rustc_mir_transform/
gvn.rs

1//! Global value numbering.
2//!
3//! MIR may contain repeated and/or redundant computations. The objective of this pass is to detect
4//! such redundancies and re-use the already-computed result when possible.
5//!
6//! From those assignments, we construct a mapping `VnIndex -> Vec<(Local, Location)>` of available
7//! values, the locals in which they are stored, and the assignment location.
8//!
9//! We traverse all assignments `x = rvalue` and operands.
10//!
11//! For each SSA one, we compute a symbolic representation of values that are assigned to SSA
12//! locals. This symbolic representation is defined by the `Value` enum. Each produced instance of
13//! `Value` is interned as a `VnIndex`, which allows us to cheaply compute identical values.
14//!
15//! For each non-SSA
16//! one, we compute the `VnIndex` of the rvalue. If this `VnIndex` is associated to a constant, we
17//! replace the rvalue/operand by that constant. Otherwise, if there is an SSA local `y`
18//! associated to this `VnIndex`, and if its definition location strictly dominates the assignment
19//! to `x`, we replace the assignment by `x = y`.
20//!
21//! By opportunity, this pass simplifies some `Rvalue`s based on the accumulated knowledge.
22//!
23//! # Operational semantic
24//!
25//! Operationally, this pass attempts to prove bitwise equality between locals. Given this MIR:
26//! ```ignore (MIR)
27//! _a = some value // has VnIndex i
28//! // some MIR
29//! _b = some other value // also has VnIndex i
30//! ```
31//!
32//! We consider it to be replaceable by:
33//! ```ignore (MIR)
34//! _a = some value // has VnIndex i
35//! // some MIR
36//! _c = some other value // also has VnIndex i
37//! assume(_a bitwise equal to _c) // follows from having the same VnIndex
38//! _b = _a // follows from the `assume`
39//! ```
40//!
41//! Which is simplifiable to:
42//! ```ignore (MIR)
43//! _a = some value // has VnIndex i
44//! // some MIR
45//! _b = _a
46//! ```
47//!
48//! # Handling of references
49//!
50//! We handle references by assigning a different "provenance" index to each Ref/RawPtr rvalue.
51//! This ensure that we do not spuriously merge borrows that should not be merged. Meanwhile, we
52//! consider all the derefs of an immutable reference to a freeze type to give the same value:
53//! ```ignore (MIR)
54//! _a = *_b // _b is &Freeze
55//! _c = *_b // replaced by _c = _a
56//! ```
57//!
58//! # Determinism of constant propagation
59//!
60//! When registering a new `Value`, we attempt to opportunistically evaluate it as a constant.
61//! The evaluated form is inserted in `evaluated` as an `OpTy` or `None` if evaluation failed.
62//!
63//! The difficulty is non-deterministic evaluation of MIR constants. Some `Const` can have
64//! different runtime values each time they are evaluated. This is the case with
65//! `Const::Slice` which have a new pointer each time they are evaluated, and constants that
66//! contain a fn pointer (`AllocId` pointing to a `GlobalAlloc::Function`) pointing to a different
67//! symbol in each codegen unit.
68//!
69//! Meanwhile, we want to be able to read indirect constants. For instance:
70//! ```
71//! static A: &'static &'static u8 = &&63;
72//! fn foo() -> u8 {
73//!     **A // We want to replace by 63.
74//! }
75//! fn bar() -> u8 {
76//!     b"abc"[1] // We want to replace by 'b'.
77//! }
78//! ```
79//!
80//! The `Value::Constant` variant stores a possibly unevaluated constant. Evaluating that constant
81//! may be non-deterministic. When that happens, we assign a disambiguator to ensure that we do not
82//! merge the constants. See `duplicate_slice` test in `gvn.rs`.
83//!
84//! Second, when writing constants in MIR, we do not write `Const::Slice` or `Const`
85//! that contain `AllocId`s.
86
87use std::borrow::Cow;
88use std::hash::{Hash, Hasher};
89
90use either::Either;
91use hashbrown::hash_table::{Entry, HashTable};
92use itertools::Itertools as _;
93use rustc_abi::{self as abi, BackendRepr, FIRST_VARIANT, FieldIdx, Primitive, Size, VariantIdx};
94use rustc_arena::DroplessArena;
95use rustc_const_eval::const_eval::DummyMachine;
96use rustc_const_eval::interpret::{
97    ImmTy, Immediate, InterpCx, MemPlaceMeta, MemoryKind, OpTy, Projectable, Scalar,
98    intern_const_alloc_for_constprop,
99};
100use rustc_data_structures::fx::FxHasher;
101use rustc_data_structures::graph::dominators::Dominators;
102use rustc_hir::def::DefKind;
103use rustc_index::bit_set::DenseBitSet;
104use rustc_index::{IndexVec, newtype_index};
105use rustc_middle::bug;
106use rustc_middle::mir::interpret::GlobalAlloc;
107use rustc_middle::mir::visit::*;
108use rustc_middle::mir::*;
109use rustc_middle::ty::layout::HasTypingEnv;
110use rustc_middle::ty::{self, Ty, TyCtxt};
111use rustc_span::DUMMY_SP;
112use smallvec::SmallVec;
113use tracing::{debug, instrument, trace};
114
115use crate::ssa::SsaLocals;
116
117pub(super) struct GVN;
118
119impl<'tcx> crate::MirPass<'tcx> for GVN {
120    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
121        sess.mir_opt_level() >= 2
122    }
123
124    #[instrument(level = "trace", skip(self, tcx, body))]
125    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
126        debug!(def_id = ?body.source.def_id());
127
128        let typing_env = body.typing_env(tcx);
129        let ssa = SsaLocals::new(tcx, body, typing_env);
130        // Clone dominators because we need them while mutating the body.
131        let dominators = body.basic_blocks.dominators().clone();
132        let maybe_loop_headers = loops::maybe_loop_headers(body);
133
134        let arena = DroplessArena::default();
135        let mut state =
136            VnState::new(tcx, body, typing_env, &ssa, dominators, &body.local_decls, &arena);
137
138        for local in body.args_iter().filter(|&local| ssa.is_ssa(local)) {
139            let opaque = state.new_opaque(body.local_decls[local].ty);
140            state.assign(local, opaque);
141        }
142
143        let reverse_postorder = body.basic_blocks.reverse_postorder().to_vec();
144        for bb in reverse_postorder {
145            // N.B. With loops, reverse postorder cannot produce a valid topological order.
146            // A statement or terminator from inside the loop, that is not processed yet, may have performed an indirect write.
147            if maybe_loop_headers.contains(bb) {
148                state.invalidate_derefs();
149            }
150            let data = &mut body.basic_blocks.as_mut_preserves_cfg()[bb];
151            state.visit_basic_block_data(bb, data);
152        }
153
154        // For each local that is reused (`y` above), we remove its storage statements do avoid any
155        // difficulty. Those locals are SSA, so should be easy to optimize by LLVM without storage
156        // statements.
157        StorageRemover { tcx, reused_locals: state.reused_locals }.visit_body_preserves_cfg(body);
158    }
159
160    fn is_required(&self) -> bool {
161        false
162    }
163}
164
165newtype_index! {
166    /// This represents a `Value` in the symbolic execution.
167    #[debug_format = "_v{}"]
168    struct VnIndex {}
169}
170
171/// Marker type to forbid hashing and comparing opaque values.
172/// This struct should only be constructed by `ValueSet::insert_unique` to ensure we use that
173/// method to create non-unifiable values. It will ICE if used in `ValueSet::insert`.
174#[derive(Copy, Clone, Debug, Eq)]
175struct VnOpaque;
176impl PartialEq for VnOpaque {
177    fn eq(&self, _: &VnOpaque) -> bool {
178        // ICE if we try to compare unique values
179        unreachable!()
180    }
181}
182impl Hash for VnOpaque {
183    fn hash<T: Hasher>(&self, _: &mut T) {
184        // ICE if we try to hash unique values
185        unreachable!()
186    }
187}
188
189#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
190enum AddressKind {
191    Ref(BorrowKind),
192    Address(RawPtrKind),
193}
194
195#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
196enum AddressBase {
197    /// This address is based on this local.
