rustc_expand/mbe/transcribe.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
use std::mem;
use rustc_ast::ExprKind;
use rustc_ast::mut_visit::{self, MutVisitor};
use rustc_ast::token::{self, Delimiter, IdentIsRaw, Lit, LitKind, Nonterminal, Token, TokenKind};
use rustc_ast::tokenstream::{DelimSpacing, DelimSpan, Spacing, TokenStream, TokenTree};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use rustc_errors::{Diag, DiagCtxtHandle, PResult, pluralize};
use rustc_parse::lexer::nfc_normalize;
use rustc_parse::parser::ParseNtResult;
use rustc_session::parse::{ParseSess, SymbolGallery};
use rustc_span::hygiene::{LocalExpnId, Transparency};
use rustc_span::symbol::{Ident, MacroRulesNormalizedIdent, sym};
use rustc_span::{Span, Symbol, SyntaxContext, with_metavar_spans};
use smallvec::{SmallVec, smallvec};
use crate::errors::{
CountRepetitionMisplaced, MetaVarExprUnrecognizedVar, MetaVarsDifSeqMatchers, MustRepeatOnce,
NoSyntaxVarsExprRepeat, VarStillRepeating,
};
use crate::mbe::macro_parser::NamedMatch;
use crate::mbe::macro_parser::NamedMatch::*;
use crate::mbe::metavar_expr::{MetaVarExprConcatElem, RAW_IDENT_ERR};
use crate::mbe::{self, KleeneOp, MetaVarExpr};
// A Marker adds the given mark to the syntax context.
struct Marker(LocalExpnId, Transparency, FxHashMap<SyntaxContext, SyntaxContext>);
impl MutVisitor for Marker {
const VISIT_TOKENS: bool = true;
fn visit_span(&mut self, span: &mut Span) {
// `apply_mark` is a relatively expensive operation, both due to taking hygiene lock, and
// by itself. All tokens in a macro body typically have the same syntactic context, unless
// it's some advanced case with macro-generated macros. So if we cache the marked version
// of that context once, we'll typically have a 100% cache hit rate after that.
let Marker(expn_id, transparency, ref mut cache) = *self;
*span = span.map_ctxt(|ctxt| {
*cache
.entry(ctxt)
.or_insert_with(|| ctxt.apply_mark(expn_id.to_expn_id(), transparency))
});
}
}
/// An iterator over the token trees in a delimited token tree (`{ ... }`) or a sequence (`$(...)`).
struct Frame<'a> {
tts: &'a [mbe::TokenTree],
idx: usize,
kind: FrameKind,
}
enum FrameKind {
Delimited { delim: Delimiter, span: DelimSpan, spacing: DelimSpacing },
Sequence { sep: Option<Token>, kleene_op: KleeneOp },
}
impl<'a> Frame<'a> {
fn new_delimited(src: &'a mbe::Delimited, span: DelimSpan, spacing: DelimSpacing) -> Frame<'a> {
Frame {
tts: &src.tts,
idx: 0,
kind: FrameKind::Delimited { delim: src.delim, span, spacing },
}
}
fn new_sequence(
src: &'a mbe::SequenceRepetition,
sep: Option<Token>,
kleene_op: KleeneOp,
) -> Frame<'a> {
Frame { tts: &src.tts, idx: 0, kind: FrameKind::Sequence { sep, kleene_op } }
}
}
impl<'a> Iterator for Frame<'a> {
type Item = &'a mbe::TokenTree;
fn next(&mut self) -> Option<&'a mbe::TokenTree> {
let res = self.tts.get(self.idx);
self.idx += 1;
res
}
}
/// This can do Macro-By-Example transcription.
/// - `interp` is a map of meta-variables to the tokens (non-terminals) they matched in the
/// invocation. We are assuming we already know there is a match.
/// - `src` is the RHS of the MBE, that is, the "example" we are filling in.
