rustc_middle/mir/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
//! MIR datatypes and passes. See the [rustc dev guide] for more info.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html

use std::borrow::Cow;
use std::fmt::{self, Debug, Formatter};
use std::ops::{Index, IndexMut};
use std::{iter, mem};

pub use basic_blocks::BasicBlocks;
use either::Either;
use polonius_engine::Atom;
use rustc_abi::{FieldIdx, VariantIdx};
pub use rustc_ast::Mutability;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::graph::dominators::Dominators;
use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg};
use rustc_hir::def::{CtorKind, Namespace};
use rustc_hir::def_id::{CRATE_DEF_ID, DefId};
use rustc_hir::{
    self as hir, BindingMode, ByRef, CoroutineDesugaring, CoroutineKind, HirId, ImplicitSelfKind,
};
use rustc_index::bit_set::BitSet;
use rustc_index::{Idx, IndexSlice, IndexVec};
use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
use rustc_serialize::{Decodable, Encodable};
use rustc_span::source_map::Spanned;
use rustc_span::symbol::Symbol;
use rustc_span::{DUMMY_SP, Span};
use tracing::trace;

pub use self::query::*;
use self::visit::TyContext;
use crate::mir::interpret::{AllocRange, Scalar};
use crate::mir::visit::MirVisitable;
use crate::ty::codec::{TyDecoder, TyEncoder};
use crate::ty::fold::{FallibleTypeFolder, TypeFoldable};
use crate::ty::print::{FmtPrinter, Printer, pretty_print_const, with_no_trimmed_paths};
use crate::ty::visit::TypeVisitableExt;
use crate::ty::{
    self, AdtDef, GenericArg, GenericArgsRef, Instance, InstanceKind, List, Ty, TyCtxt, TypingMode,
    UserTypeAnnotationIndex,
};

mod basic_blocks;
mod consts;
pub mod coverage;
mod generic_graph;
pub mod generic_graphviz;
pub mod graphviz;
pub mod interpret;
pub mod mono;
pub mod patch;
pub mod pretty;
mod query;
mod statement;
mod syntax;
pub mod tcx;
mod terminator;

pub mod traversal;
mod type_foldable;
pub mod visit;

pub use consts::*;
use pretty::pretty_print_const_value;
pub use statement::*;
pub use syntax::*;
pub use terminator::*;

pub use self::generic_graph::graphviz_safe_def_name;
pub use self::graphviz::write_mir_graphviz;
pub use self::pretty::{
    PassWhere, create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty,
};

/// Types for locals
pub type LocalDecls<'tcx> = IndexSlice<Local, LocalDecl<'tcx>>;

pub trait HasLocalDecls<'tcx> {
    fn local_decls(&self) -> &LocalDecls<'tcx>;
}

impl<'tcx> HasLocalDecls<'tcx> for IndexVec<Local, LocalDecl<'tcx>> {
    #[inline]
    fn local_decls(&self) -> &LocalDecls<'tcx> {
        self
    }
}

impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
    #[inline]
    fn local_decls(&self) -> &LocalDecls<'tcx> {
        self
    }
}

impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
    #[inline]
    fn local_decls(&self) -> &LocalDecls<'tcx> {
        &self.local_decls
    }
}

impl MirPhase {
    /// Gets the index of the current MirPhase within the set of all `MirPhase`s.
    ///
    /// FIXME(JakobDegen): Return a `(usize, usize)` instead.
    pub fn phase_index(&self) -> usize {
        const BUILT_PHASE_COUNT: usize = 1;
        const ANALYSIS_PHASE_COUNT: usize = 2;
        match self {
            MirPhase::Built => 1,
            MirPhase::Analysis(analysis_phase) => {
                1 + BUILT_PHASE_COUNT + (*analysis_phase as usize)
            }
            MirPhase::Runtime(runtime_phase) => {
                1 + BUILT_PHASE_COUNT + ANALYSIS_PHASE_COUNT + (*runtime_phase as usize)
            }
        }
    }

    /// Parses an `MirPhase` from a pair of strings. Panics if this isn't possible for any reason.
    pub fn parse(dialect: String, phase: Option<String>) -> Self {
        match &*dialect.to_ascii_lowercase() {
            "built" => {
                assert!(phase.is_none(), "Cannot specify a phase for `Built` MIR");
                MirPhase::Built
            }
            "analysis" => Self::Analysis(AnalysisPhase::parse(phase)),
            "runtime" => Self::Runtime(RuntimePhase::parse(phase)),
            _ => bug!("Unknown MIR dialect: '{}'", dialect),
        }
    }
}

impl AnalysisPhase {
    pub fn parse(phase: Option<String>) -> Self {
        let Some(phase) = phase else {
            return Self::Initial;
        };

        match &*phase.to_ascii_lowercase() {
            "initial" => Self::Initial,
            "post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
            _ => bug!("Unknown analysis phase: '{}'", phase),
        }
    }
}

impl RuntimePhase {
    pub fn parse(phase: Option<String>) -> Self {
        let Some(phase) = phase else {
            return Self::Initial;
        };

        match &*phase.to_ascii_lowercase() {
            "initial" => Self::Initial,
            "post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
            "optimized" => Self::Optimized,
            _ => bug!("Unknown runtime phase: '{}'", phase),
        }
    }
}

/// Where a specific `mir::Body` comes from.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable, TypeVisitable)]
pub struct MirSource<'tcx> {
    pub instance: InstanceKind<'tcx>,

    /// If `Some`, this is a promoted rvalue within the parent function.
    pub promoted: Option<Promoted>,
}

impl<'tcx> MirSource<'tcx> {
    pub fn item(def_id: DefId) -> Self {
        MirSource { instance: InstanceKind::Item(def_id), promoted: None }
    }

    pub fn from_instance(instance: InstanceKind<'tcx>) -> Self {
        MirSource { instance, promoted: None }
    }

    #[inline]
    pub fn def_id(&self) -> DefId {
        self.instance.def_id()
    }
}

/// Additional information carried by a MIR body when it is lowered from a coroutine.
/// This information is modified as it is lowered during the `StateTransform` MIR pass,
/// so not all fields will be active at a given time. For example, the `yield_ty` is
/// taken out of the field after yields are turned into returns, and the `coroutine_drop`
/// body is only populated after the state transform pass.
#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub struct CoroutineInfo<'tcx> {
    /// The yield type of the function. This field is removed after the state transform pass.
    pub yield_ty: Option<Ty<'tcx>>,

    /// The resume type of the function. This field is removed after the state transform pass.
    pub resume_ty: Option<Ty<'tcx>>,

    /// Coroutine drop glue. This field is populated after the state transform pass.
    pub coroutine_drop: Option<Body<'tcx>>,

    /// The layout of a coroutine. This field is populated after the state transform pass.
    pub coroutine_layout: Option<CoroutineLayout<'tcx>>,

