rustc_mir_transform/coverage/
graph.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
use std::cmp::Ordering;
use std::collections::VecDeque;
use std::ops::{Index, IndexMut};
use std::{iter, mem, slice};

use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_data_structures::graph::{self, DirectedGraph, StartNode};
use rustc_index::IndexVec;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::{self, BasicBlock, Terminator, TerminatorKind};
use tracing::debug;

/// A coverage-specific simplification of the MIR control flow graph (CFG). The `CoverageGraph`s
/// nodes are `BasicCoverageBlock`s, which encompass one or more MIR `BasicBlock`s.
#[derive(Debug)]
pub(crate) struct CoverageGraph {
    bcbs: IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
    bb_to_bcb: IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
    pub(crate) successors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
    pub(crate) predecessors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,

    dominators: Option<Dominators<BasicCoverageBlock>>,
    /// Allows nodes to be compared in some total order such that _if_
    /// `a` dominates `b`, then `a < b`. If neither node dominates the other,
    /// their relative order is consistent but arbitrary.
    dominator_order_rank: IndexVec<BasicCoverageBlock, u32>,
    /// A loop header is a node that dominates one or more of its predecessors.
    is_loop_header: BitSet<BasicCoverageBlock>,
    /// For each node, the loop header node of its nearest enclosing loop.
    /// This forms a linked list that can be traversed to find all enclosing loops.
    enclosing_loop_header: IndexVec<BasicCoverageBlock, Option<BasicCoverageBlock>>,
}

impl CoverageGraph {
    pub(crate) fn from_mir(mir_body: &mir::Body<'_>) -> Self {
        let (bcbs, bb_to_bcb) = Self::compute_basic_coverage_blocks(mir_body);

        // Pre-transform MIR `BasicBlock` successors and predecessors into the BasicCoverageBlock
        // equivalents. Note that since the BasicCoverageBlock graph has been fully simplified, the
        // each predecessor of a BCB leader_bb should be in a unique BCB. It is possible for a
        // `SwitchInt` to have multiple targets to the same destination `BasicBlock`, so
        // de-duplication is required. This is done without reordering the successors.

        let successors = IndexVec::from_fn_n(
            |bcb| {
                let mut seen_bcbs = FxHashSet::default();
                let terminator = mir_body[bcbs[bcb].last_bb()].terminator();
                bcb_filtered_successors(terminator)
                    .into_iter()
                    .filter_map(|successor_bb| bb_to_bcb[successor_bb])
                    // Remove duplicate successor BCBs, keeping only the first.
                    .filter(|&successor_bcb| seen_bcbs.insert(successor_bcb))
                    .collect::<Vec<_>>()
            },
            bcbs.len(),
        );

        let mut predecessors = IndexVec::from_elem(Vec::new(), &bcbs);
        for (bcb, bcb_successors) in successors.iter_enumerated() {
            for &successor in bcb_successors {
                predecessors[successor].push(bcb);
            }
        }

        let num_nodes = bcbs.len();
        let mut this = Self {
            bcbs,
            bb_to_bcb,
            successors,
            predecessors,
            dominators: None,
            dominator_order_rank: IndexVec::from_elem_n(0, num_nodes),
            is_loop_header: BitSet::new_empty(num_nodes),
            enclosing_loop_header: IndexVec::from_elem_n(None, num_nodes),
        };
        assert_eq!(num_nodes, this.num_nodes());

        // Set the dominators first, because later init steps rely on them.
        this.dominators = Some(graph::dominators::dominators(&this));

        // Iterate over all nodes, such that dominating nodes are visited before
        // the nodes they dominate. Either preorder or reverse postorder is fine.
        let dominator_order = graph::iterate::reverse_post_order(&this, this.start_node());
        // The coverage graph is created by traversal, so all nodes are reachable.
        assert_eq!(dominator_order.len(), this.num_nodes());
        for (rank, bcb) in (0u32..).zip(dominator_order) {
            // The dominator rank of each node is its index in a dominator-order traversal.
            this.dominator_order_rank[bcb] = rank;

