block: &'a BasicBlockData<'tcx>,
615 ) -> Option<(u128, &'a SwitchTargets)> {
616 // There are two places here we need to evaluate a constant.
617 let eval_mono_const = |constant: &ConstOperand<'tcx>| {
618 // FIXME(#132279): what is this, why are we using an empty environment here.
619 let typing_env = ty::TypingEnv::fully_monomorphized();
620 let mono_literal = instance.instantiate_mir_and_normalize_erasing_regions(
621 tcx,
622 typing_env,
623 crate::ty::EarlyBinder::bind(constant.const_),
624 );
625 mono_literal.try_eval_bits(tcx, typing_env)
626 };
627
628 let TerminatorKind::SwitchInt { discr, targets } = &block.terminator().kind else {
629 return None;
630 };
631
632 // If this is a SwitchInt(const _), then we can just evaluate the constant and return.
633 let discr = match discr {
634 Operand::Constant(constant) => {
635 let bits = eval_mono_const(constant)?;
636 return Some((bits, targets));
637 }
638 Operand::Move(place) | Operand::Copy(place) => place,
639 };
640
641 // MIR for `if false` actually looks like this:
642 // _1 = const _
643 // SwitchInt(_1)
644 //
645 // And MIR for if intrinsics::ub_checks() looks like this:
646 // _1 = UbChecks()
647 // SwitchInt(_1)
648 //
649 // So we're going to try to recognize this pattern.
650 //
651 // If we have a SwitchInt on a non-const place, we find the most recent statement that
652 // isn't a storage marker. If that statement is an assignment of a const to our
653 // discriminant place, we evaluate and return the const, as if we've const-propagated it
654 // into the SwitchInt.
655
656 let last_stmt = block.statements.iter().rev().find(|stmt| {
657 !matches!(stmt.kind, StatementKind::StorageDead(_) | StatementKind::StorageLive(_))
658 })?;
659
660 let (place, rvalue) = last_stmt.kind.as_assign()?;
661
662 if discr != place {
663 return None;
664 }
665
666 match rvalue {
667 Rvalue::NullaryOp(NullOp::UbChecks, _) => Some((tcx.sess.ub_checks() as u128, targets)),
668 Rvalue::Use(Operand::Constant(constant)) => {
669 let bits = eval_mono_const(constant)?;
670 Some((bits, targets))
671 }
672 _ => None,
673 }
674 }
675
676 /// For a `Location` in this scope, determine what the "caller location" at that point is. This
677 /// is interesting because of inlining: the `#[track_caller]` attribute of inlined functions
678 /// must be honored. Falls back to the `tracked_caller` value for `#[track_caller]` functions,
679 /// or the function's scope.
680 pub fn caller_location_span<T>(
681 &self,
682 mut source_info: SourceInfo,
683 caller_location: Option<T>,
684 tcx: TyCtxt<'tcx>,
685 from_span: impl FnOnce(Span) -> T,
686 ) -> T {
687 loop {
688 let scope_data = &self.source_scopes[source_info.scope];
689
690 if let Some((callee, callsite_span)) = scope_data.inlined {
691 // Stop inside the most nested non-`#[track_caller]` function,
692 // before ever reaching its caller (which is irrelevant).
693 if !callee.def.requires_caller_location(tcx) {
694 return from_span(source_info.span);
695 }
696 source_info.span = callsite_span;
697 }
698
699 // Skip past all of the parents with `inlined: None`.
700 match scope_data.inlined_parent_scope {
701 Some(parent) => source_info.scope = parent,
702 None => break,
703 }
704 }
705
706 // No inlined `SourceScope`s, or all of them were `#[track_caller]`.
