1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
//! The virtual memory representation of the MIR interpreter.

use std::borrow::Cow;
use std::convert::TryFrom;
use std::iter;
use std::ops::{Deref, Range};
use std::ptr;

use rustc_ast::Mutability;
use rustc_data_structures::sorted_map::SortedMap;
use rustc_span::DUMMY_SP;
use rustc_target::abi::{Align, HasDataLayout, Size};

use super::{
    read_target_uint, write_target_uint, AllocId, InterpError, InterpResult, Pointer,
    ResourceExhaustionInfo, Scalar, ScalarMaybeUninit, UndefinedBehaviorInfo, UninitBytesAccess,
    UnsupportedOpInfo,
};
use crate::ty;

/// This type represents an Allocation in the Miri/CTFE core engine.
///
/// Its public API is rather low-level, working directly with allocation offsets and a custom error
/// type to account for the lack of an AllocId on this level. The Miri/CTFE core engine `memory`
/// module provides higher-level access.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct Allocation<Tag = AllocId, Extra = ()> {
    /// The actual bytes of the allocation.
    /// Note that the bytes of a pointer represent the offset of the pointer.
    bytes: Vec<u8>,
    /// Maps from byte addresses to extra data for each pointer.
    /// Only the first byte of a pointer is inserted into the map; i.e.,
    /// every entry in this map applies to `pointer_size` consecutive bytes starting
    /// at the given offset.
    relocations: Relocations<Tag>,
    /// Denotes which part of this allocation is initialized.
    init_mask: InitMask,
    /// The alignment of the allocation to detect unaligned reads.
    /// (`Align` guarantees that this is a power of two.)
    pub align: Align,
    /// `true` if the allocation is mutable.
    /// Also used by codegen to determine if a static should be put into mutable memory,
    /// which happens for `static mut` and `static` with interior mutability.
    pub mutability: Mutability,
    /// Extra state for the machine.
    pub extra: Extra,
}

/// We have our own error type that does not know about the `AllocId`; that information
/// is added when converting to `InterpError`.
#[derive(Debug)]
pub enum AllocError {
    /// Encountered a pointer where we needed raw bytes.
    ReadPointerAsBytes,
    /// Using uninitialized data where it is not allowed.
    InvalidUninitBytes(Option<UninitBytesAccess>),
}
pub type AllocResult<T = ()> = Result<T, AllocError>;

impl AllocError {
    pub fn to_interp_error<'tcx>(self, alloc_id: AllocId) -> InterpError<'tcx> {
        match self {
            AllocError::ReadPointerAsBytes => {
                InterpError::Unsupported(UnsupportedOpInfo::ReadPointerAsBytes)
            }
            AllocError::InvalidUninitBytes(info) => InterpError::UndefinedBehavior(
                UndefinedBehaviorInfo::InvalidUninitBytes(info.map(|b| (alloc_id, b))),
            ),
        }
    }
}

/// The information that makes up a memory access: offset and size.
#[derive(Copy, Clone, Debug)]
pub struct AllocRange {
    pub start: Size,
    pub size: Size,
}

/// Free-starting constructor for less syntactic overhead.
#[inline(always)]
pub fn alloc_range(start: Size, size: Size) -> AllocRange {
    AllocRange { start, size }
}

impl AllocRange {
    #[inline(always)]
    pub fn end(self) -> Size {
        self.start + self.size // This does overflow checking.
    }

    /// Returns the `subrange` within this range; panics if it is not a subrange.
    #[inline]
    pub fn subrange(self, subrange: AllocRange) -> AllocRange {
        let sub_start = self.start + subrange.start;
        let range = alloc_range(sub_start, subrange.size);
        assert!(range.end() <= self.end(), "access outside the bounds for given AllocRange");
        range
    }
}