            // A node is a loop header if it dominates any of its predecessors.
            if this.reloop_predecessors(bcb).next().is_some() {
                this.is_loop_header.insert(bcb);
            }

            // If the immediate dominator is a loop header, that's our enclosing loop.
            // Otherwise, inherit the immediate dominator's enclosing loop.
            // (Dominator order ensures that we already processed the dominator.)
            if let Some(dom) = this.dominators().immediate_dominator(bcb) {
                this.enclosing_loop_header[bcb] = this
                    .is_loop_header
                    .contains(dom)
                    .then_some(dom)
                    .or_else(|| this.enclosing_loop_header[dom]);
            }
        }

        // The coverage graph's entry-point node (bcb0) always starts with bb0,
        // which never has predecessors. Any other blocks merged into bcb0 can't
        // have multiple (coverage-relevant) predecessors, so bcb0 always has
        // zero in-edges.
        assert!(this[START_BCB].leader_bb() == mir::START_BLOCK);
        assert!(this.predecessors[START_BCB].is_empty());

        this
    }

    fn compute_basic_coverage_blocks(
        mir_body: &mir::Body<'_>,
    ) -> (
        IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
        IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
    ) {
        let num_basic_blocks = mir_body.basic_blocks.len();
        let mut bcbs = IndexVec::<BasicCoverageBlock, _>::with_capacity(num_basic_blocks);
        let mut bb_to_bcb = IndexVec::from_elem_n(None, num_basic_blocks);

        let mut flush_chain_into_new_bcb = |current_chain: &mut Vec<BasicBlock>| {
            // Take the accumulated list of blocks, leaving the vector empty
            // to be used by subsequent BCBs.
            let basic_blocks = mem::take(current_chain);

            let bcb = bcbs.next_index();
            for &bb in basic_blocks.iter() {
                bb_to_bcb[bb] = Some(bcb);
            }

            let is_out_summable = basic_blocks.last().map_or(false, |&bb| {
                bcb_filtered_successors(mir_body[bb].terminator()).is_out_summable()
            });
            let bcb_data = BasicCoverageBlockData { basic_blocks, is_out_summable };
            debug!("adding {bcb:?}: {bcb_data:?}");
            bcbs.push(bcb_data);
        };

        // Traverse the MIR control-flow graph, accumulating chains of blocks
        // that can be combined into a single node in the coverage graph.
        // A depth-first search ensures that if two nodes can be chained
        // together, they will be adjacent in the traversal order.

        // Accumulates a chain of blocks that will be combined into one BCB.
        let mut current_chain = vec![];

        let subgraph = CoverageRelevantSubgraph::new(&mir_body.basic_blocks);
        for bb in graph::depth_first_search(subgraph, mir::START_BLOCK)
            .filter(|&bb| mir_body[bb].terminator().kind != TerminatorKind::Unreachable)
        {
            if let Some(&prev) = current_chain.last() {
                // Adding a block to a non-empty chain is allowed if the
                // previous block permits chaining, and the current block has
                // `prev` as its sole predecessor.
                let can_chain = subgraph.coverage_successors(prev).is_out_chainable()
                    && mir_body.basic_blocks.predecessors()[bb].as_slice() == &[prev];
                if !can_chain {
                    // The current block can't be added to the existing chain, so
                    // flush that chain into a new BCB, and start a new chain.
                    flush_chain_into_new_bcb(&mut current_chain);
                }
            }

            current_chain.push(bb);
        }

        if !current_chain.is_empty() {
            debug!("flushing accumulated blocks into one last BCB");
            flush_chain_into_new_bcb(&mut current_chain);
        }

        (bcbs, bb_to_bcb)
    }

    #[inline(always)]
    pub(crate) fn iter_enumerated(
        &self,
    ) -> impl Iterator<Item = (BasicCoverageBlock, &BasicCoverageBlockData)> {
        self.bcbs.iter_enumerated()
    }

    #[inline(always)]
    pub(crate) fn bcb_from_bb(&self, bb: BasicBlock) -> Option<BasicCoverageBlock> {
        if bb.index() < self.bb_to_bcb.len() { self.bb_to_bcb[bb] } else { None }
    }

