1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
//! MIR datatypes and passes. See the [rustc dev guide] for more info.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html

use crate::mir::interpret::{
    AllocRange, ConstAllocation, ConstValue, GlobalAlloc, LitToConstInput, Scalar,
};
use crate::mir::traversal::PostorderCache;
use crate::mir::visit::MirVisitable;
use crate::ty::codec::{TyDecoder, TyEncoder};
use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable, TypeVisitor};
use crate::ty::print::{FmtPrinter, Printer};
use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
use crate::ty::{self, List, Ty, TyCtxt};
use crate::ty::{AdtDef, InstanceDef, ScalarInt, UserTypeAnnotationIndex};

use rustc_data_structures::captures::Captures;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::{CtorKind, Namespace};
use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
use rustc_hir::{self, GeneratorKind};
use rustc_hir::{self as hir, HirId};
use rustc_session::Session;
use rustc_target::abi::{Size, VariantIdx};

use polonius_engine::Atom;
pub use rustc_ast::Mutability;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::graph::dominators::{dominators, Dominators};
use rustc_data_structures::graph::{self, GraphSuccessors};
use rustc_index::bit_set::BitMatrix;
use rustc_index::vec::{Idx, IndexVec};
use rustc_serialize::{Decodable, Encodable};
use rustc_span::symbol::Symbol;
use rustc_span::{Span, DUMMY_SP};

use either::Either;

use std::borrow::Cow;
use std::convert::TryInto;
use std::fmt::{self, Debug, Display, Formatter, Write};
use std::ops::{ControlFlow, Index, IndexMut};
use std::{iter, mem};

use self::graph_cyclic_cache::GraphIsCyclicCache;
use self::predecessors::{PredecessorCache, Predecessors};
pub use self::query::*;
use self::switch_sources::{SwitchSourceCache, SwitchSources};

pub mod coverage;
mod generic_graph;
pub mod generic_graphviz;
mod graph_cyclic_cache;
pub mod graphviz;
pub mod interpret;
pub mod mono;
pub mod patch;
mod predecessors;
pub mod pretty;
mod query;
pub mod spanview;
mod syntax;
pub use syntax::*;
mod switch_sources;
pub mod tcx;
mod terminator;
pub use terminator::*;

pub mod traversal;
mod type_foldable;
pub mod visit;

pub use self::generic_graph::graphviz_safe_def_name;
pub use self::graphviz::write_mir_graphviz;
pub use self::pretty::{
    create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty, PassWhere,
};

/// Types for locals
pub type LocalDecls<'tcx> = IndexVec<Local, LocalDecl<'tcx>>;

pub trait HasLocalDecls<'tcx> {
    fn local_decls(&self) -> &LocalDecls<'tcx>;
}

impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
    #[inline]
    fn local_decls(&self) -> &LocalDecls<'tcx> {
        self
    }
}

impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
    #[inline]
    fn local_decls(&self) -> &LocalDecls<'tcx> {
        &self.local_decls
    }
}

/// A streamlined trait that you can implement to create a pass; the
/// pass will be named after the type, and it will consist of a main
/// loop that goes over each available MIR and applies `run_pass`.
pub trait MirPass<'tcx> {
    fn name(&self) -> Cow<'_, str> {
        let name = std::any::type_name::<Self>();
        if let Some(tail) = name.rfind(':') {
            Cow::from(&name[tail + 1..])
        } else {
            Cow::from(name)
        }
    }

    /// Returns `true` if this pass is enabled with the current combination of compiler flags.
    fn is_enabled(&self, _sess: &Session) -> bool {
        true
    }

    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>);

    /// If this pass causes the MIR to enter a new phase, return that phase.
    fn phase_change(&self) -> Option<MirPhase> {
        None
    }

    fn is_mir_dump_enabled(&self) -> bool {
        true
    }
}

impl MirPhase {
    /// Gets the index of the current MirPhase within the set of all `MirPhase`s.
    pub fn phase_index(&self) -> usize {
        *self as usize
    }
}

/// Where a specific `mir::Body` comes from.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable)]
pub struct MirSource<'tcx> {
    pub instance: InstanceDef<'tcx>,

    /// If `Some`, this is a promoted rvalue within the parent function.
    pub promoted: Option<Promoted>,
}

impl<'tcx> MirSource<'tcx> {
    pub fn item(def_id: DefId) -> Self {
        MirSource {
            instance: InstanceDef::Item(ty::WithOptConstParam::unknown(def_id)),
            promoted: None,
        }
    }

    pub fn from_instance(instance: InstanceDef<'tcx>) -> Self {
        MirSource { instance, promoted: None }
    }

    pub fn with_opt_param(self) -> ty::WithOptConstParam<DefId> {
        self.instance.with_opt_param()
    }

    #[inline]
    pub fn def_id(&self) -> DefId {
        self.instance.def_id()
    }
}

#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)]
pub struct GeneratorInfo<'tcx> {
    /// The yield type of the function, if it is a generator.
    pub yield_ty: Option<Ty<'tcx>>,

    /// Generator drop glue.
    pub generator_drop: Option<Body<'tcx>>,

    /// The layout of a generator. Produced by the state transformation.
    pub generator_layout: Option<GeneratorLayout<'tcx>>,

    /// If this is a generator then record the type of source expression that caused this generator
    /// to be created.
    pub generator_kind: GeneratorKind,
}

/// The lowered representation of a single function.
#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)]
pub struct Body<'tcx> {
    /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
    /// that indexes into this vector.
    basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,

    /// Records how far through the "desugaring and optimization" process this particular
    /// MIR has traversed. This is particularly useful when inlining, since in that context
    /// we instantiate the promoted constants and add them to our promoted vector -- but those
    /// promoted items have already been optimized, whereas ours have not. This field allows
    /// us to see the difference and forego optimization on the inlined promoted items.
    pub phase: MirPhase,

    pub source: MirSource<'tcx>,

    /// A list of source scopes; these are referenced by statements
    /// and used for debuginfo. Indexed by a `SourceScope`.
    pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,

    pub generator: Option<Box<GeneratorInfo<'tcx>>>,

    /// Declarations of locals.
    ///
    /// The first local is the return value pointer, followed by `arg_count`
    /// locals for the function arguments, followed by any user-declared
    /// variables and temporaries.
    pub local_decls: LocalDecls<'tcx>,

    /// User type annotations.
    pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,

    /// The number of arguments this function takes.
    ///
    /// Starting at local 1, `arg_count` locals will be provided by the caller
    /// and can be assumed to be initialized.
    ///
    /// If this MIR was built for a constant, this will be 0.
    pub arg_count: usize,

    /// Mark an argument local (which must be a tuple) as getting passed as
    /// its individual components at the LLVM level.
    ///
    /// This is used for the "rust-call" ABI.
    pub spread_arg: Option<Local>,

    /// Debug information pertaining to user variables, including captures.
    pub var_debug_info: Vec<VarDebugInfo<'tcx>>,

    /// A span representing this MIR, for error reporting.
    pub span: Span,

    /// Constants that are required to evaluate successfully for this MIR to be well-formed.
    /// We hold in this field all the constants we are not able to evaluate yet.
    pub required_consts: Vec<Constant<'tcx>>,

    /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
    ///
    /// Note that this does not actually mean that this body is not computable right now.
    /// The repeat count in the following example is polymorphic, but can still be evaluated
    /// without knowing anything about the type parameter `T`.
    ///
    /// ```rust
    /// fn test<T>() {
    ///     let _ = [0; std::mem::size_of::<*mut T>()];
    /// }
    /// ```
    ///
    /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
    /// removed the last mention of all generic params. We do not want to rely on optimizations and
    /// potentially allow things like `[u8; std::mem::size_of::<T>() * 0]` due to this.
    pub is_polymorphic: bool,

    predecessor_cache: PredecessorCache,
    switch_source_cache: SwitchSourceCache,
    is_cyclic: GraphIsCyclicCache,
    postorder_cache: PostorderCache,

    pub tainted_by_errors: Option<ErrorGuaranteed>,
}

impl<'tcx> Body<'tcx> {
    pub fn new(
        source: MirSource<'tcx>,
        basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
        source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
        local_decls: LocalDecls<'tcx>,
        user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
        arg_count: usize,
        var_debug_info: Vec<VarDebugInfo<'tcx>>,
        span: Span,
        generator_kind: Option<GeneratorKind>,
        tainted_by_errors: Option<ErrorGuaranteed>,
    ) -> Self {
        // We need `arg_count` locals, and one for the return place.
        assert!(
            local_decls.len() > arg_count,
            "expected at least {} locals, got {}",
            arg_count + 1,
            local_decls.len()
        );

        let mut body = Body {
            phase: MirPhase::Built,
            source,
            basic_blocks,
            source_scopes,
            generator: generator_kind.map(|generator_kind| {
                Box::new(GeneratorInfo {
                    yield_ty: None,
                    generator_drop: None,
                    generator_layout: None,
                    generator_kind,
                })
            }),
            local_decls,
            user_type_annotations,
            arg_count,
            spread_arg: None,
            var_debug_info,
            span,
            required_consts: Vec::new(),
            is_polymorphic: false,
            predecessor_cache: PredecessorCache::new(),
            switch_source_cache: SwitchSourceCache::new(),
            is_cyclic: GraphIsCyclicCache::new(),
            postorder_cache: PostorderCache::new(),
            tainted_by_errors,
        };
        body.is_polymorphic = body.has_param_types_or_consts();
        body
    }

    /// Returns a partially initialized MIR body containing only a list of basic blocks.
    ///
    /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
    /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
    /// crate.
    pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
        let mut body = Body {
            phase: MirPhase::Built,
            source: MirSource::item(CRATE_DEF_ID.to_def_id()),
            basic_blocks,
            source_scopes: IndexVec::new(),
            generator: None,
            local_decls: IndexVec::new(),
            user_type_annotations: IndexVec::new(),
            arg_count: 0,
            spread_arg: None,
            span: DUMMY_SP,
            required_consts: Vec::new(),
            var_debug_info: Vec::new(),
            is_polymorphic: false,
            predecessor_cache: PredecessorCache::new(),
            switch_source_cache: SwitchSourceCache::new(),
            is_cyclic: GraphIsCyclicCache::new(),
            postorder_cache: PostorderCache::new(),
            tainted_by_errors: None,
        };
        body.is_polymorphic = body.has_param_types_or_consts();
        body
    }

    #[inline]
    pub fn basic_blocks(&self) -> &IndexVec<BasicBlock, BasicBlockData<'tcx>> {
        &self.basic_blocks
    }

    #[inline]
    pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
        // Because the user could mutate basic block terminators via this reference, we need to
        // invalidate the caches.
        //
        // FIXME: Use a finer-grained API for this, so only transformations that alter terminators
        // invalidate the caches.
        self.predecessor_cache.invalidate();
        self.switch_source_cache.invalidate();
        self.is_cyclic.invalidate();
        self.postorder_cache.invalidate();
        &mut self.basic_blocks
    }

    #[inline]
    pub fn basic_blocks_and_local_decls_mut(
        &mut self,
    ) -> (&mut IndexVec<BasicBlock, BasicBlockData<'tcx>>, &mut LocalDecls<'tcx>) {
        self.predecessor_cache.invalidate();
        self.switch_source_cache.invalidate();
        self.is_cyclic.invalidate();
        self.postorder_cache.invalidate();
        (&mut self.basic_blocks, &mut self.local_decls)
    }

    #[inline]
    pub fn basic_blocks_local_decls_mut_and_var_debug_info(
        &mut self,
    ) -> (
        &mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
        &mut LocalDecls<'tcx>,
        &mut Vec<VarDebugInfo<'tcx>>,
    ) {
        self.predecessor_cache.invalidate();
        self.switch_source_cache.invalidate();
        self.is_cyclic.invalidate();
        self.postorder_cache.invalidate();
        (&mut self.basic_blocks, &mut self.local_decls, &mut self.var_debug_info)
    }

