rustc_codegen_llvm/debuginfo/create_scope_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
use std::collections::hash_map::Entry;
use rustc_codegen_ssa::mir::debuginfo::{DebugScope, FunctionDebugContext};
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::fx::FxHashMap;
use rustc_index::Idx;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::{Body, SourceScope};
use rustc_middle::ty::layout::{FnAbiOf, HasTypingEnv};
use rustc_middle::ty::{self, Instance};
use rustc_session::config::DebugInfo;
use rustc_span::{BytePos, hygiene};
use super::metadata::file_metadata;
use super::utils::DIB;
use crate::common::CodegenCx;
use crate::llvm;
use crate::llvm::debuginfo::{DILocation, DIScope};
/// Produces DIScope DIEs for each MIR Scope which has variables defined in it.
// FIXME(eddyb) almost all of this should be in `rustc_codegen_ssa::mir::debuginfo`.
pub(crate) fn compute_mir_scopes<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
instance: Instance<'tcx>,
mir: &Body<'tcx>,
debug_context: &mut FunctionDebugContext<'tcx, &'ll DIScope, &'ll DILocation>,
) {
// Find all scopes with variables defined in them.
let variables = if cx.sess().opts.debuginfo == DebugInfo::Full {
let mut vars = BitSet::new_empty(mir.source_scopes.len());
// FIXME(eddyb) take into account that arguments always have debuginfo,
// irrespective of their name (assuming full debuginfo is enabled).
// NOTE(eddyb) actually, on second thought, those are always in the
// function scope, which always exists.
for var_debug_info in &mir.var_debug_info {
vars.insert(var_debug_info.source_info.scope);
}
Some(vars)
} else {
// Nothing to emit, of course.
None
};
let mut instantiated = BitSet::new_empty(mir.source_scopes.len());
let mut discriminators = FxHashMap::default();
// Instantiate all scopes.
for idx in 0..mir.source_scopes.len() {
let scope = SourceScope::new(idx);
make_mir_scope(
cx,
instance,
mir,
&variables,
debug_context,
&mut instantiated,
&mut discriminators,
scope,
);
}
assert!(instantiated.count() == mir.source_scopes.len());
}
fn make_mir_scope<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
instance: Instance<'tcx>,
mir: &Body<'tcx>,
variables: &Option<BitSet<SourceScope>>,
debug_context: &mut FunctionDebugContext<'tcx, &'ll DIScope, &'ll DILocation>,
instantiated: &mut BitSet<SourceScope>,
discriminators: &mut FxHashMap<BytePos, u32>,
scope: SourceScope,
) {
if instantiated.contains(scope) {
return;
}
let scope_data = &mir.source_scopes[scope];
let parent_scope = if let Some(parent) = scope_data.parent_scope {
make_mir_scope(
cx,
instance,
mir,
variables,
debug_context,
instantiated,
discriminators,
parent,
);
if let Some(parent_scope) = debug_context.scopes[parent] {
parent_scope
} else {
// If the parent scope could not be represented then no children
// can be either.
debug_context.scopes[scope] = None;
instantiated.insert(scope);
return;
}
} else {
// The root is the function itself.
let file = cx.sess().source_map().lookup_source_file(mir.span.lo());
debug_context.scopes[scope] = Some(DebugScope {
file_start_pos: file.start_pos,
file_end_pos: file.end_position(),
..debug_context.scopes[scope].unwrap()
});
instantiated.insert(scope);
return;
};
if let Some(vars) = variables
&& !vars.contains(scope)
&& scope_data.inlined.is_none()
{
// Do not create a DIScope if there are no variables defined in this
// MIR `SourceScope`, and it's not `inlined`, to avoid debuginfo bloat.
debug_context.scopes[scope] = Some(parent_scope);
instantiated.insert(scope);
return;
}
let loc = cx.lookup_debug_loc(scope_data.span.lo());
let file_metadata = file_metadata(cx, &loc.file);
let dbg_scope = match scope_data.inlined {
Some((callee, _)) => {
// FIXME(eddyb) this would be `self.monomorphize(&callee)`
// if this is moved to `rustc_codegen_ssa::mir::debuginfo`.
let callee = cx.tcx.instantiate_and_normalize_erasing_regions(
instance.args,
cx.typing_env(),
ty::EarlyBinder::bind(callee),
);
debug_context.inlined_function_scopes.entry(callee).or_insert_with(|| {
let callee_fn_abi = cx.fn_abi_of_instance(callee, ty::List::empty());
cx.dbg_scope_fn(callee, callee_fn_abi, None)
})
}
None => unsafe {
llvm::LLVMRustDIBuilderCreateLexicalBlock(
DIB(cx),
parent_scope.dbg_scope,
file_metadata,
loc.line,
loc.col,
)
},
};
let mut debug_scope = Some(DebugScope {
dbg_scope,
inlined_at: parent_scope.inlined_at,
file_start_pos: loc.file.start_pos,
file_end_pos: loc.file.end_position(),
});
if let Some((_, callsite_span)) = scope_data.inlined {
let callsite_span = hygiene::walk_chain_collapsed(callsite_span, mir.span);
let callsite_scope = parent_scope.adjust_dbg_scope_for_span(cx, callsite_span);
let loc = cx.dbg_loc(callsite_scope, parent_scope.inlined_at, callsite_span);
// NB: In order to produce proper debug info for variables (particularly
// arguments) in multiply-inlined functions, LLVM expects to see a single
// DILocalVariable with multiple different DILocations in the IR. While
// the source information for each DILocation would be identical, their
// inlinedAt attributes will be unique to the particular callsite.
//
// We generate DILocations here based on the callsite's location in the
// source code. A single location in the source code usually can't
// produce multiple distinct calls so this mostly works, until
// macros get involved. A macro can generate multiple calls
// at the same span, which breaks the assumption that we're going to
// produce a unique DILocation for every scope we process here. We
// have to explicitly add discriminators if we see inlines into the
// same source code location.
//
// Note further that we can't key this hashtable on the span itself,
// because these spans could have distinct SyntaxContexts. We have
// to key on exactly what we're giving to LLVM.
let inlined_at = match discriminators.entry(callsite_span.lo()) {
Entry::Occupied(mut o) => {
*o.get_mut() += 1;
unsafe { llvm::LLVMRustDILocationCloneWithBaseDiscriminator(loc, *o.get()) }
}
Entry::Vacant(v) => {
v.insert(0);
Some(loc)
}
};
match inlined_at {
Some(inlined_at) => {
debug_scope.as_mut().unwrap().inlined_at = Some(inlined_at);
}
None => {
// LLVM has a maximum discriminator that it can encode (currently
// it uses 12 bits for 4096 possible values). If we exceed that
// there is little we can do but drop the debug info.
debug_scope = None;
}
}
}
debug_context.scopes[scope] = debug_scope;
instantiated.insert(scope);
}