    #[inline(always)]
    fn dominators(&self) -> &Dominators<BasicCoverageBlock> {
        self.dominators.as_ref().unwrap()
    }

    #[inline(always)]
    pub(crate) fn dominates(&self, dom: BasicCoverageBlock, node: BasicCoverageBlock) -> bool {
        self.dominators().dominates(dom, node)
    }

    #[inline(always)]
    pub(crate) fn cmp_in_dominator_order(
        &self,
        a: BasicCoverageBlock,
        b: BasicCoverageBlock,
    ) -> Ordering {
        self.dominator_order_rank[a].cmp(&self.dominator_order_rank[b])
    }

    /// Returns the source of this node's sole in-edge, if it has exactly one.
    /// That edge can be assumed to have the same execution count as the node
    /// itself (in the absence of panics).
    pub(crate) fn sole_predecessor(
        &self,
        to_bcb: BasicCoverageBlock,
    ) -> Option<BasicCoverageBlock> {
        // Unlike `simple_successor`, there is no need for extra checks here.
        if let &[from_bcb] = self.predecessors[to_bcb].as_slice() { Some(from_bcb) } else { None }
    }

    /// Returns the target of this node's sole out-edge, if it has exactly
    /// one, but only if that edge can be assumed to have the same execution
    /// count as the node itself (in the absence of panics).
    pub(crate) fn simple_successor(
        &self,
        from_bcb: BasicCoverageBlock,
    ) -> Option<BasicCoverageBlock> {
        // If a node's count is the sum of its out-edges, and it has exactly
        // one out-edge, then that edge has the same count as the node.
        if self.bcbs[from_bcb].is_out_summable
            && let &[to_bcb] = self.successors[from_bcb].as_slice()
        {
            Some(to_bcb)
        } else {
            None
        }
    }

    /// For each loop that contains the given node, yields the "loop header"
    /// node representing that loop, from innermost to outermost. If the given
    /// node is itself a loop header, it is yielded first.
    pub(crate) fn loop_headers_containing(
        &self,
        bcb: BasicCoverageBlock,
    ) -> impl Iterator<Item = BasicCoverageBlock> + Captures<'_> {
        let self_if_loop_header = self.is_loop_header.contains(bcb).then_some(bcb).into_iter();

        let mut curr = Some(bcb);
        let strictly_enclosing = iter::from_fn(move || {
            let enclosing = self.enclosing_loop_header[curr?];
            curr = enclosing;
            enclosing
        });

        self_if_loop_header.chain(strictly_enclosing)
    }

    /// For the given node, yields the subset of its predecessor nodes that
    /// it dominates. If that subset is non-empty, the node is a "loop header",
    /// and each of those predecessors represents an in-edge that jumps back to
    /// the top of its loop.
    pub(crate) fn reloop_predecessors(
        &self,
        to_bcb: BasicCoverageBlock,
    ) -> impl Iterator<Item = BasicCoverageBlock> + Captures<'_> {
        self.predecessors[to_bcb].iter().copied().filter(move |&pred| self.dominates(to_bcb, pred))
    }
}

impl Index<BasicCoverageBlock> for CoverageGraph {
    type Output = BasicCoverageBlockData;

    #[inline]
    fn index(&self, index: BasicCoverageBlock) -> &BasicCoverageBlockData {
        &self.bcbs[index]
    }
}

impl IndexMut<BasicCoverageBlock> for CoverageGraph {
    #[inline]
    fn index_mut(&mut self, index: BasicCoverageBlock) -> &mut BasicCoverageBlockData {
        &mut self.bcbs[index]
    }
}

impl graph::DirectedGraph for CoverageGraph {
    type Node = BasicCoverageBlock;