    /// Returns `true` if a cycle exists in the control-flow graph that is reachable from the
    /// `START_BLOCK`.
    pub fn is_cfg_cyclic(&self) -> bool {
        self.is_cyclic.is_cyclic(self)
    }

    #[inline]
    pub fn local_kind(&self, local: Local) -> LocalKind {
        let index = local.as_usize();
        if index == 0 {
            debug_assert!(
                self.local_decls[local].mutability == Mutability::Mut,
                "return place should be mutable"
            );

            LocalKind::ReturnPointer
        } else if index < self.arg_count + 1 {
            LocalKind::Arg
        } else if self.local_decls[local].is_user_variable() {
            LocalKind::Var
        } else {
            LocalKind::Temp
        }
    }

    /// Returns an iterator over all user-declared mutable locals.
    #[inline]
    pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
        (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
            let local = Local::new(index);
            let decl = &self.local_decls[local];
            if decl.is_user_variable() && decl.mutability == Mutability::Mut {
                Some(local)
            } else {
                None
            }
        })
    }

    /// Returns an iterator over all user-declared mutable arguments and locals.
    #[inline]
    pub fn mut_vars_and_args_iter<'a>(
        &'a self,
    ) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
        (1..self.local_decls.len()).filter_map(move |index| {
            let local = Local::new(index);
            let decl = &self.local_decls[local];
            if (decl.is_user_variable() || index < self.arg_count + 1)
                && decl.mutability == Mutability::Mut
            {
                Some(local)
            } else {
                None
            }
        })
    }

    /// Returns an iterator over all function arguments.
    #[inline]
    pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
        (1..self.arg_count + 1).map(Local::new)
    }

    /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
    /// locals that are neither arguments nor the return place).
    #[inline]
    pub fn vars_and_temps_iter(
        &self,
    ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
        (self.arg_count + 1..self.local_decls.len()).map(Local::new)
    }

    #[inline]
    pub fn drain_vars_and_temps<'a>(&'a mut self) -> impl Iterator<Item = LocalDecl<'tcx>> + 'a {
        self.local_decls.drain(self.arg_count + 1..)
    }

    /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
    /// invalidating statement indices in `Location`s.
    pub fn make_statement_nop(&mut self, location: Location) {
        let block = &mut self.basic_blocks[location.block];
        debug_assert!(location.statement_index < block.statements.len());
        block.statements[location.statement_index].make_nop()
    }

    /// Returns the source info associated with `location`.
    pub fn source_info(&self, location: Location) -> &SourceInfo {
        let block = &self[location.block];
        let stmts = &block.statements;
        let idx = location.statement_index;
        if idx < stmts.len() {
            &stmts[idx].source_info
        } else {
            assert_eq!(idx, stmts.len());
            &block.terminator().source_info
        }
    }

    /// Returns the return type; it always return first element from `local_decls` array.
    #[inline]
    pub fn return_ty(&self) -> Ty<'tcx> {
        self.local_decls[RETURN_PLACE].ty
    }

    /// Gets the location of the terminator for the given block.
    #[inline]
    pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
        Location { block: bb, statement_index: self[bb].statements.len() }
    }

    pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
        let Location { block, statement_index } = location;
        let block_data = &self.basic_blocks[block];
        block_data
            .statements
            .get(statement_index)
            .map(Either::Left)
            .unwrap_or_else(|| Either::Right(block_data.terminator()))
    }

    #[inline]
    pub fn predecessors(&self) -> &Predecessors {
        self.predecessor_cache.compute(&self.basic_blocks)
    }

    /// `body.switch_sources()[&(target, switch)]` returns a list of switch
    /// values that lead to a `target` block from a `switch` block.
    #[inline]
    pub fn switch_sources(&self) -> &SwitchSources {
        self.switch_source_cache.compute(&self.basic_blocks)
    }

    #[inline]
    pub fn dominators(&self) -> Dominators<BasicBlock> {
        dominators(self)
    }

    #[inline]
    pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
        self.generator.as_ref().and_then(|generator| generator.yield_ty)
    }

    #[inline]
    pub fn generator_layout(&self) -> Option<&GeneratorLayout<'tcx>> {
        self.generator.as_ref().and_then(|generator| generator.generator_layout.as_ref())
    }

    #[inline]
    pub fn generator_drop(&self) -> Option<&Body<'tcx>> {
        self.generator.as_ref().and_then(|generator| generator.generator_drop.as_ref())
    }

    #[inline]
    pub fn generator_kind(&self) -> Option<GeneratorKind> {
        self.generator.as_ref().map(|generator| generator.generator_kind)
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug, TyEncodable, TyDecodable, HashStable)]
pub enum Safety {
    Safe,
    /// Unsafe because of compiler-generated unsafe code, like `await` desugaring
    BuiltinUnsafe,
    /// Unsafe because of an unsafe fn
    FnUnsafe,
    /// Unsafe because of an `unsafe` block
    ExplicitUnsafe(hir::HirId),
}

impl<'tcx> Index<BasicBlock> for Body<'tcx> {
    type Output = BasicBlockData<'tcx>;

    #[inline]
    fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
        &self.basic_blocks()[index]
    }
}

impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
    #[inline]
    fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
        &mut self.basic_blocks_mut()[index]
    }
}

#[derive(Copy, Clone, Debug, HashStable, TypeFoldable)]
pub enum ClearCrossCrate<T> {
    Clear,
    Set(T),
}

impl<T> ClearCrossCrate<T> {
    pub fn as_ref(&self) -> ClearCrossCrate<&T> {
        match self {
            ClearCrossCrate::Clear => ClearCrossCrate::Clear,
            ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
        }
    }

    pub fn assert_crate_local(self) -> T {
        match self {
            ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
            ClearCrossCrate::Set(v) => v,
        }
    }
}

const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;

impl<E: TyEncoder, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
    #[inline]
    fn encode(&self, e: &mut E) {
        if E::CLEAR_CROSS_CRATE {
            return;
        }

        match *self {
            ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
            ClearCrossCrate::Set(ref val) => {
                TAG_CLEAR_CROSS_CRATE_SET.encode(e);
                val.encode(e);
            }
        }
    }
}
impl<D: TyDecoder, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
    #[inline]
    fn decode(d: &mut D) -> ClearCrossCrate<T> {
        if D::CLEAR_CROSS_CRATE {
            return ClearCrossCrate::Clear;
        }

        let discr = u8::decode(d);

        match discr {
            TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
            TAG_CLEAR_CROSS_CRATE_SET => {
                let val = T::decode(d);
                ClearCrossCrate::Set(val)
            }
            tag => panic!("Invalid tag for ClearCrossCrate: {:?}", tag),
        }
    }
}

/// Grouped information about the source code origin of a MIR entity.
/// Intended to be inspected by diagnostics and debuginfo.
/// Most passes can work with it as a whole, within a single function.
// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
// `Hash`. Please ping @bjorn3 if removing them.
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
pub struct SourceInfo {
    /// The source span for the AST pertaining to this MIR entity.
    pub span: Span,

    /// The source scope, keeping track of which bindings can be
    /// seen by debuginfo, active lint levels, `unsafe {...}`, etc.
    pub scope: SourceScope,
}

impl SourceInfo {
    #[inline]
    pub fn outermost(span: Span) -> Self {
        SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
    }
}

///////////////////////////////////////////////////////////////////////////
// Variables and temps

rustc_index::newtype_index! {
    pub struct Local {
        derive [HashStable]
        DEBUG_FORMAT = "_{}",
        const RETURN_PLACE = 0,
    }
}

impl Atom for Local {
    fn index(self) -> usize {
        Idx::index(self)
    }
}

/// Classifies locals into categories. See `Body::local_kind`.
#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
pub enum LocalKind {
    /// User-declared variable binding.
    Var,
    /// Compiler-introduced temporary.
    Temp,
    /// Function argument.
    Arg,
    /// Location of function's return value.
    ReturnPointer,
}

#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct VarBindingForm<'tcx> {
    /// Is variable bound via `x`, `mut x`, `ref x`, or `ref mut x`?
    pub binding_mode: ty::BindingMode,
    /// If an explicit type was provided for this variable binding,
    /// this holds the source Span of that type.
    ///
    /// NOTE: if you want to change this to a `HirId`, be wary that
    /// doing so breaks incremental compilation (as of this writing),
    /// while a `Span` does not cause our tests to fail.
    pub opt_ty_info: Option<Span>,
    /// Place of the RHS of the =, or the subject of the `match` where this
    /// variable is initialized. None in the case of `let PATTERN;`.
    /// Some((None, ..)) in the case of and `let [mut] x = ...` because
    /// (a) the right-hand side isn't evaluated as a place expression.
    /// (b) it gives a way to separate this case from the remaining cases
    ///     for diagnostics.
    pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
    /// The span of the pattern in which this variable was bound.
    pub pat_span: Span,
}

#[derive(Clone, Debug, TyEncodable, TyDecodable)]
pub enum BindingForm<'tcx> {
    /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
    Var(VarBindingForm<'tcx>),
    /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
    ImplicitSelf(ImplicitSelfKind),
    /// Reference used in a guard expression to ensure immutability.
    RefForGuard,
}

/// Represents what type of implicit self a function has, if any.
#[derive(Clone, Copy, PartialEq, Debug, TyEncodable, TyDecodable, HashStable)]
pub enum ImplicitSelfKind {
    /// Represents a `fn x(self);`.
    Imm,
    /// Represents a `fn x(mut self);`.
    Mut,
    /// Represents a `fn x(&self);`.
    ImmRef,
    /// Represents a `fn x(&mut self);`.
    MutRef,
    /// Represents when a function does not have a self argument or
    /// when a function has a `self: X` argument.
    None,
}

TrivialTypeFoldableAndLiftImpls! { BindingForm<'tcx>, }

mod binding_form_impl {
    use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
    use rustc_query_system::ich::StableHashingContext;

    impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
        fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
            use super::BindingForm::*;
            std::mem::discriminant(self).hash_stable(hcx, hasher);

            match self {
                Var(binding) => binding.hash_stable(hcx, hasher),
                ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
                RefForGuard => (),
            }
        }
    }
}

/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
/// created during evaluation of expressions in a block tail
/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
///
/// It is used to improve diagnostics when such temporaries are
/// involved in borrow_check errors, e.g., explanations of where the
/// temporaries come from, when their destructors are run, and/or how
/// one might revise the code to satisfy the borrow checker's rules.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct BlockTailInfo {
    /// If `true`, then the value resulting from evaluating this tail
    /// expression is ignored by the block's expression context.
    ///
    /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
    /// but not e.g., `let _x = { ...; tail };`
    pub tail_result_is_ignored: bool,

    /// `Span` of the tail expression.
    pub span: Span,
}

/// A MIR local.
///
/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
/// argument, or the return place.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
pub struct LocalDecl<'tcx> {
    /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
    ///
    /// Temporaries and the return place are always mutable.
    pub mutability: Mutability,

    // FIXME(matthewjasper) Don't store in this in `Body`
    pub local_info: Option<Box<LocalInfo<'tcx>>>,

    /// `true` if this is an internal local.
    ///
    /// These locals are not based on types in the source code and are only used
    /// for a few desugarings at the moment.
    ///
    /// The generator transformation will sanity check the locals which are live
    /// across a suspension point against the type components of the generator
    /// which type checking knows are live across a suspension point. We need to
    /// flag drop flags to avoid triggering this check as they are introduced
    /// outside of type inference.
    ///
    /// This should be sound because the drop flags are fully algebraic, and
    /// therefore don't affect the auto-trait or outlives properties of the
    /// generator.
    pub internal: bool,