198    Local(Local),
199    /// This address is based on the deref of this pointer.
200    Deref(VnIndex),
201}
202
203#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
204enum Value<'a, 'tcx> {
205    // Root values.
206    /// Used to represent values we know nothing about.
207    /// The `usize` is a counter incremented by `new_opaque`.
208    Opaque(VnOpaque),
209    /// Evaluated or unevaluated constant value.
210    Constant {
211        value: Const<'tcx>,
212        /// Some constants do not have a deterministic value. To avoid merging two instances of the
213        /// same `Const`, we assign them an additional integer index.
214        // `disambiguator` is `None` iff the constant is deterministic.
215        disambiguator: Option<VnOpaque>,
216    },
217
218    // Aggregates.
219    /// An aggregate value, either tuple/closure/struct/enum.
220    /// This does not contain unions, as we cannot reason with the value.
221    Aggregate(VariantIdx, &'a [VnIndex]),
222    /// A union aggregate value.
223    Union(FieldIdx, VnIndex),
224    /// A raw pointer aggregate built from a thin pointer and metadata.
225    RawPtr {
226        /// Thin pointer component. This is field 0 in MIR.
227        pointer: VnIndex,
228        /// Metadata component. This is field 1 in MIR.
229        metadata: VnIndex,
230    },
231    /// This corresponds to a `[value; count]` expression.
232    Repeat(VnIndex, ty::Const<'tcx>),
233    /// The address of a place.
234    Address {
235        base: AddressBase,
236        // We do not use a plain `Place` as we want to be able to reason about indices.
237        // This does not contain any `Deref` projection.
238        projection: &'a [ProjectionElem<VnIndex, Ty<'tcx>>],
239        kind: AddressKind,
240        /// Give each borrow and pointer a different provenance, so we don't merge them.
241        provenance: VnOpaque,
242    },
243
244    // Extractions.
245    /// This is the *value* obtained by projecting another value.
246    Projection(VnIndex, ProjectionElem<VnIndex, ()>),
247    /// Discriminant of the given value.
248    Discriminant(VnIndex),
249
250    // Operations.
251    NullaryOp(NullOp<'tcx>, Ty<'tcx>),
252    UnaryOp(UnOp, VnIndex),
253    BinaryOp(BinOp, VnIndex, VnIndex),
254    Cast {
255        kind: CastKind,
256        value: VnIndex,
257    },
258}
259
260/// Stores and deduplicates pairs of `(Value, Ty)` into in `VnIndex` numbered values.
261///
262/// This data structure is mostly a partial reimplementation of `FxIndexMap<VnIndex, (Value, Ty)>`.
263/// We do not use a regular `FxIndexMap` to skip hashing values that are unique by construction,
264/// like opaque values, address with provenance and non-deterministic constants.
265struct ValueSet<'a, 'tcx> {
266    indices: HashTable<VnIndex>,
267    hashes: IndexVec<VnIndex, u64>,
268    values: IndexVec<VnIndex, Value<'a, 'tcx>>,
269    types: IndexVec<VnIndex, Ty<'tcx>>,
270}
271
272impl<'a, 'tcx> ValueSet<'a, 'tcx> {
273    fn new(num_values: usize) -> ValueSet<'a, 'tcx> {
274        ValueSet {
275            indices: HashTable::with_capacity(num_values),
276            hashes: IndexVec::with_capacity(num_values),
277            values: IndexVec::with_capacity(num_values),
278            types: IndexVec::with_capacity(num_values),
279        }
280    }
281
282    /// Insert a `(Value, Ty)` pair without hashing or deduplication.
283    /// This always creates a new `VnIndex`.
284    #[inline]
285    fn insert_unique(
286        &mut self,
287        ty: Ty<'tcx>,
288        value: impl FnOnce(VnOpaque) -> Value<'a, 'tcx>,
289    ) -> VnIndex {
290        let value = value(VnOpaque);
291
292        debug_assert!(match value {
293            Value::Opaque(_) | Value::Address { .. } => true,
294            Value::Constant { disambiguator, .. } => disambiguator.is_some(),
295            _ => false,
296        });
297
298        let index = self.hashes.push(0);
299        let _index = self.types.push(ty);
300        debug_assert_eq!(index, _index);
301        let _index = self.values.push(value);
302        debug_assert_eq!(index, _index);
303        index
304    }
305
306    /// Insert a `(Value, Ty)` pair to be deduplicated.
307    /// Returns `true` as second tuple field if this value did not exist previously.
308    #[allow(rustc::pass_by_value)] // closures take `&VnIndex`
309    fn insert(&mut self, ty: Ty<'tcx>, value: Value<'a, 'tcx>) -> (VnIndex, bool) {
310        debug_assert!(match value {
311            Value::Opaque(_) | Value::Address { .. } => false,
312            Value::Constant { disambiguator, .. } => disambiguator.is_none(),
313            _ => true,
314        });
315
316        let hash: u64 = {
317            let mut h = FxHasher::default();
318            value.hash(&mut h);
319            ty.hash(&mut h);
320            h.finish()
321        };
322
323        let eq = |index: &VnIndex| self.values[*index] == value && self.types[*index] == ty;
324        let hasher = |index: &VnIndex| self.hashes[*index];
325        match self.indices.entry(hash, eq, hasher) {
326            Entry::Occupied(entry) => {
327                let index = *entry.get();
328                (index, false)
329            }
330            Entry::Vacant(entry) => {
331                let index = self.hashes.push(hash);
332                entry.insert(index);
333                let _index = self.values.push(value);
334                debug_assert_eq!(index, _index);
335                let _index = self.types.push(ty);
336                debug_assert_eq!(index, _index);
337                (index, true)
338            }
339        }
340    }
341
342    /// Return the `Value` associated with the given `VnIndex`.
343    #[inline]
344    fn value(&self, index: VnIndex) -> Value<'a, 'tcx> {
345        self.values[index]
346    }
347
348    /// Return the type associated with the given `VnIndex`.
349    #[inline]
350    fn ty(&self, index: VnIndex) -> Ty<'tcx> {
351        self.types[index]
352    }
353
354    /// Replace the value associated with `index` with an opaque value.
355    #[inline]
356    fn forget(&mut self, index: VnIndex) {
357        self.values[index] = Value::Opaque(VnOpaque);
358    }
359}
360
361struct VnState<'body, 'a, 'tcx> {
362    tcx: TyCtxt<'tcx>,
363    ecx: InterpCx<'tcx, DummyMachine>,
364    local_decls: &'body LocalDecls<'tcx>,
365    is_coroutine: bool,
366    /// Value stored in each local.
367    locals: IndexVec<Local, Option<VnIndex>>,
368    /// Locals that are assigned that value.
369    // This vector does not hold all the values of `VnIndex` that we create.
370    rev_locals: IndexVec<VnIndex, SmallVec<[Local; 1]>>,
371    values: ValueSet<'a, 'tcx>,
372    /// Values evaluated as constants if possible.
373    /// - `None` are values not computed yet;
374    /// - `Some(None)` are values for which computation has failed;
375    /// - `Some(Some(op))` are successful computations.
376    evaluated: IndexVec<VnIndex, Option<Option<&'a OpTy<'tcx>>>>,
377    /// Cache the deref values.
378    derefs: Vec<VnIndex>,
379    ssa: &'body SsaLocals,
380    dominators: Dominators<BasicBlock>,
381    reused_locals: DenseBitSet<Local>,
382    arena: &'a DroplessArena,
383}
384
385impl<'body, 'a, 'tcx> VnState<'body, 'a, 'tcx> {
386    fn new(
387        tcx: TyCtxt<'tcx>,
388        body: &Body<'tcx>,
389        typing_env: ty::TypingEnv<'tcx>,
390        ssa: &'body SsaLocals,
391        dominators: Dominators<BasicBlock>,
392        local_decls: &'body LocalDecls<'tcx>,
393        arena: &'a DroplessArena,
394    ) -> Self {
395        // Compute a rough estimate of the number of values in the body from the number of
396        // statements. This is meant to reduce the number of allocations, but it's all right if
397        // we miss the exact amount. We estimate based on 2 values per statement (one in LHS and
398        // one in RHS) and 4 values per terminator (for call operands).