    #[inline]
    fn num_nodes(&self) -> usize {
        self.bcbs.len()
    }
}

impl graph::StartNode for CoverageGraph {
    #[inline]
    fn start_node(&self) -> Self::Node {
        self.bcb_from_bb(mir::START_BLOCK)
            .expect("mir::START_BLOCK should be in a BasicCoverageBlock")
    }
}

impl graph::Successors for CoverageGraph {
    #[inline]
    fn successors(&self, node: Self::Node) -> impl Iterator<Item = Self::Node> {
        self.successors[node].iter().copied()
    }
}

impl graph::Predecessors for CoverageGraph {
    #[inline]
    fn predecessors(&self, node: Self::Node) -> impl Iterator<Item = Self::Node> {
        self.predecessors[node].iter().copied()
    }
}

rustc_index::newtype_index! {
    /// A node in the control-flow graph of CoverageGraph.
    #[orderable]
    #[debug_format = "bcb{}"]
    pub(crate) struct BasicCoverageBlock {
        const START_BCB = 0;
    }
}

/// `BasicCoverageBlockData` holds the data indexed by a `BasicCoverageBlock`.
///
/// A `BasicCoverageBlock` (BCB) represents the maximal-length sequence of MIR `BasicBlock`s without
/// conditional branches, and form a new, simplified, coverage-specific Control Flow Graph, without
/// altering the original MIR CFG.
///
/// Note that running the MIR `SimplifyCfg` transform is not sufficient (and therefore not
/// necessary). The BCB-based CFG is a more aggressive simplification. For example:
///
///   * The BCB CFG ignores (trims) branches not relevant to coverage, such as unwind-related code,
///     that is injected by the Rust compiler but has no physical source code to count. This also
///     means a BasicBlock with a `Call` terminator can be merged into its primary successor target
///     block, in the same BCB. (But, note: Issue #78544: "MIR InstrumentCoverage: Improve coverage
///     of `#[should_panic]` tests and `catch_unwind()` handlers")
///   * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are
///     not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as
///     a `Goto`, and merged with its successor into the same BCB.
///
/// Each BCB with at least one computed coverage span will have no more than one `Counter`.
/// In some cases, a BCB's execution count can be computed by `Expression`. Additional
/// disjoint coverage spans in a BCB can also be counted by `Expression` (by adding `ZERO`
/// to the BCB's primary counter or expression).
///
/// The BCB CFG is critical to simplifying the coverage analysis by ensuring graph path-based
/// queries (`dominates()`, `predecessors`, `successors`, etc.) have branch (control flow)
/// significance.
#[derive(Debug, Clone)]
pub(crate) struct BasicCoverageBlockData {
    pub(crate) basic_blocks: Vec<BasicBlock>,

    /// If true, this node's execution count can be assumed to be the sum of the
    /// execution counts of all of its **out-edges** (assuming no panics).
    ///
    /// Notably, this is false for a node ending with [`TerminatorKind::Yield`],
    /// because the yielding coroutine might not be resumed.
    pub(crate) is_out_summable: bool,
}

impl BasicCoverageBlockData {
    #[inline(always)]
    pub(crate) fn leader_bb(&self) -> BasicBlock {
        self.basic_blocks[0]
    }

    #[inline(always)]
    pub(crate) fn last_bb(&self) -> BasicBlock {
        *self.basic_blocks.last().unwrap()
    }
}

/// Holds the coverage-relevant successors of a basic block's terminator, and
/// indicates whether that block can potentially be combined into the same BCB
/// as its sole successor.
#[derive(Clone, Copy, Debug)]
struct CoverageSuccessors<'a> {
    /// Coverage-relevant successors of the corresponding terminator.
    /// There might be 0, 1, or multiple targets.
    targets: &'a [BasicBlock],
    /// `Yield` terminators are not chainable, because their sole out-edge is
    /// only followed if/when the generator is resumed after the yield.
    is_yield: bool,
}

impl CoverageSuccessors<'_> {
    /// If `false`, this terminator cannot be chained into another block when
    /// building the coverage graph.
    fn is_out_chainable(&self) -> bool {
        // If a terminator is out-summable and has exactly one out-edge, then
        // it is eligible to be chained into its successor block.
        self.is_out_summable() && self.targets.len() == 1
    }