///
/// For example,
///
/// ```rust
/// macro_rules! foo {
/// ($id:ident) => { println!("{}", stringify!($id)); }
/// }
///
/// foo!(bar);
/// ```
///
/// `interp` would contain `$id => bar` and `src` would contain `println!("{}", stringify!($id));`.
///
/// `transcribe` would return a `TokenStream` containing `println!("{}", stringify!(bar));`.
///
/// Along the way, we do some additional error checking.
pub(super) fn transcribe<'a>(
psess: &'a ParseSess,
interp: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
src: &mbe::Delimited,
src_span: DelimSpan,
transparency: Transparency,
expand_id: LocalExpnId,
) -> PResult<'a, TokenStream> {
// Nothing for us to transcribe...
if src.tts.is_empty() {
return Ok(TokenStream::default());
}
// We descend into the RHS (`src`), expanding things as we go. This stack contains the things
// we have yet to expand/are still expanding. We start the stack off with the whole RHS. The
// choice of spacing values doesn't matter.
let mut stack: SmallVec<[Frame<'_>; 1]> = smallvec![Frame::new_delimited(
src,
src_span,
DelimSpacing::new(Spacing::Alone, Spacing::Alone)
)];
// As we descend in the RHS, we will need to be able to match nested sequences of matchers.
// `repeats` keeps track of where we are in matching at each level, with the last element being
// the most deeply nested sequence. This is used as a stack.
let mut repeats: Vec<(usize, usize)> = Vec::new();
// `result` contains resulting token stream from the TokenTree we just finished processing. At
// the end, this will contain the full result of transcription, but at arbitrary points during
// `transcribe`, `result` will contain subsets of the final result.
//
// Specifically, as we descend into each TokenTree, we will push the existing results onto the
// `result_stack` and clear `results`. We will then produce the results of transcribing the
// TokenTree into `results`. Then, as we unwind back out of the `TokenTree`, we will pop the
// `result_stack` and append `results` too it to produce the new `results` up to that point.
//
// Thus, if we try to pop the `result_stack` and it is empty, we have reached the top-level
// again, and we are done transcribing.
let mut result: Vec<TokenTree> = Vec::new();
let mut result_stack = Vec::new();
let mut marker = Marker(expand_id, transparency, Default::default());
let dcx = psess.dcx();
loop {
// Look at the last frame on the stack.
// If it still has a TokenTree we have not looked at yet, use that tree.
let Some(tree) = stack.last_mut().unwrap().next() else {
// This else-case never produces a value for `tree` (it `continue`s or `return`s).
// Otherwise, if we have just reached the end of a sequence and we can keep repeating,
// go back to the beginning of the sequence.
let frame = stack.last_mut().unwrap();
if let FrameKind::Sequence { sep, .. } = &frame.kind {
let (repeat_idx, repeat_len) = repeats.last_mut().unwrap();
*repeat_idx += 1;
if repeat_idx < repeat_len {
frame.idx = 0;
if let Some(sep) = sep {
result.push(TokenTree::Token(sep.clone(), Spacing::Alone));
}
continue;
}
}
// We are done with the top of the stack. Pop it. Depending on what it was, we do
// different things. Note that the outermost item must be the delimited, wrapped RHS
// that was passed in originally to `transcribe`.
match stack.pop().unwrap().kind {
// Done with a sequence. Pop from repeats.
FrameKind::Sequence { .. } => {
repeats.pop();
}
// We are done processing a Delimited. If this is the top-level delimited, we are
// done. Otherwise, we unwind the result_stack to append what we have produced to
// any previous results.
FrameKind::Delimited { delim, span, mut spacing, .. } => {
// Hack to force-insert a space after `]` in certain case.
// See discussion of the `hex-literal` crate in #114571.
if delim == Delimiter::Bracket {
spacing.close = Spacing::Alone;
}
if result_stack.is_empty() {
// No results left to compute! We are back at the top-level.
return Ok(TokenStream::new(result));
}
// Step back into the parent Delimited.
let tree = TokenTree::Delimited(span, spacing, delim, TokenStream::new(result));
result = result_stack.pop().unwrap();
result.push(tree);
}
}
continue;
};
// At this point, we know we are in the middle of a TokenTree (the last one on `stack`).