707 caller_location.unwrap_or_else(|| from_span(source_info.span))
708 }
709
710 #[track_caller]
711 pub fn set_required_consts(&mut self, required_consts: Vec<ConstOperand<'tcx>>) {
712 assert!(
713 self.required_consts.is_none(),
714 "required_consts for {:?} have already been set",
715 self.source.def_id()
716 );
717 self.required_consts = Some(required_consts);
718 }
719 #[track_caller]
720 pub fn required_consts(&self) -> &[ConstOperand<'tcx>] {
721 match &self.required_consts {
722 Some(l) => l,
723 None => panic!("required_consts for {:?} have not yet been set", self.source.def_id()),
724 }
725 }
726
727 #[track_caller]
728 pub fn set_mentioned_items(&mut self, mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>) {
729 assert!(
730 self.mentioned_items.is_none(),
731 "mentioned_items for {:?} have already been set",
732 self.source.def_id()
733 );
734 self.mentioned_items = Some(mentioned_items);
735 }
736 #[track_caller]
737 pub fn mentioned_items(&self) -> &[Spanned<MentionedItem<'tcx>>] {
738 match &self.mentioned_items {
739 Some(l) => l,
740 None => panic!("mentioned_items for {:?} have not yet been set", self.source.def_id()),
741 }
742 }
743}
744
745impl<'tcx> Index<BasicBlock> for Body<'tcx> {
746 type Output = BasicBlockData<'tcx>;
747
748 #[inline]
749 fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
750 &self.basic_blocks[index]
751 }
752}
753
754impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
755 #[inline]
756 fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
757 &mut self.basic_blocks.as_mut()[index]
758 }
759}
760
761#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
762pub enum ClearCrossCrate<T> {
763 Clear,
764 Set(T),
765}
766
767impl<T> ClearCrossCrate<T> {
768 pub fn as_ref(&self) -> ClearCrossCrate<&T> {
769 match self {
770 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
771 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
772 }
773 }
774
775 pub fn as_mut(&mut self) -> ClearCrossCrate<&mut T> {
776 match self {
777 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
778 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
779 }
780 }
781
782 pub fn unwrap_crate_local(self) -> T {
783 match self {
784 ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
785 ClearCrossCrate::Set(v) => v,
786 }
787 }
788}
789
790const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
791const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
792
793impl<'tcx, E: TyEncoder<'tcx>, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
794 #[inline]
795 fn encode(&self, e: &mut E) {
796 if E::CLEAR_CROSS_CRATE {
797 return;
798 }
799
800 match *self {
801 ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
802 ClearCrossCrate::Set(ref val) => {
803 TAG_CLEAR_CROSS_CRATE_SET.encode(e);
804 val.encode(e);
805 }
806 }
807 }
808}
809impl<'tcx, D: TyDecoder<'tcx>, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
810 #[inline]
811 fn decode(d: &mut D) -> ClearCrossCrate<T> {
812 if D::CLEAR_CROSS_CRATE {
813 return ClearCrossCrate::Clear;
814 }
815
816 let discr = u8::decode(d);
817
818 match discr {
819 TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
820 TAG_CLEAR_CROSS_CRATE_SET => {
821 let val = T::decode(d);
822 ClearCrossCrate::Set(val)
823 }
824 tag => panic!("Invalid tag for ClearCrossCrate: {tag:?}"),
825 }
826 }
827}
828
829/// Grouped information about the source code origin of a MIR entity.
830/// Intended to be inspected by diagnostics and debuginfo.
831/// Most passes can work with it as a whole, within a single function.
832// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
833// `Hash`. Please ping @bjorn3 if removing them.
834#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
835pub struct SourceInfo {
836 /// The source span for the AST pertaining to this MIR entity.
837 pub span: Span,
838
839 /// The source scope, keeping track of which bindings can be
840 /// seen by debuginfo, active lint levels, etc.
841 pub scope: SourceScope,
842}
843
844impl SourceInfo {
845 #[inline]
846 pub fn outermost(span: Span) -> Self {
847 SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
848 }
849}
850
851///////////////////////////////////////////////////////////////////////////
852// Variables and temps
853
854rustc_index::newtype_index! {
855 #[derive(HashStable)]
856 #[encodable]
857 #[orderable]
858 #[debug_format = "_{}"]
859 pub struct Local {
860 const RETURN_PLACE = 0;
861 }
862}
863
864impl Atom for Local {
865 fn index(self) -> usize {
866 Idx::index(self)
867 }
868}
869
870/// Classifies locals into categories. See `Body::local_kind`.
871#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
872pub enum LocalKind {
873 /// User-declared variable binding or compiler-introduced temporary.
874 Temp,
875 /// Function argument.
876 Arg,
877 /// Location of function's return value.
878 ReturnPointer,
879}
880
881#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
882pub struct VarBindingForm<'tcx> {
883 /// Is variable bound via `x`, `mut x`, `ref x`, `ref mut x`, `mut ref x`, or `mut ref mut x`?
884 pub binding_mode: BindingMode,
885 /// If an explicit type was provided for this variable binding,
886 /// this holds the source Span of that type.
887 ///
888 /// NOTE: if you want to change this to a `HirId`, be wary that
889 /// doing so breaks incremental compilation (as of this writing),
890 /// while a `Span` does not cause our tests to fail.
891 pub opt_ty_info: Option<Span>,
892 /// Place of the RHS of the =, or the subject of the `match` where this
893 /// variable is initialized. None in the case of `let PATTERN;`.
894 /// Some((None, ..)) in the case of and `let [mut] x = ...` because
895 /// (a) the right-hand side isn't evaluated as a place expression.
896 /// (b) it gives a way to separate this case from the remaining cases
897 /// for diagnostics.
898 pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
899 /// The span of the pattern in which this variable was bound.
900 pub pat_span: Span,
901}
902
903#[derive(Clone, Debug, TyEncodable, TyDecodable)]
904pub enum BindingForm<'tcx> {
905 /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
906 Var(VarBindingForm<'tcx>),
907 /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
908 ImplicitSelf(ImplicitSelfKind),
909 /// Reference used in a guard expression to ensure immutability.