    /// If this local is a temporary and `is_block_tail` is `Some`,
    /// then it is a temporary created for evaluation of some
    /// subexpression of some block's tail expression (with no
    /// intervening statement context).
    // FIXME(matthewjasper) Don't store in this in `Body`
    pub is_block_tail: Option<BlockTailInfo>,

    /// The type of this local.
    pub ty: Ty<'tcx>,

    /// If the user manually ascribed a type to this variable,
    /// e.g., via `let x: T`, then we carry that type here. The MIR
    /// borrow checker needs this information since it can affect
    /// region inference.
    // FIXME(matthewjasper) Don't store in this in `Body`
    pub user_ty: Option<Box<UserTypeProjections>>,

    /// The *syntactic* (i.e., not visibility) source scope the local is defined
    /// in. If the local was defined in a let-statement, this
    /// is *within* the let-statement, rather than outside
    /// of it.
    ///
    /// This is needed because the visibility source scope of locals within
    /// a let-statement is weird.
    ///
    /// The reason is that we want the local to be *within* the let-statement
    /// for lint purposes, but we want the local to be *after* the let-statement
    /// for names-in-scope purposes.
    ///
    /// That's it, if we have a let-statement like the one in this
    /// function:
    ///
    /// ```
    /// fn foo(x: &str) {
    ///     #[allow(unused_mut)]
    ///     let mut x: u32 = { // <- one unused mut
    ///         let mut y: u32 = x.parse().unwrap();
    ///         y + 2
    ///     };
    ///     drop(x);
    /// }
    /// ```
    ///
    /// Then, from a lint point of view, the declaration of `x: u32`
    /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
    /// lint scopes are the same as the AST/HIR nesting.
    ///
    /// However, from a name lookup point of view, the scopes look more like
    /// as if the let-statements were `match` expressions:
    ///
    /// ```
    /// fn foo(x: &str) {
    ///     match {
    ///         match x.parse::<u32>().unwrap() {
    ///             y => y + 2
    ///         }
    ///     } {
    ///         x => drop(x)
    ///     };
    /// }
    /// ```
    ///
    /// We care about the name-lookup scopes for debuginfo - if the
    /// debuginfo instruction pointer is at the call to `x.parse()`, we
    /// want `x` to refer to `x: &str`, but if it is at the call to
    /// `drop(x)`, we want it to refer to `x: u32`.
    ///
    /// To allow both uses to work, we need to have more than a single scope
    /// for a local. We have the `source_info.scope` represent the "syntactic"
    /// lint scope (with a variable being under its let block) while the
    /// `var_debug_info.source_info.scope` represents the "local variable"
    /// scope (where the "rest" of a block is under all prior let-statements).
    ///
    /// The end result looks like this:
    ///
    /// ```text
    /// ROOT SCOPE
    ///  │{ argument x: &str }
    ///  │
    ///  │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
    ///  │ │                         // in practice because I'm lazy.
    ///  │ │
    ///  │ │← x.source_info.scope
    ///  │ │← `x.parse().unwrap()`
    ///  │ │
    ///  │ │ │← y.source_info.scope
    ///  │ │
    ///  │ │ │{ let y: u32 }
    ///  │ │ │
    ///  │ │ │← y.var_debug_info.source_info.scope
    ///  │ │ │← `y + 2`
    ///  │
    ///  │ │{ let x: u32 }
    ///  │ │← x.var_debug_info.source_info.scope
    ///  │ │← `drop(x)` // This accesses `x: u32`.
    /// ```
    pub source_info: SourceInfo,
}

// `LocalDecl` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(LocalDecl<'_>, 56);

/// Extra information about a some locals that's used for diagnostics and for
/// classifying variables into local variables, statics, etc, which is needed e.g.
/// for unsafety checking.
///
/// Not used for non-StaticRef temporaries, the return place, or anonymous
/// function parameters.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
pub enum LocalInfo<'tcx> {
    /// A user-defined local variable or function parameter
    ///
    /// The `BindingForm` is solely used for local diagnostics when generating
    /// warnings/errors when compiling the current crate, and therefore it need
    /// not be visible across crates.
    User(ClearCrossCrate<BindingForm<'tcx>>),
    /// A temporary created that references the static with the given `DefId`.
    StaticRef { def_id: DefId, is_thread_local: bool },
    /// A temporary created that references the const with the given `DefId`
    ConstRef { def_id: DefId },
    /// A temporary created during the creation of an aggregate
    /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
    AggregateTemp,
    /// A temporary created during the pass `Derefer` to avoid it's retagging
    DerefTemp,
}

impl<'tcx> LocalDecl<'tcx> {
    /// Returns `true` only if local is a binding that can itself be
    /// made mutable via the addition of the `mut` keyword, namely
    /// something like the occurrences of `x` in:
    /// - `fn foo(x: Type) { ... }`,
    /// - `let x = ...`,
    /// - or `match ... { C(x) => ... }`
    pub fn can_be_made_mutable(&self) -> bool {
        matches!(
            self.local_info,
            Some(box LocalInfo::User(ClearCrossCrate::Set(
                BindingForm::Var(VarBindingForm {
                    binding_mode: ty::BindingMode::BindByValue(_),
                    opt_ty_info: _,
                    opt_match_place: _,
                    pat_span: _,
                }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
            )))
        )
    }

    /// Returns `true` if local is definitely not a `ref ident` or
    /// `ref mut ident` binding. (Such bindings cannot be made into
    /// mutable bindings, but the inverse does not necessarily hold).
    pub fn is_nonref_binding(&self) -> bool {
        matches!(
            self.local_info,
            Some(box LocalInfo::User(ClearCrossCrate::Set(
                BindingForm::Var(VarBindingForm {
                    binding_mode: ty::BindingMode::BindByValue(_),
                    opt_ty_info: _,
                    opt_match_place: _,
                    pat_span: _,
                }) | BindingForm::ImplicitSelf(_),
            )))
        )
    }

    /// Returns `true` if this variable is a named variable or function
    /// parameter declared by the user.
    #[inline]
    pub fn is_user_variable(&self) -> bool {
        matches!(self.local_info, Some(box LocalInfo::User(_)))
    }

    /// Returns `true` if this is a reference to a variable bound in a `match`
    /// expression that is used to access said variable for the guard of the
    /// match arm.
    pub fn is_ref_for_guard(&self) -> bool {
        matches!(
            self.local_info,
            Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::RefForGuard)))
        )
    }

    /// Returns `Some` if this is a reference to a static item that is used to
    /// access that static.
    pub fn is_ref_to_static(&self) -> bool {
        matches!(self.local_info, Some(box LocalInfo::StaticRef { .. }))
    }

    /// Returns `Some` if this is a reference to a thread-local static item that is used to
    /// access that static.
    pub fn is_ref_to_thread_local(&self) -> bool {
        match self.local_info {
            Some(box LocalInfo::StaticRef { is_thread_local, .. }) => is_thread_local,
            _ => false,
        }
    }

    /// Returns `true` is the local is from a compiler desugaring, e.g.,
    /// `__next` from a `for` loop.
    #[inline]
    pub fn from_compiler_desugaring(&self) -> bool {
        self.source_info.span.desugaring_kind().is_some()
    }

    /// Creates a new `LocalDecl` for a temporary: mutable, non-internal.
    #[inline]
    pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
        Self::with_source_info(ty, SourceInfo::outermost(span))
    }

    /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
    #[inline]
    pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
        LocalDecl {
            mutability: Mutability::Mut,
            local_info: None,
            internal: false,
            is_block_tail: None,
            ty,
            user_ty: None,
            source_info,
        }
    }

    /// Converts `self` into same `LocalDecl` except tagged as internal.
    #[inline]
    pub fn internal(mut self) -> Self {
        self.internal = true;
        self
    }

    /// Converts `self` into same `LocalDecl` except tagged as immutable.
    #[inline]
    pub fn immutable(mut self) -> Self {
        self.mutability = Mutability::Not;
        self
    }

    /// Converts `self` into same `LocalDecl` except tagged as internal temporary.
    #[inline]
    pub fn block_tail(mut self, info: BlockTailInfo) -> Self {
        assert!(self.is_block_tail.is_none());
        self.is_block_tail = Some(info);
        self
    }
}

#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
pub enum VarDebugInfoContents<'tcx> {
    /// NOTE(eddyb) There's an unenforced invariant that this `Place` is
    /// based on a `Local`, not a `Static`, and contains no indexing.
    Place(Place<'tcx>),
    Const(Constant<'tcx>),
}

impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        match self {
            VarDebugInfoContents::Const(c) => write!(fmt, "{}", c),
            VarDebugInfoContents::Place(p) => write!(fmt, "{:?}", p),
        }
    }
}

/// Debug information pertaining to a user variable.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
pub struct VarDebugInfo<'tcx> {
    pub name: Symbol,

    /// Source info of the user variable, including the scope
    /// within which the variable is visible (to debuginfo)
    /// (see `LocalDecl`'s `source_info` field for more details).
    pub source_info: SourceInfo,

    /// Where the data for this user variable is to be found.
    pub value: VarDebugInfoContents<'tcx>,
}

///////////////////////////////////////////////////////////////////////////
// BasicBlock

rustc_index::newtype_index! {
    /// A node in the MIR [control-flow graph][CFG].
    ///
    /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
    /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
    /// as an edge in a graph between basic blocks.
    ///
    /// Basic blocks consist of a series of [statements][Statement], ending with a
    /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
    /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
    /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
    /// needed because some analyses require that there are no critical edges in the CFG.
    ///
    /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
    /// the actual data that a basic block holds is in [`BasicBlockData`].
    ///
    /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
    ///
    /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
    /// [data-flow analyses]:
    ///     https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
    /// [`CriticalCallEdges`]: ../../rustc_const_eval/transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
    /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
    pub struct BasicBlock {
        derive [HashStable]
        DEBUG_FORMAT = "bb{}",
        const START_BLOCK = 0,
    }
}

impl BasicBlock {
    pub fn start_location(self) -> Location {
        Location { block: self, statement_index: 0 }
    }
}

///////////////////////////////////////////////////////////////////////////
// BasicBlockData

/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
pub struct BasicBlockData<'tcx> {
    /// List of statements in this block.
    pub statements: Vec<Statement<'tcx>>,

    /// Terminator for this block.
    ///
    /// N.B., this should generally ONLY be `None` during construction.
    /// Therefore, you should generally access it via the
    /// `terminator()` or `terminator_mut()` methods. The only
    /// exception is that certain passes, such as `simplify_cfg`, swap
    /// out the terminator temporarily with `None` while they continue
    /// to recurse over the set of basic blocks.
    pub terminator: Option<Terminator<'tcx>>,

    /// If true, this block lies on an unwind path. This is used
    /// during codegen where distinct kinds of basic blocks may be
    /// generated (particularly for MSVC cleanup). Unwind blocks must
    /// only branch to other unwind blocks.
    pub is_cleanup: bool,
}

impl<'tcx> BasicBlockData<'tcx> {
    pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> {
        BasicBlockData { statements: vec![], terminator, is_cleanup: false }
    }

    /// Accessor for terminator.
    ///
    /// Terminator may not be None after construction of the basic block is complete. This accessor
    /// provides a convenience way to reach the terminator.
    #[inline]
    pub fn terminator(&self) -> &Terminator<'tcx> {
        self.terminator.as_ref().expect("invalid terminator state")
    }