// `tree` contains the next `TokenTree` to be processed.
match tree {
// We are descending into a sequence. We first make sure that the matchers in the RHS
// and the matches in `interp` have the same shape. Otherwise, either the caller or the
// macro writer has made a mistake.
seq @ mbe::TokenTree::Sequence(_, seq_rep) => {
match lockstep_iter_size(seq, interp, &repeats) {
LockstepIterSize::Unconstrained => {
return Err(dcx.create_err(NoSyntaxVarsExprRepeat { span: seq.span() }));
}
LockstepIterSize::Contradiction(msg) => {
// FIXME: this really ought to be caught at macro definition time... It
// happens when two meta-variables are used in the same repetition in a
// sequence, but they come from different sequence matchers and repeat
// different amounts.
return Err(
dcx.create_err(MetaVarsDifSeqMatchers { span: seq.span(), msg })
);
}
LockstepIterSize::Constraint(len, _) => {
// We do this to avoid an extra clone above. We know that this is a
// sequence already.
let mbe::TokenTree::Sequence(sp, seq) = seq else { unreachable!() };
// Is the repetition empty?
if len == 0 {
if seq.kleene.op == KleeneOp::OneOrMore {
// FIXME: this really ought to be caught at macro definition
// time... It happens when the Kleene operator in the matcher and
// the body for the same meta-variable do not match.
return Err(dcx.create_err(MustRepeatOnce { span: sp.entire() }));
}
} else {
// 0 is the initial counter (we have done 0 repetitions so far). `len`
// is the total number of repetitions we should generate.
repeats.push((0, len));
// The first time we encounter the sequence we push it to the stack. It
// then gets reused (see the beginning of the loop) until we are done
// repeating.
stack.push(Frame::new_sequence(
seq_rep,
seq.separator.clone(),
seq.kleene.op,
));
}
}
}
}
// Replace the meta-var with the matched token tree from the invocation.
mbe::TokenTree::MetaVar(mut sp, mut original_ident) => {
// Find the matched nonterminal from the macro invocation, and use it to replace
// the meta-var.
//
// We use `Spacing::Alone` everywhere here, because that's the conservative choice
// and spacing of declarative macros is tricky. E.g. in this macro:
// ```
// macro_rules! idents {
// ($($a:ident,)*) => { stringify!($($a)*) }
// }
// ```
// `$a` has no whitespace after it and will be marked `JointHidden`. If you then
// call `idents!(x,y,z,)`, each of `x`, `y`, and `z` will be marked as `Joint`. So
// if you choose to use `$x`'s spacing or the identifier's spacing, you'll end up
// producing "xyz", which is bad because it effectively merges tokens.
// `Spacing::Alone` is the safer option. Fortunately, `space_between` will avoid
// some of the unnecessary whitespace.
let ident = MacroRulesNormalizedIdent::new(original_ident);
if let Some(cur_matched) = lookup_cur_matched(ident, interp, &repeats) {
let tt = match cur_matched {
MatchedSingle(ParseNtResult::Tt(tt)) => {
// `tt`s are emitted into the output stream directly as "raw tokens",
// without wrapping them into groups.
maybe_use_metavar_location(psess, &stack, sp, tt, &mut marker)
}
MatchedSingle(ParseNtResult::Ident(ident, is_raw)) => {
marker.visit_span(&mut sp);
let kind = token::NtIdent(*ident, *is_raw);
TokenTree::token_alone(kind, sp)
}
MatchedSingle(ParseNtResult::Lifetime(ident, is_raw)) => {
marker.visit_span(&mut sp);
let kind = token::NtLifetime(*ident, *is_raw);
TokenTree::token_alone(kind, sp)
}
MatchedSingle(ParseNtResult::Nt(nt)) => {
// Other variables are emitted into the output stream as groups with
// `Delimiter::Invisible` to maintain parsing priorities.