399        let num_values =
400            2 * body.basic_blocks.iter().map(|bbdata| bbdata.statements.len()).sum::<usize>()
401                + 4 * body.basic_blocks.len();
402        VnState {
403            tcx,
404            ecx: InterpCx::new(tcx, DUMMY_SP, typing_env, DummyMachine),
405            local_decls,
406            is_coroutine: body.coroutine.is_some(),
407            locals: IndexVec::from_elem(None, local_decls),
408            rev_locals: IndexVec::with_capacity(num_values),
409            values: ValueSet::new(num_values),
410            evaluated: IndexVec::with_capacity(num_values),
411            derefs: Vec::new(),
412            ssa,
413            dominators,
414            reused_locals: DenseBitSet::new_empty(local_decls.len()),
415            arena,
416        }
417    }
418
419    fn typing_env(&self) -> ty::TypingEnv<'tcx> {
420        self.ecx.typing_env()
421    }
422
423    #[instrument(level = "trace", skip(self), ret)]
424    fn insert(&mut self, ty: Ty<'tcx>, value: Value<'a, 'tcx>) -> VnIndex {
425        let (index, new) = self.values.insert(ty, value);
426        if new {
427            // Grow `evaluated` and `rev_locals` here to amortize the allocations.
428            let _index = self.evaluated.push(None);
429            debug_assert_eq!(index, _index);
430            let _index = self.rev_locals.push(SmallVec::new());
431            debug_assert_eq!(index, _index);
432        }
433        index
434    }
435
436    /// Create a new `Value` for which we have no information at all, except that it is distinct
437    /// from all the others.
438    #[instrument(level = "trace", skip(self), ret)]
439    fn new_opaque(&mut self, ty: Ty<'tcx>) -> VnIndex {
440        let index = self.values.insert_unique(ty, Value::Opaque);
441        let _index = self.evaluated.push(Some(None));
442        debug_assert_eq!(index, _index);
443        let _index = self.rev_locals.push(SmallVec::new());
444        debug_assert_eq!(index, _index);
445        index
446    }
447
448    /// Create a new `Value::Address` distinct from all the others.
449    #[instrument(level = "trace", skip(self), ret)]
450    fn new_pointer(&mut self, place: Place<'tcx>, kind: AddressKind) -> Option<VnIndex> {
451        let pty = place.ty(self.local_decls, self.tcx).ty;
452        let ty = match kind {
453            AddressKind::Ref(bk) => {
454                Ty::new_ref(self.tcx, self.tcx.lifetimes.re_erased, pty, bk.to_mutbl_lossy())
455            }
456            AddressKind::Address(mutbl) => Ty::new_ptr(self.tcx, pty, mutbl.to_mutbl_lossy()),
457        };
458
459        let mut projection = place.projection.iter();
460        let base = if place.is_indirect_first_projection() {
461            let base = self.locals[place.local]?;
462            // Skip the initial `Deref`.
463            projection.next();
464            AddressBase::Deref(base)
465        } else {
466            AddressBase::Local(place.local)
467        };
468        // Do not try evaluating inside `Index`, this has been done by `simplify_place_projection`.
469        let projection =
470            projection.map(|proj| proj.try_map(|index| self.locals[index], |ty| ty).ok_or(()));
471        let projection = self.arena.try_alloc_from_iter(projection).ok()?;
472
473        let index = self.values.insert_unique(ty, |provenance| Value::Address {
474            base,
475            projection,
476            kind,
477            provenance,
478        });
479        let _index = self.evaluated.push(None);
480        debug_assert_eq!(index, _index);
481        let _index = self.rev_locals.push(SmallVec::new());
482        debug_assert_eq!(index, _index);
483
484        Some(index)
485    }
486
487    #[instrument(level = "trace", skip(self), ret)]
488    fn insert_constant(&mut self, value: Const<'tcx>) -> VnIndex {
489        let (index, new) = if value.is_deterministic() {
490            // The constant is deterministic, no need to disambiguate.
491            let constant = Value::Constant { value, disambiguator: None };
492            self.values.insert(value.ty(), constant)
493        } else {
494            // Multiple mentions of this constant will yield different values,
495            // so assign a different `disambiguator` to ensure they do not get the same `VnIndex`.
496            let index = self.values.insert_unique(value.ty(), |disambiguator| Value::Constant {
497                value,
498                disambiguator: Some(disambiguator),
499            });
500            (index, true)
501        };
502        if new {
503            let _index = self.evaluated.push(None);
504            debug_assert_eq!(index, _index);
505            let _index = self.rev_locals.push(SmallVec::new());
506            debug_assert_eq!(index, _index);
507        }
508        index
509    }
510
511    #[inline]
512    fn get(&self, index: VnIndex) -> Value<'a, 'tcx> {
513        self.values.value(index)
514    }
515
516    #[inline]
517    fn ty(&self, index: VnIndex) -> Ty<'tcx> {
518        self.values.ty(index)
519    }
520
521    /// Record that `local` is assigned `value`. `local` must be SSA.
522    #[instrument(level = "trace", skip(self))]
523    fn assign(&mut self, local: Local, value: VnIndex) {
524        debug_assert!(self.ssa.is_ssa(local));
525        self.locals[local] = Some(value);
526        self.rev_locals[value].push(local);
527    }
528
529    fn insert_bool(&mut self, flag: bool) -> VnIndex {
530        // Booleans are deterministic.
531        let value = Const::from_bool(self.tcx, flag);
532        debug_assert!(value.is_deterministic());
533        self.insert(self.tcx.types.bool, Value::Constant { value, disambiguator: None })
534    }
535
536    fn insert_scalar(&mut self, ty: Ty<'tcx>, scalar: Scalar) -> VnIndex {
537        // Scalars are deterministic.
538        let value = Const::from_scalar(self.tcx, scalar, ty);
539        debug_assert!(value.is_deterministic());
540        self.insert(ty, Value::Constant { value, disambiguator: None })
541    }
542
543    fn insert_tuple(&mut self, ty: Ty<'tcx>, values: &[VnIndex]) -> VnIndex {
544        self.insert(ty, Value::Aggregate(VariantIdx::ZERO, self.arena.alloc_slice(values)))
545    }
546
547    fn insert_deref(&mut self, ty: Ty<'tcx>, value: VnIndex) -> VnIndex {
548        let value = self.insert(ty, Value::Projection(value, ProjectionElem::Deref));
549        self.derefs.push(value);
550        value
551    }
552
553    fn invalidate_derefs(&mut self) {
554        for deref in std::mem::take(&mut self.derefs) {
555            self.values.forget(deref);
556        }
557    }
558
559    #[instrument(level = "trace", skip(self), ret)]
560    fn eval_to_const_inner(&mut self, value: VnIndex) -> Option<OpTy<'tcx>> {
561        use Value::*;
562        let ty = self.ty(value);
563        // Avoid computing layouts inside a coroutine, as that can cause cycles.
564        let ty = if !self.is_coroutine || ty.is_scalar() {
565            self.ecx.layout_of(ty).ok()?
566        } else {
567            return None;
568        };
569        let op = match self.get(value) {
570            _ if ty.is_zst() => ImmTy::uninit(ty).into(),
571
572            Opaque(_) => return None,
573            // Do not bother evaluating repeat expressions. This would uselessly consume memory.
574            Repeat(..) => return None,
575
576            Constant { ref value, disambiguator: _ } => {
577                self.ecx.eval_mir_constant(value, DUMMY_SP, None).discard_err()?
578            }
579            Aggregate(variant, ref fields) => {
580                let fields =
581                    fields.iter().map(|&f| self.eval_to_const(f)).collect::<Option<Vec<_>>>()?;
582                let variant = if ty.ty.is_enum() { Some(variant) } else { None };
583                if matches!(ty.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..))
584                {
585                    let dest = self.ecx.allocate(ty, MemoryKind::Stack).discard_err()?;
586                    let variant_dest = if let Some(variant) = variant {
587                        self.ecx.project_downcast(&dest, variant).discard_err()?