    #[inline]
    pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
        self.terminator.as_mut().expect("invalid terminator state")
    }

    pub fn retain_statements<F>(&mut self, mut f: F)
    where
        F: FnMut(&mut Statement<'_>) -> bool,
    {
        for s in &mut self.statements {
            if !f(s) {
                s.make_nop();
            }
        }
    }

    pub fn expand_statements<F, I>(&mut self, mut f: F)
    where
        F: FnMut(&mut Statement<'tcx>) -> Option<I>,
        I: iter::TrustedLen<Item = Statement<'tcx>>,
    {
        // Gather all the iterators we'll need to splice in, and their positions.
        let mut splices: Vec<(usize, I)> = vec![];
        let mut extra_stmts = 0;
        for (i, s) in self.statements.iter_mut().enumerate() {
            if let Some(mut new_stmts) = f(s) {
                if let Some(first) = new_stmts.next() {
                    // We can already store the first new statement.
                    *s = first;

                    // Save the other statements for optimized splicing.
                    let remaining = new_stmts.size_hint().0;
                    if remaining > 0 {
                        splices.push((i + 1 + extra_stmts, new_stmts));
                        extra_stmts += remaining;
                    }
                } else {
                    s.make_nop();
                }
            }
        }

        // Splice in the new statements, from the end of the block.
        // FIXME(eddyb) This could be more efficient with a "gap buffer"
        // where a range of elements ("gap") is left uninitialized, with
        // splicing adding new elements to the end of that gap and moving
        // existing elements from before the gap to the end of the gap.
        // For now, this is safe code, emulating a gap but initializing it.
        let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
        self.statements.resize(
            gap.end,
            Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop },
        );
        for (splice_start, new_stmts) in splices.into_iter().rev() {
            let splice_end = splice_start + new_stmts.size_hint().0;
            while gap.end > splice_end {
                gap.start -= 1;
                gap.end -= 1;
                self.statements.swap(gap.start, gap.end);
            }
            self.statements.splice(splice_start..splice_end, new_stmts);
            gap.end = splice_start;
        }
    }

    pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
        if index < self.statements.len() { &self.statements[index] } else { &self.terminator }
    }
}

impl<O> AssertKind<O> {
    /// Getting a description does not require `O` to be printable, and does not
    /// require allocation.
    /// The caller is expected to handle `BoundsCheck` separately.
    pub fn description(&self) -> &'static str {
        use AssertKind::*;
        match self {
            Overflow(BinOp::Add, _, _) => "attempt to add with overflow",
            Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow",
            Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow",
            Overflow(BinOp::Div, _, _) => "attempt to divide with overflow",
            Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow",
            OverflowNeg(_) => "attempt to negate with overflow",
            Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow",
            Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow",
            Overflow(op, _, _) => bug!("{:?} cannot overflow", op),
            DivisionByZero(_) => "attempt to divide by zero",
            RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero",
            ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion",
            ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion",
            ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking",
            ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking",
            BoundsCheck { .. } => bug!("Unexpected AssertKind"),
        }
    }

    /// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing.
    pub fn fmt_assert_args<W: Write>(&self, f: &mut W) -> fmt::Result
    where
        O: Debug,
    {
        use AssertKind::*;
        match self {
            BoundsCheck { ref len, ref index } => write!(
                f,
                "\"index out of bounds: the length is {{}} but the index is {{}}\", {:?}, {:?}",
                len, index
            ),

            OverflowNeg(op) => {
                write!(f, "\"attempt to negate `{{}}`, which would overflow\", {:?}", op)
            }
            DivisionByZero(op) => write!(f, "\"attempt to divide `{{}}` by zero\", {:?}", op),
            RemainderByZero(op) => write!(
                f,
                "\"attempt to calculate the remainder of `{{}}` with a divisor of zero\", {:?}",
                op
            ),
            Overflow(BinOp::Add, l, r) => write!(
                f,
                "\"attempt to compute `{{}} + {{}}`, which would overflow\", {:?}, {:?}",
                l, r
            ),
            Overflow(BinOp::Sub, l, r) => write!(
                f,
                "\"attempt to compute `{{}} - {{}}`, which would overflow\", {:?}, {:?}",
                l, r
            ),
            Overflow(BinOp::Mul, l, r) => write!(
                f,
                "\"attempt to compute `{{}} * {{}}`, which would overflow\", {:?}, {:?}",
                l, r
            ),
            Overflow(BinOp::Div, l, r) => write!(
                f,
                "\"attempt to compute `{{}} / {{}}`, which would overflow\", {:?}, {:?}",
                l, r
            ),
            Overflow(BinOp::Rem, l, r) => write!(
                f,
                "\"attempt to compute the remainder of `{{}} % {{}}`, which would overflow\", {:?}, {:?}",
                l, r
            ),
            Overflow(BinOp::Shr, _, r) => {
                write!(f, "\"attempt to shift right by `{{}}`, which would overflow\", {:?}", r)
            }
            Overflow(BinOp::Shl, _, r) => {
                write!(f, "\"attempt to shift left by `{{}}`, which would overflow\", {:?}", r)
            }
            _ => write!(f, "\"{}\"", self.description()),
        }
    }
}

impl<O: fmt::Debug> fmt::Debug for AssertKind<O> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use AssertKind::*;
        match self {
            BoundsCheck { ref len, ref index } => write!(
                f,
                "index out of bounds: the length is {:?} but the index is {:?}",
                len, index
            ),
            OverflowNeg(op) => write!(f, "attempt to negate `{:#?}`, which would overflow", op),
            DivisionByZero(op) => write!(f, "attempt to divide `{:#?}` by zero", op),
            RemainderByZero(op) => write!(
                f,
                "attempt to calculate the remainder of `{:#?}` with a divisor of zero",
                op
            ),
            Overflow(BinOp::Add, l, r) => {
                write!(f, "attempt to compute `{:#?} + {:#?}`, which would overflow", l, r)
            }
            Overflow(BinOp::Sub, l, r) => {
                write!(f, "attempt to compute `{:#?} - {:#?}`, which would overflow", l, r)
            }
            Overflow(BinOp::Mul, l, r) => {
                write!(f, "attempt to compute `{:#?} * {:#?}`, which would overflow", l, r)
            }
            Overflow(BinOp::Div, l, r) => {
                write!(f, "attempt to compute `{:#?} / {:#?}`, which would overflow", l, r)
            }
            Overflow(BinOp::Rem, l, r) => write!(
                f,
                "attempt to compute the remainder of `{:#?} % {:#?}`, which would overflow",
                l, r
            ),
            Overflow(BinOp::Shr, _, r) => {
                write!(f, "attempt to shift right by `{:#?}`, which would overflow", r)
            }
            Overflow(BinOp::Shl, _, r) => {
                write!(f, "attempt to shift left by `{:#?}`, which would overflow", r)
            }
            _ => write!(f, "{}", self.description()),
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Statements

#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
pub struct Statement<'tcx> {
    pub source_info: SourceInfo,
    pub kind: StatementKind<'tcx>,
}

// `Statement` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(Statement<'_>, 32);

impl Statement<'_> {
    /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
    /// invalidating statement indices in `Location`s.
    pub fn make_nop(&mut self) {
        self.kind = StatementKind::Nop
    }

    /// Changes a statement to a nop and returns the original statement.
    #[must_use = "If you don't need the statement, use `make_nop` instead"]
    pub fn replace_nop(&mut self) -> Self {
        Statement {
            source_info: self.source_info,
            kind: mem::replace(&mut self.kind, StatementKind::Nop),
        }
    }
}

impl Debug for Statement<'_> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        use self::StatementKind::*;
        match self.kind {
            Assign(box (ref place, ref rv)) => write!(fmt, "{:?} = {:?}", place, rv),
            FakeRead(box (ref cause, ref place)) => {
                write!(fmt, "FakeRead({:?}, {:?})", cause, place)
            }
            Retag(ref kind, ref place) => write!(
                fmt,
                "Retag({}{:?})",
                match kind {
                    RetagKind::FnEntry => "[fn entry] ",
                    RetagKind::TwoPhase => "[2phase] ",
                    RetagKind::Raw => "[raw] ",
                    RetagKind::Default => "",
                },
                place,
            ),
            StorageLive(ref place) => write!(fmt, "StorageLive({:?})", place),
            StorageDead(ref place) => write!(fmt, "StorageDead({:?})", place),
            SetDiscriminant { ref place, variant_index } => {
                write!(fmt, "discriminant({:?}) = {:?}", place, variant_index)
            }
            Deinit(ref place) => write!(fmt, "Deinit({:?})", place),
            AscribeUserType(box (ref place, ref c_ty), ref variance) => {
                write!(fmt, "AscribeUserType({:?}, {:?}, {:?})", place, variance, c_ty)
            }
            Coverage(box self::Coverage { ref kind, code_region: Some(ref rgn) }) => {
                write!(fmt, "Coverage::{:?} for {:?}", kind, rgn)
            }
            Coverage(box ref coverage) => write!(fmt, "Coverage::{:?}", coverage.kind),
            CopyNonOverlapping(box crate::mir::CopyNonOverlapping {
                ref src,
                ref dst,
                ref count,
            }) => {
                write!(fmt, "copy_nonoverlapping(src={:?}, dst={:?}, count={:?})", src, dst, count)
            }
            Nop => write!(fmt, "nop"),
        }
    }
}

impl<'tcx> StatementKind<'tcx> {
    pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> {
        match self {
            StatementKind::Assign(x) => Some(x),
            _ => None,
        }
    }

    pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> {
        match self {
            StatementKind::Assign(x) => Some(x),
            _ => None,
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Places

impl<V, T> ProjectionElem<V, T> {
    /// Returns `true` if the target of this projection may refer to a different region of memory
    /// than the base.
    fn is_indirect(&self) -> bool {
        match self {
            Self::Deref => true,

            Self::Field(_, _)
            | Self::Index(_)
            | Self::ConstantIndex { .. }
            | Self::Subslice { .. }
            | Self::Downcast(_, _) => false,
        }
    }

    /// Returns `true` if this is a `Downcast` projection with the given `VariantIdx`.
    pub fn is_downcast_to(&self, v: VariantIdx) -> bool {
        matches!(*self, Self::Downcast(_, x) if x == v)
    }

    /// Returns `true` if this is a `Field` projection with the given index.
    pub fn is_field_to(&self, f: Field) -> bool {
        matches!(*self, Self::Field(x, _) if x == f)
    }
}

/// Alias for projections as they appear in `UserTypeProjection`, where we
/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
pub type ProjectionKind = ProjectionElem<(), ()>;

rustc_index::newtype_index! {
    /// A [newtype'd][wrapper] index type in the MIR [control-flow graph][CFG]
    ///
    /// A field (e.g., `f` in `_1.f`) is one variant of [`ProjectionElem`]. Conceptually,
    /// rustc can identify that a field projection refers to either two different regions of memory
    /// or the same one between the base and the 'projection element'.
    /// Read more about projections in the [rustc-dev-guide][mir-datatypes]
    ///
    /// [wrapper]: https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
    /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
    /// [mir-datatypes]: https://rustc-dev-guide.rust-lang.org/mir/index.html#mir-data-types
    pub struct Field {
        derive [HashStable]
        DEBUG_FORMAT = "field[{}]"
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct PlaceRef<'tcx> {
    pub local: Local,
    pub projection: &'tcx [PlaceElem<'tcx>],
}

// Once we stop implementing `Ord` for `DefId`,
// this impl will be unnecessary. Until then, we'll
// leave this impl in place to prevent re-adding a
// dependnecy on the `Ord` impl for `DefId`
impl<'tcx> !PartialOrd for PlaceRef<'tcx> {}

impl<'tcx> Place<'tcx> {
    // FIXME change this to a const fn by also making List::empty a const fn.
    pub fn return_place() -> Place<'tcx> {
        Place { local: RETURN_PLACE, projection: List::empty() }
    }

    /// Returns `true` if this `Place` contains a `Deref` projection.
    ///
    /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
    /// same region of memory as its base.
    pub fn is_indirect(&self) -> bool {
        self.projection.iter().any(|elem| elem.is_indirect())
    }