// `Interpolated` is currently used for such groups in rustc parser.
marker.visit_span(&mut sp);
TokenTree::token_alone(token::Interpolated(Lrc::clone(nt)), sp)
}
MatchedSeq(..) => {
// We were unable to descend far enough. This is an error.
return Err(dcx.create_err(VarStillRepeating { span: sp, ident }));
}
};
result.push(tt)
} else {
// If we aren't able to match the meta-var, we push it back into the result but
// with modified syntax context. (I believe this supports nested macros).
marker.visit_span(&mut sp);
marker.visit_ident(&mut original_ident);
result.push(TokenTree::token_joint_hidden(token::Dollar, sp));
result.push(TokenTree::Token(
Token::from_ast_ident(original_ident),
Spacing::Alone,
));
}
}
// Replace meta-variable expressions with the result of their expansion.
mbe::TokenTree::MetaVarExpr(sp, expr) => {
transcribe_metavar_expr(
dcx,
expr,
interp,
&mut marker,
&repeats,
&mut result,
sp,
&psess.symbol_gallery,
)?;
}
// If we are entering a new delimiter, we push its contents to the `stack` to be
// processed, and we push all of the currently produced results to the `result_stack`.
// We will produce all of the results of the inside of the `Delimited` and then we will
// jump back out of the Delimited, pop the result_stack and add the new results back to
// the previous results (from outside the Delimited).
mbe::TokenTree::Delimited(mut span, spacing, delimited) => {
mut_visit::visit_delim_span(&mut marker, &mut span);
stack.push(Frame::new_delimited(delimited, span, *spacing));
result_stack.push(mem::take(&mut result));
}
// Nothing much to do here. Just push the token to the result, being careful to
// preserve syntax context.
mbe::TokenTree::Token(token) => {
let mut token = token.clone();
mut_visit::visit_token(&mut marker, &mut token);
let tt = TokenTree::Token(token, Spacing::Alone);
result.push(tt);
}
// There should be no meta-var declarations in the invocation of a macro.
mbe::TokenTree::MetaVarDecl(..) => panic!("unexpected `TokenTree::MetaVarDecl`"),
}
}
}
/// Store the metavariable span for this original span into a side table.
/// FIXME: Try to put the metavariable span into `SpanData` instead of a side table (#118517).
/// An optimal encoding for inlined spans will need to be selected to minimize regressions.
/// The side table approach is relatively good, but not perfect due to collisions.
/// In particular, collisions happen when token is passed as an argument through several macro
/// calls, like in recursive macros.
/// The old heuristic below is used to improve spans in case of collisions, but diagnostics are
/// still degraded sometimes in those cases.
///
/// The old heuristic:
///
/// Usually metavariables `$var` produce interpolated tokens, which have an additional place for
/// keeping both the original span and the metavariable span. For `tt` metavariables that's not the
/// case however, and there's no place for keeping a second span. So we try to give the single
/// produced span a location that would be most useful in practice (the hygiene part of the span
/// must not be changed).
///
/// Different locations are useful for different purposes:
/// - The original location is useful when we need to report a diagnostic for the original token in
/// isolation, without combining it with any surrounding tokens. This case occurs, but it is not
/// very common in practice.
/// - The metavariable location is useful when we need to somehow combine the token span with spans
/// of its surrounding tokens. This is the most common way to use token spans.
///
/// So this function replaces the original location with the metavariable location in all cases
/// except these two:
/// - The metavariable is an element of undelimited sequence `$($tt)*`.
/// These are typically used for passing larger amounts of code, and tokens in that code usually
/// combine with each other and not with tokens outside of the sequence.
