1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
//! This file implements "place projections"; basically a symmetric API for 3 types: MPlaceTy, OpTy, PlaceTy.
//!
//! OpTy and PlaceTy generally work by "let's see if we are actually an MPlaceTy, and do something custom if not".
//! For PlaceTy, the custom thing is basically always to call `force_allocation` and then use the MPlaceTy logic anyway.
//! For OpTy, the custom thing on field pojections has to be pretty clever (since `Operand::Immediate` can have fields),
//! but for array/slice operations it only has to worry about `Operand::Uninit`. That makes the value part trivial,
//! but we still need to do bounds checking and adjust the layout. To not duplicate that with MPlaceTy, we actually
//! implement the logic on OpTy, and MPlaceTy calls that.
use either::{Left, Right};
use rustc_middle::mir;
use rustc_middle::ty;
use rustc_middle::ty::layout::LayoutOf;
use rustc_target::abi::{self, Abi, VariantIdx};
use super::{
ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy, Machine, MemPlaceMeta, OpTy, PlaceTy,
Provenance, Scalar,
};
// FIXME: Working around https://github.com/rust-lang/rust/issues/54385
impl<'mir, 'tcx: 'mir, Prov, M> InterpCx<'mir, 'tcx, M>
where
Prov: Provenance + 'static,
M: Machine<'mir, 'tcx, Provenance = Prov>,
{
//# Field access
/// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is
/// always possible without allocating, so it can take `&self`. Also return the field's layout.
/// This supports both struct and array fields.
///
/// This also works for arrays, but then the `usize` index type is restricting.
/// For indexing into arrays, use `mplace_index`.
pub fn mplace_field(
&self,
base: &MPlaceTy<'tcx, M::Provenance>,
field: usize,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
let offset = base.layout.fields.offset(field);
let field_layout = base.layout.field(self, field);
// Offset may need adjustment for unsized fields.
let (meta, offset) = if field_layout.is_unsized() {
// Re-use parent metadata to determine dynamic field layout.
// With custom DSTS, this *will* execute user-defined code, but the same
// happens at run-time so that's okay.
match self.size_and_align_of(&base.meta, &field_layout)? {
Some((_, align)) => (base.meta, offset.align_to(align)),
None => {
// For unsized types with an extern type tail we perform no adjustments.
// NOTE: keep this in sync with `PlaceRef::project_field` in the codegen backend.
assert!(matches!(base.meta, MemPlaceMeta::None));
(base.meta, offset)
}
}
} else {
// base.meta could be present; we might be accessing a sized field of an unsized
// struct.
(MemPlaceMeta::None, offset)
};
// We do not look at `base.layout.align` nor `field_layout.align`, unlike
// codegen -- mostly to see if we can get away with that
base.offset_with_meta(offset, meta, field_layout, self)
}
/// Gets the place of a field inside the place, and also the field's type.
/// Just a convenience function, but used quite a bit.
/// This is the only projection that might have a side-effect: We cannot project
/// into the field of a local `ScalarPair`, we have to first allocate it.
pub fn place_field(
&mut self,
base: &PlaceTy<'tcx, M::Provenance>,
field: usize,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
// FIXME: We could try to be smarter and avoid allocation for fields that span the
// entire place.
let base = self.force_allocation(base)?;
Ok(self.mplace_field(&base, field)?.into())
}
pub fn operand_field(
&self,
base: &OpTy<'tcx, M::Provenance>,
field: usize,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
let base = match base.as_mplace_or_imm() {
Left(ref mplace) => {
// We can reuse the mplace field computation logic for indirect operands.
let field = self.mplace_field(mplace, field)?;
return Ok(field.into());
}
Right(value) => value,
};
let field_layout = base.layout.field(self, field);
let offset = base.layout.fields.offset(field);
// This makes several assumptions about what layouts we will encounter; we match what
// codegen does as good as we can (see `extract_field` in `rustc_codegen_ssa/src/mir/operand.rs`).