    /// If this is a coroutine then record the type of source expression that caused this coroutine
    /// to be created.
    pub coroutine_kind: CoroutineKind,
}

impl<'tcx> CoroutineInfo<'tcx> {
    // Sets up `CoroutineInfo` for a pre-coroutine-transform MIR body.
    pub fn initial(
        coroutine_kind: CoroutineKind,
        yield_ty: Ty<'tcx>,
        resume_ty: Ty<'tcx>,
    ) -> CoroutineInfo<'tcx> {
        CoroutineInfo {
            coroutine_kind,
            yield_ty: Some(yield_ty),
            resume_ty: Some(resume_ty),
            coroutine_drop: None,
            coroutine_layout: None,
        }
    }
}

/// Some item that needs to monomorphize successfully for a MIR body to be considered well-formed.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, HashStable, TyEncodable, TyDecodable)]
#[derive(TypeFoldable, TypeVisitable)]
pub enum MentionedItem<'tcx> {
    /// A function that gets called. We don't necessarily know its precise type yet, since it can be
    /// hidden behind a generic.
    Fn(Ty<'tcx>),
    /// A type that has its drop shim called.
    Drop(Ty<'tcx>),
    /// Unsizing casts might require vtables, so we have to record them.
    UnsizeCast { source_ty: Ty<'tcx>, target_ty: Ty<'tcx> },
    /// A closure that is coerced to a function pointer.
    Closure(Ty<'tcx>),
}

/// The lowered representation of a single function.
#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub struct Body<'tcx> {
    /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
    /// that indexes into this vector.
    pub basic_blocks: BasicBlocks<'tcx>,

    /// Records how far through the "desugaring and optimization" process this particular
    /// MIR has traversed. This is particularly useful when inlining, since in that context
    /// we instantiate the promoted constants and add them to our promoted vector -- but those
    /// promoted items have already been optimized, whereas ours have not. This field allows
    /// us to see the difference and forego optimization on the inlined promoted items.
    pub phase: MirPhase,

    /// How many passses we have executed since starting the current phase. Used for debug output.
    pub pass_count: usize,

    pub source: MirSource<'tcx>,

    /// A list of source scopes; these are referenced by statements
    /// and used for debuginfo. Indexed by a `SourceScope`.
    pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,

    /// Additional information carried by a MIR body when it is lowered from a coroutine.
    ///
    /// Note that the coroutine drop shim, any promoted consts, and other synthetic MIR
    /// bodies that come from processing a coroutine body are not typically coroutines
    /// themselves, and should probably set this to `None` to avoid carrying redundant
    /// information.
    pub coroutine: Option<Box<CoroutineInfo<'tcx>>>,

    /// Declarations of locals.
    ///
    /// The first local is the return value pointer, followed by `arg_count`
    /// locals for the function arguments, followed by any user-declared
    /// variables and temporaries.
    pub local_decls: IndexVec<Local, LocalDecl<'tcx>>,

    /// User type annotations.
    pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,

    /// The number of arguments this function takes.
    ///
    /// Starting at local 1, `arg_count` locals will be provided by the caller
    /// and can be assumed to be initialized.
    ///
    /// If this MIR was built for a constant, this will be 0.
    pub arg_count: usize,

    /// Mark an argument local (which must be a tuple) as getting passed as
    /// its individual components at the LLVM level.
    ///
    /// This is used for the "rust-call" ABI.
    pub spread_arg: Option<Local>,

    /// Debug information pertaining to user variables, including captures.
    pub var_debug_info: Vec<VarDebugInfo<'tcx>>,

    /// A span representing this MIR, for error reporting.
    pub span: Span,

    /// Constants that are required to evaluate successfully for this MIR to be well-formed.
    /// We hold in this field all the constants we are not able to evaluate yet.
    /// `None` indicates that the list has not been computed yet.
    ///
    /// This is soundness-critical, we make a guarantee that all consts syntactically mentioned in a
    /// function have successfully evaluated if the function ever gets executed at runtime.
    pub required_consts: Option<Vec<ConstOperand<'tcx>>>,

    /// Further items that were mentioned in this function and hence *may* become monomorphized,
    /// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
    /// collector recursively traverses all "mentioned" items and evaluates all their
    /// `required_consts`.
    /// `None` indicates that the list has not been computed yet.
    ///
    /// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
    /// All that's relevant is that this set is optimization-level-independent, and that it includes
    /// everything that the collector would consider "used". (For example, we currently compute this
    /// set after drop elaboration, so some drop calls that can never be reached are not considered
    /// "mentioned".) See the documentation of `CollectionMode` in
    /// `compiler/rustc_monomorphize/src/collector.rs` for more context.
    pub mentioned_items: Option<Vec<Spanned<MentionedItem<'tcx>>>>,

    /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
    ///
    /// Note that this does not actually mean that this body is not computable right now.
    /// The repeat count in the following example is polymorphic, but can still be evaluated
    /// without knowing anything about the type parameter `T`.
    ///
    /// ```rust
    /// fn test<T>() {
    ///     let _ = [0; std::mem::size_of::<*mut T>()];
    /// }
    /// ```
    ///
    /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
    /// removed the last mention of all generic params. We do not want to rely on optimizations and
    /// potentially allow things like `[u8; std::mem::size_of::<T>() * 0]` due to this.
    pub is_polymorphic: bool,

    /// The phase at which this MIR should be "injected" into the compilation process.
    ///
    /// Everything that comes before this `MirPhase` should be skipped.
    ///
    /// This is only `Some` if the function that this body comes from was annotated with `rustc_custom_mir`.
    pub injection_phase: Option<MirPhase>,

    pub tainted_by_errors: Option<ErrorGuaranteed>,

    /// Coverage information collected from THIR/MIR during MIR building,
    /// to be used by the `InstrumentCoverage` pass.
    ///
    /// Only present if coverage is enabled and this function is eligible.
    /// Boxed to limit space overhead in non-coverage builds.
    pub coverage_info_hi: Option<Box<coverage::CoverageInfoHi>>,

    /// Per-function coverage information added by the `InstrumentCoverage`
    /// pass, to be used in conjunction with the coverage statements injected
    /// into this body's blocks.
    ///
    /// If `-Cinstrument-coverage` is not active, or if an individual function
    /// is not eligible for coverage, then this should always be `None`.
    pub function_coverage_info: Option<Box<coverage::FunctionCoverageInfo>>,
}

impl<'tcx> Body<'tcx> {
    pub fn new(
        source: MirSource<'tcx>,
        basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
        source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
        local_decls: IndexVec<Local, LocalDecl<'tcx>>,
        user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
        arg_count: usize,
        var_debug_info: Vec<VarDebugInfo<'tcx>>,
        span: Span,
        coroutine: Option<Box<CoroutineInfo<'tcx>>>,
        tainted_by_errors: Option<ErrorGuaranteed>,
    ) -> Self {
        // We need `arg_count` locals, and one for the return place.
        assert!(
            local_decls.len() > arg_count,
            "expected at least {} locals, got {}",
            arg_count + 1,
            local_decls.len()
        );

        let mut body = Body {
            phase: MirPhase::Built,
            pass_count: 0,
            source,
            basic_blocks: BasicBlocks::new(basic_blocks),
            source_scopes,
            coroutine,
            local_decls,
            user_type_annotations,
            arg_count,
            spread_arg: None,
            var_debug_info,
            span,
            required_consts: None,
            mentioned_items: None,
            is_polymorphic: false,
            injection_phase: None,
            tainted_by_errors,
            coverage_info_hi: None,
            function_coverage_info: None,
        };
        body.is_polymorphic = body.has_non_region_param();
        body
    }

