rustc_infer/infer/
type_variable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
use std::cmp;
use std::marker::PhantomData;
use std::ops::Range;

use rustc_data_structures::undo_log::Rollback;
use rustc_data_structures::{snapshot_vec as sv, unify as ut};
use rustc_hir::def_id::DefId;
use rustc_index::IndexVec;
use rustc_middle::bug;
use rustc_middle::ty::{self, Ty, TyVid};
use rustc_span::Span;
use tracing::debug;

use crate::infer::InferCtxtUndoLogs;

impl<'tcx> Rollback<sv::UndoLog<ut::Delegate<TyVidEqKey<'tcx>>>> for TypeVariableStorage<'tcx> {
    fn reverse(&mut self, undo: sv::UndoLog<ut::Delegate<TyVidEqKey<'tcx>>>) {
        self.eq_relations.reverse(undo)
    }
}

#[derive(Clone, Default)]
pub(crate) struct TypeVariableStorage<'tcx> {
    /// The origins of each type variable.
    values: IndexVec<TyVid, TypeVariableData>,
    /// Two variables are unified in `eq_relations` when we have a
    /// constraint `?X == ?Y`. This table also stores, for each key,
    /// the known value.
    eq_relations: ut::UnificationTableStorage<TyVidEqKey<'tcx>>,
}

pub(crate) struct TypeVariableTable<'a, 'tcx> {
    storage: &'a mut TypeVariableStorage<'tcx>,

    undo_log: &'a mut InferCtxtUndoLogs<'tcx>,
}

#[derive(Copy, Clone, Debug)]
pub struct TypeVariableOrigin {
    pub span: Span,
    /// `DefId` of the type parameter this was instantiated for, if any.
    ///
    /// This should only be used for diagnostics.
    pub param_def_id: Option<DefId>,
}

#[derive(Clone)]
pub(crate) struct TypeVariableData {
    origin: TypeVariableOrigin,
}

#[derive(Copy, Clone, Debug)]
pub(crate) enum TypeVariableValue<'tcx> {
    Known { value: Ty<'tcx> },
    Unknown { universe: ty::UniverseIndex },
}

impl<'tcx> TypeVariableValue<'tcx> {
    /// If this value is known, returns the type it is known to be.
    /// Otherwise, `None`.
    pub(crate) fn known(&self) -> Option<Ty<'tcx>> {
        match *self {
            TypeVariableValue::Unknown { .. } => None,
            TypeVariableValue::Known { value } => Some(value),
        }
    }

    pub(crate) fn is_unknown(&self) -> bool {
        match *self {
            TypeVariableValue::Unknown { .. } => true,
            TypeVariableValue::Known { .. } => false,
        }
    }
}

impl<'tcx> TypeVariableStorage<'tcx> {
    #[inline]
    pub(crate) fn with_log<'a>(
        &'a mut self,
        undo_log: &'a mut InferCtxtUndoLogs<'tcx>,
    ) -> TypeVariableTable<'a, 'tcx> {
        TypeVariableTable { storage: self, undo_log }
    }

    #[inline]
    pub(crate) fn eq_relations_ref(&self) -> &ut::UnificationTableStorage<TyVidEqKey<'tcx>> {
        &self.eq_relations
    }

    pub(super) fn finalize_rollback(&mut self) {
        debug_assert!(self.values.len() >= self.eq_relations.len());
        self.values.truncate(self.eq_relations.len());
    }
}

impl<'tcx> TypeVariableTable<'_, 'tcx> {
    /// Returns the origin that was given when `vid` was created.
    ///
    /// Note that this function does not return care whether
    /// `vid` has been unified with something else or not.
    pub(crate) fn var_origin(&self, vid: ty::TyVid) -> TypeVariableOrigin {
        self.storage.values[vid].origin
    }

    /// Records that `a == b`, depending on `dir`.
    ///
    /// Precondition: neither `a` nor `b` are known.
    pub(crate) fn equate(&mut self, a: ty::TyVid, b: ty::TyVid) {
        debug_assert!(self.probe(a).is_unknown());
        debug_assert!(self.probe(b).is_unknown());
        self.eq_relations().union(a, b);
    }

    /// Instantiates `vid` with the type `ty`.
    ///
    /// Precondition: `vid` must not have been previously instantiated.
    pub(crate) fn instantiate(&mut self, vid: ty::TyVid, ty: Ty<'tcx>) {
        let vid = self.root_var(vid);
        debug_assert!(!ty.is_ty_var(), "instantiating ty var with var: {vid:?} {ty:?}");
        debug_assert!(self.probe(vid).is_unknown());
        debug_assert!(
            self.eq_relations().probe_value(vid).is_unknown(),
            "instantiating type variable `{vid:?}` twice: new-value = {ty:?}, old-value={:?}",
            self.eq_relations().probe_value(vid)
        );
        self.eq_relations().union_value(vid, TypeVariableValue::Known { value: ty });
    }

