rustc_const_eval/interpret/
projection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
//! This file implements "place projections"; basically a symmetric API for 3 types: MPlaceTy, OpTy, PlaceTy.
//!
//! OpTy and PlaceTy generally work by "let's see if we are actually an MPlaceTy, and do something custom if not".
//! For PlaceTy, the custom thing is basically always to call `force_allocation` and then use the MPlaceTy logic anyway.
//! For OpTy, the custom thing on field pojections has to be pretty clever (since `Operand::Immediate` can have fields),
//! but for array/slice operations it only has to worry about `Operand::Uninit`. That makes the value part trivial,
//! but we still need to do bounds checking and adjust the layout. To not duplicate that with MPlaceTy, we actually
//! implement the logic on OpTy, and MPlaceTy calls that.

use std::marker::PhantomData;
use std::ops::Range;

use rustc_abi::{self as abi, Size, VariantIdx};
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::{bug, mir, span_bug, ty};
use tracing::{debug, instrument};

use super::{
    InterpCx, InterpResult, MPlaceTy, Machine, MemPlaceMeta, OpTy, Provenance, Scalar, err_ub,
    interp_ok, throw_ub, throw_unsup,
};

/// Describes the constraints placed on offset-projections.
#[derive(Copy, Clone, Debug)]
pub enum OffsetMode {
    /// The offset has to be inbounds, like `ptr::offset`.
    Inbounds,
    /// No constraints, just wrap around the edge of the address space.
    Wrapping,
}

/// A thing that we can project into, and that has a layout.
pub trait Projectable<'tcx, Prov: Provenance>: Sized + std::fmt::Debug {
    /// Get the layout.
    fn layout(&self) -> TyAndLayout<'tcx>;

    /// Get the metadata of a wide value.
    fn meta(&self) -> MemPlaceMeta<Prov>;

    /// Get the length of a slice/string/array stored here.
    fn len<M: Machine<'tcx, Provenance = Prov>>(
        &self,
        ecx: &InterpCx<'tcx, M>,
    ) -> InterpResult<'tcx, u64> {
        let layout = self.layout();
        if layout.is_unsized() {
            // We need to consult `meta` metadata
            match layout.ty.kind() {
                ty::Slice(..) | ty::Str => self.meta().unwrap_meta().to_target_usize(ecx),
                _ => bug!("len not supported on unsized type {:?}", layout.ty),
            }
        } else {
            // Go through the layout. There are lots of types that support a length,
            // e.g., SIMD types. (But not all repr(simd) types even have FieldsShape::Array!)
            match layout.fields {
                abi::FieldsShape::Array { count, .. } => interp_ok(count),
                _ => bug!("len not supported on sized type {:?}", layout.ty),
            }
        }
    }

    /// Offset the value by the given amount, replacing the layout and metadata.
    fn offset_with_meta<M: Machine<'tcx, Provenance = Prov>>(
        &self,
        offset: Size,
        mode: OffsetMode,
        meta: MemPlaceMeta<Prov>,
        layout: TyAndLayout<'tcx>,
        ecx: &InterpCx<'tcx, M>,
    ) -> InterpResult<'tcx, Self>;

    fn offset<M: Machine<'tcx, Provenance = Prov>>(
        &self,
        offset: Size,
        layout: TyAndLayout<'tcx>,
        ecx: &InterpCx<'tcx, M>,
    ) -> InterpResult<'tcx, Self> {
        assert!(layout.is_sized());
        // We sometimes do pointer arithmetic with this function, disregarding the source type.
        // So we don't check the sizes here.
        self.offset_with_meta(offset, OffsetMode::Inbounds, MemPlaceMeta::None, layout, ecx)
    }