    /// Returns a partially initialized MIR body containing only a list of basic blocks.
    ///
    /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
    /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
    /// crate.
    pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
        let mut body = Body {
            phase: MirPhase::Built,
            pass_count: 0,
            source: MirSource::item(CRATE_DEF_ID.to_def_id()),
            basic_blocks: BasicBlocks::new(basic_blocks),
            source_scopes: IndexVec::new(),
            coroutine: None,
            local_decls: IndexVec::new(),
            user_type_annotations: IndexVec::new(),
            arg_count: 0,
            spread_arg: None,
            span: DUMMY_SP,
            required_consts: None,
            mentioned_items: None,
            var_debug_info: Vec::new(),
            is_polymorphic: false,
            injection_phase: None,
            tainted_by_errors: None,
            coverage_info_hi: None,
            function_coverage_info: None,
        };
        body.is_polymorphic = body.has_non_region_param();
        body
    }

    #[inline]
    pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
        self.basic_blocks.as_mut()
    }

    pub fn typing_mode(&self, _tcx: TyCtxt<'tcx>) -> TypingMode<'tcx> {
        match self.phase {
            // FIXME(#132279): the MIR is quite clearly inside of a body, so we
            // should instead reveal opaques defined by that body here.
            MirPhase::Built | MirPhase::Analysis(_) => TypingMode::non_body_analysis(),
            MirPhase::Runtime(_) => TypingMode::PostAnalysis,
        }
    }

    #[inline]
    pub fn local_kind(&self, local: Local) -> LocalKind {
        let index = local.as_usize();
        if index == 0 {
            debug_assert!(
                self.local_decls[local].mutability == Mutability::Mut,
                "return place should be mutable"
            );

            LocalKind::ReturnPointer
        } else if index < self.arg_count + 1 {
            LocalKind::Arg
        } else {
            LocalKind::Temp
        }
    }

    /// Returns an iterator over all user-declared mutable locals.
    #[inline]
    pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
        (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
            let local = Local::new(index);
            let decl = &self.local_decls[local];
            (decl.is_user_variable() && decl.mutability.is_mut()).then_some(local)
        })
    }

    /// Returns an iterator over all user-declared mutable arguments and locals.
    #[inline]
    pub fn mut_vars_and_args_iter<'a>(
        &'a self,
    ) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
        (1..self.local_decls.len()).filter_map(move |index| {
            let local = Local::new(index);
            let decl = &self.local_decls[local];
            if (decl.is_user_variable() || index < self.arg_count + 1)
                && decl.mutability == Mutability::Mut
            {
                Some(local)
            } else {
                None
            }
        })
    }

    /// Returns an iterator over all function arguments.
    #[inline]
    pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
        (1..self.arg_count + 1).map(Local::new)
    }

    /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
    /// locals that are neither arguments nor the return place).
    #[inline]
    pub fn vars_and_temps_iter(
        &self,
    ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
        (self.arg_count + 1..self.local_decls.len()).map(Local::new)
    }

    #[inline]
    pub fn drain_vars_and_temps<'a>(&'a mut self) -> impl Iterator<Item = LocalDecl<'tcx>> + 'a {
        self.local_decls.drain(self.arg_count + 1..)
    }

    /// Returns the source info associated with `location`.
    pub fn source_info(&self, location: Location) -> &SourceInfo {
        let block = &self[location.block];
        let stmts = &block.statements;
        let idx = location.statement_index;
        if idx < stmts.len() {
            &stmts[idx].source_info
        } else {
            assert_eq!(idx, stmts.len());
            &block.terminator().source_info
        }
    }

    pub fn span_for_ty_context(&self, ty_context: TyContext) -> Span {
        match ty_context {
            TyContext::UserTy(span) => span,
            TyContext::ReturnTy(source_info)
            | TyContext::LocalDecl { source_info, .. }
            | TyContext::YieldTy(source_info)
            | TyContext::ResumeTy(source_info) => source_info.span,
            TyContext::Location(loc) => self.source_info(loc).span,
        }
    }

    /// Returns the return type; it always return first element from `local_decls` array.
    #[inline]
    pub fn return_ty(&self) -> Ty<'tcx> {
        self.local_decls[RETURN_PLACE].ty
    }

    /// Returns the return type; it always return first element from `local_decls` array.
    #[inline]
    pub fn bound_return_ty(&self) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
        ty::EarlyBinder::bind(self.local_decls[RETURN_PLACE].ty)
    }

    /// Gets the location of the terminator for the given block.
    #[inline]
    pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
        Location { block: bb, statement_index: self[bb].statements.len() }
    }

    pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
        let Location { block, statement_index } = location;
        let block_data = &self.basic_blocks[block];
        block_data
            .statements
            .get(statement_index)
            .map(Either::Left)
            .unwrap_or_else(|| Either::Right(block_data.terminator()))
    }

    #[inline]
    pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
        self.coroutine.as_ref().and_then(|coroutine| coroutine.yield_ty)
    }

    #[inline]
    pub fn resume_ty(&self) -> Option<Ty<'tcx>> {
        self.coroutine.as_ref().and_then(|coroutine| coroutine.resume_ty)
    }

    /// Prefer going through [`TyCtxt::coroutine_layout`] rather than using this directly.
    #[inline]
    pub fn coroutine_layout_raw(&self) -> Option<&CoroutineLayout<'tcx>> {
        self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_layout.as_ref())
    }

    #[inline]
    pub fn coroutine_drop(&self) -> Option<&Body<'tcx>> {
        self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop.as_ref())
    }

    #[inline]
    pub fn coroutine_kind(&self) -> Option<CoroutineKind> {
        self.coroutine.as_ref().map(|coroutine| coroutine.coroutine_kind)
    }

    #[inline]
    pub fn should_skip(&self) -> bool {
        let Some(injection_phase) = self.injection_phase else {
            return false;
        };
        injection_phase > self.phase
    }

    #[inline]
    pub fn is_custom_mir(&self) -> bool {
        self.injection_phase.is_some()
    }

    /// If this basic block ends with a [`TerminatorKind::SwitchInt`] for which we can evaluate the
    /// dimscriminant in monomorphization, we return the discriminant bits and the
    /// [`SwitchTargets`], just so the caller doesn't also have to match on the terminator.
    fn try_const_mono_switchint<'a>(
        tcx: TyCtxt<'tcx>,
        instance: Instance<'tcx>,
        block: &'a BasicBlockData<'tcx>,
    ) -> Option<(u128, &'a SwitchTargets)> {
        // There are two places here we need to evaluate a constant.
        let eval_mono_const = |constant: &ConstOperand<'tcx>| {
            let env = ty::ParamEnv::reveal_all();
            let mono_literal = instance.instantiate_mir_and_normalize_erasing_regions(
                tcx,
                env,
                crate::ty::EarlyBinder::bind(constant.const_),
            );
            mono_literal.try_eval_bits(tcx, env)
        };

        let TerminatorKind::SwitchInt { discr, targets } = &block.terminator().kind else {
            return None;
        };