    /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
    /// a single deref of a local.
    #[inline(always)]
    pub fn local_or_deref_local(&self) -> Option<Local> {
        self.as_ref().local_or_deref_local()
    }

    /// If this place represents a local variable like `_X` with no
    /// projections, return `Some(_X)`.
    #[inline(always)]
    pub fn as_local(&self) -> Option<Local> {
        self.as_ref().as_local()
    }

    #[inline]
    pub fn as_ref(&self) -> PlaceRef<'tcx> {
        PlaceRef { local: self.local, projection: &self.projection }
    }

    /// Iterate over the projections in evaluation order, i.e., the first element is the base with
    /// its projection and then subsequently more projections are added.
    /// As a concrete example, given the place a.b.c, this would yield:
    /// - (a, .b)
    /// - (a.b, .c)
    ///
    /// Given a place without projections, the iterator is empty.
    #[inline]
    pub fn iter_projections(
        self,
    ) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
        self.as_ref().iter_projections()
    }

    /// Generates a new place by appending `more_projections` to the existing ones
    /// and interning the result.
    pub fn project_deeper(self, more_projections: &[PlaceElem<'tcx>], tcx: TyCtxt<'tcx>) -> Self {
        if more_projections.is_empty() {
            return self;
        }

        let mut v: Vec<PlaceElem<'tcx>>;

        let new_projections = if self.projection.is_empty() {
            more_projections
        } else {
            v = Vec::with_capacity(self.projection.len() + more_projections.len());
            v.extend(self.projection);
            v.extend(more_projections);
            &v
        };

        Place { local: self.local, projection: tcx.intern_place_elems(new_projections) }
    }
}

impl From<Local> for Place<'_> {
    fn from(local: Local) -> Self {
        Place { local, projection: List::empty() }
    }
}

impl<'tcx> PlaceRef<'tcx> {
    /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
    /// a single deref of a local.
    pub fn local_or_deref_local(&self) -> Option<Local> {
        match *self {
            PlaceRef { local, projection: [] }
            | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
            _ => None,
        }
    }

    /// If this place represents a local variable like `_X` with no
    /// projections, return `Some(_X)`.
    #[inline]
    pub fn as_local(&self) -> Option<Local> {
        match *self {
            PlaceRef { local, projection: [] } => Some(local),
            _ => None,
        }
    }

    #[inline]
    pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> {
        if let &[ref proj_base @ .., elem] = self.projection {
            Some((PlaceRef { local: self.local, projection: proj_base }, elem))
        } else {
            None
        }
    }

    /// Iterate over the projections in evaluation order, i.e., the first element is the base with
    /// its projection and then subsequently more projections are added.
    /// As a concrete example, given the place a.b.c, this would yield:
    /// - (a, .b)
    /// - (a.b, .c)
    ///
    /// Given a place without projections, the iterator is empty.
    #[inline]
    pub fn iter_projections(
        self,
    ) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
        self.projection.iter().enumerate().map(move |(i, proj)| {
            let base = PlaceRef { local: self.local, projection: &self.projection[..i] };
            (base, *proj)
        })
    }
}

impl Debug for Place<'_> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        for elem in self.projection.iter().rev() {
            match elem {
                ProjectionElem::Downcast(_, _) | ProjectionElem::Field(_, _) => {
                    write!(fmt, "(").unwrap();
                }
                ProjectionElem::Deref => {
                    write!(fmt, "(*").unwrap();
                }
                ProjectionElem::Index(_)
                | ProjectionElem::ConstantIndex { .. }
                | ProjectionElem::Subslice { .. } => {}
            }
        }

        write!(fmt, "{:?}", self.local)?;

        for elem in self.projection.iter() {
            match elem {
                ProjectionElem::Downcast(Some(name), _index) => {
                    write!(fmt, " as {})", name)?;
                }
                ProjectionElem::Downcast(None, index) => {
                    write!(fmt, " as variant#{:?})", index)?;
                }
                ProjectionElem::Deref => {
                    write!(fmt, ")")?;
                }
                ProjectionElem::Field(field, ty) => {
                    write!(fmt, ".{:?}: {:?})", field.index(), ty)?;
                }
                ProjectionElem::Index(ref index) => {
                    write!(fmt, "[{:?}]", index)?;
                }
                ProjectionElem::ConstantIndex { offset, min_length, from_end: false } => {
                    write!(fmt, "[{:?} of {:?}]", offset, min_length)?;
                }
                ProjectionElem::ConstantIndex { offset, min_length, from_end: true } => {
                    write!(fmt, "[-{:?} of {:?}]", offset, min_length)?;
                }
                ProjectionElem::Subslice { from, to, from_end: true } if to == 0 => {
                    write!(fmt, "[{:?}:]", from)?;
                }
                ProjectionElem::Subslice { from, to, from_end: true } if from == 0 => {
                    write!(fmt, "[:-{:?}]", to)?;
                }
                ProjectionElem::Subslice { from, to, from_end: true } => {
                    write!(fmt, "[{:?}:-{:?}]", from, to)?;
                }
                ProjectionElem::Subslice { from, to, from_end: false } => {
                    write!(fmt, "[{:?}..{:?}]", from, to)?;
                }
            }
        }

        Ok(())
    }
}

///////////////////////////////////////////////////////////////////////////
// Scopes

rustc_index::newtype_index! {
    pub struct SourceScope {
        derive [HashStable]
        DEBUG_FORMAT = "scope[{}]",
        const OUTERMOST_SOURCE_SCOPE = 0,
    }
}

impl SourceScope {
    /// Finds the original HirId this MIR item came from.
    /// This is necessary after MIR optimizations, as otherwise we get a HirId
    /// from the function that was inlined instead of the function call site.
    pub fn lint_root<'tcx>(
        self,
        source_scopes: &IndexVec<SourceScope, SourceScopeData<'tcx>>,
    ) -> Option<HirId> {
        let mut data = &source_scopes[self];
        // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
        // does not work as I thought it would. Needs more investigation and documentation.
        while data.inlined.is_some() {
            trace!(?data);
            data = &source_scopes[data.parent_scope.unwrap()];
        }
        trace!(?data);
        match &data.local_data {
            ClearCrossCrate::Set(data) => Some(data.lint_root),
            ClearCrossCrate::Clear => None,
        }
    }
}

#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
pub struct SourceScopeData<'tcx> {
    pub span: Span,
    pub parent_scope: Option<SourceScope>,

    /// Whether this scope is the root of a scope tree of another body,
    /// inlined into this body by the MIR inliner.
    /// `ty::Instance` is the callee, and the `Span` is the call site.
    pub inlined: Option<(ty::Instance<'tcx>, Span)>,

    /// Nearest (transitive) parent scope (if any) which is inlined.
    /// This is an optimization over walking up `parent_scope`
    /// until a scope with `inlined: Some(...)` is found.
    pub inlined_parent_scope: Option<SourceScope>,

    /// Crate-local information for this source scope, that can't (and
    /// needn't) be tracked across crates.
    pub local_data: ClearCrossCrate<SourceScopeLocalData>,
}

#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct SourceScopeLocalData {
    /// An `HirId` with lint levels equivalent to this scope's lint levels.
    pub lint_root: hir::HirId,
    /// The unsafe block that contains this node.
    pub safety: Safety,
}

///////////////////////////////////////////////////////////////////////////
// Operands

impl<'tcx> Debug for Operand<'tcx> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        use self::Operand::*;
        match *self {
            Constant(ref a) => write!(fmt, "{:?}", a),
            Copy(ref place) => write!(fmt, "{:?}", place),
            Move(ref place) => write!(fmt, "move {:?}", place),
        }
    }
}

impl<'tcx> Operand<'tcx> {
    /// Convenience helper to make a constant that refers to the fn
    /// with given `DefId` and substs. Since this is used to synthesize
    /// MIR, assumes `user_ty` is None.
    pub fn function_handle(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        substs: SubstsRef<'tcx>,
        span: Span,
    ) -> Self {
        let ty = tcx.bound_type_of(def_id).subst(tcx, substs);
        Operand::Constant(Box::new(Constant {
            span,
            user_ty: None,
            literal: ConstantKind::Val(ConstValue::zst(), ty),
        }))
    }

    pub fn is_move(&self) -> bool {
        matches!(self, Operand::Move(..))
    }

    /// Convenience helper to make a literal-like constant from a given scalar value.
    /// Since this is used to synthesize MIR, assumes `user_ty` is None.
    pub fn const_from_scalar(
        tcx: TyCtxt<'tcx>,
        ty: Ty<'tcx>,
        val: Scalar,
        span: Span,
    ) -> Operand<'tcx> {
        debug_assert!({
            let param_env_and_ty = ty::ParamEnv::empty().and(ty);
            let type_size = tcx
                .layout_of(param_env_and_ty)
                .unwrap_or_else(|e| panic!("could not compute layout for {:?}: {:?}", ty, e))
                .size;
            let scalar_size = match val {
                Scalar::Int(int) => int.size(),
                _ => panic!("Invalid scalar type {:?}", val),
            };
            scalar_size == type_size
        });
        Operand::Constant(Box::new(Constant {
            span,
            user_ty: None,
            literal: ConstantKind::Val(ConstValue::Scalar(val), ty),
        }))
    }

    pub fn to_copy(&self) -> Self {
        match *self {
            Operand::Copy(_) | Operand::Constant(_) => self.clone(),
            Operand::Move(place) => Operand::Copy(place),
        }
    }

    /// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
    /// constant.
    pub fn place(&self) -> Option<Place<'tcx>> {
        match self {
            Operand::Copy(place) | Operand::Move(place) => Some(*place),
            Operand::Constant(_) => None,
        }
    }

    /// Returns the `Constant` that is the target of this `Operand`, or `None` if this `Operand` is a
    /// place.
    pub fn constant(&self) -> Option<&Constant<'tcx>> {
        match self {
            Operand::Constant(x) => Some(&**x),
            Operand::Copy(_) | Operand::Move(_) => None,
        }
    }

    /// Gets the `ty::FnDef` from an operand if it's a constant function item.
    ///
    /// While this is unlikely in general, it's the normal case of what you'll
    /// find as the `func` in a [`TerminatorKind::Call`].
    pub fn const_fn_def(&self) -> Option<(DefId, SubstsRef<'tcx>)> {
        let const_ty = self.constant()?.literal.ty();
        if let ty::FnDef(def_id, substs) = *const_ty.kind() { Some((def_id, substs)) } else { None }
    }
}

///////////////////////////////////////////////////////////////////////////
/// Rvalues

impl<'tcx> Rvalue<'tcx> {
    /// Returns true if rvalue can be safely removed when the result is unused.
    #[inline]
    pub fn is_safe_to_remove(&self) -> bool {
        match self {
            // Pointer to int casts may be side-effects due to exposing the provenance.
            // While the model is undecided, we should be conservative. See
            // <https://www.ralfj.de/blog/2022/04/11/provenance-exposed.html>
            Rvalue::Cast(CastKind::PointerExposeAddress, _, _) => false,