// The constructors are all without extra; the extra gets added by a machine hook later.
impl<Tag> Allocation<Tag> {
    /// Creates an allocation initialized by the given bytes
    pub fn from_bytes<'a>(
        slice: impl Into<Cow<'a, [u8]>>,
        align: Align,
        mutability: Mutability,
    ) -> Self {
        let bytes = slice.into().into_owned();
        let size = Size::from_bytes(bytes.len());
        Self {
            bytes,
            relocations: Relocations::new(),
            init_mask: InitMask::new(size, true),
            align,
            mutability,
            extra: (),
        }
    }

    pub fn from_bytes_byte_aligned_immutable<'a>(slice: impl Into<Cow<'a, [u8]>>) -> Self {
        Allocation::from_bytes(slice, Align::ONE, Mutability::Not)
    }

    /// Try to create an Allocation of `size` bytes, failing if there is not enough memory
    /// available to the compiler to do so.
    pub fn uninit(size: Size, align: Align, panic_on_fail: bool) -> InterpResult<'static, Self> {
        let mut bytes = Vec::new();
        bytes.try_reserve(size.bytes_usize()).map_err(|_| {
            // This results in an error that can happen non-deterministically, since the memory
            // available to the compiler can change between runs. Normally queries are always
            // deterministic. However, we can be non-determinstic here because all uses of const
            // evaluation (including ConstProp!) will make compilation fail (via hard error
            // or ICE) upon encountering a `MemoryExhausted` error.
            if panic_on_fail {
                panic!("Allocation::uninit called with panic_on_fail had allocation failure")
            }
            ty::tls::with(|tcx| {
                tcx.sess.delay_span_bug(DUMMY_SP, "exhausted memory during interpreation")
            });
            InterpError::ResourceExhaustion(ResourceExhaustionInfo::MemoryExhausted)
        })?;
        bytes.resize(size.bytes_usize(), 0);
        Ok(Allocation {
            bytes,
            relocations: Relocations::new(),
            init_mask: InitMask::new(size, false),
            align,
            mutability: Mutability::Mut,
            extra: (),
        })
    }
}

impl Allocation {
    /// Convert Tag and add Extra fields
    pub fn convert_tag_add_extra<Tag, Extra>(
        self,
        cx: &impl HasDataLayout,
        extra: Extra,
        mut tagger: impl FnMut(Pointer<AllocId>) -> Pointer<Tag>,
    ) -> Allocation<Tag, Extra> {
        // Compute new pointer tags, which also adjusts the bytes.
        let mut bytes = self.bytes;
        let mut new_relocations = Vec::with_capacity(self.relocations.0.len());
        let ptr_size = cx.data_layout().pointer_size.bytes_usize();
        let endian = cx.data_layout().endian;
        for &(offset, alloc_id) in self.relocations.iter() {
            let idx = offset.bytes_usize();
            let ptr_bytes = &mut bytes[idx..idx + ptr_size];
            let bits = read_target_uint(endian, ptr_bytes).unwrap();
            let (ptr_tag, ptr_offset) =
                tagger(Pointer::new(alloc_id, Size::from_bytes(bits))).into_parts();
            write_target_uint(endian, ptr_bytes, ptr_offset.bytes().into()).unwrap();
            new_relocations.push((offset, ptr_tag));
        }
        // Create allocation.
        Allocation {
            bytes,
            relocations: Relocations::from_presorted(new_relocations),
            init_mask: self.init_mask,
            align: self.align,
            mutability: self.mutability,
            extra,
        }
    }
}

/// Raw accessors. Provide access to otherwise private bytes.
impl<Tag, Extra> Allocation<Tag, Extra> {
    pub fn len(&self) -> usize {
        self.bytes.len()
    }

    pub fn size(&self) -> Size {
        Size::from_bytes(self.len())
    }

    /// Looks at a slice which may describe uninitialized bytes or describe a relocation. This differs
    /// from `get_bytes_with_uninit_and_ptr` in that it does no relocation checks (even on the
    /// edges) at all.
    /// This must not be used for reads affecting the interpreter execution.
    pub fn inspect_with_uninit_and_ptr_outside_interpreter(&self, range: Range<usize>) -> &[u8] {
        &self.bytes[range]
    }