/// - The metavariable span comes from a different crate, then we prefer the more local span.
fn maybe_use_metavar_location(
psess: &ParseSess,
stack: &[Frame<'_>],
mut metavar_span: Span,
orig_tt: &TokenTree,
marker: &mut Marker,
) -> TokenTree {
let undelimited_seq = matches!(
stack.last(),
Some(Frame {
tts: [_],
kind: FrameKind::Sequence {
sep: None,
kleene_op: KleeneOp::ZeroOrMore | KleeneOp::OneOrMore,
..
},
..
})
);
if undelimited_seq {
// Do not record metavar spans for tokens from undelimited sequences, for perf reasons.
return orig_tt.clone();
}
let insert = |mspans: &mut FxHashMap<_, _>, s, ms| match mspans.try_insert(s, ms) {
Ok(_) => true,
Err(err) => *err.entry.get() == ms, // Tried to insert the same span, still success
};
marker.visit_span(&mut metavar_span);
let no_collision = match orig_tt {
TokenTree::Token(token, ..) => {
with_metavar_spans(|mspans| insert(mspans, token.span, metavar_span))
}
TokenTree::Delimited(dspan, ..) => with_metavar_spans(|mspans| {
insert(mspans, dspan.open, metavar_span)
&& insert(mspans, dspan.close, metavar_span)
&& insert(mspans, dspan.entire(), metavar_span)
}),
};
if no_collision || psess.source_map().is_imported(metavar_span) {
return orig_tt.clone();
}
// Setting metavar spans for the heuristic spans gives better opportunities for combining them
// with neighboring spans even despite their different syntactic contexts.
match orig_tt {
TokenTree::Token(Token { kind, span }, spacing) => {
let span = metavar_span.with_ctxt(span.ctxt());
with_metavar_spans(|mspans| insert(mspans, span, metavar_span));
TokenTree::Token(Token { kind: kind.clone(), span }, *spacing)
}
TokenTree::Delimited(dspan, dspacing, delimiter, tts) => {
let open = metavar_span.with_ctxt(dspan.open.ctxt());
let close = metavar_span.with_ctxt(dspan.close.ctxt());
with_metavar_spans(|mspans| {
insert(mspans, open, metavar_span) && insert(mspans, close, metavar_span)
});
let dspan = DelimSpan::from_pair(open, close);
TokenTree::Delimited(dspan, *dspacing, *delimiter, tts.clone())
}
}
}
/// Lookup the meta-var named `ident` and return the matched token tree from the invocation using
/// the set of matches `interpolations`.
///
/// See the definition of `repeats` in the `transcribe` function. `repeats` is used to descend
/// into the right place in nested matchers. If we attempt to descend too far, the macro writer has
/// made a mistake, and we return `None`.
fn lookup_cur_matched<'a>(
ident: MacroRulesNormalizedIdent,
interpolations: &'a FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
repeats: &[(usize, usize)],
) -> Option<&'a NamedMatch> {
interpolations.get(&ident).map(|mut matched| {
for &(idx, _) in repeats {
match matched {
MatchedSingle(_) => break,
MatchedSeq(ads) => matched = ads.get(idx).unwrap(),
}
}
matched
})
}
/// An accumulator over a TokenTree to be used with `fold`. During transcription, we need to make
/// sure that the size of each sequence and all of its nested sequences are the same as the sizes
/// of all the matched (nested) sequences in the macro invocation. If they don't match, somebody
/// has made a mistake (either the macro writer or caller).
#[derive(Clone)]
enum LockstepIterSize {
/// No constraints on length of matcher. This is true for any TokenTree variants except a
/// `MetaVar` with an actual `MatchedSeq` (as opposed to a `MatchedNonterminal`).
Unconstrained,
/// A `MetaVar` with an actual `MatchedSeq`. The length of the match and the name of the
/// meta-var are returned.
Constraint(usize, MacroRulesNormalizedIdent),
/// Two `Constraint`s on the same sequence had different lengths. This is an error.
Contradiction(String),
}
impl LockstepIterSize {
/// Find incompatibilities in matcher/invocation sizes.
