rustc_mir_transform/coverage/graph.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
use std::cmp::Ordering;
use std::collections::VecDeque;
use std::ops::{Index, IndexMut};
use std::{iter, mem, slice};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_data_structures::graph::{self, DirectedGraph, StartNode};
use rustc_index::IndexVec;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::{self, BasicBlock, Terminator, TerminatorKind};
use tracing::debug;
/// A coverage-specific simplification of the MIR control flow graph (CFG). The `CoverageGraph`s
/// nodes are `BasicCoverageBlock`s, which encompass one or more MIR `BasicBlock`s.
#[derive(Debug)]
pub(crate) struct CoverageGraph {
bcbs: IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
bb_to_bcb: IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
pub(crate) successors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
pub(crate) predecessors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
dominators: Option<Dominators<BasicCoverageBlock>>,
/// Allows nodes to be compared in some total order such that _if_
/// `a` dominates `b`, then `a < b`. If neither node dominates the other,
/// their relative order is consistent but arbitrary.
dominator_order_rank: IndexVec<BasicCoverageBlock, u32>,
/// A loop header is a node that dominates one or more of its predecessors.
is_loop_header: BitSet<BasicCoverageBlock>,
/// For each node, the loop header node of its nearest enclosing loop.
/// This forms a linked list that can be traversed to find all enclosing loops.
enclosing_loop_header: IndexVec<BasicCoverageBlock, Option<BasicCoverageBlock>>,
}
impl CoverageGraph {
pub(crate) fn from_mir(mir_body: &mir::Body<'_>) -> Self {
let (bcbs, bb_to_bcb) = Self::compute_basic_coverage_blocks(mir_body);
// Pre-transform MIR `BasicBlock` successors and predecessors into the BasicCoverageBlock
// equivalents. Note that since the BasicCoverageBlock graph has been fully simplified, the
// each predecessor of a BCB leader_bb should be in a unique BCB. It is possible for a
// `SwitchInt` to have multiple targets to the same destination `BasicBlock`, so
// de-duplication is required. This is done without reordering the successors.
let successors = IndexVec::from_fn_n(
|bcb| {
let mut seen_bcbs = FxHashSet::default();
let terminator = mir_body[bcbs[bcb].last_bb()].terminator();
bcb_filtered_successors(terminator)
.into_iter()
.filter_map(|successor_bb| bb_to_bcb[successor_bb])
// Remove duplicate successor BCBs, keeping only the first.
.filter(|&successor_bcb| seen_bcbs.insert(successor_bcb))
.collect::<Vec<_>>()
},
bcbs.len(),
);
let mut predecessors = IndexVec::from_elem(Vec::new(), &bcbs);
for (bcb, bcb_successors) in successors.iter_enumerated() {
for &successor in bcb_successors {
predecessors[successor].push(bcb);
}
}
let num_nodes = bcbs.len();
let mut this = Self {
bcbs,
bb_to_bcb,
successors,
predecessors,
dominators: None,
dominator_order_rank: IndexVec::from_elem_n(0, num_nodes),
is_loop_header: BitSet::new_empty(num_nodes),
enclosing_loop_header: IndexVec::from_elem_n(None, num_nodes),
};
assert_eq!(num_nodes, this.num_nodes());
// Set the dominators first, because later init steps rely on them.
this.dominators = Some(graph::dominators::dominators(&this));
// Iterate over all nodes, such that dominating nodes are visited before
// the nodes they dominate. Either preorder or reverse postorder is fine.
let dominator_order = graph::iterate::reverse_post_order(&this, this.start_node());
// The coverage graph is created by traversal, so all nodes are reachable.
assert_eq!(dominator_order.len(), this.num_nodes());
for (rank, bcb) in (0u32..).zip(dominator_order) {
// The dominator rank of each node is its index in a dominator-order traversal.
this.dominator_order_rank[bcb] = rank;
// A node is a loop header if it dominates any of its predecessors.
if this.reloop_predecessors(bcb).next().is_some() {
this.is_loop_header.insert(bcb);
}
// If the immediate dominator is a loop header, that's our enclosing loop.