588                    } else {
589                        dest.clone()
590                    };
591                    for (field_index, op) in fields.into_iter().enumerate() {
592                        let field_dest = self
593                            .ecx
594                            .project_field(&variant_dest, FieldIdx::from_usize(field_index))
595                            .discard_err()?;
596                        self.ecx.copy_op(op, &field_dest).discard_err()?;
597                    }
598                    self.ecx
599                        .write_discriminant(variant.unwrap_or(FIRST_VARIANT), &dest)
600                        .discard_err()?;
601                    self.ecx
602                        .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
603                        .discard_err()?;
604                    dest.into()
605                } else {
606                    return None;
607                }
608            }
609            Union(active_field, field) => {
610                let field = self.eval_to_const(field)?;
611                if matches!(ty.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..))
612                {
613                    let dest = self.ecx.allocate(ty, MemoryKind::Stack).discard_err()?;
614                    let field_dest = self.ecx.project_field(&dest, active_field).discard_err()?;
615                    self.ecx.copy_op(field, &field_dest).discard_err()?;
616                    self.ecx
617                        .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
618                        .discard_err()?;
619                    dest.into()
620                } else {
621                    return None;
622                }
623            }
624            RawPtr { pointer, metadata } => {
625                let pointer = self.eval_to_const(pointer)?;
626                let metadata = self.eval_to_const(metadata)?;
627
628                // Pointers don't have fields, so don't `project_field` them.
629                let data = self.ecx.read_pointer(pointer).discard_err()?;
630                let meta = if metadata.layout.is_zst() {
631                    MemPlaceMeta::None
632                } else {
633                    MemPlaceMeta::Meta(self.ecx.read_scalar(metadata).discard_err()?)
634                };
635                let ptr_imm = Immediate::new_pointer_with_meta(data, meta, &self.ecx);
636                ImmTy::from_immediate(ptr_imm, ty).into()
637            }
638
639            Projection(base, elem) => {
640                let base = self.eval_to_const(base)?;
641                // `Index` by constants should have been replaced by `ConstantIndex` by
642                // `simplify_place_projection`.
643                let elem = elem.try_map(|_| None, |()| ty.ty)?;
644                self.ecx.project(base, elem).discard_err()?
645            }
646            Address { base, projection, .. } => {
647                debug_assert!(!projection.contains(&ProjectionElem::Deref));
648                let pointer = match base {
649                    AddressBase::Deref(pointer) => self.eval_to_const(pointer)?,
650                    // We have no stack to point to.
651                    AddressBase::Local(_) => return None,
652                };
653                let mut mplace = self.ecx.deref_pointer(pointer).discard_err()?;
654                for elem in projection {
655                    // `Index` by constants should have been replaced by `ConstantIndex` by
656                    // `simplify_place_projection`.
657                    let elem = elem.try_map(|_| None, |ty| ty)?;
658                    mplace = self.ecx.project(&mplace, elem).discard_err()?;
659                }
660                let pointer = mplace.to_ref(&self.ecx);
661                ImmTy::from_immediate(pointer, ty).into()
662            }
663
664            Discriminant(base) => {
665                let base = self.eval_to_const(base)?;
666                let variant = self.ecx.read_discriminant(base).discard_err()?;
667                let discr_value =
668                    self.ecx.discriminant_for_variant(base.layout.ty, variant).discard_err()?;
669                discr_value.into()
670            }
671            NullaryOp(null_op, arg_ty) => {
672                let arg_layout = self.ecx.layout_of(arg_ty).ok()?;
673                let val = match null_op {
674                    NullOp::OffsetOf(fields) => self
675                        .tcx
676                        .offset_of_subfield(self.typing_env(), arg_layout, fields.iter())
677                        .bytes(),
678                    NullOp::RuntimeChecks(_) => return None,
679                };
680                ImmTy::from_uint(val, ty).into()
681            }
682            UnaryOp(un_op, operand) => {
683                let operand = self.eval_to_const(operand)?;
684                let operand = self.ecx.read_immediate(operand).discard_err()?;
685                let val = self.ecx.unary_op(un_op, &operand).discard_err()?;
686                val.into()
687            }
688            BinaryOp(bin_op, lhs, rhs) => {
689                let lhs = self.eval_to_const(lhs)?;
690                let rhs = self.eval_to_const(rhs)?;
691                let lhs = self.ecx.read_immediate(lhs).discard_err()?;
692                let rhs = self.ecx.read_immediate(rhs).discard_err()?;
693                let val = self.ecx.binary_op(bin_op, &lhs, &rhs).discard_err()?;
694                val.into()
695            }
696            Cast { kind, value } => match kind {
697                CastKind::IntToInt | CastKind::IntToFloat => {
698                    let value = self.eval_to_const(value)?;
699                    let value = self.ecx.read_immediate(value).discard_err()?;
700                    let res = self.ecx.int_to_int_or_float(&value, ty).discard_err()?;
701                    res.into()
702                }
703                CastKind::FloatToFloat | CastKind::FloatToInt => {
704                    let value = self.eval_to_const(value)?;
705                    let value = self.ecx.read_immediate(value).discard_err()?;
706                    let res = self.ecx.float_to_float_or_int(&value, ty).discard_err()?;
707                    res.into()
708                }
709                CastKind::Transmute | CastKind::Subtype => {
710                    let value = self.eval_to_const(value)?;
711                    // `offset` for immediates generally only supports projections that match the
712                    // type of the immediate. However, as a HACK, we exploit that it can also do
713                    // limited transmutes: it only works between types with the same layout, and
714                    // cannot transmute pointers to integers.
715                    if value.as_mplace_or_imm().is_right() {
716                        let can_transmute = match (value.layout.backend_repr, ty.backend_repr) {
717                            (BackendRepr::Scalar(s1), BackendRepr::Scalar(s2)) => {
718                                s1.size(&self.ecx) == s2.size(&self.ecx)
719                                    && !matches!(s1.primitive(), Primitive::Pointer(..))
720                            }
721                            (BackendRepr::ScalarPair(a1, b1), BackendRepr::ScalarPair(a2, b2)) => {
722                                a1.size(&self.ecx) == a2.size(&self.ecx)
723                                    && b1.size(&self.ecx) == b2.size(&self.ecx)
724                                    // The alignment of the second component determines its offset, so that also needs to match.
725                                    && b1.align(&self.ecx) == b2.align(&self.ecx)
726                                    // None of the inputs may be a pointer.
727                                    && !matches!(a1.primitive(), Primitive::Pointer(..))
728                                    && !matches!(b1.primitive(), Primitive::Pointer(..))
729                            }
730                            _ => false,
731                        };
732                        if !can_transmute {
733                            return None;
734                        }
735                    }
736                    value.offset(Size::ZERO, ty, &self.ecx).discard_err()?
737                }
738                CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _) => {
739                    let src = self.eval_to_const(value)?;
740                    let dest = self.ecx.allocate(ty, MemoryKind::Stack).discard_err()?;
741                    self.ecx.unsize_into(src, ty, &dest).discard_err()?;
742                    self.ecx
743                        .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
744                        .discard_err()?;
745                    dest.into()
746                }
747                CastKind::FnPtrToPtr | CastKind::PtrToPtr => {
748                    let src = self.eval_to_const(value)?;
749                    let src = self.ecx.read_immediate(src).discard_err()?;
750                    let ret = self.ecx.ptr_to_ptr(&src, ty).discard_err()?;
751                    ret.into()
752                }
753                CastKind::PointerCoercion(ty::adjustment::PointerCoercion::UnsafeFnPointer, _) => {
754                    let src = self.eval_to_const(value)?;
755                    let src = self.ecx.read_immediate(src).discard_err()?;
756                    ImmTy::from_immediate(*src, ty).into()
757                }
758                _ => return None,
759            },
760        };
761        Some(op)
762    }
763
764    fn eval_to_const(&mut self, index: VnIndex) -> Option<&'a OpTy<'tcx>> {
765        if let Some(op) = self.evaluated[index] {
766            return op;
767        }
768        let op = self.eval_to_const_inner(index);
769        self.evaluated[index] = Some(self.arena.alloc(op).as_ref());
770        self.evaluated[index].unwrap()
771    }
772
773    /// Represent the *value* we obtain by dereferencing an `Address` value.