    /// Returns the mask indicating which bytes are initialized.
    pub fn init_mask(&self) -> &InitMask {
        &self.init_mask
    }

    /// Returns the relocation list.
    pub fn relocations(&self) -> &Relocations<Tag> {
        &self.relocations
    }
}

/// Byte accessors.
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    /// The last argument controls whether we error out when there are uninitialized
    /// or pointer bytes. You should never call this, call `get_bytes` or
    /// `get_bytes_with_uninit_and_ptr` instead,
    ///
    /// This function also guarantees that the resulting pointer will remain stable
    /// even when new allocations are pushed to the `HashMap`. `copy_repeatedly` relies
    /// on that.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    fn get_bytes_internal(
        &self,
        cx: &impl HasDataLayout,
        range: AllocRange,
        check_init_and_ptr: bool,
    ) -> AllocResult<&[u8]> {
        if check_init_and_ptr {
            self.check_init(range)?;
            self.check_relocations(cx, range)?;
        } else {
            // We still don't want relocations on the *edges*.
            self.check_relocation_edges(cx, range)?;
        }

        Ok(&self.bytes[range.start.bytes_usize()..range.end().bytes_usize()])
    }

    /// Checks that these bytes are initialized and not pointer bytes, and then return them
    /// as a slice.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
    /// on `InterpCx` instead.
    #[inline]
    pub fn get_bytes(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult<&[u8]> {
        self.get_bytes_internal(cx, range, true)
    }

    /// It is the caller's responsibility to handle uninitialized and pointer bytes.
    /// However, this still checks that there are no relocations on the *edges*.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    #[inline]
    pub fn get_bytes_with_uninit_and_ptr(
        &self,
        cx: &impl HasDataLayout,
        range: AllocRange,
    ) -> AllocResult<&[u8]> {
        self.get_bytes_internal(cx, range, false)
    }

    /// Just calling this already marks everything as defined and removes relocations,
    /// so be sure to actually put data there!
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
    /// on `InterpCx` instead.
    pub fn get_bytes_mut(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> &mut [u8] {
        self.mark_init(range, true);
        self.clear_relocations(cx, range);

        &mut self.bytes[range.start.bytes_usize()..range.end().bytes_usize()]
    }

    /// A raw pointer variant of `get_bytes_mut` that avoids invalidating existing aliases into this memory.
    pub fn get_bytes_mut_ptr(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> *mut [u8] {
        self.mark_init(range, true);
        // This also clears relocations that just overlap with the written range. So writing to some
        // byte can de-initialize its neighbors! See
        // <https://github.com/rust-lang/rust/issues/87184> for details.
        self.clear_relocations(cx, range);

        assert!(range.end().bytes_usize() <= self.bytes.len()); // need to do our own bounds-check
        let begin_ptr = self.bytes.as_mut_ptr().wrapping_add(range.start.bytes_usize());
        let len = range.end().bytes_usize() - range.start.bytes_usize();
        ptr::slice_from_raw_parts_mut(begin_ptr, len)
    }
}

/// Reading and writing.
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    /// Validates that `ptr.offset` and `ptr.offset + size` do not point to the middle of a
    /// relocation. If `allow_uninit_and_ptr` is `false`, also enforces that the memory in the
    /// given range contains neither relocations nor uninitialized bytes.
    pub fn check_bytes(
        &self,
        cx: &impl HasDataLayout,
        range: AllocRange,
        allow_uninit_and_ptr: bool,
    ) -> AllocResult {
        // Check bounds and relocations on the edges.
        self.get_bytes_with_uninit_and_ptr(cx, range)?;
        // Check uninit and ptr.
        if !allow_uninit_and_ptr {
            self.check_init(range)?;
            self.check_relocations(cx, range)?;
        }
        Ok(())
    }