            Rvalue::Use(_)
            | Rvalue::Repeat(_, _)
            | Rvalue::Ref(_, _, _)
            | Rvalue::ThreadLocalRef(_)
            | Rvalue::AddressOf(_, _)
            | Rvalue::Len(_)
            | Rvalue::Cast(
                CastKind::Misc | CastKind::Pointer(_) | CastKind::PointerFromExposedAddress,
                _,
                _,
            )
            | Rvalue::BinaryOp(_, _)
            | Rvalue::CheckedBinaryOp(_, _)
            | Rvalue::NullaryOp(_, _)
            | Rvalue::UnaryOp(_, _)
            | Rvalue::Discriminant(_)
            | Rvalue::Aggregate(_, _)
            | Rvalue::ShallowInitBox(_, _) => true,
        }
    }
}

impl BorrowKind {
    pub fn allows_two_phase_borrow(&self) -> bool {
        match *self {
            BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => false,
            BorrowKind::Mut { allow_two_phase_borrow } => allow_two_phase_borrow,
        }
    }

    pub fn describe_mutability(&self) -> String {
        match *self {
            BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => {
                "immutable".to_string()
            }
            BorrowKind::Mut { .. } => "mutable".to_string(),
        }
    }
}

impl BinOp {
    pub fn is_checkable(self) -> bool {
        use self::BinOp::*;
        matches!(self, Add | Sub | Mul | Shl | Shr)
    }
}

impl<'tcx> Debug for Rvalue<'tcx> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        use self::Rvalue::*;

        match *self {
            Use(ref place) => write!(fmt, "{:?}", place),
            Repeat(ref a, b) => {
                write!(fmt, "[{:?}; ", a)?;
                pretty_print_const(b, fmt, false)?;
                write!(fmt, "]")
            }
            Len(ref a) => write!(fmt, "Len({:?})", a),
            Cast(ref kind, ref place, ref ty) => {
                write!(fmt, "{:?} as {:?} ({:?})", place, ty, kind)
            }
            BinaryOp(ref op, box (ref a, ref b)) => write!(fmt, "{:?}({:?}, {:?})", op, a, b),
            CheckedBinaryOp(ref op, box (ref a, ref b)) => {
                write!(fmt, "Checked{:?}({:?}, {:?})", op, a, b)
            }
            UnaryOp(ref op, ref a) => write!(fmt, "{:?}({:?})", op, a),
            Discriminant(ref place) => write!(fmt, "discriminant({:?})", place),
            NullaryOp(ref op, ref t) => write!(fmt, "{:?}({:?})", op, t),
            ThreadLocalRef(did) => ty::tls::with(|tcx| {
                let muta = tcx.static_mutability(did).unwrap().prefix_str();
                write!(fmt, "&/*tls*/ {}{}", muta, tcx.def_path_str(did))
            }),
            Ref(region, borrow_kind, ref place) => {
                let kind_str = match borrow_kind {
                    BorrowKind::Shared => "",
                    BorrowKind::Shallow => "shallow ",
                    BorrowKind::Mut { .. } | BorrowKind::Unique => "mut ",
                };

                // When printing regions, add trailing space if necessary.
                let print_region = ty::tls::with(|tcx| {
                    tcx.sess.verbose() || tcx.sess.opts.debugging_opts.identify_regions
                });
                let region = if print_region {
                    let mut region = region.to_string();
                    if !region.is_empty() {
                        region.push(' ');
                    }
                    region
                } else {
                    // Do not even print 'static
                    String::new()
                };
                write!(fmt, "&{}{}{:?}", region, kind_str, place)
            }

            AddressOf(mutability, ref place) => {
                let kind_str = match mutability {
                    Mutability::Mut => "mut",
                    Mutability::Not => "const",
                };

                write!(fmt, "&raw {} {:?}", kind_str, place)
            }

            Aggregate(ref kind, ref places) => {
                let fmt_tuple = |fmt: &mut Formatter<'_>, name: &str| {
                    let mut tuple_fmt = fmt.debug_tuple(name);
                    for place in places {
                        tuple_fmt.field(place);
                    }
                    tuple_fmt.finish()
                };

                match **kind {
                    AggregateKind::Array(_) => write!(fmt, "{:?}", places),

                    AggregateKind::Tuple => {
                        if places.is_empty() {
                            write!(fmt, "()")
                        } else {
                            fmt_tuple(fmt, "")
                        }
                    }

                    AggregateKind::Adt(adt_did, variant, substs, _user_ty, _) => {
                        ty::tls::with(|tcx| {
                            let variant_def = &tcx.adt_def(adt_did).variant(variant);
                            let substs = tcx.lift(substs).expect("could not lift for printing");
                            let name = FmtPrinter::new(tcx, Namespace::ValueNS)
                                .print_def_path(variant_def.def_id, substs)?
                                .into_buffer();

                            match variant_def.ctor_kind {
                                CtorKind::Const => fmt.write_str(&name),
                                CtorKind::Fn => fmt_tuple(fmt, &name),
                                CtorKind::Fictive => {
                                    let mut struct_fmt = fmt.debug_struct(&name);
                                    for (field, place) in iter::zip(&variant_def.fields, places) {
                                        struct_fmt.field(field.name.as_str(), place);
                                    }
                                    struct_fmt.finish()
                                }
                            }
                        })
                    }

                    AggregateKind::Closure(def_id, substs) => ty::tls::with(|tcx| {
                        if let Some(def_id) = def_id.as_local() {
                            let name = if tcx.sess.opts.debugging_opts.span_free_formats {
                                let substs = tcx.lift(substs).unwrap();
                                format!(
                                    "[closure@{}]",
                                    tcx.def_path_str_with_substs(def_id.to_def_id(), substs),
                                )
                            } else {
                                let span = tcx.def_span(def_id);
                                format!(
                                    "[closure@{}]",
                                    tcx.sess.source_map().span_to_diagnostic_string(span)
                                )
                            };
                            let mut struct_fmt = fmt.debug_struct(&name);

                            // FIXME(project-rfc-2229#48): This should be a list of capture names/places
                            if let Some(upvars) = tcx.upvars_mentioned(def_id) {
                                for (&var_id, place) in iter::zip(upvars.keys(), places) {
                                    let var_name = tcx.hir().name(var_id);
                                    struct_fmt.field(var_name.as_str(), place);
                                }
                            }

                            struct_fmt.finish()
                        } else {
                            write!(fmt, "[closure]")
                        }
                    }),

                    AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| {
                        if let Some(def_id) = def_id.as_local() {
                            let name = format!("[generator@{:?}]", tcx.def_span(def_id));
                            let mut struct_fmt = fmt.debug_struct(&name);

                            // FIXME(project-rfc-2229#48): This should be a list of capture names/places
                            if let Some(upvars) = tcx.upvars_mentioned(def_id) {
                                for (&var_id, place) in iter::zip(upvars.keys(), places) {
                                    let var_name = tcx.hir().name(var_id);
                                    struct_fmt.field(var_name.as_str(), place);
                                }
                            }

                            struct_fmt.finish()
                        } else {
                            write!(fmt, "[generator]")
                        }
                    }),
                }
            }

            ShallowInitBox(ref place, ref ty) => {
                write!(fmt, "ShallowInitBox({:?}, {:?})", place, ty)
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////
/// Constants
///
/// Two constants are equal if they are the same constant. Note that
/// this does not necessarily mean that they are `==` in Rust. In
/// particular, one must be wary of `NaN`!

#[derive(Clone, Copy, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
pub struct Constant<'tcx> {
    pub span: Span,

    /// Optional user-given type: for something like
    /// `collect::<Vec<_>>`, this would be present and would
    /// indicate that `Vec<_>` was explicitly specified.
    ///
    /// Needed for NLL to impose user-given type constraints.
    pub user_ty: Option<UserTypeAnnotationIndex>,

    pub literal: ConstantKind<'tcx>,
}

#[derive(Clone, Copy, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable, Debug)]
#[derive(Lift)]
pub enum ConstantKind<'tcx> {
    /// This constant came from the type system
    Ty(ty::Const<'tcx>),
    /// This constant cannot go back into the type system, as it represents
    /// something the type system cannot handle (e.g. pointers).
    Val(interpret::ConstValue<'tcx>, Ty<'tcx>),
}

impl<'tcx> Constant<'tcx> {
    pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
        match self.literal.try_to_scalar() {
            Some(Scalar::Ptr(ptr, _size)) => match tcx.global_alloc(ptr.provenance) {
                GlobalAlloc::Static(def_id) => {
                    assert!(!tcx.is_thread_local_static(def_id));
                    Some(def_id)
                }
                _ => None,
            },
            _ => None,
        }
    }
    #[inline]
    pub fn ty(&self) -> Ty<'tcx> {
        self.literal.ty()
    }
}

impl<'tcx> ConstantKind<'tcx> {
    /// Returns `None` if the constant is not trivially safe for use in the type system.
    #[inline]
    pub fn const_for_ty(&self) -> Option<ty::Const<'tcx>> {
        match self {
            ConstantKind::Ty(c) => Some(*c),
            ConstantKind::Val(..) => None,
        }
    }

    #[inline(always)]
    pub fn ty(&self) -> Ty<'tcx> {
        match self {
            ConstantKind::Ty(c) => c.ty(),
            ConstantKind::Val(_, ty) => *ty,
        }
    }

    #[inline]
    pub fn try_to_value(self, tcx: TyCtxt<'tcx>) -> Option<interpret::ConstValue<'tcx>> {
        match self {
            ConstantKind::Ty(c) => match c.kind() {
                ty::ConstKind::Value(valtree) => Some(tcx.valtree_to_const_val((c.ty(), valtree))),
                _ => None,
            },
            ConstantKind::Val(val, _) => Some(val),
        }
    }

    #[inline]
    pub fn try_to_scalar(self) -> Option<Scalar> {
        match self {
            ConstantKind::Ty(c) => match c.kind() {
                ty::ConstKind::Value(valtree) => match valtree {
                    ty::ValTree::Leaf(scalar_int) => Some(Scalar::Int(scalar_int)),
                    ty::ValTree::Branch(_) => None,
                },
                _ => None,
            },
            ConstantKind::Val(val, _) => val.try_to_scalar(),
        }
    }

    #[inline]
    pub fn try_to_scalar_int(self) -> Option<ScalarInt> {
        Some(self.try_to_scalar()?.assert_int())
    }

    #[inline]
    pub fn try_to_bits(self, size: Size) -> Option<u128> {
        self.try_to_scalar_int()?.to_bits(size).ok()
    }

    #[inline]
    pub fn try_to_bool(self) -> Option<bool> {
        self.try_to_scalar_int()?.try_into().ok()
    }

    #[inline]
    pub fn eval(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Self {
        match self {
            Self::Ty(c) => {
                if let Some(val) = c.kind().try_eval_for_mir(tcx, param_env) {
                    match val {
                        Ok(val) => Self::Val(val, c.ty()),
                        Err(_) => Self::Ty(tcx.const_error(self.ty())),
                    }
                } else {
                    self
                }
            }
            Self::Val(_, _) => self,
        }
    }

    /// Panics if the value cannot be evaluated or doesn't contain a valid integer of the given type.
    #[inline]
    pub fn eval_bits(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> u128 {
        self.try_eval_bits(tcx, param_env, ty)
            .unwrap_or_else(|| bug!("expected bits of {:#?}, got {:#?}", ty, self))
    }

    #[inline]
    pub fn try_eval_bits(
        &self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        ty: Ty<'tcx>,
    ) -> Option<u128> {
        match self {
            Self::Ty(ct) => ct.try_eval_bits(tcx, param_env, ty),
            Self::Val(val, t) => {
                assert_eq!(*t, ty);
                let size =
                    tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(ty)).ok()?.size;
                val.try_to_bits(size)
            }
        }
    }

    #[inline]
    pub fn try_eval_bool(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<bool> {
        match self {
            Self::Ty(ct) => ct.try_eval_bool(tcx, param_env),
            Self::Val(val, _) => val.try_to_bool(),
        }
    }

    #[inline]
    pub fn try_eval_usize(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<u64> {
        match self {
            Self::Ty(ct) => ct.try_eval_usize(tcx, param_env),
            Self::Val(val, _) => val.try_to_machine_usize(tcx),
        }
    }