774    #[instrument(level = "trace", skip(self), ret)]
775    fn dereference_address(
776        &mut self,
777        base: AddressBase,
778        projection: &[ProjectionElem<VnIndex, Ty<'tcx>>],
779    ) -> Option<VnIndex> {
780        let (mut place_ty, mut value) = match base {
781            // The base is a local, so we take the local's value and project from it.
782            AddressBase::Local(local) => {
783                let local = self.locals[local]?;
784                let place_ty = PlaceTy::from_ty(self.ty(local));
785                (place_ty, local)
786            }
787            // The base is a pointer's deref, so we introduce the implicit deref.
788            AddressBase::Deref(reborrow) => {
789                let place_ty = PlaceTy::from_ty(self.ty(reborrow));
790                self.project(place_ty, reborrow, ProjectionElem::Deref)?
791            }
792        };
793        for &proj in projection {
794            (place_ty, value) = self.project(place_ty, value, proj)?;
795        }
796        Some(value)
797    }
798
799    #[instrument(level = "trace", skip(self), ret)]
800    fn project(
801        &mut self,
802        place_ty: PlaceTy<'tcx>,
803        value: VnIndex,
804        proj: ProjectionElem<VnIndex, Ty<'tcx>>,
805    ) -> Option<(PlaceTy<'tcx>, VnIndex)> {
806        let projection_ty = place_ty.projection_ty(self.tcx, proj);
807        let proj = match proj {
808            ProjectionElem::Deref => {
809                if let Some(Mutability::Not) = place_ty.ty.ref_mutability()
810                    && projection_ty.ty.is_freeze(self.tcx, self.typing_env())
811                {
812                    if let Value::Address { base, projection, .. } = self.get(value)
813                        && let Some(value) = self.dereference_address(base, projection)
814                    {
815                        return Some((projection_ty, value));
816                    }
817
818                    // An immutable borrow `_x` always points to the same value for the
819                    // lifetime of the borrow, so we can merge all instances of `*_x`.
820                    return Some((projection_ty, self.insert_deref(projection_ty.ty, value)));
821                } else {
822                    return None;
823                }
824            }
825            ProjectionElem::Downcast(name, index) => ProjectionElem::Downcast(name, index),
826            ProjectionElem::Field(f, _) => match self.get(value) {
827                Value::Aggregate(_, fields) => return Some((projection_ty, fields[f.as_usize()])),
828                Value::Union(active, field) if active == f => return Some((projection_ty, field)),
829                Value::Projection(outer_value, ProjectionElem::Downcast(_, read_variant))
830                    if let Value::Aggregate(written_variant, fields) = self.get(outer_value)
831                    // This pass is not aware of control-flow, so we do not know whether the
832                    // replacement we are doing is actually reachable. We could be in any arm of
833                    // ```
834                    // match Some(x) {
835                    //     Some(y) => /* stuff */,
836                    //     None => /* other */,
837                    // }
838                    // ```
839                    //
840                    // In surface rust, the current statement would be unreachable.
841                    //
842                    // However, from the reference chapter on enums and RFC 2195,
843                    // accessing the wrong variant is not UB if the enum has repr.
844                    // So it's not impossible for a series of MIR opts to generate
845                    // a downcast to an inactive variant.
846                    && written_variant == read_variant =>
847                {
848                    return Some((projection_ty, fields[f.as_usize()]));
849                }
850                _ => ProjectionElem::Field(f, ()),
851            },
852            ProjectionElem::Index(idx) => {
853                if let Value::Repeat(inner, _) = self.get(value) {
854                    return Some((projection_ty, inner));
855                }
856                ProjectionElem::Index(idx)
857            }
858            ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
859                match self.get(value) {
860                    Value::Repeat(inner, _) => {
861                        return Some((projection_ty, inner));
862                    }
863                    Value::Aggregate(_, operands) => {
864                        let offset = if from_end {
865                            operands.len() - offset as usize
866                        } else {
867                            offset as usize
868                        };
869                        let value = operands.get(offset).copied()?;
870                        return Some((projection_ty, value));
871                    }
872                    _ => {}
873                };
874                ProjectionElem::ConstantIndex { offset, min_length, from_end }
875            }
876            ProjectionElem::Subslice { from, to, from_end } => {
877                ProjectionElem::Subslice { from, to, from_end }
878            }
879            ProjectionElem::OpaqueCast(_) => ProjectionElem::OpaqueCast(()),
880            ProjectionElem::UnwrapUnsafeBinder(_) => ProjectionElem::UnwrapUnsafeBinder(()),
881        };
882
883        let value = self.insert(projection_ty.ty, Value::Projection(value, proj));
884        Some((projection_ty, value))
885    }
886
887    /// Simplify the projection chain if we know better.
888    #[instrument(level = "trace", skip(self))]
889    fn simplify_place_projection(&mut self, place: &mut Place<'tcx>, location: Location) {
890        // If the projection is indirect, we treat the local as a value, so can replace it with
891        // another local.
892        if place.is_indirect_first_projection()
893            && let Some(base) = self.locals[place.local]
894            && let Some(new_local) = self.try_as_local(base, location)
895            && place.local != new_local
896        {
897            place.local = new_local;
898            self.reused_locals.insert(new_local);
899        }
900
901        let mut projection = Cow::Borrowed(&place.projection[..]);
902
903        for i in 0..projection.len() {
904            let elem = projection[i];
905            if let ProjectionElem::Index(idx_local) = elem
906                && let Some(idx) = self.locals[idx_local]
907            {
908                if let Some(offset) = self.eval_to_const(idx)
909                    && let Some(offset) = self.ecx.read_target_usize(offset).discard_err()
910                    && let Some(min_length) = offset.checked_add(1)
911                {
912                    projection.to_mut()[i] =
913                        ProjectionElem::ConstantIndex { offset, min_length, from_end: false };
914                } else if let Some(new_idx_local) = self.try_as_local(idx, location)
915                    && idx_local != new_idx_local
916                {
917                    projection.to_mut()[i] = ProjectionElem::Index(new_idx_local);
918                    self.reused_locals.insert(new_idx_local);
919                }
920            }
921        }
922
923        if Cow::is_owned(&projection) {
924            place.projection = self.tcx.mk_place_elems(&projection);
925        }
926
927        trace!(?place);
928    }
929
930    /// Represent the *value* which would be read from `place`. If we succeed, return it.
931    /// If we fail, return a `PlaceRef` that contains the same value.
932    #[instrument(level = "trace", skip(self), ret)]
933    fn compute_place_value(
934        &mut self,
935        place: Place<'tcx>,
936        location: Location,
937    ) -> Result<VnIndex, PlaceRef<'tcx>> {
938        // Invariant: `place` and `place_ref` point to the same value, even if they point to
939        // different memory locations.
940        let mut place_ref = place.as_ref();
941
942        // Invariant: `value` holds the value up-to the `index`th projection excluded.
943        let Some(mut value) = self.locals[place.local] else { return Err(place_ref) };
944        // Invariant: `value` has type `place_ty`, with optional downcast variant if needed.
945        let mut place_ty = PlaceTy::from_ty(self.local_decls[place.local].ty);
946        for (index, proj) in place.projection.iter().enumerate() {
947            if let Some(local) = self.try_as_local(value, location) {
948                // Both `local` and `Place { local: place.local, projection: projection[..index] }`
949                // hold the same value. Therefore, following place holds the value in the original
950                // `place`.
951                place_ref = PlaceRef { local, projection: &place.projection[index..] };
952            }
953
954            let Some(proj) = proj.try_map(|value| self.locals[value], |ty| ty) else {
955                return Err(place_ref);
956            };
957            let Some(ty_and_value) = self.project(place_ty, value, proj) else {
958                return Err(place_ref);
959            };
960            (place_ty, value) = ty_and_value;
961        }
962
963        Ok(value)
964    }
965
966    /// Represent the *value* which would be read from `place`, and point `place` to a preexisting
967    /// place with the same value (if that already exists).