    /// This does an offset-by-zero, which is effectively a transmute. Note however that
    /// not all transmutes are supported by all projectables -- specifically, if this is an
    /// `OpTy` or `ImmTy`, the new layout must have almost the same ABI as the old one
    /// (only changing the `valid_range` is allowed and turning integers into pointers).
    fn transmute<M: Machine<'tcx, Provenance = Prov>>(
        &self,
        layout: TyAndLayout<'tcx>,
        ecx: &InterpCx<'tcx, M>,
    ) -> InterpResult<'tcx, Self> {
        assert!(self.layout().is_sized() && layout.is_sized());
        assert_eq!(self.layout().size, layout.size);
        self.offset_with_meta(Size::ZERO, OffsetMode::Wrapping, MemPlaceMeta::None, layout, ecx)
    }

    /// Convert this to an `OpTy`. This might be an irreversible transformation, but is useful for
    /// reading from this thing.
    fn to_op<M: Machine<'tcx, Provenance = Prov>>(
        &self,
        ecx: &InterpCx<'tcx, M>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>>;
}

/// A type representing iteration over the elements of an array.
pub struct ArrayIterator<'a, 'tcx, Prov: Provenance, P: Projectable<'tcx, Prov>> {
    base: &'a P,
    range: Range<u64>,
    stride: Size,
    field_layout: TyAndLayout<'tcx>,
    _phantom: PhantomData<Prov>, // otherwise it says `Prov` is never used...
}

impl<'a, 'tcx, Prov: Provenance, P: Projectable<'tcx, Prov>> ArrayIterator<'a, 'tcx, Prov, P> {
    /// Should be the same `ecx` on each call, and match the one used to create the iterator.
    pub fn next<M: Machine<'tcx, Provenance = Prov>>(
        &mut self,
        ecx: &InterpCx<'tcx, M>,
    ) -> InterpResult<'tcx, Option<(u64, P)>> {
        let Some(idx) = self.range.next() else { return interp_ok(None) };
        // We use `Wrapping` here since the offset has already been checked when the iterator was created.
        interp_ok(Some((
            idx,
            self.base.offset_with_meta(
                self.stride * idx,
                OffsetMode::Wrapping,
                MemPlaceMeta::None,
                self.field_layout,
                ecx,
            )?,
        )))
    }
}

// FIXME: Working around https://github.com/rust-lang/rust/issues/54385
impl<'tcx, Prov, M> InterpCx<'tcx, M>
where
    Prov: Provenance,
    M: Machine<'tcx, Provenance = Prov>,
{
    /// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is
    /// always possible without allocating, so it can take `&self`. Also return the field's layout.
    /// This supports both struct and array fields, but not slices!
    ///
    /// This also works for arrays, but then the `usize` index type is restricting.
    /// For indexing into arrays, use `mplace_index`.
    pub fn project_field<P: Projectable<'tcx, M::Provenance>>(
        &self,
        base: &P,
        field: usize,
    ) -> InterpResult<'tcx, P> {
        // Slices nominally have length 0, so they will panic somewhere in `fields.offset`.
        debug_assert!(
            !matches!(base.layout().ty.kind(), ty::Slice(..)),
            "`field` projection called on a slice -- call `index` projection instead"
        );
        let offset = base.layout().fields.offset(field);
        // Computing the layout does normalization, so we get a normalized type out of this
        // even if the field type is non-normalized (possible e.g. via associated types).
        let field_layout = base.layout().field(self, field);

        // Offset may need adjustment for unsized fields.
        let (meta, offset) = if field_layout.is_unsized() {
            assert!(!base.layout().is_sized());
            let base_meta = base.meta();
            // Re-use parent metadata to determine dynamic field layout.
            // With custom DSTS, this *will* execute user-defined code, but the same
            // happens at run-time so that's okay.
            match self.size_and_align_of(&base_meta, &field_layout)? {
                Some((_, align)) => {
                    // For packed types, we need to cap alignment.
                    let align = if let ty::Adt(def, _) = base.layout().ty.kind()
                        && let Some(packed) = def.repr().pack
                    {
                        align.min(packed)
                    } else {
                        align
                    };
                    (base_meta, offset.align_to(align))
                }
                None if offset == Size::ZERO => {
                    // If the offset is 0, then rounding it up to alignment wouldn't change anything,
                    // so we can do this even for types where we cannot determine the alignment.
                    (base_meta, offset)
                }
                None => {
                    // We cannot know the alignment of this field, so we cannot adjust.
                    throw_unsup!(ExternTypeField)
                }
            }
        } else {
            // base_meta could be present; we might be accessing a sized field of an unsized
            // struct.
            (MemPlaceMeta::None, offset)
        };

        base.offset_with_meta(offset, OffsetMode::Inbounds, meta, field_layout, self)
    }