    #[inline]
    pub fn from_value(val: ConstValue<'tcx>, ty: Ty<'tcx>) -> Self {
        Self::Val(val, ty)
    }

    pub fn from_bits(
        tcx: TyCtxt<'tcx>,
        bits: u128,
        param_env_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
    ) -> Self {
        let size = tcx
            .layout_of(param_env_ty)
            .unwrap_or_else(|e| {
                bug!("could not compute layout for {:?}: {:?}", param_env_ty.value, e)
            })
            .size;
        let cv = ConstValue::Scalar(Scalar::from_uint(bits, size));

        Self::Val(cv, param_env_ty.value)
    }

    #[inline]
    pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> Self {
        let cv = ConstValue::from_bool(v);
        Self::Val(cv, tcx.types.bool)
    }

    #[inline]
    pub fn zero_sized(ty: Ty<'tcx>) -> Self {
        let cv = ConstValue::Scalar(Scalar::ZST);
        Self::Val(cv, ty)
    }

    pub fn from_usize(tcx: TyCtxt<'tcx>, n: u64) -> Self {
        let ty = tcx.types.usize;
        Self::from_bits(tcx, n as u128, ty::ParamEnv::empty().and(ty))
    }

    #[inline]
    pub fn from_scalar(_tcx: TyCtxt<'tcx>, s: Scalar, ty: Ty<'tcx>) -> Self {
        let val = ConstValue::Scalar(s);
        Self::Val(val, ty)
    }

    /// Literals are converted to `ConstantKindVal`, const generic parameters are eagerly
    /// converted to a constant, everything else becomes `Unevaluated`.
    pub fn from_anon_const(
        tcx: TyCtxt<'tcx>,
        def_id: LocalDefId,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Self {
        Self::from_opt_const_arg_anon_const(tcx, ty::WithOptConstParam::unknown(def_id), param_env)
    }

    #[instrument(skip(tcx), level = "debug")]
    pub fn from_inline_const(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> Self {
        let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
        let body_id = match tcx.hir().get(hir_id) {
            hir::Node::AnonConst(ac) => ac.body,
            _ => span_bug!(
                tcx.def_span(def_id.to_def_id()),
                "from_inline_const can only process anonymous constants"
            ),
        };
        let expr = &tcx.hir().body(body_id).value;
        let ty = tcx.typeck(def_id).node_type(hir_id);

        let lit_input = match expr.kind {
            hir::ExprKind::Lit(ref lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: false }),
            hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => match expr.kind {
                hir::ExprKind::Lit(ref lit) => {
                    Some(LitToConstInput { lit: &lit.node, ty, neg: true })
                }
                _ => None,
            },
            _ => None,
        };
        if let Some(lit_input) = lit_input {
            // If an error occurred, ignore that it's a literal and leave reporting the error up to
            // mir.
            match tcx.at(expr.span).lit_to_mir_constant(lit_input) {
                Ok(c) => return c,
                Err(_) => {}
            }
        }

        let typeck_root_def_id = tcx.typeck_root_def_id(def_id.to_def_id());
        let parent_substs =
            tcx.erase_regions(InternalSubsts::identity_for_item(tcx, typeck_root_def_id));
        let substs =
            ty::InlineConstSubsts::new(tcx, ty::InlineConstSubstsParts { parent_substs, ty })
                .substs;
        let uneval_const = tcx.mk_const(ty::ConstS {
            kind: ty::ConstKind::Unevaluated(ty::Unevaluated {
                def: ty::WithOptConstParam::unknown(def_id).to_global(),
                substs,
                promoted: None,
            }),
            ty,
        });
        debug!(?uneval_const);
        debug_assert!(!uneval_const.has_free_regions());

        Self::Ty(uneval_const)
    }

    #[instrument(skip(tcx), level = "debug")]
    fn from_opt_const_arg_anon_const(
        tcx: TyCtxt<'tcx>,
        def: ty::WithOptConstParam<LocalDefId>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Self {
        let body_id = match tcx.hir().get_by_def_id(def.did) {
            hir::Node::AnonConst(ac) => ac.body,
            _ => span_bug!(
                tcx.def_span(def.did.to_def_id()),
                "from_anon_const can only process anonymous constants"
            ),
        };

        let expr = &tcx.hir().body(body_id).value;
        debug!(?expr);

        // Unwrap a block, so that e.g. `{ P }` is recognised as a parameter. Const arguments
        // currently have to be wrapped in curly brackets, so it's necessary to special-case.
        let expr = match &expr.kind {
            hir::ExprKind::Block(block, _) if block.stmts.is_empty() && block.expr.is_some() => {
                block.expr.as_ref().unwrap()
            }
            _ => expr,
        };
        debug!("expr.kind: {:?}", expr.kind);

        let ty = tcx.type_of(def.def_id_for_type_of());
        debug!(?ty);

        // FIXME(const_generics): We currently have to special case parameters because `min_const_generics`
        // does not provide the parents generics to anonymous constants. We still allow generic const
        // parameters by themselves however, e.g. `N`.  These constants would cause an ICE if we were to
        // ever try to substitute the generic parameters in their bodies.
        //
        // While this doesn't happen as these constants are always used as `ty::ConstKind::Param`, it does
        // cause issues if we were to remove that special-case and try to evaluate the constant instead.
        use hir::{def::DefKind::ConstParam, def::Res, ExprKind, Path, QPath};
        match expr.kind {
            ExprKind::Path(QPath::Resolved(_, &Path { res: Res::Def(ConstParam, def_id), .. })) => {
                // Find the name and index of the const parameter by indexing the generics of
                // the parent item and construct a `ParamConst`.
                let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
                let item_id = tcx.hir().get_parent_node(hir_id);
                let item_def_id = tcx.hir().local_def_id(item_id);
                let generics = tcx.generics_of(item_def_id.to_def_id());
                let index = generics.param_def_id_to_index[&def_id];
                let name = tcx.hir().name(hir_id);
                let ty_const = tcx.mk_const(ty::ConstS {
                    kind: ty::ConstKind::Param(ty::ParamConst::new(index, name)),
                    ty,
                });
                debug!(?ty_const);

                return Self::Ty(ty_const);
            }
            _ => {}
        }

        let hir_id = tcx.hir().local_def_id_to_hir_id(def.did);
        let parent_substs = if let Some(parent_hir_id) = tcx.hir().find_parent_node(hir_id) {
            if let Some(parent_did) = tcx.hir().opt_local_def_id(parent_hir_id) {
                InternalSubsts::identity_for_item(tcx, parent_did.to_def_id())
            } else {
                tcx.mk_substs(Vec::<GenericArg<'tcx>>::new().into_iter())
            }
        } else {
            tcx.mk_substs(Vec::<GenericArg<'tcx>>::new().into_iter())
        };
        debug!(?parent_substs);

        let did = def.did.to_def_id();
        let child_substs = InternalSubsts::identity_for_item(tcx, did);
        let substs = tcx.mk_substs(parent_substs.into_iter().chain(child_substs.into_iter()));
        debug!(?substs);

        let hir_id = tcx.hir().local_def_id_to_hir_id(def.did);
        let span = tcx.hir().span(hir_id);
        let uneval = ty::Unevaluated::new(def.to_global(), substs);
        debug!(?span, ?param_env);

        match tcx.const_eval_resolve(param_env, uneval, Some(span)) {
            Ok(val) => {
                debug!("evaluated const value: {:?}", val);
                Self::Val(val, ty)
            }
            Err(_) => {
                debug!("error encountered during evaluation");
                // Error was handled in `const_eval_resolve`. Here we just create a
                // new unevaluated const and error hard later in codegen
                let ty_const = tcx.mk_const(ty::ConstS {
                    kind: ty::ConstKind::Unevaluated(ty::Unevaluated {
                        def: def.to_global(),
                        substs: InternalSubsts::identity_for_item(tcx, def.did.to_def_id()),
                        promoted: None,
                    }),
                    ty,
                });
                debug!(?ty_const);

                Self::Ty(ty_const)
            }
        }
    }

    pub fn from_const(c: ty::Const<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        match c.kind() {
            ty::ConstKind::Value(valtree) => {
                let const_val = tcx.valtree_to_const_val((c.ty(), valtree));
                Self::Val(const_val, c.ty())
            }
            _ => Self::Ty(c),
        }
    }
}

/// A collection of projections into user types.
///
/// They are projections because a binding can occur a part of a
/// parent pattern that has been ascribed a type.
///
/// Its a collection because there can be multiple type ascriptions on
/// the path from the root of the pattern down to the binding itself.
///
/// An example:
///
/// ```ignore (illustrative)
/// struct S<'a>((i32, &'a str), String);
/// let S((_, w): (i32, &'static str), _): S = ...;
/// //    ------  ^^^^^^^^^^^^^^^^^^^ (1)
/// //  ---------------------------------  ^ (2)
/// ```
///
/// The highlights labelled `(1)` show the subpattern `(_, w)` being
/// ascribed the type `(i32, &'static str)`.
///
/// The highlights labelled `(2)` show the whole pattern being
/// ascribed the type `S`.
///
/// In this example, when we descend to `w`, we will have built up the
/// following two projected types:
///
///   * base: `S`,                   projection: `(base.0).1`
///   * base: `(i32, &'static str)`, projection: `base.1`
///
/// The first will lead to the constraint `w: &'1 str` (for some
/// inferred region `'1`). The second will lead to the constraint `w:
/// &'static str`.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
pub struct UserTypeProjections {
    pub contents: Vec<(UserTypeProjection, Span)>,
}

impl<'tcx> UserTypeProjections {
    pub fn none() -> Self {
        UserTypeProjections { contents: vec![] }
    }

    pub fn is_empty(&self) -> bool {
        self.contents.is_empty()
    }

    pub fn projections_and_spans(
        &self,
    ) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator {
        self.contents.iter()
    }

    pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
        self.contents.iter().map(|&(ref user_type, _span)| user_type)
    }

    pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self {
        self.contents.push((user_ty.clone(), span));
        self
    }

    fn map_projections(
        mut self,
        mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection,
    ) -> Self {
        self.contents = self.contents.into_iter().map(|(proj, span)| (f(proj), span)).collect();
        self
    }

    pub fn index(self) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.index())
    }

    pub fn subslice(self, from: u64, to: u64) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
    }

    pub fn deref(self) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
    }

    pub fn leaf(self, field: Field) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
    }

    pub fn variant(self, adt_def: AdtDef<'tcx>, variant_index: VariantIdx, field: Field) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field))
    }
}

/// Encodes the effect of a user-supplied type annotation on the
/// subcomponents of a pattern. The effect is determined by applying the
/// given list of projections to some underlying base type. Often,
/// the projection element list `projs` is empty, in which case this
/// directly encodes a type in `base`. But in the case of complex patterns with
/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
/// in which case the `projs` vector is used.
///
/// Examples:
///
/// * `let x: T = ...` -- here, the `projs` vector is empty.
///
/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
///   `field[0]` (aka `.0`), indicating that the type of `s` is
///   determined by finding the type of the `.0` field from `T`.
#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
pub struct UserTypeProjection {
    pub base: UserTypeAnnotationIndex,
    pub projs: Vec<ProjectionKind>,
}

impl Copy for ProjectionKind {}

impl UserTypeProjection {
    pub(crate) fn index(mut self) -> Self {
        self.projs.push(ProjectionElem::Index(()));
        self
    }

    pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self {
        self.projs.push(ProjectionElem::Subslice { from, to, from_end: true });
        self
    }

    pub(crate) fn deref(mut self) -> Self {
        self.projs.push(ProjectionElem::Deref);
        self
    }

    pub(crate) fn leaf(mut self, field: Field) -> Self {
        self.projs.push(ProjectionElem::Field(field, ()));
        self
    }

    pub(crate) fn variant(
        mut self,
        adt_def: AdtDef<'_>,
        variant_index: VariantIdx,
        field: Field,
    ) -> Self {
        self.projs.push(ProjectionElem::Downcast(
            Some(adt_def.variant(variant_index).name),
            variant_index,
        ));
        self.projs.push(ProjectionElem::Field(field, ()));
        self
    }
}