910 RefForGuard,
911}
912
913mod binding_form_impl {
914 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
915 use rustc_query_system::ich::StableHashingContext;
916
917 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
918 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
919 use super::BindingForm::*;
920 std::mem::discriminant(self).hash_stable(hcx, hasher);
921
922 match self {
923 Var(binding) => binding.hash_stable(hcx, hasher),
924 ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
925 RefForGuard => (),
926 }
927 }
928 }
929}
930
931/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
932/// created during evaluation of expressions in a block tail
933/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
934///
935/// It is used to improve diagnostics when such temporaries are
936/// involved in borrow_check errors, e.g., explanations of where the
937/// temporaries come from, when their destructors are run, and/or how
938/// one might revise the code to satisfy the borrow checker's rules.
939#[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
940pub struct BlockTailInfo {
941 /// If `true`, then the value resulting from evaluating this tail
942 /// expression is ignored by the block's expression context.
943 ///
944 /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
945 /// but not e.g., `let _x = { ...; tail };`
946 pub tail_result_is_ignored: bool,
947
948 /// `Span` of the tail expression.
949 pub span: Span,
950}
951
952/// A MIR local.
953///
954/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
955/// argument, or the return place.
956#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
957pub struct LocalDecl<'tcx> {
958 /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
959 ///
960 /// Temporaries and the return place are always mutable.
961 pub mutability: Mutability,
962
963 pub local_info: ClearCrossCrate<Box<LocalInfo<'tcx>>>,
964
965 /// The type of this local.
966 pub ty: Ty<'tcx>,
967
968 /// If the user manually ascribed a type to this variable,
969 /// e.g., via `let x: T`, then we carry that type here. The MIR
970 /// borrow checker needs this information since it can affect
971 /// region inference.
972 pub user_ty: Option<Box<UserTypeProjections>>,
973
974 /// The *syntactic* (i.e., not visibility) source scope the local is defined
975 /// in. If the local was defined in a let-statement, this
976 /// is *within* the let-statement, rather than outside
977 /// of it.
978 ///
979 /// This is needed because the visibility source scope of locals within
980 /// a let-statement is weird.
981 ///
982 /// The reason is that we want the local to be *within* the let-statement
983 /// for lint purposes, but we want the local to be *after* the let-statement
984 /// for names-in-scope purposes.
985 ///
986 /// That's it, if we have a let-statement like the one in this
987 /// function:
988 ///
989 /// ```
990 /// fn foo(x: &str) {
991 /// #[allow(unused_mut)]
992 /// let mut x: u32 = { // <- one unused mut
993 /// let mut y: u32 = x.parse().unwrap();
994 /// y + 2
995 /// };
996 /// drop(x);
997 /// }
998 /// ```
999 ///
1000 /// Then, from a lint point of view, the declaration of `x: u32`
1001 /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
1002 /// lint scopes are the same as the AST/HIR nesting.
1003 ///
1004 /// However, from a name lookup point of view, the scopes look more like
1005 /// as if the let-statements were `match` expressions:
1006 ///
1007 /// ```
1008 /// fn foo(x: &str) {
1009 /// match {
1010 /// match x.parse::<u32>().unwrap() {
1011 /// y => y + 2
1012 /// }
1013 /// } {
1014 /// x => drop(x)
1015 /// };
1016 /// }
1017 /// ```
1018 ///
1019 /// We care about the name-lookup scopes for debuginfo - if the
1020 /// debuginfo instruction pointer is at the call to `x.parse()`, we
1021 /// want `x` to refer to `x: &str`, but if it is at the call to
1022 /// `drop(x)`, we want it to refer to `x: u32`.
1023 ///
1024 /// To allow both uses to work, we need to have more than a single scope
1025 /// for a local. We have the `source_info.scope` represent the "syntactic"
1026 /// lint scope (with a variable being under its let block) while the
1027 /// `var_debug_info.source_info.scope` represents the "local variable"
1028 /// scope (where the "rest" of a block is under all prior let-statements).
1029 ///
1030 /// The end result looks like this:
1031 ///
1032 /// ```text
1033 /// ROOT SCOPE
1034 /// │{ argument x: &str }
1035 /// │
1036 /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
1037 /// │ │ // in practice because I'm lazy.
1038 /// │ │
1039 /// │ │← x.source_info.scope
1040 /// │ │← `x.parse().unwrap()`
1041 /// │ │
1042 /// │ │ │← y.source_info.scope
1043 /// │ │
1044 /// │ │ │{ let y: u32 }
1045 /// │ │ │
1046 /// │ │ │← y.var_debug_info.source_info.scope
1047 /// │ │ │← `y + 2`
1048 /// │
1049 /// │ │{ let x: u32 }
1050 /// │ │← x.var_debug_info.source_info.scope
1051 /// │ │← `drop(x)` // This accesses `x: u32`.