        // If this is a SwitchInt(const _), then we can just evaluate the constant and return.
        let discr = match discr {
            Operand::Constant(constant) => {
                let bits = eval_mono_const(constant)?;
                return Some((bits, targets));
            }
            Operand::Move(place) | Operand::Copy(place) => place,
        };

        // MIR for `if false` actually looks like this:
        // _1 = const _
        // SwitchInt(_1)
        //
        // And MIR for if intrinsics::ub_checks() looks like this:
        // _1 = UbChecks()
        // SwitchInt(_1)
        //
        // So we're going to try to recognize this pattern.
        //
        // If we have a SwitchInt on a non-const place, we find the most recent statement that
        // isn't a storage marker. If that statement is an assignment of a const to our
        // discriminant place, we evaluate and return the const, as if we've const-propagated it
        // into the SwitchInt.

        let last_stmt = block.statements.iter().rev().find(|stmt| {
            !matches!(stmt.kind, StatementKind::StorageDead(_) | StatementKind::StorageLive(_))
        })?;

        let (place, rvalue) = last_stmt.kind.as_assign()?;

        if discr != place {
            return None;
        }

        match rvalue {
            Rvalue::NullaryOp(NullOp::UbChecks, _) => Some((tcx.sess.ub_checks() as u128, targets)),
            Rvalue::Use(Operand::Constant(constant)) => {
                let bits = eval_mono_const(constant)?;
                Some((bits, targets))
            }
            _ => None,
        }
    }

    /// For a `Location` in this scope, determine what the "caller location" at that point is. This
    /// is interesting because of inlining: the `#[track_caller]` attribute of inlined functions
    /// must be honored. Falls back to the `tracked_caller` value for `#[track_caller]` functions,
    /// or the function's scope.
    pub fn caller_location_span<T>(
        &self,
        mut source_info: SourceInfo,
        caller_location: Option<T>,
        tcx: TyCtxt<'tcx>,
        from_span: impl FnOnce(Span) -> T,
    ) -> T {
        loop {
            let scope_data = &self.source_scopes[source_info.scope];

            if let Some((callee, callsite_span)) = scope_data.inlined {
                // Stop inside the most nested non-`#[track_caller]` function,
                // before ever reaching its caller (which is irrelevant).
                if !callee.def.requires_caller_location(tcx) {
                    return from_span(source_info.span);
                }
                source_info.span = callsite_span;
            }

            // Skip past all of the parents with `inlined: None`.
            match scope_data.inlined_parent_scope {
                Some(parent) => source_info.scope = parent,
                None => break,
            }
        }

        // No inlined `SourceScope`s, or all of them were `#[track_caller]`.
        caller_location.unwrap_or_else(|| from_span(source_info.span))
    }

    #[track_caller]
    pub fn set_required_consts(&mut self, required_consts: Vec<ConstOperand<'tcx>>) {
        assert!(
            self.required_consts.is_none(),
            "required_consts for {:?} have already been set",
            self.source.def_id()
        );
        self.required_consts = Some(required_consts);
    }
    #[track_caller]
    pub fn required_consts(&self) -> &[ConstOperand<'tcx>] {
        match &self.required_consts {
            Some(l) => l,
            None => panic!("required_consts for {:?} have not yet been set", self.source.def_id()),
        }
    }

    #[track_caller]
    pub fn set_mentioned_items(&mut self, mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>) {
        assert!(
            self.mentioned_items.is_none(),
            "mentioned_items for {:?} have already been set",
            self.source.def_id()
        );
        self.mentioned_items = Some(mentioned_items);
    }
    #[track_caller]
    pub fn mentioned_items(&self) -> &[Spanned<MentionedItem<'tcx>>] {
        match &self.mentioned_items {
            Some(l) => l,
            None => panic!("mentioned_items for {:?} have not yet been set", self.source.def_id()),
        }
    }
}

impl<'tcx> Index<BasicBlock> for Body<'tcx> {
    type Output = BasicBlockData<'tcx>;

    #[inline]
    fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
        &self.basic_blocks[index]
    }
}

impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
    #[inline]
    fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
        &mut self.basic_blocks.as_mut()[index]
    }
}

#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub enum ClearCrossCrate<T> {
    Clear,
    Set(T),
}

impl<T> ClearCrossCrate<T> {
    pub fn as_ref(&self) -> ClearCrossCrate<&T> {
        match self {
            ClearCrossCrate::Clear => ClearCrossCrate::Clear,
            ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
        }
    }

    pub fn as_mut(&mut self) -> ClearCrossCrate<&mut T> {
        match self {
            ClearCrossCrate::Clear => ClearCrossCrate::Clear,
            ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
        }
    }

    pub fn assert_crate_local(self) -> T {
        match self {
            ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
            ClearCrossCrate::Set(v) => v,
        }
    }
}

const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;

impl<E: TyEncoder, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
    #[inline]
    fn encode(&self, e: &mut E) {
        if E::CLEAR_CROSS_CRATE {
            return;
        }

        match *self {
            ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
            ClearCrossCrate::Set(ref val) => {
                TAG_CLEAR_CROSS_CRATE_SET.encode(e);
                val.encode(e);
            }
        }
    }
}
impl<D: TyDecoder, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
    #[inline]
    fn decode(d: &mut D) -> ClearCrossCrate<T> {
        if D::CLEAR_CROSS_CRATE {
            return ClearCrossCrate::Clear;
        }

        let discr = u8::decode(d);

        match discr {
            TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
            TAG_CLEAR_CROSS_CRATE_SET => {
                let val = T::decode(d);
                ClearCrossCrate::Set(val)
            }
            tag => panic!("Invalid tag for ClearCrossCrate: {tag:?}"),
        }
    }
}

/// Grouped information about the source code origin of a MIR entity.
/// Intended to be inspected by diagnostics and debuginfo.
/// Most passes can work with it as a whole, within a single function.
// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
// `Hash`. Please ping @bjorn3 if removing them.
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
pub struct SourceInfo {
    /// The source span for the AST pertaining to this MIR entity.
    pub span: Span,

    /// The source scope, keeping track of which bindings can be
    /// seen by debuginfo, active lint levels, etc.
    pub scope: SourceScope,
}

impl SourceInfo {
    #[inline]
    pub fn outermost(span: Span) -> Self {
        SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
    }
}

///////////////////////////////////////////////////////////////////////////
// Variables and temps

rustc_index::newtype_index! {
    #[derive(HashStable)]
    #[encodable]
    #[orderable]
    #[debug_format = "_{}"]
    pub struct Local {
        const RETURN_PLACE = 0;
    }
}

impl Atom for Local {
    fn index(self) -> usize {
        Idx::index(self)
    }
}

/// Classifies locals into categories. See `Body::local_kind`.
#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
pub enum LocalKind {
    /// User-declared variable binding or compiler-introduced temporary.
    Temp,
    /// Function argument.
    Arg,
    /// Location of function's return value.
    ReturnPointer,
}