    /// Downcasting to an enum variant.
    pub fn project_downcast<P: Projectable<'tcx, M::Provenance>>(
        &self,
        base: &P,
        variant: VariantIdx,
    ) -> InterpResult<'tcx, P> {
        assert!(!base.meta().has_meta());
        // Downcasts only change the layout.
        // (In particular, no check about whether this is even the active variant -- that's by design,
        // see https://github.com/rust-lang/rust/issues/93688#issuecomment-1032929496.)
        // So we just "offset" by 0.
        let layout = base.layout().for_variant(self, variant);
        // This variant may in fact be uninhabited.
        // See <https://github.com/rust-lang/rust/issues/120337>.

        // This cannot be `transmute` as variants *can* have a smaller size than the entire enum.
        base.offset(Size::ZERO, layout, self)
    }

    /// Compute the offset and field layout for accessing the given index.
    pub fn project_index<P: Projectable<'tcx, M::Provenance>>(
        &self,
        base: &P,
        index: u64,
    ) -> InterpResult<'tcx, P> {
        // Not using the layout method because we want to compute on u64
        let (offset, field_layout) = match base.layout().fields {
            abi::FieldsShape::Array { stride, count: _ } => {
                // `count` is nonsense for slices, use the dynamic length instead.
                let len = base.len(self)?;
                if index >= len {
                    // This can only be reached in ConstProp and non-rustc-MIR.
                    throw_ub!(BoundsCheckFailed { len, index });
                }
                // With raw slices, `len` can be so big that this *can* overflow.
                let offset = self
                    .compute_size_in_bytes(stride, index)
                    .ok_or_else(|| err_ub!(PointerArithOverflow))?;

                // All fields have the same layout.
                let field_layout = base.layout().field(self, 0);
                (offset, field_layout)
            }
            _ => span_bug!(
                self.cur_span(),
                "`mplace_index` called on non-array type {:?}",
                base.layout().ty
            ),
        };

        base.offset(offset, field_layout, self)
    }

    /// Converts a repr(simd) value into an array of the right size, such that `project_index`
    /// accesses the SIMD elements. Also returns the number of elements.
    pub fn project_to_simd<P: Projectable<'tcx, M::Provenance>>(
        &self,
        base: &P,
    ) -> InterpResult<'tcx, (P, u64)> {
        assert!(base.layout().ty.ty_adt_def().unwrap().repr().simd());
        // SIMD types must be newtypes around arrays, so all we have to do is project to their only field.
        let array = self.project_field(base, 0)?;
        let len = array.len(self)?;
        interp_ok((array, len))
    }

    fn project_constant_index<P: Projectable<'tcx, M::Provenance>>(
        &self,
        base: &P,
        offset: u64,
        min_length: u64,
        from_end: bool,
    ) -> InterpResult<'tcx, P> {
        let n = base.len(self)?;
        if n < min_length {
            // This can only be reached in ConstProp and non-rustc-MIR.
            throw_ub!(BoundsCheckFailed { len: min_length, index: n });
        }

        let index = if from_end {
            assert!(0 < offset && offset <= min_length);
            n.checked_sub(offset).unwrap()
        } else {
            assert!(offset < min_length);
            offset
        };