    /// Creates a new type variable.
    ///
    /// - `diverging`: indicates if this is a "diverging" type
    ///   variable, e.g.,  one created as the type of a `return`
    ///   expression. The code in this module doesn't care if a
    ///   variable is diverging, but the main Rust type-checker will
    ///   sometimes "unify" such variables with the `!` or `()` types.
    /// - `origin`: indicates *why* the type variable was created.
    ///   The code in this module doesn't care, but it can be useful
    ///   for improving error messages.
    pub(crate) fn new_var(
        &mut self,
        universe: ty::UniverseIndex,
        origin: TypeVariableOrigin,
    ) -> ty::TyVid {
        let eq_key = self.eq_relations().new_key(TypeVariableValue::Unknown { universe });
        let index = self.storage.values.push(TypeVariableData { origin });
        debug_assert_eq!(eq_key.vid, index);

        debug!("new_var(index={:?}, universe={:?}, origin={:?})", eq_key.vid, universe, origin);

        index
    }

    /// Returns the number of type variables created thus far.
    pub(crate) fn num_vars(&self) -> usize {
        self.storage.values.len()
    }

    /// Returns the "root" variable of `vid` in the `eq_relations`
    /// equivalence table. All type variables that have been equated
    /// will yield the same root variable (per the union-find
    /// algorithm), so `root_var(a) == root_var(b)` implies that `a ==
    /// b` (transitively).
    pub(crate) fn root_var(&mut self, vid: ty::TyVid) -> ty::TyVid {
        self.eq_relations().find(vid).vid
    }

    /// Retrieves the type to which `vid` has been instantiated, if
    /// any.
    pub(crate) fn probe(&mut self, vid: ty::TyVid) -> TypeVariableValue<'tcx> {
        self.inlined_probe(vid)
    }

    /// An always-inlined variant of `probe`, for very hot call sites.
    #[inline(always)]
    pub(crate) fn inlined_probe(&mut self, vid: ty::TyVid) -> TypeVariableValue<'tcx> {
        self.eq_relations().inlined_probe_value(vid)
    }

    #[inline]
    fn eq_relations(&mut self) -> super::UnificationTable<'_, 'tcx, TyVidEqKey<'tcx>> {
        self.storage.eq_relations.with_log(self.undo_log)
    }

    /// Returns a range of the type variables created during the snapshot.
    pub(crate) fn vars_since_snapshot(
        &mut self,
        value_count: usize,
    ) -> (Range<TyVid>, Vec<TypeVariableOrigin>) {
        let range = TyVid::from_usize(value_count)..TyVid::from_usize(self.num_vars());
        (range.clone(), range.map(|index| self.var_origin(index)).collect())
    }

    /// Returns indices of all variables that are not yet
    /// instantiated.
    pub(crate) fn unresolved_variables(&mut self) -> Vec<ty::TyVid> {
        (0..self.num_vars())
            .filter_map(|i| {
                let vid = ty::TyVid::from_usize(i);
                match self.probe(vid) {
                    TypeVariableValue::Unknown { .. } => Some(vid),
                    TypeVariableValue::Known { .. } => None,
                }
            })
            .collect()
    }
}

///////////////////////////////////////////////////////////////////////////

/// These structs (a newtyped TyVid) are used as the unification key
/// for the `eq_relations`; they carry a `TypeVariableValue` along
/// with them.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) struct TyVidEqKey<'tcx> {
    vid: ty::TyVid,

    // in the table, we map each ty-vid to one of these:
    phantom: PhantomData<TypeVariableValue<'tcx>>,
}

impl<'tcx> From<ty::TyVid> for TyVidEqKey<'tcx> {
    #[inline] // make this function eligible for inlining - it is quite hot.
    fn from(vid: ty::TyVid) -> Self {
        TyVidEqKey { vid, phantom: PhantomData }
    }
}

impl<'tcx> ut::UnifyKey for TyVidEqKey<'tcx> {
    type Value = TypeVariableValue<'tcx>;
    #[inline(always)]
    fn index(&self) -> u32 {
        self.vid.as_u32()
    }
    #[inline]
    fn from_index(i: u32) -> Self {
        TyVidEqKey::from(ty::TyVid::from_u32(i))
    }
    fn tag() -> &'static str {
        "TyVidEqKey"
    }
}

impl<'tcx> ut::UnifyValue for TypeVariableValue<'tcx> {
    type Error = ut::NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, ut::NoError> {
        match (value1, value2) {
            // We never equate two type variables, both of which
            // have known types. Instead, we recursively equate
            // those types.
            (&TypeVariableValue::Known { .. }, &TypeVariableValue::Known { .. }) => {
                bug!("equating two type variables, both of which have known types")
            }

            // If one side is known, prefer that one.
            (&TypeVariableValue::Known { .. }, &TypeVariableValue::Unknown { .. }) => Ok(*value1),
            (&TypeVariableValue::Unknown { .. }, &TypeVariableValue::Known { .. }) => Ok(*value2),

            // If both sides are *unknown*, it hardly matters, does it?
            (
                &TypeVariableValue::Unknown { universe: universe1 },
                &TypeVariableValue::Unknown { universe: universe2 },
            ) => {
                // If we unify two unbound variables, ?T and ?U, then whatever
                // value they wind up taking (which must be the same value) must
                // be nameable by both universes. Therefore, the resulting
                // universe is the minimum of the two universes, because that is
                // the one which contains the fewest names in scope.
                let universe = cmp::min(universe1, universe2);
                Ok(TypeVariableValue::Unknown { universe })
            }
        }
    }
}