TrivialTypeFoldableAndLiftImpls! { ProjectionKind, }

impl<'tcx> TypeFoldable<'tcx> for UserTypeProjection {
    fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
        Ok(UserTypeProjection {
            base: self.base.try_fold_with(folder)?,
            projs: self.projs.try_fold_with(folder)?,
        })
    }

    fn visit_with<Vs: TypeVisitor<'tcx>>(&self, visitor: &mut Vs) -> ControlFlow<Vs::BreakTy> {
        self.base.visit_with(visitor)
        // Note: there's nothing in `self.proj` to visit.
    }
}

rustc_index::newtype_index! {
    pub struct Promoted {
        derive [HashStable]
        DEBUG_FORMAT = "promoted[{}]"
    }
}

impl<'tcx> Debug for Constant<'tcx> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        write!(fmt, "{}", self)
    }
}

impl<'tcx> Display for Constant<'tcx> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        match self.ty().kind() {
            ty::FnDef(..) => {}
            _ => write!(fmt, "const ")?,
        }
        Display::fmt(&self.literal, fmt)
    }
}

impl<'tcx> Display for ConstantKind<'tcx> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        match *self {
            ConstantKind::Ty(c) => pretty_print_const(c, fmt, true),
            ConstantKind::Val(val, ty) => pretty_print_const_value(val, ty, fmt, true),
        }
    }
}

fn pretty_print_const<'tcx>(
    c: ty::Const<'tcx>,
    fmt: &mut Formatter<'_>,
    print_types: bool,
) -> fmt::Result {
    use crate::ty::print::PrettyPrinter;
    ty::tls::with(|tcx| {
        let literal = tcx.lift(c).unwrap();
        let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
        cx.print_alloc_ids = true;
        let cx = cx.pretty_print_const(literal, print_types)?;
        fmt.write_str(&cx.into_buffer())?;
        Ok(())
    })
}

fn pretty_print_byte_str(fmt: &mut Formatter<'_>, byte_str: &[u8]) -> fmt::Result {
    fmt.write_str("b\"")?;
    for &c in byte_str {
        for e in std::ascii::escape_default(c) {
            fmt.write_char(e as char)?;
        }
    }
    fmt.write_str("\"")?;

    Ok(())
}

fn comma_sep<'tcx>(fmt: &mut Formatter<'_>, elems: Vec<ConstantKind<'tcx>>) -> fmt::Result {
    let mut first = true;
    for elem in elems {
        if !first {
            fmt.write_str(", ")?;
        }
        fmt.write_str(&format!("{}", elem))?;
        first = false;
    }
    Ok(())
}

// FIXME: Move that into `mir/pretty.rs`.
fn pretty_print_const_value<'tcx>(
    ct: ConstValue<'tcx>,
    ty: Ty<'tcx>,
    fmt: &mut Formatter<'_>,
    print_ty: bool,
) -> fmt::Result {
    use crate::ty::print::PrettyPrinter;

    ty::tls::with(|tcx| {
        let ct = tcx.lift(ct).unwrap();
        let ty = tcx.lift(ty).unwrap();

        if tcx.sess.verbose() {
            fmt.write_str(&format!("ConstValue({:?}: {})", ct, ty))?;
            return Ok(());
        }

        let u8_type = tcx.types.u8;
        match (ct, ty.kind()) {
            // Byte/string slices, printed as (byte) string literals.
            (ConstValue::Slice { data, start, end }, ty::Ref(_, inner, _)) => {
                match inner.kind() {
                    ty::Slice(t) => {
                        if *t == u8_type {
                            // The `inspect` here is okay since we checked the bounds, and there are
                            // no relocations (we have an active slice reference here). We don't use
                            // this result to affect interpreter execution.
                            let byte_str = data
                                .inner()
                                .inspect_with_uninit_and_ptr_outside_interpreter(start..end);
                            pretty_print_byte_str(fmt, byte_str)?;
                            return Ok(());
                        }
                    }
                    ty::Str => {
                        // The `inspect` here is okay since we checked the bounds, and there are no
                        // relocations (we have an active `str` reference here). We don't use this
                        // result to affect interpreter execution.
                        let slice = data
                            .inner()
                            .inspect_with_uninit_and_ptr_outside_interpreter(start..end);
                        fmt.write_str(&format!("{:?}", String::from_utf8_lossy(slice)))?;
                        return Ok(());
                    }
                    _ => {}
                }
            }
            (ConstValue::ByRef { alloc, offset }, ty::Array(t, n)) if *t == u8_type => {
                let n = n.kind().try_to_bits(tcx.data_layout.pointer_size).unwrap();
                // cast is ok because we already checked for pointer size (32 or 64 bit) above
                let range = AllocRange { start: offset, size: Size::from_bytes(n) };
                let byte_str = alloc.inner().get_bytes(&tcx, range).unwrap();
                fmt.write_str("*")?;
                pretty_print_byte_str(fmt, byte_str)?;
                return Ok(());
            }
            // Aggregates, printed as array/tuple/struct/variant construction syntax.
            //
            // NB: the `has_param_types_or_consts` check ensures that we can use
            // the `destructure_const` query with an empty `ty::ParamEnv` without
            // introducing ICEs (e.g. via `layout_of`) from missing bounds.
            // E.g. `transmute([0usize; 2]): (u8, *mut T)` needs to know `T: Sized`
            // to be able to destructure the tuple into `(0u8, *mut T)
            //
            // FIXME(eddyb) for `--emit=mir`/`-Z dump-mir`, we should provide the
            // correct `ty::ParamEnv` to allow printing *all* constant values.
            (_, ty::Array(..) | ty::Tuple(..) | ty::Adt(..)) if !ty.has_param_types_or_consts() => {
                let ct = tcx.lift(ct).unwrap();
                let ty = tcx.lift(ty).unwrap();
                if let Some(contents) = tcx.try_destructure_mir_constant(
                    ty::ParamEnv::reveal_all().and(ConstantKind::Val(ct, ty)),
                ) {
                    let fields = contents.fields.iter().copied().collect::<Vec<_>>();
                    match *ty.kind() {
                        ty::Array(..) => {
                            fmt.write_str("[")?;
                            comma_sep(fmt, fields)?;
                            fmt.write_str("]")?;
                        }
                        ty::Tuple(..) => {
                            fmt.write_str("(")?;
                            comma_sep(fmt, fields)?;
                            if contents.fields.len() == 1 {
                                fmt.write_str(",")?;
                            }
                            fmt.write_str(")")?;
                        }
                        ty::Adt(def, _) if def.variants().is_empty() => {
                            fmt.write_str(&format!("{{unreachable(): {}}}", ty))?;
                        }
                        ty::Adt(def, substs) => {
                            let variant_idx = contents
                                .variant
                                .expect("destructed mir constant of adt without variant idx");
                            let variant_def = &def.variant(variant_idx);
                            let substs = tcx.lift(substs).unwrap();
                            let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
                            cx.print_alloc_ids = true;
                            let cx = cx.print_value_path(variant_def.def_id, substs)?;
                            fmt.write_str(&cx.into_buffer())?;

                            match variant_def.ctor_kind {
                                CtorKind::Const => {}
                                CtorKind::Fn => {
                                    fmt.write_str("(")?;
                                    comma_sep(fmt, fields)?;
                                    fmt.write_str(")")?;
                                }
                                CtorKind::Fictive => {
                                    fmt.write_str(" {{ ")?;
                                    let mut first = true;
                                    for (field_def, field) in iter::zip(&variant_def.fields, fields)
                                    {
                                        if !first {
                                            fmt.write_str(", ")?;
                                        }
                                        fmt.write_str(&format!("{}: {}", field_def.name, field))?;
                                        first = false;
                                    }
                                    fmt.write_str(" }}")?;
                                }
                            }
                        }
                        _ => unreachable!(),
                    }
                    return Ok(());
                } else {
                    // Fall back to debug pretty printing for invalid constants.
                    fmt.write_str(&format!("{:?}", ct))?;
                    if print_ty {
                        fmt.write_str(&format!(": {}", ty))?;
                    }
                    return Ok(());
                };
            }
            (ConstValue::Scalar(scalar), _) => {
                let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
                cx.print_alloc_ids = true;
                let ty = tcx.lift(ty).unwrap();
                cx = cx.pretty_print_const_scalar(scalar, ty, print_ty)?;
                fmt.write_str(&cx.into_buffer())?;
                return Ok(());
            }
            // FIXME(oli-obk): also pretty print arrays and other aggregate constants by reading
            // their fields instead of just dumping the memory.
            _ => {}
        }
        // fallback
        fmt.write_str(&format!("{:?}", ct))?;
        if print_ty {
            fmt.write_str(&format!(": {}", ty))?;
        }
        Ok(())
    })
}

impl<'tcx> graph::DirectedGraph for Body<'tcx> {
    type Node = BasicBlock;
}

impl<'tcx> graph::WithNumNodes for Body<'tcx> {
    #[inline]
    fn num_nodes(&self) -> usize {
        self.basic_blocks.len()
    }
}

impl<'tcx> graph::WithStartNode for Body<'tcx> {
    #[inline]
    fn start_node(&self) -> Self::Node {
        START_BLOCK
    }
}

impl<'tcx> graph::WithSuccessors for Body<'tcx> {
    #[inline]
    fn successors(&self, node: Self::Node) -> <Self as GraphSuccessors<'_>>::Iter {
        self.basic_blocks[node].terminator().successors()
    }
}

impl<'a, 'b> graph::GraphSuccessors<'b> for Body<'a> {
    type Item = BasicBlock;
    type Iter = Successors<'b>;
}

impl<'tcx, 'graph> graph::GraphPredecessors<'graph> for Body<'tcx> {
    type Item = BasicBlock;
    type Iter = std::iter::Copied<std::slice::Iter<'graph, BasicBlock>>;
}

impl<'tcx> graph::WithPredecessors for Body<'tcx> {
    #[inline]
    fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter {
        self.predecessors()[node].iter().copied()
    }
}

/// `Location` represents the position of the start of the statement; or, if
/// `statement_index` equals the number of statements, then the start of the
/// terminator.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
pub struct Location {
    /// The block that the location is within.
    pub block: BasicBlock,

    pub statement_index: usize,
}

impl fmt::Debug for Location {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "{:?}[{}]", self.block, self.statement_index)
    }
}

impl Location {
    pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };

    /// Returns the location immediately after this one within the enclosing block.
    ///
    /// Note that if this location represents a terminator, then the
    /// resulting location would be out of bounds and invalid.
    pub fn successor_within_block(&self) -> Location {
        Location { block: self.block, statement_index: self.statement_index + 1 }
    }

    /// Returns `true` if `other` is earlier in the control flow graph than `self`.
    pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
        // If we are in the same block as the other location and are an earlier statement
        // then we are a predecessor of `other`.
        if self.block == other.block && self.statement_index < other.statement_index {
            return true;
        }

        let predecessors = body.predecessors();

        // If we're in another block, then we want to check that block is a predecessor of `other`.
        let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
        let mut visited = FxHashSet::default();

        while let Some(block) = queue.pop() {
            // If we haven't visited this block before, then make sure we visit its predecessors.
            if visited.insert(block) {
                queue.extend(predecessors[block].iter().cloned());
            } else {
                continue;
            }

            // If we found the block that `self` is in, then we are a predecessor of `other` (since
            // we found that block by looking at the predecessors of `other`).
            if self.block == block {
                return true;
            }
        }

        false
    }

    pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
        if self.block == other.block {
            self.statement_index <= other.statement_index
        } else {
            dominators.is_dominated_by(other.block, self.block)
        }
    }
}