968    #[instrument(level = "trace", skip(self), ret)]
969    fn simplify_place_value(
970        &mut self,
971        place: &mut Place<'tcx>,
972        location: Location,
973    ) -> Option<VnIndex> {
974        self.simplify_place_projection(place, location);
975
976        match self.compute_place_value(*place, location) {
977            Ok(value) => {
978                if let Some(new_place) = self.try_as_place(value, location, true)
979                    && (new_place.local != place.local
980                        || new_place.projection.len() < place.projection.len())
981                {
982                    *place = new_place;
983                    self.reused_locals.insert(new_place.local);
984                }
985                Some(value)
986            }
987            Err(place_ref) => {
988                if place_ref.local != place.local
989                    || place_ref.projection.len() < place.projection.len()
990                {
991                    // By the invariant on `place_ref`.
992                    *place = place_ref.project_deeper(&[], self.tcx);
993                    self.reused_locals.insert(place_ref.local);
994                }
995                None
996            }
997        }
998    }
999
1000    #[instrument(level = "trace", skip(self), ret)]
1001    fn simplify_operand(
1002        &mut self,
1003        operand: &mut Operand<'tcx>,
1004        location: Location,
1005    ) -> Option<VnIndex> {
1006        match *operand {
1007            Operand::Constant(ref constant) => Some(self.insert_constant(constant.const_)),
1008            Operand::Copy(ref mut place) | Operand::Move(ref mut place) => {
1009                let value = self.simplify_place_value(place, location)?;
1010                if let Some(const_) = self.try_as_constant(value) {
1011                    *operand = Operand::Constant(Box::new(const_));
1012                }
1013                Some(value)
1014            }
1015        }
1016    }
1017
1018    #[instrument(level = "trace", skip(self), ret)]
1019    fn simplify_rvalue(
1020        &mut self,
1021        lhs: &Place<'tcx>,
1022        rvalue: &mut Rvalue<'tcx>,
1023        location: Location,
1024    ) -> Option<VnIndex> {
1025        let value = match *rvalue {
1026            // Forward values.
1027            Rvalue::Use(ref mut operand) => return self.simplify_operand(operand, location),
1028
1029            // Roots.
1030            Rvalue::Repeat(ref mut op, amount) => {
1031                let op = self.simplify_operand(op, location)?;
1032                Value::Repeat(op, amount)
1033            }
1034            Rvalue::NullaryOp(op, ty) => Value::NullaryOp(op, ty),
1035            Rvalue::Aggregate(..) => return self.simplify_aggregate(lhs, rvalue, location),
1036            Rvalue::Ref(_, borrow_kind, ref mut place) => {
1037                self.simplify_place_projection(place, location);
1038                return self.new_pointer(*place, AddressKind::Ref(borrow_kind));
1039            }
1040            Rvalue::RawPtr(mutbl, ref mut place) => {
1041                self.simplify_place_projection(place, location);
1042                return self.new_pointer(*place, AddressKind::Address(mutbl));
1043            }
1044            Rvalue::WrapUnsafeBinder(ref mut op, _) => {
1045                let value = self.simplify_operand(op, location)?;
1046                Value::Cast { kind: CastKind::Transmute, value }
1047            }
1048
1049            // Operations.
1050            Rvalue::Cast(ref mut kind, ref mut value, to) => {
1051                return self.simplify_cast(kind, value, to, location);
1052            }
1053            Rvalue::BinaryOp(op, box (ref mut lhs, ref mut rhs)) => {
1054                return self.simplify_binary(op, lhs, rhs, location);
1055            }
1056            Rvalue::UnaryOp(op, ref mut arg_op) => {
1057                return self.simplify_unary(op, arg_op, location);
1058            }
1059            Rvalue::Discriminant(ref mut place) => {
1060                let place = self.simplify_place_value(place, location)?;
1061                if let Some(discr) = self.simplify_discriminant(place) {
1062                    return Some(discr);
1063                }
1064                Value::Discriminant(place)
1065            }
1066
1067            // Unsupported values.
1068            Rvalue::ThreadLocalRef(..) => return None,
1069            Rvalue::CopyForDeref(_) | Rvalue::ShallowInitBox(..) => {
1070                bug!("forbidden in runtime MIR: {rvalue:?}")
1071            }
1072        };
1073        let ty = rvalue.ty(self.local_decls, self.tcx);
1074        Some(self.insert(ty, value))
1075    }
1076
1077    fn simplify_discriminant(&mut self, place: VnIndex) -> Option<VnIndex> {
1078        let enum_ty = self.ty(place);
1079        if enum_ty.is_enum()
1080            && let Value::Aggregate(variant, _) = self.get(place)
1081        {
1082            let discr = self.ecx.discriminant_for_variant(enum_ty, variant).discard_err()?;
1083            return Some(self.insert_scalar(discr.layout.ty, discr.to_scalar()));
1084        }
1085
1086        None
1087    }
1088
1089    fn try_as_place_elem(
1090        &mut self,
1091        ty: Ty<'tcx>,
1092        proj: ProjectionElem<VnIndex, ()>,
1093        loc: Location,
1094    ) -> Option<PlaceElem<'tcx>> {
1095        proj.try_map(
1096            |value| {
1097                let local = self.try_as_local(value, loc)?;
1098                self.reused_locals.insert(local);
1099                Some(local)
1100            },
1101            |()| ty,
1102        )
1103    }
1104
1105    fn simplify_aggregate_to_copy(
1106        &mut self,
1107        ty: Ty<'tcx>,
1108        variant_index: VariantIdx,
1109        fields: &[VnIndex],
1110    ) -> Option<VnIndex> {
1111        let Some(&first_field) = fields.first() else { return None };
1112        let Value::Projection(copy_from_value, _) = self.get(first_field) else { return None };
1113
1114        // All fields must correspond one-to-one and come from the same aggregate value.
1115        if fields.iter().enumerate().any(|(index, &v)| {
1116            if let Value::Projection(pointer, ProjectionElem::Field(from_index, _)) = self.get(v)
1117                && copy_from_value == pointer
1118                && from_index.index() == index
1119            {
1120                return false;
1121            }
1122            true
1123        }) {
1124            return None;
1125        }
1126
1127        let mut copy_from_local_value = copy_from_value;
1128        if let Value::Projection(pointer, proj) = self.get(copy_from_value)
1129            && let ProjectionElem::Downcast(_, read_variant) = proj
1130        {
1131            if variant_index == read_variant {
1132                // When copying a variant, there is no need to downcast.
1133                copy_from_local_value = pointer;
1134            } else {
1135                // The copied variant must be identical.
1136                return None;
1137            }
1138        }
1139
1140        // Both must be variants of the same type.
1141        if self.ty(copy_from_local_value) == ty { Some(copy_from_local_value) } else { None }
1142    }
1143
1144    fn simplify_aggregate(
1145        &mut self,
1146        lhs: &Place<'tcx>,
1147        rvalue: &mut Rvalue<'tcx>,
1148        location: Location,
1149    ) -> Option<VnIndex> {
1150        let tcx = self.tcx;
1151        let ty = rvalue.ty(self.local_decls, tcx);
1152
1153        let Rvalue::Aggregate(box ref kind, ref mut field_ops) = *rvalue else { bug!() };
1154
1155        if field_ops.is_empty() {
1156            let is_zst = match *kind {
1157                AggregateKind::Array(..)
1158                | AggregateKind::Tuple
1159                | AggregateKind::Closure(..)
1160                | AggregateKind::CoroutineClosure(..) => true,
1161                // Only enums can be non-ZST.
1162                AggregateKind::Adt(did, ..) => tcx.def_kind(did) != DefKind::Enum,
1163                // Coroutines are never ZST, as they at least contain the implicit states.
1164                AggregateKind::Coroutine(..) => false,
1165                AggregateKind::RawPtr(..) => bug!("MIR for RawPtr aggregate must have 2 fields"),
1166            };
1167
1168            if is_zst {
1169                return Some(self.insert_constant(Const::zero_sized(ty)));
1170            }
1171        }
1172
1173        let fields = self.arena.alloc_from_iter(field_ops.iter_mut().map(|op| {
1174            self.simplify_operand(op, location)
1175                .unwrap_or_else(|| self.new_opaque(op.ty(self.local_decls, self.tcx)))
1176        }));
1177
1178        let variant_index = match *kind {
1179            AggregateKind::Array(..) | AggregateKind::Tuple => {
1180                assert!(!field_ops.is_empty());
1181                FIRST_VARIANT
1182            }
1183            AggregateKind::Closure(..)
1184            | AggregateKind::CoroutineClosure(..)