    /// Reads a *non-ZST* scalar.
    ///
    /// ZSTs can't be read because in order to obtain a `Pointer`, we need to check
    /// for ZSTness anyway due to integer pointers being valid for ZSTs.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `InterpCx::read_scalar` instead of this method.
    pub fn read_scalar(
        &self,
        cx: &impl HasDataLayout,
        range: AllocRange,
    ) -> AllocResult<ScalarMaybeUninit<Tag>> {
        // `get_bytes_with_uninit_and_ptr` tests relocation edges.
        // We deliberately error when loading data that partially has provenance, or partially
        // initialized data (that's the check below), into a scalar. The LLVM semantics of this are
        // unclear so we are conservative. See <https://github.com/rust-lang/rust/issues/69488> for
        // further discussion.
        let bytes = self.get_bytes_with_uninit_and_ptr(cx, range)?;
        // Uninit check happens *after* we established that the alignment is correct.
        // We must not return `Ok()` for unaligned pointers!
        if self.is_init(range).is_err() {
            // This inflates uninitialized bytes to the entire scalar, even if only a few
            // bytes are uninitialized.
            return Ok(ScalarMaybeUninit::Uninit);
        }
        // Now we do the actual reading.
        let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap();
        // See if we got a pointer.
        if range.size != cx.data_layout().pointer_size {
            // Not a pointer.
            // *Now*, we better make sure that the inside is free of relocations too.
            self.check_relocations(cx, range)?;
        } else {
            // Maybe a pointer.
            if let Some(&prov) = self.relocations.get(&range.start) {
                let ptr = Pointer::new(prov, Size::from_bytes(bits));
                return Ok(ScalarMaybeUninit::from_pointer(ptr, cx));
            }
        }
        // We don't. Just return the bits.
        Ok(ScalarMaybeUninit::Scalar(Scalar::from_uint(bits, range.size)))
    }

    /// Writes a *non-ZST* scalar.
    ///
    /// ZSTs can't be read because in order to obtain a `Pointer`, we need to check
    /// for ZSTness anyway due to integer pointers being valid for ZSTs.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `InterpCx::write_scalar` instead of this method.
    pub fn write_scalar(
        &mut self,
        cx: &impl HasDataLayout,
        range: AllocRange,
        val: ScalarMaybeUninit<Tag>,
    ) -> AllocResult {
        assert!(self.mutability == Mutability::Mut);

        let val = match val {
            ScalarMaybeUninit::Scalar(scalar) => scalar,
            ScalarMaybeUninit::Uninit => {
                self.mark_init(range, false);
                return Ok(());
            }
        };

        // `to_bits_or_ptr_internal` is the right method because we just want to store this data
        // as-is into memory.
        let (bytes, provenance) = match val.to_bits_or_ptr_internal(range.size) {
            Err(val) => {
                let (provenance, offset) = val.into_parts();
                (u128::from(offset.bytes()), Some(provenance))
            }
            Ok(data) => (data, None),
        };

        let endian = cx.data_layout().endian;
        let dst = self.get_bytes_mut(cx, range);
        write_target_uint(endian, dst, bytes).unwrap();

        // See if we have to also write a relocation.
        if let Some(provenance) = provenance {
            self.relocations.0.insert(range.start, provenance);
        }

        Ok(())
    }
}

/// Relocations.
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    /// Returns all relocations overlapping with the given pointer-offset pair.
    pub fn get_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> &[(Size, Tag)] {
        // We have to go back `pointer_size - 1` bytes, as that one would still overlap with
        // the beginning of this range.
        let start = range.start.bytes().saturating_sub(cx.data_layout().pointer_size.bytes() - 1);
        self.relocations.range(Size::from_bytes(start)..range.end())
    }

    /// Checks that there are no relocations overlapping with the given range.
    #[inline(always)]
    fn check_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
        if self.get_relocations(cx, range).is_empty() {
            Ok(())
        } else {
            Err(AllocError::ReadPointerAsBytes)
        }
    }