        self.project_index(base, index)
    }

    /// Iterates over all fields of an array. Much more efficient than doing the
    /// same by repeatedly calling `project_index`.
    pub fn project_array_fields<'a, P: Projectable<'tcx, M::Provenance>>(
        &self,
        base: &'a P,
    ) -> InterpResult<'tcx, ArrayIterator<'a, 'tcx, M::Provenance, P>> {
        let abi::FieldsShape::Array { stride, .. } = base.layout().fields else {
            span_bug!(self.cur_span(), "project_array_fields: expected an array layout");
        };
        let len = base.len(self)?;
        let field_layout = base.layout().field(self, 0);
        // Ensure that all the offsets are in-bounds once, up-front.
        debug!("project_array_fields: {base:?} {len}");
        base.offset(len * stride, self.layout_of(self.tcx.types.unit).unwrap(), self)?;
        // Create the iterator.
        interp_ok(ArrayIterator {
            base,
            range: 0..len,
            stride,
            field_layout,
            _phantom: PhantomData,
        })
    }

    /// Subslicing
    fn project_subslice<P: Projectable<'tcx, M::Provenance>>(
        &self,
        base: &P,
        from: u64,
        to: u64,
        from_end: bool,
    ) -> InterpResult<'tcx, P> {
        let len = base.len(self)?; // also asserts that we have a type where this makes sense
        let actual_to = if from_end {
            if from.checked_add(to).is_none_or(|to| to > len) {
                // This can only be reached in ConstProp and non-rustc-MIR.
                throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) });
            }
            len.checked_sub(to).unwrap()
        } else {
            to
        };

        // Not using layout method because that works with usize, and does not work with slices
        // (that have count 0 in their layout).
        let from_offset = match base.layout().fields {
            abi::FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked
            _ => {
                span_bug!(
                    self.cur_span(),
                    "unexpected layout of index access: {:#?}",
                    base.layout()
                )
            }
        };

        // Compute meta and new layout
        let inner_len = actual_to.checked_sub(from).unwrap();
        let (meta, ty) = match base.layout().ty.kind() {
            // It is not nice to match on the type, but that seems to be the only way to
            // implement this.
            ty::Array(inner, _) => {
                (MemPlaceMeta::None, Ty::new_array(self.tcx.tcx, *inner, inner_len))
            }
            ty::Slice(..) => {
                let len = Scalar::from_target_usize(inner_len, self);
                (MemPlaceMeta::Meta(len), base.layout().ty)
            }
            _ => {
                span_bug!(
                    self.cur_span(),
                    "cannot subslice non-array type: `{:?}`",
                    base.layout().ty
                )
            }
        };
        let layout = self.layout_of(ty)?;

        base.offset_with_meta(from_offset, OffsetMode::Inbounds, meta, layout, self)
    }

    /// Applying a general projection
    #[instrument(skip(self), level = "trace")]
    pub fn project<P>(&self, base: &P, proj_elem: mir::PlaceElem<'tcx>) -> InterpResult<'tcx, P>
    where
        P: Projectable<'tcx, M::Provenance> + From<MPlaceTy<'tcx, M::Provenance>> + std::fmt::Debug,
    {
        use rustc_middle::mir::ProjectionElem::*;
        interp_ok(match proj_elem {
            OpaqueCast(ty) => {
                span_bug!(self.cur_span(), "OpaqueCast({ty}) encountered after borrowck")
            }
            // We don't want anything happening here, this is here as a dummy.
            Subtype(_) => base.transmute(base.layout(), self)?,
            Field(field, _) => self.project_field(base, field.index())?,
            Downcast(_, variant) => self.project_downcast(base, variant)?,
            Deref => self.deref_pointer(&base.to_op(self)?)?.into(),
            Index(local) => {
                let layout = self.layout_of(self.tcx.types.usize)?;
                let n = self.local_to_op(local, Some(layout))?;
                let n = self.read_target_usize(&n)?;
                self.project_index(base, n)?
            }
            ConstantIndex { offset, min_length, from_end } => {
                self.project_constant_index(base, offset, min_length, from_end)?
            }
            Subslice { from, to, from_end } => self.project_subslice(base, from, to, from_end)?,
        })
    }
}