1185            | AggregateKind::Coroutine(..) => FIRST_VARIANT,
1186            AggregateKind::Adt(_, variant_index, _, _, None) => variant_index,
1187            // Do not track unions.
1188            AggregateKind::Adt(_, _, _, _, Some(active_field)) => {
1189                let field = *fields.first()?;
1190                return Some(self.insert(ty, Value::Union(active_field, field)));
1191            }
1192            AggregateKind::RawPtr(..) => {
1193                assert_eq!(field_ops.len(), 2);
1194                let [mut pointer, metadata] = fields.try_into().unwrap();
1195
1196                // Any thin pointer of matching mutability is fine as the data pointer.
1197                let mut was_updated = false;
1198                while let Value::Cast { kind: CastKind::PtrToPtr, value: cast_value } =
1199                    self.get(pointer)
1200                    && let ty::RawPtr(from_pointee_ty, from_mtbl) = self.ty(cast_value).kind()
1201                    && let ty::RawPtr(_, output_mtbl) = ty.kind()
1202                    && from_mtbl == output_mtbl
1203                    && from_pointee_ty.is_sized(self.tcx, self.typing_env())
1204                {
1205                    pointer = cast_value;
1206                    was_updated = true;
1207                }
1208
1209                if was_updated && let Some(op) = self.try_as_operand(pointer, location) {
1210                    field_ops[FieldIdx::ZERO] = op;
1211                }
1212
1213                return Some(self.insert(ty, Value::RawPtr { pointer, metadata }));
1214            }
1215        };
1216
1217        if ty.is_array()
1218            && fields.len() > 4
1219            && let Ok(&first) = fields.iter().all_equal_value()
1220        {
1221            let len = ty::Const::from_target_usize(self.tcx, fields.len().try_into().unwrap());
1222            if let Some(op) = self.try_as_operand(first, location) {
1223                *rvalue = Rvalue::Repeat(op, len);
1224            }
1225            return Some(self.insert(ty, Value::Repeat(first, len)));
1226        }
1227
1228        if let Some(value) = self.simplify_aggregate_to_copy(ty, variant_index, &fields) {
1229            // Allow introducing places with non-constant offsets, as those are still better than
1230            // reconstructing an aggregate. But avoid creating `*a = copy (*b)`, as they might be
1231            // aliases resulting in overlapping assignments.
1232            let allow_complex_projection =
1233                lhs.projection[..].iter().all(PlaceElem::is_stable_offset);
1234            if let Some(place) = self.try_as_place(value, location, allow_complex_projection) {
1235                self.reused_locals.insert(place.local);
1236                *rvalue = Rvalue::Use(Operand::Copy(place));
1237            }
1238            return Some(value);
1239        }
1240
1241        Some(self.insert(ty, Value::Aggregate(variant_index, fields)))
1242    }
1243
1244    #[instrument(level = "trace", skip(self), ret)]
1245    fn simplify_unary(
1246        &mut self,
1247        op: UnOp,
1248        arg_op: &mut Operand<'tcx>,
1249        location: Location,
1250    ) -> Option<VnIndex> {
1251        let mut arg_index = self.simplify_operand(arg_op, location)?;
1252        let arg_ty = self.ty(arg_index);
1253        let ret_ty = op.ty(self.tcx, arg_ty);
1254
1255        // PtrMetadata doesn't care about *const vs *mut vs & vs &mut,
1256        // so start by removing those distinctions so we can update the `Operand`
1257        if op == UnOp::PtrMetadata {
1258            let mut was_updated = false;
1259            loop {
1260                arg_index = match self.get(arg_index) {
1261                    // Pointer casts that preserve metadata, such as
1262                    // `*const [i32]` <-> `*mut [i32]` <-> `*mut [f32]`.
1263                    // It's critical that this not eliminate cases like
1264                    // `*const [T]` -> `*const T` which remove metadata.
1265                    // We run on potentially-generic MIR, though, so unlike codegen
1266                    // we can't always know exactly what the metadata are.
1267                    // To allow things like `*mut (?A, ?T)` <-> `*mut (?B, ?T)`,
1268                    // it's fine to get a projection as the type.
1269                    Value::Cast { kind: CastKind::PtrToPtr, value: inner }
1270                        if self.pointers_have_same_metadata(self.ty(inner), arg_ty) =>
1271                    {
1272                        inner
1273                    }
1274
1275                    // We have an unsizing cast, which assigns the length to wide pointer metadata.
1276                    Value::Cast {
1277                        kind: CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _),
1278                        value: from,
1279                    } if let Some(from) = self.ty(from).builtin_deref(true)
1280                        && let ty::Array(_, len) = from.kind()
1281                        && let Some(to) = self.ty(arg_index).builtin_deref(true)
1282                        && let ty::Slice(..) = to.kind() =>
1283                    {
1284                        return Some(self.insert_constant(Const::Ty(self.tcx.types.usize, *len)));
1285                    }
1286
1287                    // `&mut *p`, `&raw *p`, etc don't change metadata.
1288                    Value::Address { base: AddressBase::Deref(reborrowed), projection, .. }
1289                        if projection.is_empty() =>
1290                    {
1291                        reborrowed
1292                    }
1293
1294                    _ => break,
1295                };
1296                was_updated = true;
1297            }
1298
1299            if was_updated && let Some(op) = self.try_as_operand(arg_index, location) {
1300                *arg_op = op;
1301            }
1302        }
1303
1304        let value = match (op, self.get(arg_index)) {
1305            (UnOp::Not, Value::UnaryOp(UnOp::Not, inner)) => return Some(inner),
1306            (UnOp::Neg, Value::UnaryOp(UnOp::Neg, inner)) => return Some(inner),
1307            (UnOp::Not, Value::BinaryOp(BinOp::Eq, lhs, rhs)) => {
1308                Value::BinaryOp(BinOp::Ne, lhs, rhs)
1309            }
1310            (UnOp::Not, Value::BinaryOp(BinOp::Ne, lhs, rhs)) => {
1311                Value::BinaryOp(BinOp::Eq, lhs, rhs)
1312            }
1313            (UnOp::PtrMetadata, Value::RawPtr { metadata, .. }) => return Some(metadata),
1314            // We have an unsizing cast, which assigns the length to wide pointer metadata.
1315            (
1316                UnOp::PtrMetadata,
1317                Value::Cast {
1318                    kind: CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _),
1319                    value: inner,
1320                },
1321            ) if let ty::Slice(..) = arg_ty.builtin_deref(true).unwrap().kind()
1322                && let ty::Array(_, len) = self.ty(inner).builtin_deref(true).unwrap().kind() =>
1323            {
1324                return Some(self.insert_constant(Const::Ty(self.tcx.types.usize, *len)));
1325            }
1326            _ => Value::UnaryOp(op, arg_index),
1327        };
1328        Some(self.insert(ret_ty, value))
1329    }
1330
1331    #[instrument(level = "trace", skip(self), ret)]
1332    fn simplify_binary(
1333        &mut self,
1334        op: BinOp,
1335        lhs_operand: &mut Operand<'tcx>,
1336        rhs_operand: &mut Operand<'tcx>,
1337        location: Location,
1338    ) -> Option<VnIndex> {
1339        let lhs = self.simplify_operand(lhs_operand, location);
1340        let rhs = self.simplify_operand(rhs_operand, location);
1341
1342        // Only short-circuit options after we called `simplify_operand`
1343        // on both operands for side effect.
1344        let mut lhs = lhs?;
1345        let mut rhs = rhs?;
1346
1347        let lhs_ty = self.ty(lhs);
1348
1349        // If we're comparing pointers, remove `PtrToPtr` casts if the from
1350        // types of both casts and the metadata all match.