// Otherwise, inherit the immediate dominator's enclosing loop.
// (Dominator order ensures that we already processed the dominator.)
if let Some(dom) = this.dominators().immediate_dominator(bcb) {
this.enclosing_loop_header[bcb] = this
.is_loop_header
.contains(dom)
.then_some(dom)
.or_else(|| this.enclosing_loop_header[dom]);
}
}
// The coverage graph's entry-point node (bcb0) always starts with bb0,
// which never has predecessors. Any other blocks merged into bcb0 can't
// have multiple (coverage-relevant) predecessors, so bcb0 always has
// zero in-edges.
assert!(this[START_BCB].leader_bb() == mir::START_BLOCK);
assert!(this.predecessors[START_BCB].is_empty());
this
}
fn compute_basic_coverage_blocks(
mir_body: &mir::Body<'_>,
) -> (
IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
) {
let num_basic_blocks = mir_body.basic_blocks.len();
let mut bcbs = IndexVec::<BasicCoverageBlock, _>::with_capacity(num_basic_blocks);
let mut bb_to_bcb = IndexVec::from_elem_n(None, num_basic_blocks);
let mut flush_chain_into_new_bcb = |current_chain: &mut Vec<BasicBlock>| {
// Take the accumulated list of blocks, leaving the vector empty
// to be used by subsequent BCBs.
let basic_blocks = mem::take(current_chain);
let bcb = bcbs.next_index();
for &bb in basic_blocks.iter() {
bb_to_bcb[bb] = Some(bcb);
}
let is_out_summable = basic_blocks.last().map_or(false, |&bb| {
bcb_filtered_successors(mir_body[bb].terminator()).is_out_summable()
});
let bcb_data = BasicCoverageBlockData { basic_blocks, is_out_summable };
debug!("adding {bcb:?}: {bcb_data:?}");
bcbs.push(bcb_data);
};
// Traverse the MIR control-flow graph, accumulating chains of blocks
// that can be combined into a single node in the coverage graph.
// A depth-first search ensures that if two nodes can be chained
// together, they will be adjacent in the traversal order.
// Accumulates a chain of blocks that will be combined into one BCB.
let mut current_chain = vec![];
let subgraph = CoverageRelevantSubgraph::new(&mir_body.basic_blocks);
for bb in graph::depth_first_search(subgraph, mir::START_BLOCK)
.filter(|&bb| mir_body[bb].terminator().kind != TerminatorKind::Unreachable)
{
if let Some(&prev) = current_chain.last() {
// Adding a block to a non-empty chain is allowed if the
// previous block permits chaining, and the current block has
// `prev` as its sole predecessor.
let can_chain = subgraph.coverage_successors(prev).is_out_chainable()
&& mir_body.basic_blocks.predecessors()[bb].as_slice() == &[prev];
if !can_chain {
// The current block can't be added to the existing chain, so
// flush that chain into a new BCB, and start a new chain.
flush_chain_into_new_bcb(&mut current_chain);
}
}
current_chain.push(bb);
}
if !current_chain.is_empty() {
debug!("flushing accumulated blocks into one last BCB");
flush_chain_into_new_bcb(&mut current_chain);
}
(bcbs, bb_to_bcb)
}
#[inline(always)]
pub(crate) fn iter_enumerated(
&self,
) -> impl Iterator<Item = (BasicCoverageBlock, &BasicCoverageBlockData)> {
self.bcbs.iter_enumerated()
}
#[inline(always)]
pub(crate) fn bcb_from_bb(&self, bb: BasicBlock) -> Option<BasicCoverageBlock> {
if bb.index() < self.bb_to_bcb.len() { self.bb_to_bcb[bb] } else { None }
}
#[inline(always)]
fn dominators(&self) -> &Dominators<BasicCoverageBlock> {
self.dominators.as_ref().unwrap()
}
#[inline(always)]
pub(crate) fn dominates(&self, dom: BasicCoverageBlock, node: BasicCoverageBlock) -> bool {
self.dominators().dominates(dom, node)
}
#[inline(always)]
pub(crate) fn cmp_in_dominator_order(
&self,
a: BasicCoverageBlock,
b: BasicCoverageBlock,
) -> Ordering {
self.dominator_order_rank[a].cmp(&self.dominator_order_rank[b])
}
/// Returns the source of this node's sole in-edge, if it has exactly one.