#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct VarBindingForm<'tcx> {
    /// Is variable bound via `x`, `mut x`, `ref x`, `ref mut x`, `mut ref x`, or `mut ref mut x`?
    pub binding_mode: BindingMode,
    /// If an explicit type was provided for this variable binding,
    /// this holds the source Span of that type.
    ///
    /// NOTE: if you want to change this to a `HirId`, be wary that
    /// doing so breaks incremental compilation (as of this writing),
    /// while a `Span` does not cause our tests to fail.
    pub opt_ty_info: Option<Span>,
    /// Place of the RHS of the =, or the subject of the `match` where this
    /// variable is initialized. None in the case of `let PATTERN;`.
    /// Some((None, ..)) in the case of and `let [mut] x = ...` because
    /// (a) the right-hand side isn't evaluated as a place expression.
    /// (b) it gives a way to separate this case from the remaining cases
    ///     for diagnostics.
    pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
    /// The span of the pattern in which this variable was bound.
    pub pat_span: Span,
}

#[derive(Clone, Debug, TyEncodable, TyDecodable)]
pub enum BindingForm<'tcx> {
    /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
    Var(VarBindingForm<'tcx>),
    /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
    ImplicitSelf(ImplicitSelfKind),
    /// Reference used in a guard expression to ensure immutability.
    RefForGuard,
}

TrivialTypeTraversalImpls! { BindingForm<'tcx> }

mod binding_form_impl {
    use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
    use rustc_query_system::ich::StableHashingContext;

    impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
        fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
            use super::BindingForm::*;
            std::mem::discriminant(self).hash_stable(hcx, hasher);

            match self {
                Var(binding) => binding.hash_stable(hcx, hasher),
                ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
                RefForGuard => (),
            }
        }
    }
}

/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
/// created during evaluation of expressions in a block tail
/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
///
/// It is used to improve diagnostics when such temporaries are
/// involved in borrow_check errors, e.g., explanations of where the
/// temporaries come from, when their destructors are run, and/or how
/// one might revise the code to satisfy the borrow checker's rules.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct BlockTailInfo {
    /// If `true`, then the value resulting from evaluating this tail
    /// expression is ignored by the block's expression context.
    ///
    /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
    /// but not e.g., `let _x = { ...; tail };`
    pub tail_result_is_ignored: bool,

    /// `Span` of the tail expression.
    pub span: Span,
}

/// A MIR local.
///
/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
/// argument, or the return place.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct LocalDecl<'tcx> {
    /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
    ///
    /// Temporaries and the return place are always mutable.
    pub mutability: Mutability,

    // FIXME(matthewjasper) Don't store in this in `Body`
    pub local_info: ClearCrossCrate<Box<LocalInfo<'tcx>>>,

    /// The type of this local.
    pub ty: Ty<'tcx>,

    /// If the user manually ascribed a type to this variable,
    /// e.g., via `let x: T`, then we carry that type here. The MIR
    /// borrow checker needs this information since it can affect
    /// region inference.
    // FIXME(matthewjasper) Don't store in this in `Body`
    pub user_ty: Option<Box<UserTypeProjections>>,

    /// The *syntactic* (i.e., not visibility) source scope the local is defined
    /// in. If the local was defined in a let-statement, this
    /// is *within* the let-statement, rather than outside
    /// of it.
    ///
    /// This is needed because the visibility source scope of locals within
    /// a let-statement is weird.
    ///
    /// The reason is that we want the local to be *within* the let-statement
    /// for lint purposes, but we want the local to be *after* the let-statement
    /// for names-in-scope purposes.
    ///
    /// That's it, if we have a let-statement like the one in this
    /// function:
    ///
    /// ```
    /// fn foo(x: &str) {
    ///     #[allow(unused_mut)]
    ///     let mut x: u32 = { // <- one unused mut
    ///         let mut y: u32 = x.parse().unwrap();
    ///         y + 2
    ///     };
    ///     drop(x);
    /// }
    /// ```
    ///
    /// Then, from a lint point of view, the declaration of `x: u32`
    /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
    /// lint scopes are the same as the AST/HIR nesting.
    ///
    /// However, from a name lookup point of view, the scopes look more like
    /// as if the let-statements were `match` expressions:
    ///
    /// ```
    /// fn foo(x: &str) {
    ///     match {
    ///         match x.parse::<u32>().unwrap() {
    ///             y => y + 2
    ///         }
    ///     } {
    ///         x => drop(x)
    ///     };
    /// }
    /// ```
    ///
    /// We care about the name-lookup scopes for debuginfo - if the
    /// debuginfo instruction pointer is at the call to `x.parse()`, we
    /// want `x` to refer to `x: &str`, but if it is at the call to
    /// `drop(x)`, we want it to refer to `x: u32`.
    ///
    /// To allow both uses to work, we need to have more than a single scope
    /// for a local. We have the `source_info.scope` represent the "syntactic"
    /// lint scope (with a variable being under its let block) while the
    /// `var_debug_info.source_info.scope` represents the "local variable"
    /// scope (where the "rest" of a block is under all prior let-statements).
    ///
    /// The end result looks like this:
    ///
    /// ```text
    /// ROOT SCOPE
    ///  │{ argument x: &str }
    ///  │
    ///  │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
    ///  │ │                         // in practice because I'm lazy.
    ///  │ │
    ///  │ │← x.source_info.scope
    ///  │ │← `x.parse().unwrap()`
    ///  │ │
    ///  │ │ │← y.source_info.scope
    ///  │ │
    ///  │ │ │{ let y: u32 }
    ///  │ │ │
    ///  │ │ │← y.var_debug_info.source_info.scope
    ///  │ │ │← `y + 2`
    ///  │
    ///  │ │{ let x: u32 }
    ///  │ │← x.var_debug_info.source_info.scope
    ///  │ │← `drop(x)` // This accesses `x: u32`.
    /// ```
    pub source_info: SourceInfo,
}

/// Extra information about a some locals that's used for diagnostics and for
/// classifying variables into local variables, statics, etc, which is needed e.g.
/// for borrow checking.
///
/// Not used for non-StaticRef temporaries, the return place, or anonymous
/// function parameters.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub enum LocalInfo<'tcx> {
    /// A user-defined local variable or function parameter
    ///
    /// The `BindingForm` is solely used for local diagnostics when generating
    /// warnings/errors when compiling the current crate, and therefore it need
    /// not be visible across crates.
    User(BindingForm<'tcx>),
    /// A temporary created that references the static with the given `DefId`.
    StaticRef { def_id: DefId, is_thread_local: bool },
    /// A temporary created that references the const with the given `DefId`
    ConstRef { def_id: DefId },
    /// A temporary created during the creation of an aggregate
    /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
    AggregateTemp,
    /// A temporary created for evaluation of some subexpression of some block's tail expression
    /// (with no intervening statement context).
    // FIXME(matthewjasper) Don't store in this in `Body`
    BlockTailTemp(BlockTailInfo),
    /// A temporary created during evaluating `if` predicate, possibly for pattern matching for `let`s,
    /// and subject to Edition 2024 temporary lifetime rules
    IfThenRescopeTemp { if_then: HirId },
    /// A temporary created during the pass `Derefer` to avoid it's retagging
    DerefTemp,
    /// A temporary created for borrow checking.
    FakeBorrow,
    /// A local without anything interesting about it.
    Boring,
}

impl<'tcx> LocalDecl<'tcx> {
    pub fn local_info(&self) -> &LocalInfo<'tcx> {
        self.local_info.as_ref().assert_crate_local()
    }