let field_val: Immediate<_> = match (*base, base.layout.abi) {
// if the entire value is uninit, then so is the field (can happen in ConstProp)
(Immediate::Uninit, _) => Immediate::Uninit,
// the field contains no information, can be left uninit
_ if field_layout.is_zst() => Immediate::Uninit,
// the field covers the entire type
_ if field_layout.size == base.layout.size => {
assert!(match (base.layout.abi, field_layout.abi) {
(Abi::Scalar(..), Abi::Scalar(..)) => true,
(Abi::ScalarPair(..), Abi::ScalarPair(..)) => true,
_ => false,
});
assert!(offset.bytes() == 0);
*base
}
// extract fields from types with `ScalarPair` ABI
(Immediate::ScalarPair(a_val, b_val), Abi::ScalarPair(a, b)) => {
assert!(matches!(field_layout.abi, Abi::Scalar(..)));
Immediate::from(if offset.bytes() == 0 {
debug_assert_eq!(field_layout.size, a.size(self));
a_val
} else {
debug_assert_eq!(offset, a.size(self).align_to(b.align(self).abi));
debug_assert_eq!(field_layout.size, b.size(self));
b_val
})
}
// everything else is a bug
_ => span_bug!(
self.cur_span(),
"invalid field access on immediate {}, layout {:#?}",
base,
base.layout
),
};
Ok(ImmTy::from_immediate(field_val, field_layout).into())
}
//# Downcasting
pub fn mplace_downcast(
&self,
base: &MPlaceTy<'tcx, M::Provenance>,
variant: VariantIdx,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
// Downcasts only change the layout.
// (In particular, no check about whether this is even the active variant -- that's by design,
// see https://github.com/rust-lang/rust/issues/93688#issuecomment-1032929496.)
assert!(!base.meta.has_meta());
let mut base = *base;
base.layout = base.layout.for_variant(self, variant);
Ok(base)
}
pub fn place_downcast(
&self,
base: &PlaceTy<'tcx, M::Provenance>,
variant: VariantIdx,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
// Downcast just changes the layout
let mut base = base.clone();
base.layout = base.layout.for_variant(self, variant);
Ok(base)
}
pub fn operand_downcast(
&self,
base: &OpTy<'tcx, M::Provenance>,
variant: VariantIdx,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
// Downcast just changes the layout
let mut base = base.clone();
base.layout = base.layout.for_variant(self, variant);
Ok(base)
}
//# Slice indexing
#[inline(always)]
pub fn operand_index(
&self,
base: &OpTy<'tcx, M::Provenance>,
index: u64,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
// Not using the layout method because we want to compute on u64
match base.layout.fields {
abi::FieldsShape::Array { stride, count: _ } => {
// `count` is nonsense for slices, use the dynamic length instead.
let len = base.len(self)?;
if index >= len {
// This can only be reached in ConstProp and non-rustc-MIR.
throw_ub!(BoundsCheckFailed { len, index });
}
let offset = stride * index; // `Size` multiplication
// All fields have the same layout.
let field_layout = base.layout.field(self, 0);
base.offset(offset, field_layout, self)
}
_ => span_bug!(
self.cur_span(),
"`mplace_index` called on non-array type {:?}",
base.layout.ty
),
}
}
/// Iterates over all fields of an array. Much more efficient than doing the
/// same by repeatedly calling `operand_index`.
pub fn operand_array_fields<'a>(
&self,
base: &'a OpTy<'tcx, Prov>,
) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, OpTy<'tcx, Prov>>> + 'a> {
let len = base.len(self)?; // also asserts that we have a type where this makes sense
let abi::FieldsShape::Array { stride, .. } = base.layout.fields else {
span_bug!(self.cur_span(), "operand_array_fields: expected an array layout");
};
let field_layout = base.layout.field(self, 0);
let dl = &self.tcx.data_layout;
// `Size` multiplication
Ok((0..len).map(move |i| base.offset(stride * i, field_layout, dl)))
}
/// Index into an array.
pub fn mplace_index(
&self,
base: &MPlaceTy<'tcx, M::Provenance>,
index: u64,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
Ok(self.operand_index(&base.into(), index)?.assert_mem_place())
}
pub fn place_index(
&mut self,
base: &PlaceTy<'tcx, M::Provenance>,
index: u64,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
// There's not a lot we can do here, since we cannot have a place to a part of a local. If
// we are accessing the only element of a 1-element array, it's still the entire local...
// that doesn't seem worth it.
let base = self.force_allocation(base)?;
Ok(self.mplace_index(&base, index)?.into())
}
//# ConstantIndex support
fn operand_constant_index(
&self,
base: &OpTy<'tcx, M::Provenance>,
offset: u64,
min_length: u64,
from_end: bool,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
let n = base.len(self)?;
if n < min_length {
// This can only be reached in ConstProp and non-rustc-MIR.
throw_ub!(BoundsCheckFailed { len: min_length, index: n });
}
let index = if from_end {
assert!(0 < offset && offset <= min_length);
n.checked_sub(offset).unwrap()
} else {
assert!(offset < min_length);
offset
};
self.operand_index(base, index)
}
fn place_constant_index(
&mut self,
base: &PlaceTy<'tcx, M::Provenance>,
offset: u64,
min_length: u64,
from_end: bool,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
let base = self.force_allocation(base)?;
Ok(self
.operand_constant_index(&base.into(), offset, min_length, from_end)?