/// That edge can be assumed to have the same execution count as the node
/// itself (in the absence of panics).
pub(crate) fn sole_predecessor(
&self,
to_bcb: BasicCoverageBlock,
) -> Option<BasicCoverageBlock> {
// Unlike `simple_successor`, there is no need for extra checks here.
if let &[from_bcb] = self.predecessors[to_bcb].as_slice() { Some(from_bcb) } else { None }
}
/// Returns the target of this node's sole out-edge, if it has exactly
/// one, but only if that edge can be assumed to have the same execution
/// count as the node itself (in the absence of panics).
pub(crate) fn simple_successor(
&self,
from_bcb: BasicCoverageBlock,
) -> Option<BasicCoverageBlock> {
// If a node's count is the sum of its out-edges, and it has exactly
// one out-edge, then that edge has the same count as the node.
if self.bcbs[from_bcb].is_out_summable
&& let &[to_bcb] = self.successors[from_bcb].as_slice()
{
Some(to_bcb)
} else {
None
}
}
/// For each loop that contains the given node, yields the "loop header"
/// node representing that loop, from innermost to outermost. If the given
/// node is itself a loop header, it is yielded first.
pub(crate) fn loop_headers_containing(
&self,
bcb: BasicCoverageBlock,
) -> impl Iterator<Item = BasicCoverageBlock> + Captures<'_> {
let self_if_loop_header = self.is_loop_header.contains(bcb).then_some(bcb).into_iter();
let mut curr = Some(bcb);
let strictly_enclosing = iter::from_fn(move || {
let enclosing = self.enclosing_loop_header[curr?];
curr = enclosing;
enclosing
});
self_if_loop_header.chain(strictly_enclosing)
}
/// For the given node, yields the subset of its predecessor nodes that
/// it dominates. If that subset is non-empty, the node is a "loop header",
/// and each of those predecessors represents an in-edge that jumps back to
/// the top of its loop.
pub(crate) fn reloop_predecessors(
&self,
to_bcb: BasicCoverageBlock,
) -> impl Iterator<Item = BasicCoverageBlock> + Captures<'_> {
self.predecessors[to_bcb].iter().copied().filter(move |&pred| self.dominates(to_bcb, pred))
}
}
impl Index<BasicCoverageBlock> for CoverageGraph {
type Output = BasicCoverageBlockData;
#[inline]
fn index(&self, index: BasicCoverageBlock) -> &BasicCoverageBlockData {
&self.bcbs[index]
}
}
impl IndexMut<BasicCoverageBlock> for CoverageGraph {
#[inline]
fn index_mut(&mut self, index: BasicCoverageBlock) -> &mut BasicCoverageBlockData {
&mut self.bcbs[index]
}
}
impl graph::DirectedGraph for CoverageGraph {
type Node = BasicCoverageBlock;
#[inline]
fn num_nodes(&self) -> usize {
self.bcbs.len()
}
}
impl graph::StartNode for CoverageGraph {
#[inline]
fn start_node(&self) -> Self::Node {
self.bcb_from_bb(mir::START_BLOCK)
.expect("mir::START_BLOCK should be in a BasicCoverageBlock")
}
}
impl graph::Successors for CoverageGraph {
#[inline]
fn successors(&self, node: Self::Node) -> impl Iterator<Item = Self::Node> {
self.successors[node].iter().copied()
}
}
impl graph::Predecessors for CoverageGraph {
#[inline]
fn predecessors(&self, node: Self::Node) -> impl Iterator<Item = Self::Node> {
self.predecessors[node].iter().copied()
}
}
rustc_index::newtype_index! {
/// A node in the control-flow graph of CoverageGraph.