1052 /// ```
1053 pub source_info: SourceInfo,
1054}
1055
1056/// Extra information about a some locals that's used for diagnostics and for
1057/// classifying variables into local variables, statics, etc, which is needed e.g.
1058/// for borrow checking.
1059///
1060/// Not used for non-StaticRef temporaries, the return place, or anonymous
1061/// function parameters.
1062#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1063pub enum LocalInfo<'tcx> {
1064 /// A user-defined local variable or function parameter
1065 ///
1066 /// The `BindingForm` is solely used for local diagnostics when generating
1067 /// warnings/errors when compiling the current crate, and therefore it need
1068 /// not be visible across crates.
1069 User(BindingForm<'tcx>),
1070 /// A temporary created that references the static with the given `DefId`.
1071 StaticRef { def_id: DefId, is_thread_local: bool },
1072 /// A temporary created that references the const with the given `DefId`
1073 ConstRef { def_id: DefId },
1074 /// A temporary created during the creation of an aggregate
1075 /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
1076 AggregateTemp,
1077 /// A temporary created for evaluation of some subexpression of some block's tail expression
1078 /// (with no intervening statement context).
1079 BlockTailTemp(BlockTailInfo),
1080 /// A temporary created during evaluating `if` predicate, possibly for pattern matching for `let`s,
1081 /// and subject to Edition 2024 temporary lifetime rules
1082 IfThenRescopeTemp { if_then: HirId },
1083 /// A temporary created during the pass `Derefer` to avoid it's retagging
1084 DerefTemp,
1085 /// A temporary created for borrow checking.
1086 FakeBorrow,
1087 /// A local without anything interesting about it.
1088 Boring,
1089}
1090
1091impl<'tcx> LocalDecl<'tcx> {
1092 pub fn local_info(&self) -> &LocalInfo<'tcx> {
1093 self.local_info.as_ref().unwrap_crate_local()
1094 }
1095
1096 /// Returns `true` only if local is a binding that can itself be
1097 /// made mutable via the addition of the `mut` keyword, namely
1098 /// something like the occurrences of `x` in:
1099 /// - `fn foo(x: Type) { ... }`,
1100 /// - `let x = ...`,
1101 /// - or `match ... { C(x) => ... }`
1102 pub fn can_be_made_mutable(&self) -> bool {
1103 matches!(
1104 self.local_info(),
1105 LocalInfo::User(
1106 BindingForm::Var(VarBindingForm {
1107 binding_mode: BindingMode(ByRef::No, _),
1108 opt_ty_info: _,
1109 opt_match_place: _,
1110 pat_span: _,
1111 }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
1112 )
1113 )
1114 }
1115
1116 /// Returns `true` if local is definitely not a `ref ident` or
1117 /// `ref mut ident` binding. (Such bindings cannot be made into
1118 /// mutable bindings, but the inverse does not necessarily hold).
1119 pub fn is_nonref_binding(&self) -> bool {
1120 matches!(
1121 self.local_info(),
1122 LocalInfo::User(
1123 BindingForm::Var(VarBindingForm {
1124 binding_mode: BindingMode(ByRef::No, _),
1125 opt_ty_info: _,
1126 opt_match_place: _,
1127 pat_span: _,
1128 }) | BindingForm::ImplicitSelf(_),
1129 )
1130 )
1131 }
1132
1133 /// Returns `true` if this variable is a named variable or function
1134 /// parameter declared by the user.
1135 #[inline]
1136 pub fn is_user_variable(&self) -> bool {
1137 matches!(self.local_info(), LocalInfo::User(_))
1138 }
1139
1140 /// Returns `true` if this is a reference to a variable bound in a `match`
1141 /// expression that is used to access said variable for the guard of the
1142 /// match arm.
1143 pub fn is_ref_for_guard(&self) -> bool {
1144 matches!(self.local_info(), LocalInfo::User(BindingForm::RefForGuard))
1145 }
1146
1147 /// Returns `Some` if this is a reference to a static item that is used to
1148 /// access that static.
1149 pub fn is_ref_to_static(&self) -> bool {
1150 matches!(self.local_info(), LocalInfo::StaticRef { .. })
1151 }
1152
1153 /// Returns `Some` if this is a reference to a thread-local static item that is used to
1154 /// access that static.
1155 pub fn is_ref_to_thread_local(&self) -> bool {
1156 match self.local_info() {
1157 LocalInfo::StaticRef { is_thread_local, .. } => *is_thread_local,
1158 _ => false,
1159 }
1160 }
1161
1162 /// Returns `true` if this is a DerefTemp
1163 pub fn is_deref_temp(&self) -> bool {
1164 match self.local_info() {
1165 LocalInfo::DerefTemp => true,
1166 _ => false,
1167 }
1168 }
1169
1170 /// Returns `true` is the local is from a compiler desugaring, e.g.,
1171 /// `__next` from a `for` loop.
