rustc_pattern_analysis/pat_column.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
use crate::constructor::{Constructor, SplitConstructorSet};
use crate::pat::{DeconstructedPat, PatOrWild};
use crate::{Captures, MatchArm, PatCx};
/// A column of patterns in a match, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue/place".
/// This is used to traverse patterns column-by-column for lints. Despite similarities with the
/// algorithm in [`crate::usefulness`], this does a different traversal. Notably this is linear in
/// the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case exponential
/// (exhaustiveness is NP-complete). The core difference is that we treat sub-columns separately.
///
/// This is not used in the usefulness algorithm; only in lints.
#[derive(Debug)]
pub struct PatternColumn<'p, Cx: PatCx> {
/// This must not contain an or-pattern. `expand_and_push` takes care to expand them.
patterns: Vec<&'p DeconstructedPat<Cx>>,
}
impl<'p, Cx: PatCx> PatternColumn<'p, Cx> {
pub fn new(arms: &[MatchArm<'p, Cx>]) -> Self {
let patterns = Vec::with_capacity(arms.len());
let mut column = PatternColumn { patterns };
for arm in arms {
column.expand_and_push(PatOrWild::Pat(arm.pat));
}
column
}
/// Pushes a pattern onto the column, expanding any or-patterns into its subpatterns.
/// Internal method, prefer [`PatternColumn::new`].
fn expand_and_push(&mut self, pat: PatOrWild<'p, Cx>) {
// We flatten or-patterns and skip algorithm-generated wildcards.
if pat.is_or_pat() {
self.patterns.extend(
pat.flatten_or_pat().into_iter().filter_map(|pat_or_wild| pat_or_wild.as_pat()),
)
} else if let Some(pat) = pat.as_pat() {
self.patterns.push(pat)
}
}
pub fn head_ty(&self) -> Option<&Cx::Ty> {
self.patterns.first().map(|pat| pat.ty())
}
pub fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<Cx>> + Captures<'a> {
self.patterns.iter().copied()
}
/// Do constructor splitting on the constructors of the column.
pub fn analyze_ctors(
&self,
cx: &Cx,
ty: &Cx::Ty,
) -> Result<SplitConstructorSet<Cx>, Cx::Error> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
let ctors_for_ty = cx.ctors_for_ty(ty)?;
Ok(ctors_for_ty.split(column_ctors))
}
/// Does specialization: given a constructor, this takes the patterns from the column that match
/// the constructor, and outputs their fields.
/// This returns one column per field of the constructor. They usually all have the same length
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
/// which may change the lengths.
pub fn specialize(
&self,
cx: &Cx,
ty: &Cx::Ty,
ctor: &Constructor<Cx>,
) -> Vec<PatternColumn<'p, Cx>> {
let arity = ctor.arity(cx, ty);
if arity == 0 {
return Vec::new();
}
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
// columns may have different lengths in the presence of or-patterns (this is why we can't
// reuse `Matrix`).
let mut specialized_columns: Vec<_> =
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
let relevant_patterns =
self.patterns.iter().filter(|pat| ctor.is_covered_by(cx, pat.ctor()).unwrap_or(false));
for pat in relevant_patterns {
let specialized = pat.specialize(ctor, arity);
for (subpat, column) in specialized.into_iter().zip(&mut specialized_columns) {
column.expand_and_push(subpat);
}
}
specialized_columns
}
}