#[orderable]
#[debug_format = "bcb{}"]
pub(crate) struct BasicCoverageBlock {
const START_BCB = 0;
}
}
/// `BasicCoverageBlockData` holds the data indexed by a `BasicCoverageBlock`.
///
/// A `BasicCoverageBlock` (BCB) represents the maximal-length sequence of MIR `BasicBlock`s without
/// conditional branches, and form a new, simplified, coverage-specific Control Flow Graph, without
/// altering the original MIR CFG.
///
/// Note that running the MIR `SimplifyCfg` transform is not sufficient (and therefore not
/// necessary). The BCB-based CFG is a more aggressive simplification. For example:
///
/// * The BCB CFG ignores (trims) branches not relevant to coverage, such as unwind-related code,
/// that is injected by the Rust compiler but has no physical source code to count. This also
/// means a BasicBlock with a `Call` terminator can be merged into its primary successor target
/// block, in the same BCB. (But, note: Issue #78544: "MIR InstrumentCoverage: Improve coverage
/// of `#[should_panic]` tests and `catch_unwind()` handlers")
/// * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are
/// not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as
/// a `Goto`, and merged with its successor into the same BCB.
///
/// Each BCB with at least one computed coverage span will have no more than one `Counter`.
/// In some cases, a BCB's execution count can be computed by `Expression`. Additional
/// disjoint coverage spans in a BCB can also be counted by `Expression` (by adding `ZERO`
/// to the BCB's primary counter or expression).
///
/// The BCB CFG is critical to simplifying the coverage analysis by ensuring graph path-based
/// queries (`dominates()`, `predecessors`, `successors`, etc.) have branch (control flow)
/// significance.
#[derive(Debug, Clone)]
pub(crate) struct BasicCoverageBlockData {
pub(crate) basic_blocks: Vec<BasicBlock>,
/// If true, this node's execution count can be assumed to be the sum of the
/// execution counts of all of its **out-edges** (assuming no panics).
///
/// Notably, this is false for a node ending with [`TerminatorKind::Yield`],
/// because the yielding coroutine might not be resumed.
pub(crate) is_out_summable: bool,
}
impl BasicCoverageBlockData {
#[inline(always)]
pub(crate) fn leader_bb(&self) -> BasicBlock {
self.basic_blocks[0]
}
#[inline(always)]
pub(crate) fn last_bb(&self) -> BasicBlock {
*self.basic_blocks.last().unwrap()
}
}
/// Holds the coverage-relevant successors of a basic block's terminator, and
/// indicates whether that block can potentially be combined into the same BCB
/// as its sole successor.
#[derive(Clone, Copy, Debug)]
struct CoverageSuccessors<'a> {
/// Coverage-relevant successors of the corresponding terminator.
/// There might be 0, 1, or multiple targets.
targets: &'a [BasicBlock],
/// `Yield` terminators are not chainable, because their sole out-edge is
/// only followed if/when the generator is resumed after the yield.
is_yield: bool,
}
impl CoverageSuccessors<'_> {
/// If `false`, this terminator cannot be chained into another block when
/// building the coverage graph.
fn is_out_chainable(&self) -> bool {
// If a terminator is out-summable and has exactly one out-edge, then
// it is eligible to be chained into its successor block.
self.is_out_summable() && self.targets.len() == 1
}
/// Returns true if the terminator itself is assumed to have the same
/// execution count as the sum of its out-edges (assuming no panics).
fn is_out_summable(&self) -> bool {
!self.is_yield && !self.targets.is_empty()
}
}
impl IntoIterator for CoverageSuccessors<'_> {
type Item = BasicBlock;
type IntoIter = impl DoubleEndedIterator<Item = Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.targets.iter().copied()
}
}
// Returns the subset of a block's successors that are relevant to the coverage
// graph, i.e. those that do not represent unwinds or false edges.
// FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
// `catch_unwind()` handlers.
fn bcb_filtered_successors<'a, 'tcx>(terminator: &'a Terminator<'tcx>) -> CoverageSuccessors<'a> {
use TerminatorKind::*;
let mut is_yield = false;
let targets = match &terminator.kind {
// A switch terminator can have many coverage-relevant successors.
SwitchInt { targets, .. } => targets.all_targets(),
// A yield terminator has exactly 1 successor, but should not be chained,
// because its resume edge has a different execution count.
Yield { resume, .. } => {
is_yield = true;
slice::from_ref(resume)
}
// These terminators have exactly one coverage-relevant successor,
// and can be chained into it.
Assert { target, .. }
| Drop { target, .. }
| FalseEdge { real_target: target, .. }
| FalseUnwind { real_target: target, .. }
| Goto { target } => slice::from_ref(target),
// A call terminator can normally be chained, except when it has no
// successor because it is known to diverge.
Call { target: maybe_target, .. } => maybe_target.as_slice(),
// An inline asm terminator can normally be chained, except when it
// diverges or uses asm goto.
InlineAsm { targets, .. } => &targets,
// These terminators have no coverage-relevant successors.
CoroutineDrop
| Return
| TailCall { .. }
| Unreachable
| UnwindResume
| UnwindTerminate(_) => &[],
};
CoverageSuccessors { targets, is_yield }
}
/// Wrapper around a [`mir::BasicBlocks`] graph that restricts each node's
/// successors to only the ones considered "relevant" when building a coverage
/// graph.
#[derive(Clone, Copy)]
struct CoverageRelevantSubgraph<'a, 'tcx> {
basic_blocks: &'a mir::BasicBlocks<'tcx>,
}
impl<'a, 'tcx> CoverageRelevantSubgraph<'a, 'tcx> {
fn new(basic_blocks: &'a mir::BasicBlocks<'tcx>) -> Self {
Self { basic_blocks }
}
fn coverage_successors(&self, bb: BasicBlock) -> CoverageSuccessors<'_> {
bcb_filtered_successors(self.basic_blocks[bb].terminator())
}
}
impl<'a, 'tcx> graph::DirectedGraph for CoverageRelevantSubgraph<'a, 'tcx> {
type Node = BasicBlock;
fn num_nodes(&self) -> usize {
self.basic_blocks.num_nodes()
}
}
impl<'a, 'tcx> graph::Successors for CoverageRelevantSubgraph<'a, 'tcx> {
fn successors(&self, bb: Self::Node) -> impl Iterator<Item = Self::Node> {
self.coverage_successors(bb).into_iter()
}
}
/// State of a node in the coverage graph during ready-first traversal.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum ReadyState {
/// This node has not yet been added to the fallback queue or ready queue.
Unqueued,
/// This node is currently in the fallback queue.
InFallbackQueue,
/// This node's predecessors have all been visited, so it is in the ready queue.
/// (It might also have a stale entry in the fallback queue.)
InReadyQueue,
/// This node has been visited.
/// (It might also have a stale entry in the fallback queue.)