1172 #[inline]
1173 pub fn from_compiler_desugaring(&self) -> bool {
1174 self.source_info.span.desugaring_kind().is_some()
1175 }
1176
1177 /// Creates a new `LocalDecl` for a temporary, mutable.
1178 #[inline]
1179 pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
1180 Self::with_source_info(ty, SourceInfo::outermost(span))
1181 }
1182
1183 /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
1184 #[inline]
1185 pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
1186 LocalDecl {
1187 mutability: Mutability::Mut,
1188 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::Boring)),
1189 ty,
1190 user_ty: None,
1191 source_info,
1192 }
1193 }
1194
1195 /// Converts `self` into same `LocalDecl` except tagged as immutable.
1196 #[inline]
1197 pub fn immutable(mut self) -> Self {
1198 self.mutability = Mutability::Not;
1199 self
1200 }
1201}
1202
1203#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1204pub enum VarDebugInfoContents<'tcx> {
1205 /// This `Place` only contains projection which satisfy `can_use_in_debuginfo`.
1206 Place(Place<'tcx>),
1207 Const(ConstOperand<'tcx>),
1208}
1209
1210impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
1211 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
1212 match self {
1213 VarDebugInfoContents::Const(c) => write!(fmt, "{c}"),
1214 VarDebugInfoContents::Place(p) => write!(fmt, "{p:?}"),
1215 }
1216 }
1217}
1218
1219#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1220pub struct VarDebugInfoFragment<'tcx> {
1221 /// Type of the original user variable.
1222 /// This cannot contain a union or an enum.
1223 pub ty: Ty<'tcx>,
1224
1225 /// Where in the composite user variable this fragment is,
1226 /// represented as a "projection" into the composite variable.
1227 /// At lower levels, this corresponds to a byte/bit range.
1228 ///
1229 /// This can only contain `PlaceElem::Field`.
1230 // FIXME support this for `enum`s by either using DWARF's
1231 // more advanced control-flow features (unsupported by LLVM?)
1232 // to match on the discriminant, or by using custom type debuginfo
1233 // with non-overlapping variants for the composite variable.
1234 pub projection: Vec<PlaceElem<'tcx>>,
1235}
1236
1237/// Debug information pertaining to a user variable.
1238#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1239pub struct VarDebugInfo<'tcx> {
1240 pub name: Symbol,
1241
1242 /// Source info of the user variable, including the scope
1243 /// within which the variable is visible (to debuginfo)
1244 /// (see `LocalDecl`'s `source_info` field for more details).
1245 pub source_info: SourceInfo,
1246
1247 /// The user variable's data is split across several fragments,
1248 /// each described by a `VarDebugInfoFragment`.
1249 /// See DWARF 5's "2.6.1.2 Composite Location Descriptions"
1250 /// and LLVM's `DW_OP_LLVM_fragment` for more details on
1251 /// the underlying debuginfo feature this relies on.
1252 pub composite: Option<Box<VarDebugInfoFragment<'tcx>>>,
1253
1254 /// Where the data for this user variable is to be found.
1255 pub value: VarDebugInfoContents<'tcx>,
1256
1257 /// When present, indicates what argument number this variable is in the function that it
1258 /// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
1259 /// argument number in the original function before it was inlined.
1260 pub argument_index: Option<u16>,
1261}
1262
1263///////////////////////////////////////////////////////////////////////////
1264// BasicBlock
1265
1266rustc_index::newtype_index! {
1267 /// A node in the MIR [control-flow graph][CFG].
1268 ///
1269 /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
1270 /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
1271 /// as an edge in a graph between basic blocks.
1272 ///
1273 /// Basic blocks consist of a series of [statements][Statement], ending with a
1274 /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
1275 /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
1276 /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
1277 /// needed because some analyses require that there are no critical edges in the CFG.
1278 ///
1279 /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
1280 /// the actual data that a basic block holds is in [`BasicBlockData`].
1281 ///
1282 /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
1283 ///
1284 /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
1285 /// [data-flow analyses]:
1286 /// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
1287 /// [`CriticalCallEdges`]: ../../rustc_mir_transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
1288 /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
1289 #[derive(HashStable)]
1290 #[encodable]
1291 #[orderable]
1292 #[debug_format = "bb{}"]
1293 pub struct BasicBlock {
1294 const START_BLOCK = 0;
1295 }
1296}
1297
1298impl BasicBlock {
1299 pub fn start_location(self) -> Location {
1300 Location { block: self, statement_index: 0 }
1301 }
1302}
1303
1304///////////////////////////////////////////////////////////////////////////
1305// BasicBlockData
1306
1307/// Data for a basic block, including a list of its statements.