    /// Removes all relocations inside the given range.
    /// If there are relocations overlapping with the edges, they
    /// are removed as well *and* the bytes they cover are marked as
    /// uninitialized. This is a somewhat odd "spooky action at a distance",
    /// but it allows strictly more code to run than if we would just error
    /// immediately in that case.
    fn clear_relocations(&mut self, cx: &impl HasDataLayout, range: AllocRange) {
        // Find the start and end of the given range and its outermost relocations.
        let (first, last) = {
            // Find all relocations overlapping the given range.
            let relocations = self.get_relocations(cx, range);
            if relocations.is_empty() {
                return;
            }

            (
                relocations.first().unwrap().0,
                relocations.last().unwrap().0 + cx.data_layout().pointer_size,
            )
        };
        let start = range.start;
        let end = range.end();

        // Mark parts of the outermost relocations as uninitialized if they partially fall outside the
        // given range.
        if first < start {
            self.init_mask.set_range(first, start, false);
        }
        if last > end {
            self.init_mask.set_range(end, last, false);
        }

        // Forget all the relocations.
        self.relocations.0.remove_range(first..last);
    }

    /// Errors if there are relocations overlapping with the edges of the
    /// given memory range.
    #[inline]
    fn check_relocation_edges(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
        self.check_relocations(cx, alloc_range(range.start, Size::ZERO))?;
        self.check_relocations(cx, alloc_range(range.end(), Size::ZERO))?;
        Ok(())
    }
}

/// Uninitialized bytes.
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    /// Checks whether the given range  is entirely initialized.
    ///
    /// Returns `Ok(())` if it's initialized. Otherwise returns the range of byte
    /// indexes of the first contiguous uninitialized access.
    fn is_init(&self, range: AllocRange) -> Result<(), Range<Size>> {
        self.init_mask.is_range_initialized(range.start, range.end()) // `Size` addition
    }

    /// Checks that a range of bytes is initialized. If not, returns the `InvalidUninitBytes`
    /// error which will report the first range of bytes which is uninitialized.
    fn check_init(&self, range: AllocRange) -> AllocResult {
        self.is_init(range).or_else(|idx_range| {
            Err(AllocError::InvalidUninitBytes(Some(UninitBytesAccess {
                access_offset: range.start,
                access_size: range.size,
                uninit_offset: idx_range.start,
                uninit_size: idx_range.end - idx_range.start, // `Size` subtraction
            })))
        })
    }

    pub fn mark_init(&mut self, range: AllocRange, is_init: bool) {
        if range.size.bytes() == 0 {
            return;
        }
        assert!(self.mutability == Mutability::Mut);
        self.init_mask.set_range(range.start, range.end(), is_init);
    }
}

/// Run-length encoding of the uninit mask.
/// Used to copy parts of a mask multiple times to another allocation.
pub struct InitMaskCompressed {
    /// Whether the first range is initialized.
    initial: bool,
    /// The lengths of ranges that are run-length encoded.
    /// The initialization state of the ranges alternate starting with `initial`.
    ranges: smallvec::SmallVec<[u64; 1]>,
}

impl InitMaskCompressed {
    pub fn no_bytes_init(&self) -> bool {
        // The `ranges` are run-length encoded and of alternating initialization state.
        // So if `ranges.len() > 1` then the second block is an initialized range.
        !self.initial && self.ranges.len() == 1
    }
}

/// Transferring the initialization mask to other allocations.
impl<Tag, Extra> Allocation<Tag, Extra> {
    /// Creates a run-length encoding of the initialization mask.
    pub fn compress_uninit_range(&self, range: AllocRange) -> InitMaskCompressed {
        // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
        // a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
        // the source and write it to the destination. Even if we optimized the memory accesses,
        // we'd be doing all of this `repeat` times.
        // Therefore we precompute a compressed version of the initialization mask of the source value and
        // then write it back `repeat` times without computing any more information from the source.