Visited,
}
/// Iterator that visits nodes in the coverage graph, in an order that always
/// prefers "ready" nodes whose predecessors have already been visited.
pub(crate) struct ReadyFirstTraversal<'a> {
graph: &'a CoverageGraph,
/// For each node, the number of its predecessor nodes that haven't been visited yet.
n_unvisited_preds: IndexVec<BasicCoverageBlock, u32>,
/// Indicates whether a node has been visited, or which queue it is in.
state: IndexVec<BasicCoverageBlock, ReadyState>,
/// Holds unvisited nodes whose predecessors have all been visited.
ready_queue: VecDeque<BasicCoverageBlock>,
/// Holds unvisited nodes with some unvisited predecessors.
/// Also contains stale entries for nodes that were upgraded to ready.
fallback_queue: VecDeque<BasicCoverageBlock>,
}
impl<'a> ReadyFirstTraversal<'a> {
pub(crate) fn new(graph: &'a CoverageGraph) -> Self {
let num_nodes = graph.num_nodes();
let n_unvisited_preds =
IndexVec::from_fn_n(|node| graph.predecessors[node].len() as u32, num_nodes);
let mut state = IndexVec::from_elem_n(ReadyState::Unqueued, num_nodes);
// We know from coverage graph construction that the start node is the
// only node with no predecessors.
debug_assert!(
n_unvisited_preds.iter_enumerated().all(|(node, &n)| (node == START_BCB) == (n == 0))
);
let ready_queue = VecDeque::from(vec![START_BCB]);
state[START_BCB] = ReadyState::InReadyQueue;
Self { graph, state, n_unvisited_preds, ready_queue, fallback_queue: VecDeque::new() }
}
/// Returns the next node from the ready queue, or else the next unvisited
/// node from the fallback queue.
fn next_inner(&mut self) -> Option<BasicCoverageBlock> {
// Always prefer to yield a ready node if possible.
if let Some(node) = self.ready_queue.pop_front() {
assert_eq!(self.state[node], ReadyState::InReadyQueue);
return Some(node);
}
while let Some(node) = self.fallback_queue.pop_front() {
match self.state[node] {
// This entry in the fallback queue is not stale, so yield it.
ReadyState::InFallbackQueue => return Some(node),
// This node was added to the fallback queue, but later became
// ready and was visited via the ready queue. Ignore it here.
ReadyState::Visited => {}
// Unqueued nodes can't be in the fallback queue, by definition.
// We know that the ready queue is empty at this point.
ReadyState::Unqueued | ReadyState::InReadyQueue => unreachable!(
"unexpected state for {node:?} in the fallback queue: {:?}",
self.state[node]
),
}
}
None
}
fn mark_visited_and_enqueue_successors(&mut self, node: BasicCoverageBlock) {
assert!(self.state[node] < ReadyState::Visited);
self.state[node] = ReadyState::Visited;
// For each of this node's successors, decrease the successor's
// "unvisited predecessors" count, and enqueue it if appropriate.
for &succ in &self.graph.successors[node] {
let is_unqueued = match self.state[succ] {
ReadyState::Unqueued => true,
ReadyState::InFallbackQueue => false,
ReadyState::InReadyQueue => {
unreachable!("nodes in the ready queue have no unvisited predecessors")
}
// The successor was already visited via one of its other predecessors.
ReadyState::Visited => continue,
};
self.n_unvisited_preds[succ] -= 1;
if self.n_unvisited_preds[succ] == 0 {
// This node's predecessors have all been visited, so add it to
// the ready queue. If it's already in the fallback queue, that
// fallback entry will be ignored later.
self.state[succ] = ReadyState::InReadyQueue;
self.ready_queue.push_back(succ);
} else if is_unqueued {
// This node has unvisited predecessors, so add it to the
// fallback queue in case we run out of ready nodes later.
self.state[succ] = ReadyState::InFallbackQueue;
self.fallback_queue.push_back(succ);
}
}
}
}
impl<'a> Iterator for ReadyFirstTraversal<'a> {
type Item = BasicCoverageBlock;
fn next(&mut self) -> Option<Self::Item> {
let node = self.next_inner()?;
self.mark_visited_and_enqueue_successors(node);
Some(node)
}
}