.assert_mem_place()
.into())
}
//# Subslicing
fn operand_subslice(
&self,
base: &OpTy<'tcx, M::Provenance>,
from: u64,
to: u64,
from_end: bool,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
let len = base.len(self)?; // also asserts that we have a type where this makes sense
let actual_to = if from_end {
if from.checked_add(to).map_or(true, |to| to > len) {
// This can only be reached in ConstProp and non-rustc-MIR.
throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) });
}
len.checked_sub(to).unwrap()
} else {
to
};
// Not using layout method because that works with usize, and does not work with slices
// (that have count 0 in their layout).
let from_offset = match base.layout.fields {
abi::FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked
_ => {
span_bug!(self.cur_span(), "unexpected layout of index access: {:#?}", base.layout)
}
};
// Compute meta and new layout
let inner_len = actual_to.checked_sub(from).unwrap();
let (meta, ty) = match base.layout.ty.kind() {
// It is not nice to match on the type, but that seems to be the only way to
// implement this.
ty::Array(inner, _) => (MemPlaceMeta::None, self.tcx.mk_array(*inner, inner_len)),
ty::Slice(..) => {
let len = Scalar::from_target_usize(inner_len, self);
(MemPlaceMeta::Meta(len), base.layout.ty)
}
_ => {
span_bug!(self.cur_span(), "cannot subslice non-array type: `{:?}`", base.layout.ty)
}
};
let layout = self.layout_of(ty)?;
base.offset_with_meta(from_offset, meta, layout, self)
}
pub fn place_subslice(
&mut self,
base: &PlaceTy<'tcx, M::Provenance>,
from: u64,
to: u64,
from_end: bool,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
let base = self.force_allocation(base)?;
Ok(self.operand_subslice(&base.into(), from, to, from_end)?.assert_mem_place().into())
}
//# Applying a general projection
/// Projects into a place.
#[instrument(skip(self), level = "trace")]
pub fn place_projection(
&mut self,
base: &PlaceTy<'tcx, M::Provenance>,
proj_elem: mir::PlaceElem<'tcx>,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
use rustc_middle::mir::ProjectionElem::*;
Ok(match proj_elem {
OpaqueCast(ty) => {
let mut place = base.clone();
place.layout = self.layout_of(ty)?;
place
}
Field(field, _) => self.place_field(base, field.index())?,
Downcast(_, variant) => self.place_downcast(base, variant)?,
Deref => self.deref_operand(&self.place_to_op(base)?)?.into(),
Index(local) => {
let layout = self.layout_of(self.tcx.types.usize)?;
let n = self.local_to_op(self.frame(), local, Some(layout))?;
let n = self.read_target_usize(&n)?;
self.place_index(base, n)?
}
ConstantIndex { offset, min_length, from_end } => {
self.place_constant_index(base, offset, min_length, from_end)?
}
Subslice { from, to, from_end } => self.place_subslice(base, from, to, from_end)?,
})
}
#[instrument(skip(self), level = "trace")]
pub fn operand_projection(
&self,
base: &OpTy<'tcx, M::Provenance>,
proj_elem: mir::PlaceElem<'tcx>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
use rustc_middle::mir::ProjectionElem::*;
Ok(match proj_elem {
OpaqueCast(ty) => {
let mut op = base.clone();
op.layout = self.layout_of(ty)?;
op
}
Field(field, _) => self.operand_field(base, field.index())?,
Downcast(_, variant) => self.operand_downcast(base, variant)?,
Deref => self.deref_operand(base)?.into(),
Index(local) => {
let layout = self.layout_of(self.tcx.types.usize)?;
let n = self.local_to_op(self.frame(), local, Some(layout))?;
let n = self.read_target_usize(&n)?;
self.operand_index(base, n)?
}
ConstantIndex { offset, min_length, from_end } => {
self.operand_constant_index(base, offset, min_length, from_end)?
}
Subslice { from, to, from_end } => self.operand_subslice(base, from, to, from_end)?,
})
}
}