    /// Returns true if the terminator itself is assumed to have the same
    /// execution count as the sum of its out-edges (assuming no panics).
    fn is_out_summable(&self) -> bool {
        !self.is_yield && !self.targets.is_empty()
    }
}

impl IntoIterator for CoverageSuccessors<'_> {
    type Item = BasicBlock;
    type IntoIter = impl DoubleEndedIterator<Item = Self::Item>;

    fn into_iter(self) -> Self::IntoIter {
        self.targets.iter().copied()
    }
}

// Returns the subset of a block's successors that are relevant to the coverage
// graph, i.e. those that do not represent unwinds or false edges.
// FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
// `catch_unwind()` handlers.
fn bcb_filtered_successors<'a, 'tcx>(terminator: &'a Terminator<'tcx>) -> CoverageSuccessors<'a> {
    use TerminatorKind::*;
    let mut is_yield = false;
    let targets = match &terminator.kind {
        // A switch terminator can have many coverage-relevant successors.
        SwitchInt { targets, .. } => targets.all_targets(),

        // A yield terminator has exactly 1 successor, but should not be chained,
        // because its resume edge has a different execution count.
        Yield { resume, .. } => {
            is_yield = true;
            slice::from_ref(resume)
        }

        // These terminators have exactly one coverage-relevant successor,
        // and can be chained into it.
        Assert { target, .. }
        | Drop { target, .. }
        | FalseEdge { real_target: target, .. }
        | FalseUnwind { real_target: target, .. }
        | Goto { target } => slice::from_ref(target),

        // A call terminator can normally be chained, except when it has no
        // successor because it is known to diverge.
        Call { target: maybe_target, .. } => maybe_target.as_slice(),

        // An inline asm terminator can normally be chained, except when it
        // diverges or uses asm goto.
        InlineAsm { targets, .. } => &targets,

        // These terminators have no coverage-relevant successors.
        CoroutineDrop
        | Return
        | TailCall { .. }
        | Unreachable
        | UnwindResume
        | UnwindTerminate(_) => &[],
    };

    CoverageSuccessors { targets, is_yield }
}

/// Wrapper around a [`mir::BasicBlocks`] graph that restricts each node's
/// successors to only the ones considered "relevant" when building a coverage
/// graph.
#[derive(Clone, Copy)]
struct CoverageRelevantSubgraph<'a, 'tcx> {
    basic_blocks: &'a mir::BasicBlocks<'tcx>,
}
impl<'a, 'tcx> CoverageRelevantSubgraph<'a, 'tcx> {
    fn new(basic_blocks: &'a mir::BasicBlocks<'tcx>) -> Self {
        Self { basic_blocks }
    }

    fn coverage_successors(&self, bb: BasicBlock) -> CoverageSuccessors<'_> {
        bcb_filtered_successors(self.basic_blocks[bb].terminator())
    }
}
impl<'a, 'tcx> graph::DirectedGraph for CoverageRelevantSubgraph<'a, 'tcx> {
    type Node = BasicBlock;

    fn num_nodes(&self) -> usize {
        self.basic_blocks.num_nodes()
    }
}
impl<'a, 'tcx> graph::Successors for CoverageRelevantSubgraph<'a, 'tcx> {
    fn successors(&self, bb: Self::Node) -> impl Iterator<Item = Self::Node> {
        self.coverage_successors(bb).into_iter()
    }
}

/// State of a node in the coverage graph during ready-first traversal.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum ReadyState {
    /// This node has not yet been added to the fallback queue or ready queue.
    Unqueued,
    /// This node is currently in the fallback queue.
    InFallbackQueue,
    /// This node's predecessors have all been visited, so it is in the ready queue.
    /// (It might also have a stale entry in the fallback queue.)
    InReadyQueue,
    /// This node has been visited.
    /// (It might also have a stale entry in the fallback queue.)
    Visited,
}

/// Iterator that visits nodes in the coverage graph, in an order that always
/// prefers "ready" nodes whose predecessors have already been visited.
pub(crate) struct ReadyFirstTraversal<'a> {
    graph: &'a CoverageGraph,