/// - `Unconstrained` is compatible with everything.
/// - `Contradiction` is incompatible with everything.
/// - `Constraint(len)` is only compatible with other constraints of the same length.
fn with(self, other: LockstepIterSize) -> LockstepIterSize {
match self {
LockstepIterSize::Unconstrained => other,
LockstepIterSize::Contradiction(_) => self,
LockstepIterSize::Constraint(l_len, l_id) => match other {
LockstepIterSize::Unconstrained => self,
LockstepIterSize::Contradiction(_) => other,
LockstepIterSize::Constraint(r_len, _) if l_len == r_len => self,
LockstepIterSize::Constraint(r_len, r_id) => {
let msg = format!(
"meta-variable `{}` repeats {} time{}, but `{}` repeats {} time{}",
l_id,
l_len,
pluralize!(l_len),
r_id,
r_len,
pluralize!(r_len),
);
LockstepIterSize::Contradiction(msg)
}
},
}
}
}
/// Given a `tree`, make sure that all sequences have the same length as the matches for the
/// appropriate meta-vars in `interpolations`.
///
/// Note that if `repeats` does not match the exact correct depth of a meta-var,
/// `lookup_cur_matched` will return `None`, which is why this still works even in the presence of
/// multiple nested matcher sequences.
///
/// Example: `$($($x $y)+*);+` -- we need to make sure that `x` and `y` repeat the same amount as
/// each other at the given depth when the macro was invoked. If they don't it might mean they were
/// declared at depths which weren't equal or there was a compiler bug. For example, if we have 3 repetitions of
/// the outer sequence and 4 repetitions of the inner sequence for `x`, we should have the same for
/// `y`; otherwise, we can't transcribe them both at the given depth.
fn lockstep_iter_size(
tree: &mbe::TokenTree,
interpolations: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
repeats: &[(usize, usize)],
) -> LockstepIterSize {
use mbe::TokenTree;
match tree {
TokenTree::Delimited(.., delimited) => {
delimited.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
size.with(lockstep_iter_size(tt, interpolations, repeats))
})
}
TokenTree::Sequence(_, seq) => {
seq.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
size.with(lockstep_iter_size(tt, interpolations, repeats))
})
}
TokenTree::MetaVar(_, name) | TokenTree::MetaVarDecl(_, name, _) => {
let name = MacroRulesNormalizedIdent::new(*name);
match lookup_cur_matched(name, interpolations, repeats) {
Some(matched) => match matched {
MatchedSingle(_) => LockstepIterSize::Unconstrained,
MatchedSeq(ads) => LockstepIterSize::Constraint(ads.len(), name),
},
_ => LockstepIterSize::Unconstrained,
}
}
TokenTree::MetaVarExpr(_, expr) => {
expr.for_each_metavar(LockstepIterSize::Unconstrained, |lis, ident| {
lis.with(lockstep_iter_size(
&TokenTree::MetaVar(ident.span, *ident),
interpolations,
repeats,
))
})
}
TokenTree::Token(..) => LockstepIterSize::Unconstrained,
}
}
/// Used solely by the `count` meta-variable expression, counts the outermost repetitions at a
/// given optional nested depth.
///
/// For example, a macro parameter of `$( { $( $foo:ident ),* } )*` called with `{ a, b } { c }`:
///
/// * `[ $( ${count(foo)} ),* ]` will return [2, 1] with a, b = 2 and c = 1
/// * `[ $( ${count(foo, 0)} ),* ]` will be the same as `[ $( ${count(foo)} ),* ]`
/// * `[ $( ${count(foo, 1)} ),* ]` will return an error because `${count(foo, 1)}` is
/// declared inside a single repetition and the index `1` implies two nested repetitions.
fn count_repetitions<'a>(
dcx: DiagCtxtHandle<'a>,
depth_user: usize,
mut matched: &NamedMatch,
repeats: &[(usize, usize)],
sp: &DelimSpan,
) -> PResult<'a, usize> {
// Recursively count the number of matches in `matched` at given depth
// (or at the top-level of `matched` if no depth is given).