1308///
1309/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
1310#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1311pub struct BasicBlockData<'tcx> {
1312 /// List of statements in this block.
1313 pub statements: Vec<Statement<'tcx>>,
1314
1315 /// Terminator for this block.
1316 ///
1317 /// N.B., this should generally ONLY be `None` during construction.
1318 /// Therefore, you should generally access it via the
1319 /// `terminator()` or `terminator_mut()` methods. The only
1320 /// exception is that certain passes, such as `simplify_cfg`, swap
1321 /// out the terminator temporarily with `None` while they continue
1322 /// to recurse over the set of basic blocks.
1323 pub terminator: Option<Terminator<'tcx>>,
1324
1325 /// If true, this block lies on an unwind path. This is used
1326 /// during codegen where distinct kinds of basic blocks may be
1327 /// generated (particularly for MSVC cleanup). Unwind blocks must
1328 /// only branch to other unwind blocks.
1329 pub is_cleanup: bool,
1330}
1331
1332impl<'tcx> BasicBlockData<'tcx> {
1333 pub fn new(terminator: Option<Terminator<'tcx>>, is_cleanup: bool) -> BasicBlockData<'tcx> {
1334 BasicBlockData { statements: vec![], terminator, is_cleanup }
1335 }
1336
1337 /// Accessor for terminator.
1338 ///
1339 /// Terminator may not be None after construction of the basic block is complete. This accessor
1340 /// provides a convenient way to reach the terminator.
1341 #[inline]
1342 pub fn terminator(&self) -> &Terminator<'tcx> {
1343 self.terminator.as_ref().expect("invalid terminator state")
1344 }
1345
1346 #[inline]
1347 pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
1348 self.terminator.as_mut().expect("invalid terminator state")
1349 }
1350
1351 /// Does the block have no statements and an unreachable terminator?
1352 #[inline]
1353 pub fn is_empty_unreachable(&self) -> bool {
1354 self.statements.is_empty() && matches!(self.terminator().kind, TerminatorKind::Unreachable)
1355 }
1356
1357 /// Like [`Terminator::successors`] but tries to use information available from the [`Instance`]
1358 /// to skip successors like the `false` side of an `if const {`.
1359 ///
1360 /// This is used to implement [`traversal::mono_reachable`] and
1361 /// [`traversal::mono_reachable_reverse_postorder`].
1362 pub fn mono_successors(&self, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Successors<'_> {
1363 if let Some((bits, targets)) = Body::try_const_mono_switchint(tcx, instance, self) {
1364 targets.successors_for_value(bits)
1365 } else {
1366 self.terminator().successors()
1367 }
1368 }
1369}
1370
1371///////////////////////////////////////////////////////////////////////////
1372// Scopes
1373
1374rustc_index::newtype_index! {
1375 #[derive(HashStable)]
1376 #[encodable]
1377 #[debug_format = "scope[{}]"]
1378 pub struct SourceScope {
1379 const OUTERMOST_SOURCE_SCOPE = 0;
1380 }
1381}
1382
1383impl SourceScope {
1384 /// Finds the original HirId this MIR item came from.
1385 /// This is necessary after MIR optimizations, as otherwise we get a HirId
1386 /// from the function that was inlined instead of the function call site.
1387 pub fn lint_root(
1388 self,
1389 source_scopes: &IndexSlice<SourceScope, SourceScopeData<'_>>,
1390 ) -> Option<HirId> {
1391 let mut data = &source_scopes[self];
1392 // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
1393 // does not work as I thought it would. Needs more investigation and documentation.
1394 while data.inlined.is_some() {
1395 trace!(?data);
1396 data = &source_scopes[data.parent_scope.unwrap()];
1397 }
1398 trace!(?data);
1399 match &data.local_data {
1400 ClearCrossCrate::Set(data) => Some(data.lint_root),
1401 ClearCrossCrate::Clear => None,
1402 }
1403 }
1404
1405 /// The instance this source scope was inlined from, if any.
1406 #[inline]
1407 pub fn inlined_instance<'tcx>(
1408 self,
1409 source_scopes: &IndexSlice<SourceScope, SourceScopeData<'tcx>>,
1410 ) -> Option<ty::Instance<'tcx>> {
1411 let scope_data = &source_scopes[self];
1412 if let Some((inlined_instance, _)) = scope_data.inlined {
1413 Some(inlined_instance)
1414 } else if let Some(inlined_scope) = scope_data.inlined_parent_scope {
1415 Some(source_scopes[inlined_scope].inlined.unwrap().0)
1416 } else {
1417 None
1418 }
1419 }
1420}
1421
1422#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1423pub struct SourceScopeData<'tcx> {
1424 pub span: Span,
1425 pub parent_scope: Option<SourceScope>,
1426
1427 /// Whether this scope is the root of a scope tree of another body,
1428 /// inlined into this body by the MIR inliner.