    /// For each node, the number of its predecessor nodes that haven't been visited yet.
    n_unvisited_preds: IndexVec<BasicCoverageBlock, u32>,
    /// Indicates whether a node has been visited, or which queue it is in.
    state: IndexVec<BasicCoverageBlock, ReadyState>,

    /// Holds unvisited nodes whose predecessors have all been visited.
    ready_queue: VecDeque<BasicCoverageBlock>,
    /// Holds unvisited nodes with some unvisited predecessors.
    /// Also contains stale entries for nodes that were upgraded to ready.
    fallback_queue: VecDeque<BasicCoverageBlock>,
}

impl<'a> ReadyFirstTraversal<'a> {
    pub(crate) fn new(graph: &'a CoverageGraph) -> Self {
        let num_nodes = graph.num_nodes();

        let n_unvisited_preds =
            IndexVec::from_fn_n(|node| graph.predecessors[node].len() as u32, num_nodes);
        let mut state = IndexVec::from_elem_n(ReadyState::Unqueued, num_nodes);

        // We know from coverage graph construction that the start node is the
        // only node with no predecessors.
        debug_assert!(
            n_unvisited_preds.iter_enumerated().all(|(node, &n)| (node == START_BCB) == (n == 0))
        );
        let ready_queue = VecDeque::from(vec![START_BCB]);
        state[START_BCB] = ReadyState::InReadyQueue;

        Self { graph, state, n_unvisited_preds, ready_queue, fallback_queue: VecDeque::new() }
    }

    /// Returns the next node from the ready queue, or else the next unvisited
    /// node from the fallback queue.
    fn next_inner(&mut self) -> Option<BasicCoverageBlock> {
        // Always prefer to yield a ready node if possible.
        if let Some(node) = self.ready_queue.pop_front() {
            assert_eq!(self.state[node], ReadyState::InReadyQueue);
            return Some(node);
        }

        while let Some(node) = self.fallback_queue.pop_front() {
            match self.state[node] {
                // This entry in the fallback queue is not stale, so yield it.
                ReadyState::InFallbackQueue => return Some(node),
                // This node was added to the fallback queue, but later became
                // ready and was visited via the ready queue. Ignore it here.
                ReadyState::Visited => {}
                // Unqueued nodes can't be in the fallback queue, by definition.
                // We know that the ready queue is empty at this point.
                ReadyState::Unqueued | ReadyState::InReadyQueue => unreachable!(
                    "unexpected state for {node:?} in the fallback queue: {:?}",
                    self.state[node]
                ),
            }
        }

        None
    }

    fn mark_visited_and_enqueue_successors(&mut self, node: BasicCoverageBlock) {
        assert!(self.state[node] < ReadyState::Visited);
        self.state[node] = ReadyState::Visited;

        // For each of this node's successors, decrease the successor's
        // "unvisited predecessors" count, and enqueue it if appropriate.
        for &succ in &self.graph.successors[node] {
            let is_unqueued = match self.state[succ] {
                ReadyState::Unqueued => true,
                ReadyState::InFallbackQueue => false,
                ReadyState::InReadyQueue => {
                    unreachable!("nodes in the ready queue have no unvisited predecessors")
                }
                // The successor was already visited via one of its other predecessors.
                ReadyState::Visited => continue,
            };

            self.n_unvisited_preds[succ] -= 1;
            if self.n_unvisited_preds[succ] == 0 {
                // This node's predecessors have all been visited, so add it to
                // the ready queue. If it's already in the fallback queue, that
                // fallback entry will be ignored later.
                self.state[succ] = ReadyState::InReadyQueue;
                self.ready_queue.push_back(succ);
            } else if is_unqueued {
                // This node has unvisited predecessors, so add it to the
                // fallback queue in case we run out of ready nodes later.
                self.state[succ] = ReadyState::InFallbackQueue;
                self.fallback_queue.push_back(succ);
            }
        }
    }
}

impl<'a> Iterator for ReadyFirstTraversal<'a> {
    type Item = BasicCoverageBlock;

    fn next(&mut self) -> Option<Self::Item> {
        let node = self.next_inner()?;
        self.mark_visited_and_enqueue_successors(node);
        Some(node)
    }
}