fn count<'a>(depth_curr: usize, depth_max: usize, matched: &NamedMatch) -> PResult<'a, usize> {
match matched {
MatchedSingle(_) => Ok(1),
MatchedSeq(named_matches) => {
if depth_curr == depth_max {
Ok(named_matches.len())
} else {
named_matches.iter().map(|elem| count(depth_curr + 1, depth_max, elem)).sum()
}
}
}
}
/// Maximum depth
fn depth(counter: usize, matched: &NamedMatch) -> usize {
match matched {
MatchedSingle(_) => counter,
MatchedSeq(named_matches) => {
let rslt = counter + 1;
if let Some(elem) = named_matches.first() { depth(rslt, elem) } else { rslt }
}
}
}
let depth_max = depth(0, matched)
.checked_sub(1)
.and_then(|el| el.checked_sub(repeats.len()))
.unwrap_or_default();
if depth_user > depth_max {
return Err(out_of_bounds_err(dcx, depth_max + 1, sp.entire(), "count"));
}
// `repeats` records all of the nested levels at which we are currently
// matching meta-variables. The meta-var-expr `count($x)` only counts
// matches that occur in this "subtree" of the `NamedMatch` where we
// are currently transcribing, so we need to descend to that subtree
// before we start counting. `matched` contains the various levels of the
// tree as we descend, and its final value is the subtree we are currently at.
for &(idx, _) in repeats {
if let MatchedSeq(ads) = matched {
matched = &ads[idx];
}
}
if let MatchedSingle(_) = matched {
return Err(dcx.create_err(CountRepetitionMisplaced { span: sp.entire() }));
}
count(depth_user, depth_max, matched)
}
/// Returns a `NamedMatch` item declared on the LHS given an arbitrary [Ident]
fn matched_from_ident<'ctx, 'interp, 'rslt>(
dcx: DiagCtxtHandle<'ctx>,
ident: Ident,
interp: &'interp FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
) -> PResult<'ctx, &'rslt NamedMatch>
where
'interp: 'rslt,
{
let span = ident.span;
let key = MacroRulesNormalizedIdent::new(ident);
interp.get(&key).ok_or_else(|| dcx.create_err(MetaVarExprUnrecognizedVar { span, key }))
}
/// Used by meta-variable expressions when an user input is out of the actual declared bounds. For
/// example, index(999999) in an repetition of only three elements.
fn out_of_bounds_err<'a>(dcx: DiagCtxtHandle<'a>, max: usize, span: Span, ty: &str) -> Diag<'a> {
let msg = if max == 0 {
format!(
"meta-variable expression `{ty}` with depth parameter \
must be called inside of a macro repetition"
)
} else {
format!(
"depth parameter of meta-variable expression `{ty}` \
must be less than {max}"
)
};
dcx.struct_span_err(span, msg)
}
fn transcribe_metavar_expr<'a>(
dcx: DiagCtxtHandle<'a>,
expr: &MetaVarExpr,
interp: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
marker: &mut Marker,
repeats: &[(usize, usize)],
result: &mut Vec<TokenTree>,
sp: &DelimSpan,
symbol_gallery: &SymbolGallery,
) -> PResult<'a, ()> {
let mut visited_span = || {
let mut span = sp.entire();
marker.visit_span(&mut span);
span
};
match *expr {
MetaVarExpr::Concat(ref elements) => {
let mut concatenated = String::new();
for element in elements.into_iter() {
let symbol = match element {
MetaVarExprConcatElem::Ident(elem) => elem.name,
MetaVarExprConcatElem::Literal(elem) => *elem,
MetaVarExprConcatElem::Var(ident) => {
match matched_from_ident(dcx, *ident, interp)? {
NamedMatch::MatchedSeq(named_matches) => {
let curr_idx = repeats.last().unwrap().0;
match &named_matches[curr_idx] {
// FIXME(c410-f3r) Nested repetitions are unimplemented
MatchedSeq(_) => unimplemented!(),
MatchedSingle(pnr) => {
extract_symbol_from_pnr(dcx, pnr, ident.span)?