1429 /// `ty::Instance` is the callee, and the `Span` is the call site.
1430 pub inlined: Option<(ty::Instance<'tcx>, Span)>,
1431
1432 /// Nearest (transitive) parent scope (if any) which is inlined.
1433 /// This is an optimization over walking up `parent_scope`
1434 /// until a scope with `inlined: Some(...)` is found.
1435 pub inlined_parent_scope: Option<SourceScope>,
1436
1437 /// Crate-local information for this source scope, that can't (and
1438 /// needn't) be tracked across crates.
1439 pub local_data: ClearCrossCrate<SourceScopeLocalData>,
1440}
1441
1442#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
1443pub struct SourceScopeLocalData {
1444 /// An `HirId` with lint levels equivalent to this scope's lint levels.
1445 pub lint_root: HirId,
1446}
1447
1448/// A collection of projections into user types.
1449///
1450/// They are projections because a binding can occur a part of a
1451/// parent pattern that has been ascribed a type.
1452///
1453/// It's a collection because there can be multiple type ascriptions on
1454/// the path from the root of the pattern down to the binding itself.
1455///
1456/// An example:
1457///
1458/// ```ignore (illustrative)
1459/// struct S<'a>((i32, &'a str), String);
1460/// let S((_, w): (i32, &'static str), _): S = ...;
1461/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
1462/// // --------------------------------- ^ (2)
1463/// ```
1464///
1465/// The highlights labelled `(1)` show the subpattern `(_, w)` being
1466/// ascribed the type `(i32, &'static str)`.
1467///
1468/// The highlights labelled `(2)` show the whole pattern being
1469/// ascribed the type `S`.
1470///
1471/// In this example, when we descend to `w`, we will have built up the
1472/// following two projected types:
1473///
1474/// * base: `S`, projection: `(base.0).1`
1475/// * base: `(i32, &'static str)`, projection: `base.1`
1476///
1477/// The first will lead to the constraint `w: &'1 str` (for some
1478/// inferred region `'1`). The second will lead to the constraint `w:
1479/// &'static str`.
1480#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1481pub struct UserTypeProjections {
1482 pub contents: Vec<UserTypeProjection>,
1483}
1484
1485impl UserTypeProjections {
1486 pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
1487 self.contents.iter()
1488 }
1489}
1490
1491/// Encodes the effect of a user-supplied type annotation on the
1492/// subcomponents of a pattern. The effect is determined by applying the
1493/// given list of projections to some underlying base type. Often,
1494/// the projection element list `projs` is empty, in which case this
1495/// directly encodes a type in `base`. But in the case of complex patterns with
1496/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
1497/// in which case the `projs` vector is used.
1498///
1499/// Examples:
1500///
1501/// * `let x: T = ...` -- here, the `projs` vector is empty.
1502///
1503/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
1504/// `field[0]` (aka `.0`), indicating that the type of `s` is
1505/// determined by finding the type of the `.0` field from `T`.
1506#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
1507#[derive(TypeFoldable, TypeVisitable)]
1508pub struct UserTypeProjection {
1509 pub base: UserTypeAnnotationIndex,
1510 pub projs: Vec<ProjectionKind>,
1511}
1512
1513rustc_index::newtype_index! {
1514 #[derive(HashStable)]
1515 #[encodable]
1516 #[orderable]
1517 #[debug_format = "promoted[{}]"]
1518 pub struct Promoted {}
1519}
1520
1521/// `Location` represents the position of the start of the statement; or, if
1522/// `statement_index` equals the number of statements, then the start of the
1523/// terminator.
1524#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
1525pub struct Location {
1526 /// The block that the location is within.
1527 pub block: BasicBlock,
1528
1529 pub statement_index: usize,
1530}
1531
1532impl fmt::Debug for Location {
1533 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1534 write!(fmt, "{:?}[{}]", self.block, self.statement_index)
1535 }
1536}
1537
1538impl Location {
1539 pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
1540
1541 /// Returns the location immediately after this one within the enclosing block.
1542 ///
1543 /// Note that if this location represents a terminator, then the
1544 /// resulting location would be out of bounds and invalid.
1545 #[inline]
1546 pub fn successor_within_block(&self) -> Location {
1547 Location { block: self.block, statement_index: self.statement_index + 1 }
1548 }
1549
1550 /// Returns `true` if `other` is earlier in the control flow graph than `self`.
1551 pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
1552 // If we are in the same block as the other location and are an earlier statement
1553 // then we are a predecessor of `other`.
1554 if self.block == other.block && self.statement_index < other.statement_index {
1555 return true;
1556 }
1557
1558 let predecessors = body.basic_blocks.predecessors();
1559
1560 // If we're in another block, then we want to check that block is a predecessor of `other`.