    /// Returns `true` only if local is a binding that can itself be
    /// made mutable via the addition of the `mut` keyword, namely
    /// something like the occurrences of `x` in:
    /// - `fn foo(x: Type) { ... }`,
    /// - `let x = ...`,
    /// - or `match ... { C(x) => ... }`
    pub fn can_be_made_mutable(&self) -> bool {
        matches!(
            self.local_info(),
            LocalInfo::User(
                BindingForm::Var(VarBindingForm {
                    binding_mode: BindingMode(ByRef::No, _),
                    opt_ty_info: _,
                    opt_match_place: _,
                    pat_span: _,
                }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
            )
        )
    }

    /// Returns `true` if local is definitely not a `ref ident` or
    /// `ref mut ident` binding. (Such bindings cannot be made into
    /// mutable bindings, but the inverse does not necessarily hold).
    pub fn is_nonref_binding(&self) -> bool {
        matches!(
            self.local_info(),
            LocalInfo::User(
                BindingForm::Var(VarBindingForm {
                    binding_mode: BindingMode(ByRef::No, _),
                    opt_ty_info: _,
                    opt_match_place: _,
                    pat_span: _,
                }) | BindingForm::ImplicitSelf(_),
            )
        )
    }

    /// Returns `true` if this variable is a named variable or function
    /// parameter declared by the user.
    #[inline]
    pub fn is_user_variable(&self) -> bool {
        matches!(self.local_info(), LocalInfo::User(_))
    }

    /// Returns `true` if this is a reference to a variable bound in a `match`
    /// expression that is used to access said variable for the guard of the
    /// match arm.
    pub fn is_ref_for_guard(&self) -> bool {
        matches!(self.local_info(), LocalInfo::User(BindingForm::RefForGuard))
    }

    /// Returns `Some` if this is a reference to a static item that is used to
    /// access that static.
    pub fn is_ref_to_static(&self) -> bool {
        matches!(self.local_info(), LocalInfo::StaticRef { .. })
    }

    /// Returns `Some` if this is a reference to a thread-local static item that is used to
    /// access that static.
    pub fn is_ref_to_thread_local(&self) -> bool {
        match self.local_info() {
            LocalInfo::StaticRef { is_thread_local, .. } => *is_thread_local,
            _ => false,
        }
    }

    /// Returns `true` if this is a DerefTemp
    pub fn is_deref_temp(&self) -> bool {
        match self.local_info() {
            LocalInfo::DerefTemp => true,
            _ => false,
        }
    }

    /// Returns `true` is the local is from a compiler desugaring, e.g.,
    /// `__next` from a `for` loop.
    #[inline]
    pub fn from_compiler_desugaring(&self) -> bool {
        self.source_info.span.desugaring_kind().is_some()
    }

    /// Creates a new `LocalDecl` for a temporary, mutable.
    #[inline]
    pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
        Self::with_source_info(ty, SourceInfo::outermost(span))
    }

    /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
    #[inline]
    pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
        LocalDecl {
            mutability: Mutability::Mut,
            local_info: ClearCrossCrate::Set(Box::new(LocalInfo::Boring)),
            ty,
            user_ty: None,
            source_info,
        }
    }

    /// Converts `self` into same `LocalDecl` except tagged as immutable.
    #[inline]
    pub fn immutable(mut self) -> Self {
        self.mutability = Mutability::Not;
        self
    }
}

#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub enum VarDebugInfoContents<'tcx> {
    /// This `Place` only contains projection which satisfy `can_use_in_debuginfo`.
    Place(Place<'tcx>),
    Const(ConstOperand<'tcx>),
}

impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        match self {
            VarDebugInfoContents::Const(c) => write!(fmt, "{c}"),
            VarDebugInfoContents::Place(p) => write!(fmt, "{p:?}"),
        }
    }
}

#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct VarDebugInfoFragment<'tcx> {
    /// Type of the original user variable.
    /// This cannot contain a union or an enum.
    pub ty: Ty<'tcx>,

    /// Where in the composite user variable this fragment is,
    /// represented as a "projection" into the composite variable.
    /// At lower levels, this corresponds to a byte/bit range.
    ///
    /// This can only contain `PlaceElem::Field`.
    // FIXME support this for `enum`s by either using DWARF's
    // more advanced control-flow features (unsupported by LLVM?)
    // to match on the discriminant, or by using custom type debuginfo
    // with non-overlapping variants for the composite variable.
    pub projection: Vec<PlaceElem<'tcx>>,
}

/// Debug information pertaining to a user variable.
#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct VarDebugInfo<'tcx> {
    pub name: Symbol,

    /// Source info of the user variable, including the scope
    /// within which the variable is visible (to debuginfo)
    /// (see `LocalDecl`'s `source_info` field for more details).
    pub source_info: SourceInfo,

    /// The user variable's data is split across several fragments,
    /// each described by a `VarDebugInfoFragment`.
    /// See DWARF 5's "2.6.1.2 Composite Location Descriptions"
    /// and LLVM's `DW_OP_LLVM_fragment` for more details on
    /// the underlying debuginfo feature this relies on.
    pub composite: Option<Box<VarDebugInfoFragment<'tcx>>>,

    /// Where the data for this user variable is to be found.
    pub value: VarDebugInfoContents<'tcx>,

    /// When present, indicates what argument number this variable is in the function that it
    /// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
    /// argument number in the original function before it was inlined.
    pub argument_index: Option<u16>,
}

///////////////////////////////////////////////////////////////////////////
// BasicBlock

rustc_index::newtype_index! {
    /// A node in the MIR [control-flow graph][CFG].
    ///
    /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
    /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
    /// as an edge in a graph between basic blocks.
    ///
    /// Basic blocks consist of a series of [statements][Statement], ending with a
    /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
    /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
    /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
    /// needed because some analyses require that there are no critical edges in the CFG.
    ///
    /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
    /// the actual data that a basic block holds is in [`BasicBlockData`].
    ///
    /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
    ///
    /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
    /// [data-flow analyses]:
    ///     https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
    /// [`CriticalCallEdges`]: ../../rustc_mir_transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
    /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
    #[derive(HashStable)]
    #[encodable]
    #[orderable]
    #[debug_format = "bb{}"]
    pub struct BasicBlock {
        const START_BLOCK = 0;
    }
}

impl BasicBlock {
    pub fn start_location(self) -> Location {
        Location { block: self, statement_index: 0 }
    }
}

///////////////////////////////////////////////////////////////////////////
// BasicBlockData