        // A precomputed cache for ranges of initialized / uninitialized bits
        // 0000010010001110 will become
        // `[5, 1, 2, 1, 3, 3, 1]`,
        // where each element toggles the state.

        let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
        let initial = self.init_mask.get(range.start);
        let mut cur_len = 1;
        let mut cur = initial;

        for i in 1..range.size.bytes() {
            // FIXME: optimize to bitshift the current uninitialized block's bits and read the top bit.
            if self.init_mask.get(range.start + Size::from_bytes(i)) == cur {
                cur_len += 1;
            } else {
                ranges.push(cur_len);
                cur_len = 1;
                cur = !cur;
            }
        }

        ranges.push(cur_len);

        InitMaskCompressed { ranges, initial }
    }

    /// Applies multiple instances of the run-length encoding to the initialization mask.
    pub fn mark_compressed_init_range(
        &mut self,
        defined: &InitMaskCompressed,
        range: AllocRange,
        repeat: u64,
    ) {
        // An optimization where we can just overwrite an entire range of initialization
        // bits if they are going to be uniformly `1` or `0`.
        if defined.ranges.len() <= 1 {
            self.init_mask.set_range_inbounds(
                range.start,
                range.start + range.size * repeat, // `Size` operations
                defined.initial,
            );
            return;
        }

        for mut j in 0..repeat {
            j *= range.size.bytes();
            j += range.start.bytes();
            let mut cur = defined.initial;
            for range in &defined.ranges {
                let old_j = j;
                j += range;
                self.init_mask.set_range_inbounds(
                    Size::from_bytes(old_j),
                    Size::from_bytes(j),
                    cur,
                );
                cur = !cur;
            }
        }
    }
}

/// "Relocations" stores the provenance information of pointers stored in memory.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
pub struct Relocations<Tag = AllocId>(SortedMap<Size, Tag>);

impl<Tag> Relocations<Tag> {
    pub fn new() -> Self {
        Relocations(SortedMap::new())
    }

    // The caller must guarantee that the given relocations are already sorted
    // by address and contain no duplicates.
    pub fn from_presorted(r: Vec<(Size, Tag)>) -> Self {
        Relocations(SortedMap::from_presorted_elements(r))
    }
}

impl<Tag> Deref for Relocations<Tag> {
    type Target = SortedMap<Size, Tag>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// A partial, owned list of relocations to transfer into another allocation.
pub struct AllocationRelocations<Tag> {
    relative_relocations: Vec<(Size, Tag)>,
}

impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    pub fn prepare_relocation_copy(
        &self,
        cx: &impl HasDataLayout,
        src: AllocRange,
        dest: Size,
        count: u64,
    ) -> AllocationRelocations<Tag> {
        let relocations = self.get_relocations(cx, src);
        if relocations.is_empty() {
            return AllocationRelocations { relative_relocations: Vec::new() };
        }

        let size = src.size;
        let mut new_relocations = Vec::with_capacity(relocations.len() * (count as usize));

        for i in 0..count {
            new_relocations.extend(relocations.iter().map(|&(offset, reloc)| {
                // compute offset for current repetition
                let dest_offset = dest + size * i; // `Size` operations
                (
                    // shift offsets from source allocation to destination allocation
                    (offset + dest_offset) - src.start, // `Size` operations
                    reloc,
                )
            }));
        }

        AllocationRelocations { relative_relocations: new_relocations }
    }

    /// Applies a relocation copy.
    /// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected
    /// to be clear of relocations.
    pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations<Tag>) {
        self.relocations.0.insert_presorted(relocations.relative_relocations);
    }
}

////////////////////////////////////////////////////////////////////////////////
// Uninitialized byte tracking
////////////////////////////////////////////////////////////////////////////////

type Block = u64;