}
}
}
NamedMatch::MatchedSingle(pnr) => {
extract_symbol_from_pnr(dcx, pnr, ident.span)?
}
}
}
};
concatenated.push_str(symbol.as_str());
}
let symbol = nfc_normalize(&concatenated);
let concatenated_span = visited_span();
if !rustc_lexer::is_ident(symbol.as_str()) {
return Err(dcx.struct_span_err(
concatenated_span,
"`${concat(..)}` is not generating a valid identifier",
));
}
symbol_gallery.insert(symbol, concatenated_span);
// The current implementation marks the span as coming from the macro regardless of
// contexts of the concatenated identifiers but this behavior may change in the
// future.
result.push(TokenTree::Token(
Token::from_ast_ident(Ident::new(symbol, concatenated_span)),
Spacing::Alone,
));
}
MetaVarExpr::Count(original_ident, depth) => {
let matched = matched_from_ident(dcx, original_ident, interp)?;
let count = count_repetitions(dcx, depth, matched, repeats, sp)?;
let tt = TokenTree::token_alone(
TokenKind::lit(token::Integer, sym::integer(count), None),
visited_span(),
);
result.push(tt);
}
MetaVarExpr::Ignore(original_ident) => {
// Used to ensure that `original_ident` is present in the LHS
let _ = matched_from_ident(dcx, original_ident, interp)?;
}
MetaVarExpr::Index(depth) => match repeats.iter().nth_back(depth) {
Some((index, _)) => {
result.push(TokenTree::token_alone(
TokenKind::lit(token::Integer, sym::integer(*index), None),
visited_span(),
));
}
None => return Err(out_of_bounds_err(dcx, repeats.len(), sp.entire(), "index")),
},
MetaVarExpr::Len(depth) => match repeats.iter().nth_back(depth) {
Some((_, length)) => {
result.push(TokenTree::token_alone(
TokenKind::lit(token::Integer, sym::integer(*length), None),
visited_span(),
));
}
None => return Err(out_of_bounds_err(dcx, repeats.len(), sp.entire(), "len")),
},
}
Ok(())
}
/// Extracts an metavariable symbol that can be an identifier, a token tree or a literal.
fn extract_symbol_from_pnr<'a>(
dcx: DiagCtxtHandle<'a>,
pnr: &ParseNtResult,
span_err: Span,
) -> PResult<'a, Symbol> {
match pnr {
ParseNtResult::Ident(nt_ident, is_raw) => {
if let IdentIsRaw::Yes = is_raw {
Err(dcx.struct_span_err(span_err, RAW_IDENT_ERR))
} else {
Ok(nt_ident.name)
}
}
ParseNtResult::Tt(TokenTree::Token(
Token { kind: TokenKind::Ident(symbol, is_raw), .. },
_,
)) => {
if let IdentIsRaw::Yes = is_raw {
Err(dcx.struct_span_err(span_err, RAW_IDENT_ERR))
} else {
Ok(*symbol)
}
}
ParseNtResult::Tt(TokenTree::Token(
Token {
kind: TokenKind::Literal(Lit { kind: LitKind::Str, symbol, suffix: None }),
..
},
_,
)) => Ok(*symbol),
ParseNtResult::Nt(nt)
if let Nonterminal::NtLiteral(expr) = &**nt
&& let ExprKind::Lit(Lit { kind: LitKind::Str, symbol, suffix: None }) =
&expr.kind =>
{
Ok(*symbol)
}
_ => Err(dcx
.struct_err(
"metavariables of `${concat(..)}` must be of type `ident`, `literal` or `tt`",
)
.with_note("currently only string literals are supported")
.with_span(span_err)),
}
}