/// Data for a basic block, including a list of its statements.
///
/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct BasicBlockData<'tcx> {
    /// List of statements in this block.
    pub statements: Vec<Statement<'tcx>>,

    /// Terminator for this block.
    ///
    /// N.B., this should generally ONLY be `None` during construction.
    /// Therefore, you should generally access it via the
    /// `terminator()` or `terminator_mut()` methods. The only
    /// exception is that certain passes, such as `simplify_cfg`, swap
    /// out the terminator temporarily with `None` while they continue
    /// to recurse over the set of basic blocks.
    pub terminator: Option<Terminator<'tcx>>,

    /// If true, this block lies on an unwind path. This is used
    /// during codegen where distinct kinds of basic blocks may be
    /// generated (particularly for MSVC cleanup). Unwind blocks must
    /// only branch to other unwind blocks.
    pub is_cleanup: bool,
}

impl<'tcx> BasicBlockData<'tcx> {
    pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> {
        BasicBlockData { statements: vec![], terminator, is_cleanup: false }
    }

    /// Accessor for terminator.
    ///
    /// Terminator may not be None after construction of the basic block is complete. This accessor
    /// provides a convenient way to reach the terminator.
    #[inline]
    pub fn terminator(&self) -> &Terminator<'tcx> {
        self.terminator.as_ref().expect("invalid terminator state")
    }

    #[inline]
    pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
        self.terminator.as_mut().expect("invalid terminator state")
    }

    pub fn retain_statements<F>(&mut self, mut f: F)
    where
        F: FnMut(&mut Statement<'_>) -> bool,
    {
        for s in &mut self.statements {
            if !f(s) {
                s.make_nop();
            }
        }
    }

    pub fn expand_statements<F, I>(&mut self, mut f: F)
    where
        F: FnMut(&mut Statement<'tcx>) -> Option<I>,
        I: iter::TrustedLen<Item = Statement<'tcx>>,
    {
        // Gather all the iterators we'll need to splice in, and their positions.
        let mut splices: Vec<(usize, I)> = vec![];
        let mut extra_stmts = 0;
        for (i, s) in self.statements.iter_mut().enumerate() {
            if let Some(mut new_stmts) = f(s) {
                if let Some(first) = new_stmts.next() {
                    // We can already store the first new statement.
                    *s = first;

                    // Save the other statements for optimized splicing.
                    let remaining = new_stmts.size_hint().0;
                    if remaining > 0 {
                        splices.push((i + 1 + extra_stmts, new_stmts));
                        extra_stmts += remaining;
                    }
                } else {
                    s.make_nop();
                }
            }
        }

        // Splice in the new statements, from the end of the block.
        // FIXME(eddyb) This could be more efficient with a "gap buffer"
        // where a range of elements ("gap") is left uninitialized, with
        // splicing adding new elements to the end of that gap and moving
        // existing elements from before the gap to the end of the gap.
        // For now, this is safe code, emulating a gap but initializing it.
        let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
        self.statements.resize(gap.end, Statement {
            source_info: SourceInfo::outermost(DUMMY_SP),
            kind: StatementKind::Nop,
        });
        for (splice_start, new_stmts) in splices.into_iter().rev() {
            let splice_end = splice_start + new_stmts.size_hint().0;
            while gap.end > splice_end {
                gap.start -= 1;
                gap.end -= 1;
                self.statements.swap(gap.start, gap.end);
            }
            self.statements.splice(splice_start..splice_end, new_stmts);
            gap.end = splice_start;
        }
    }

    pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
        if index < self.statements.len() { &self.statements[index] } else { &self.terminator }
    }

    /// Does the block have no statements and an unreachable terminator?
    #[inline]
    pub fn is_empty_unreachable(&self) -> bool {
        self.statements.is_empty() && matches!(self.terminator().kind, TerminatorKind::Unreachable)
    }

    /// Like [`Terminator::successors`] but tries to use information available from the [`Instance`]
    /// to skip successors like the `false` side of an `if const {`.
    ///
    /// This is used to implement [`traversal::mono_reachable`] and
    /// [`traversal::mono_reachable_reverse_postorder`].
    pub fn mono_successors(&self, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Successors<'_> {
        if let Some((bits, targets)) = Body::try_const_mono_switchint(tcx, instance, self) {
            targets.successors_for_value(bits)
        } else {
            self.terminator().successors()
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Scopes

rustc_index::newtype_index! {
    #[derive(HashStable)]
    #[encodable]
    #[debug_format = "scope[{}]"]
    pub struct SourceScope {
        const OUTERMOST_SOURCE_SCOPE = 0;
    }
}

impl SourceScope {
    /// Finds the original HirId this MIR item came from.
    /// This is necessary after MIR optimizations, as otherwise we get a HirId
    /// from the function that was inlined instead of the function call site.
    pub fn lint_root(
        self,
        source_scopes: &IndexSlice<SourceScope, SourceScopeData<'_>>,
    ) -> Option<HirId> {
        let mut data = &source_scopes[self];
        // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
        // does not work as I thought it would. Needs more investigation and documentation.
        while data.inlined.is_some() {
            trace!(?data);
            data = &source_scopes[data.parent_scope.unwrap()];
        }
        trace!(?data);
        match &data.local_data {
            ClearCrossCrate::Set(data) => Some(data.lint_root),
            ClearCrossCrate::Clear => None,
        }
    }

    /// The instance this source scope was inlined from, if any.
    #[inline]
    pub fn inlined_instance<'tcx>(
        self,
        source_scopes: &IndexSlice<SourceScope, SourceScopeData<'tcx>>,
    ) -> Option<ty::Instance<'tcx>> {
        let scope_data = &source_scopes[self];
        if let Some((inlined_instance, _)) = scope_data.inlined {
            Some(inlined_instance)
        } else if let Some(inlined_scope) = scope_data.inlined_parent_scope {
            Some(source_scopes[inlined_scope].inlined.unwrap().0)
        } else {
            None
        }
    }
}

#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct SourceScopeData<'tcx> {
    pub span: Span,
    pub parent_scope: Option<SourceScope>,

    /// Whether this scope is the root of a scope tree of another body,
    /// inlined into this body by the MIR inliner.
    /// `ty::Instance` is the callee, and the `Span` is the call site.
    pub inlined: Option<(ty::Instance<'tcx>, Span)>,

    /// Nearest (transitive) parent scope (if any) which is inlined.
    /// This is an optimization over walking up `parent_scope`
    /// until a scope with `inlined: Some(...)` is found.
    pub inlined_parent_scope: Option<SourceScope>,

    /// Crate-local information for this source scope, that can't (and
    /// needn't) be tracked across crates.
    pub local_data: ClearCrossCrate<SourceScopeLocalData>,
}

#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct SourceScopeLocalData {
    /// An `HirId` with lint levels equivalent to this scope's lint levels.
    pub lint_root: HirId,
}