1561 let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
1562 let mut visited = FxHashSet::default();
1563
1564 while let Some(block) = queue.pop() {
1565 // If we haven't visited this block before, then make sure we visit its predecessors.
1566 if visited.insert(block) {
1567 queue.extend(predecessors[block].iter().cloned());
1568 } else {
1569 continue;
1570 }
1571
1572 // If we found the block that `self` is in, then we are a predecessor of `other` (since
1573 // we found that block by looking at the predecessors of `other`).
1574 if self.block == block {
1575 return true;
1576 }
1577 }
1578
1579 false
1580 }
1581
1582 #[inline]
1583 pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
1584 if self.block == other.block {
1585 self.statement_index <= other.statement_index
1586 } else {
1587 dominators.dominates(self.block, other.block)
1588 }
1589 }
1590}
1591
1592/// `DefLocation` represents the location of a definition - either an argument or an assignment
1593/// within MIR body.
1594#[derive(Copy, Clone, Debug, PartialEq, Eq)]
1595pub enum DefLocation {
1596 Argument,
1597 Assignment(Location),
1598 CallReturn { call: BasicBlock, target: Option<BasicBlock> },
1599}
1600
1601impl DefLocation {
1602 #[inline]
1603 pub fn dominates(self, location: Location, dominators: &Dominators<BasicBlock>) -> bool {
1604 match self {
1605 DefLocation::Argument => true,
1606 DefLocation::Assignment(def) => {
1607 def.successor_within_block().dominates(location, dominators)
1608 }
1609 DefLocation::CallReturn { target: None, .. } => false,
1610 DefLocation::CallReturn { call, target: Some(target) } => {
1611 // The definition occurs on the call -> target edge. The definition dominates a use
1612 // if and only if the edge is on all paths from the entry to the use.
1613 //
1614 // Note that a call terminator has only one edge that can reach the target, so when
1615 // the call strongly dominates the target, all paths from the entry to the target
1616 // go through the call -> target edge.
1617 call != target
1618 && dominators.dominates(call, target)
1619 && dominators.dominates(target, location.block)
1620 }
1621 }
1622 }
1623}
1624
1625/// Checks if the specified `local` is used as the `self` parameter of a method call
1626/// in the provided `BasicBlock`. If it is, then the `DefId` of the called method is
1627/// returned.
1628pub fn find_self_call<'tcx>(
1629 tcx: TyCtxt<'tcx>,
1630 body: &Body<'tcx>,
1631 local: Local,
1632 block: BasicBlock,
1633) -> Option<(DefId, GenericArgsRef<'tcx>)> {
1634 debug!("find_self_call(local={:?}): terminator={:?}", local, body[block].terminator);
1635 if let Some(Terminator { kind: TerminatorKind::Call { func, args, .. }, .. }) =
1636 &body[block].terminator
1637 && let Operand::Constant(box ConstOperand { const_, .. }) = func
1638 && let ty::FnDef(def_id, fn_args) = *const_.ty().kind()
1639 && let Some(ty::AssocItem { fn_has_self_parameter: true, .. }) =
1640 tcx.opt_associated_item(def_id)
1641 && let [Spanned { node: Operand::Move(self_place) | Operand::Copy(self_place), .. }, ..] =
1642 **args
1643 {
1644 if self_place.as_local() == Some(local) {
1645 return Some((def_id, fn_args));
1646 }
1647
1648 // Handle the case where `self_place` gets reborrowed.
1649 // This happens when the receiver is `&T`.
1650 for stmt in &body[block].statements {
1651 if let StatementKind::Assign(box (place, rvalue)) = &stmt.kind
1652 && let Some(reborrow_local) = place.as_local()
1653 && self_place.as_local() == Some(reborrow_local)
1654 && let Rvalue::Ref(_, _, deref_place) = rvalue
1655 && let PlaceRef { local: deref_local, projection: [ProjectionElem::Deref] } =
1656 deref_place.as_ref()
1657 && deref_local == local
1658 {
1659 return Some((def_id, fn_args));
1660 }
1661 }
1662 }
1663 None
1664}
1665
1666// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
1667#[cfg(target_pointer_width = "64")]
1668mod size_asserts {
1669 use rustc_data_structures::static_assert_size;
1670
1671 use super::*;
1672 // tidy-alphabetical-start
1673 static_assert_size!(BasicBlockData<'_>, 128);
1674 static_assert_size!(LocalDecl<'_>, 40);
1675 static_assert_size!(SourceScopeData<'_>, 64);
1676 static_assert_size!(Statement<'_>, 32);
1677 static_assert_size!(Terminator<'_>, 96);
1678 static_assert_size!(VarDebugInfo<'_>, 88);
1679 // tidy-alphabetical-end
1680}