/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is initialized. If it is `false` the byte is uninitialized.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct InitMask {
    blocks: Vec<Block>,
    len: Size,
}

impl InitMask {
    pub const BLOCK_SIZE: u64 = 64;

    pub fn new(size: Size, state: bool) -> Self {
        let mut m = InitMask { blocks: vec![], len: Size::ZERO };
        m.grow(size, state);
        m
    }

    /// Checks whether the range `start..end` (end-exclusive) is entirely initialized.
    ///
    /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
    /// indexes for the first contiguous span of the uninitialized access.
    #[inline]
    pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), Range<Size>> {
        if end > self.len {
            return Err(self.len..end);
        }

        // FIXME(oli-obk): optimize this for allocations larger than a block.
        let idx = (start.bytes()..end.bytes()).map(Size::from_bytes).find(|&i| !self.get(i));

        match idx {
            Some(idx) => {
                let uninit_end = (idx.bytes()..end.bytes())
                    .map(Size::from_bytes)
                    .find(|&i| self.get(i))
                    .unwrap_or(end);
                Err(idx..uninit_end)
            }
            None => Ok(()),
        }
    }

    pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
        let len = self.len;
        if end > len {
            self.grow(end - len, new_state);
        }
        self.set_range_inbounds(start, end, new_state);
    }

    pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
        let (blocka, bita) = bit_index(start);
        let (blockb, bitb) = bit_index(end);
        if blocka == blockb {
            // First set all bits except the first `bita`,
            // then unset the last `64 - bitb` bits.
            let range = if bitb == 0 {
                u64::MAX << bita
            } else {
                (u64::MAX << bita) & (u64::MAX >> (64 - bitb))
            };
            if new_state {
                self.blocks[blocka] |= range;
            } else {
                self.blocks[blocka] &= !range;
            }
            return;
        }
        // across block boundaries
        if new_state {
            // Set `bita..64` to `1`.
            self.blocks[blocka] |= u64::MAX << bita;
            // Set `0..bitb` to `1`.
            if bitb != 0 {
                self.blocks[blockb] |= u64::MAX >> (64 - bitb);
            }
            // Fill in all the other blocks (much faster than one bit at a time).
            for block in (blocka + 1)..blockb {
                self.blocks[block] = u64::MAX;
            }
        } else {
            // Set `bita..64` to `0`.
            self.blocks[blocka] &= !(u64::MAX << bita);
            // Set `0..bitb` to `0`.
            if bitb != 0 {
                self.blocks[blockb] &= !(u64::MAX >> (64 - bitb));
            }
            // Fill in all the other blocks (much faster than one bit at a time).
            for block in (blocka + 1)..blockb {
                self.blocks[block] = 0;
            }
        }
    }

    #[inline]
    pub fn get(&self, i: Size) -> bool {
        let (block, bit) = bit_index(i);
        (self.blocks[block] & (1 << bit)) != 0
    }

    #[inline]
    pub fn set(&mut self, i: Size, new_state: bool) {
        let (block, bit) = bit_index(i);
        self.set_bit(block, bit, new_state);
    }

    #[inline]
    fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) {
        if new_state {
            self.blocks[block] |= 1 << bit;
        } else {
            self.blocks[block] &= !(1 << bit);
        }
    }

    pub fn grow(&mut self, amount: Size, new_state: bool) {
        if amount.bytes() == 0 {
            return;
        }
        let unused_trailing_bits =
            u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
        if amount.bytes() > unused_trailing_bits {
            let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
            self.blocks.extend(
                // FIXME(oli-obk): optimize this by repeating `new_state as Block`.
                iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
            );
        }
        let start = self.len;
        self.len += amount;
        self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
    }
}

#[inline]
fn bit_index(bits: Size) -> (usize, usize) {
    let bits = bits.bytes();
    let a = bits / InitMask::BLOCK_SIZE;
    let b = bits % InitMask::BLOCK_SIZE;
    (usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
}