/// A collection of projections into user types.
///
/// They are projections because a binding can occur a part of a
/// parent pattern that has been ascribed a type.
///
/// It's a collection because there can be multiple type ascriptions on
/// the path from the root of the pattern down to the binding itself.
///
/// An example:
///
/// ```ignore (illustrative)
/// struct S<'a>((i32, &'a str), String);
/// let S((_, w): (i32, &'static str), _): S = ...;
/// //    ------  ^^^^^^^^^^^^^^^^^^^ (1)
/// //  ---------------------------------  ^ (2)
/// ```
///
/// The highlights labelled `(1)` show the subpattern `(_, w)` being
/// ascribed the type `(i32, &'static str)`.
///
/// The highlights labelled `(2)` show the whole pattern being
/// ascribed the type `S`.
///
/// In this example, when we descend to `w`, we will have built up the
/// following two projected types:
///
///   * base: `S`,                   projection: `(base.0).1`
///   * base: `(i32, &'static str)`, projection: `base.1`
///
/// The first will lead to the constraint `w: &'1 str` (for some
/// inferred region `'1`). The second will lead to the constraint `w:
/// &'static str`.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct UserTypeProjections {
    pub contents: Vec<(UserTypeProjection, Span)>,
}

impl<'tcx> UserTypeProjections {
    pub fn none() -> Self {
        UserTypeProjections { contents: vec![] }
    }

    pub fn is_empty(&self) -> bool {
        self.contents.is_empty()
    }

    pub fn projections_and_spans(
        &self,
    ) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator {
        self.contents.iter()
    }

    pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
        self.contents.iter().map(|&(ref user_type, _span)| user_type)
    }

    pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self {
        self.contents.push((user_ty.clone(), span));
        self
    }

    fn map_projections(
        mut self,
        mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection,
    ) -> Self {
        self.contents = self.contents.into_iter().map(|(proj, span)| (f(proj), span)).collect();
        self
    }

    pub fn index(self) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.index())
    }

    pub fn subslice(self, from: u64, to: u64) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
    }

    pub fn deref(self) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
    }

    pub fn leaf(self, field: FieldIdx) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
    }

    pub fn variant(
        self,
        adt_def: AdtDef<'tcx>,
        variant_index: VariantIdx,
        field_index: FieldIdx,
    ) -> Self {
        self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field_index))
    }
}

/// Encodes the effect of a user-supplied type annotation on the
/// subcomponents of a pattern. The effect is determined by applying the
/// given list of projections to some underlying base type. Often,
/// the projection element list `projs` is empty, in which case this
/// directly encodes a type in `base`. But in the case of complex patterns with
/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
/// in which case the `projs` vector is used.
///
/// Examples:
///
/// * `let x: T = ...` -- here, the `projs` vector is empty.
///
/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
///   `field[0]` (aka `.0`), indicating that the type of `s` is
///   determined by finding the type of the `.0` field from `T`.
#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct UserTypeProjection {
    pub base: UserTypeAnnotationIndex,
    pub projs: Vec<ProjectionKind>,
}

impl UserTypeProjection {
    pub(crate) fn index(mut self) -> Self {
        self.projs.push(ProjectionElem::Index(()));
        self
    }

    pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self {
        self.projs.push(ProjectionElem::Subslice { from, to, from_end: true });
        self
    }

    pub(crate) fn deref(mut self) -> Self {
        self.projs.push(ProjectionElem::Deref);
        self
    }

    pub(crate) fn leaf(mut self, field: FieldIdx) -> Self {
        self.projs.push(ProjectionElem::Field(field, ()));
        self
    }

    pub(crate) fn variant(
        mut self,
        adt_def: AdtDef<'_>,
        variant_index: VariantIdx,
        field_index: FieldIdx,
    ) -> Self {
        self.projs.push(ProjectionElem::Downcast(
            Some(adt_def.variant(variant_index).name),
            variant_index,
        ));
        self.projs.push(ProjectionElem::Field(field_index, ()));
        self
    }
}

rustc_index::newtype_index! {
    #[derive(HashStable)]
    #[encodable]
    #[orderable]
    #[debug_format = "promoted[{}]"]
    pub struct Promoted {}
}

/// `Location` represents the position of the start of the statement; or, if
/// `statement_index` equals the number of statements, then the start of the
/// terminator.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
pub struct Location {
    /// The block that the location is within.
    pub block: BasicBlock,

    pub statement_index: usize,
}

impl fmt::Debug for Location {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "{:?}[{}]", self.block, self.statement_index)
    }
}

impl Location {
    pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };

    /// Returns the location immediately after this one within the enclosing block.
    ///
    /// Note that if this location represents a terminator, then the
    /// resulting location would be out of bounds and invalid.
    #[inline]
    pub fn successor_within_block(&self) -> Location {
        Location { block: self.block, statement_index: self.statement_index + 1 }
    }

    /// Returns `true` if `other` is earlier in the control flow graph than `self`.
    pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
        // If we are in the same block as the other location and are an earlier statement
        // then we are a predecessor of `other`.
        if self.block == other.block && self.statement_index < other.statement_index {
            return true;
        }

        let predecessors = body.basic_blocks.predecessors();

        // If we're in another block, then we want to check that block is a predecessor of `other`.
        let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
        let mut visited = FxHashSet::default();

        while let Some(block) = queue.pop() {
            // If we haven't visited this block before, then make sure we visit its predecessors.
            if visited.insert(block) {
                queue.extend(predecessors[block].iter().cloned());
            } else {
                continue;
            }

            // If we found the block that `self` is in, then we are a predecessor of `other` (since
            // we found that block by looking at the predecessors of `other`).
            if self.block == block {
                return true;
            }
        }

        false
    }

    #[inline]
    pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
        if self.block == other.block {
            self.statement_index <= other.statement_index
        } else {
            dominators.dominates(self.block, other.block)
        }
    }
}

/// `DefLocation` represents the location of a definition - either an argument or an assignment
/// within MIR body.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DefLocation {
    Argument,
    Assignment(Location),
    CallReturn { call: BasicBlock, target: Option<BasicBlock> },
}

impl DefLocation {
    #[inline]
    pub fn dominates(self, location: Location, dominators: &Dominators<BasicBlock>) -> bool {
        match self {
            DefLocation::Argument => true,
            DefLocation::Assignment(def) => {
                def.successor_within_block().dominates(location, dominators)
            }
            DefLocation::CallReturn { target: None, .. } => false,
            DefLocation::CallReturn { call, target: Some(target) } => {
                // The definition occurs on the call -> target edge. The definition dominates a use
                // if and only if the edge is on all paths from the entry to the use.
                //
                // Note that a call terminator has only one edge that can reach the target, so when
                // the call strongly dominates the target, all paths from the entry to the target
                // go through the call -> target edge.
                call != target
                    && dominators.dominates(call, target)
                    && dominators.dominates(target, location.block)
            }
        }
    }
}

// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
    use rustc_data_structures::static_assert_size;

    use super::*;
    // tidy-alphabetical-start
    static_assert_size!(BasicBlockData<'_>, 128);
    static_assert_size!(LocalDecl<'_>, 40);
    static_assert_size!(SourceScopeData<'_>, 64);
    static_assert_size!(Statement<'_>, 32);
    static_assert_size!(Terminator<'_>, 96);
    static_assert_size!(VarDebugInfo<'_>, 88);
    // tidy-alphabetical-end
}