1351        if let BinOp::Eq | BinOp::Ne | BinOp::Lt | BinOp::Le | BinOp::Gt | BinOp::Ge = op
1352            && lhs_ty.is_any_ptr()
1353            && let Value::Cast { kind: CastKind::PtrToPtr, value: lhs_value } = self.get(lhs)
1354            && let Value::Cast { kind: CastKind::PtrToPtr, value: rhs_value } = self.get(rhs)
1355            && let lhs_from = self.ty(lhs_value)
1356            && lhs_from == self.ty(rhs_value)
1357            && self.pointers_have_same_metadata(lhs_from, lhs_ty)
1358        {
1359            lhs = lhs_value;
1360            rhs = rhs_value;
1361            if let Some(lhs_op) = self.try_as_operand(lhs, location)
1362                && let Some(rhs_op) = self.try_as_operand(rhs, location)
1363            {
1364                *lhs_operand = lhs_op;
1365                *rhs_operand = rhs_op;
1366            }
1367        }
1368
1369        if let Some(value) = self.simplify_binary_inner(op, lhs_ty, lhs, rhs) {
1370            return Some(value);
1371        }
1372        let ty = op.ty(self.tcx, lhs_ty, self.ty(rhs));
1373        let value = Value::BinaryOp(op, lhs, rhs);
1374        Some(self.insert(ty, value))
1375    }
1376
1377    fn simplify_binary_inner(
1378        &mut self,
1379        op: BinOp,
1380        lhs_ty: Ty<'tcx>,
1381        lhs: VnIndex,
1382        rhs: VnIndex,
1383    ) -> Option<VnIndex> {
1384        // Floats are weird enough that none of the logic below applies.
1385        let reasonable_ty =
1386            lhs_ty.is_integral() || lhs_ty.is_bool() || lhs_ty.is_char() || lhs_ty.is_any_ptr();
1387        if !reasonable_ty {
1388            return None;
1389        }
1390
1391        let layout = self.ecx.layout_of(lhs_ty).ok()?;
1392
1393        let mut as_bits = |value: VnIndex| {
1394            let constant = self.eval_to_const(value)?;
1395            if layout.backend_repr.is_scalar() {
1396                let scalar = self.ecx.read_scalar(constant).discard_err()?;
1397                scalar.to_bits(constant.layout.size).discard_err()
1398            } else {
1399                // `constant` is a wide pointer. Do not evaluate to bits.
1400                None
1401            }
1402        };
1403
1404        // Represent the values as `Left(bits)` or `Right(VnIndex)`.
1405        use Either::{Left, Right};
1406        let a = as_bits(lhs).map_or(Right(lhs), Left);
1407        let b = as_bits(rhs).map_or(Right(rhs), Left);
1408
1409        let result = match (op, a, b) {
1410            // Neutral elements.
1411            (
1412                BinOp::Add
1413                | BinOp::AddWithOverflow
1414                | BinOp::AddUnchecked
1415                | BinOp::BitOr
1416                | BinOp::BitXor,
1417                Left(0),
1418                Right(p),
1419            )
1420            | (
1421                BinOp::Add
1422                | BinOp::AddWithOverflow
1423                | BinOp::AddUnchecked
1424                | BinOp::BitOr
1425                | BinOp::BitXor
1426                | BinOp::Sub
1427                | BinOp::SubWithOverflow
1428                | BinOp::SubUnchecked
1429                | BinOp::Offset
1430                | BinOp::Shl
1431                | BinOp::Shr,
1432                Right(p),
1433                Left(0),
1434            )
1435            | (BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked, Left(1), Right(p))
1436            | (
1437                BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked | BinOp::Div,
1438                Right(p),
1439                Left(1),
1440            ) => p,
1441            // Attempt to simplify `x & ALL_ONES` to `x`, with `ALL_ONES` depending on type size.
1442            (BinOp::BitAnd, Right(p), Left(ones)) | (BinOp::BitAnd, Left(ones), Right(p))
1443                if ones == layout.size.truncate(u128::MAX)
1444                    || (layout.ty.is_bool() && ones == 1) =>
1445            {
1446                p
1447            }
1448            // Absorbing elements.
1449            (
1450                BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked | BinOp::BitAnd,
1451                _,
1452                Left(0),
1453            )
1454            | (BinOp::Rem, _, Left(1))
1455            | (
1456                BinOp::Mul
1457                | BinOp::MulWithOverflow
1458                | BinOp::MulUnchecked
1459                | BinOp::Div
1460                | BinOp::Rem
1461                | BinOp::BitAnd
1462                | BinOp::Shl
1463                | BinOp::Shr,
1464                Left(0),
1465                _,
1466            ) => self.insert_scalar(lhs_ty, Scalar::from_uint(0u128, layout.size)),
1467            // Attempt to simplify `x | ALL_ONES` to `ALL_ONES`.
1468            (BinOp::BitOr, _, Left(ones)) | (BinOp::BitOr, Left(ones), _)
1469                if ones == layout.size.truncate(u128::MAX)
1470                    || (layout.ty.is_bool() && ones == 1) =>
1471            {
1472                self.insert_scalar(lhs_ty, Scalar::from_uint(ones, layout.size))
1473            }
1474            // Sub/Xor with itself.
1475            (BinOp::Sub | BinOp::SubWithOverflow | BinOp::SubUnchecked | BinOp::BitXor, a, b)
1476                if a == b =>
1477            {
1478                self.insert_scalar(lhs_ty, Scalar::from_uint(0u128, layout.size))
1479            }
1480            // Comparison:
1481            // - if both operands can be computed as bits, just compare the bits;
1482            // - if we proved that both operands have the same value, we can insert true/false;
1483            // - otherwise, do nothing, as we do not try to prove inequality.
1484            (BinOp::Eq, Left(a), Left(b)) => self.insert_bool(a == b),
1485            (BinOp::Eq, a, b) if a == b => self.insert_bool(true),
1486            (BinOp::Ne, Left(a), Left(b)) => self.insert_bool(a != b),
1487            (BinOp::Ne, a, b) if a == b => self.insert_bool(false),
1488            _ => return None,
1489        };
1490
1491        if op.is_overflowing() {
1492            let ty = Ty::new_tup(self.tcx, &[self.ty(result), self.tcx.types.bool]);
1493            let false_val = self.insert_bool(false);
1494            Some(self.insert_tuple(ty, &[result, false_val]))
1495        } else {
1496            Some(result)
1497        }
1498    }
1499
1500    fn simplify_cast(
1501        &mut self,
1502        initial_kind: &mut CastKind,
1503        initial_operand: &mut Operand<'tcx>,
1504        to: Ty<'tcx>,
1505        location: Location,
1506    ) -> Option<VnIndex> {
1507        use CastKind::*;
1508        use rustc_middle::ty::adjustment::PointerCoercion::*;
1509
1510        let mut kind = *initial_kind;
1511        let mut value = self.simplify_operand(initial_operand, location)?;
1512        let mut from = self.ty(value);
1513        if from == to {
1514            return Some(value);
1515        }
1516
1517        if let CastKind::PointerCoercion(ReifyFnPointer | ClosureFnPointer(_), _) = kind {
1518            // Each reification of a generic fn may get a different pointer.
1519            // Do not try to merge them.
1520            return Some(self.new_opaque(to));
1521        }
1522
1523        let mut was_ever_updated = false;
1524        loop {
1525            let mut was_updated_this_iteration = false;
1526
1527            // Transmuting between raw pointers is just a pointer cast so long as
1528            // they have the same metadata type (like `*const i32` <=> `*mut u64`
1529            // or `*mut [i32]` <=> `*const [u64]`), including the common special
1530            // case of `*const T` <=> `*mut T`.
1531            if let Transmute = kind
1532                && from.is_raw_ptr()
1533                && to.is_raw_ptr()
1534                && self.pointers_have_same_metadata(from, to)
1535            {
1536                kind = PtrToPtr;
1537                was_updated_this_iteration = true;
1538            }
1539
1540            // If a cast just casts away the metadata again, then we can get it by
1541            // casting the original thin pointer passed to `from_raw_parts`
1542            if let PtrToPtr = kind
1543                && let Value::RawPtr { pointer, .. } = self.get(value)
1544                && let ty::RawPtr(to_pointee, _) = to.kind()
1545                && to_pointee.is_sized(self.tcx, self.typing_env())
1546            {
1547                from = self.ty(pointer);
1548                value = pointer;
1549                was_updated_this_iteration = true;
1550                if from == to {
1551                    return Some(pointer);
1552                }
1553            }
1554
1555            // Aggregate-then-Transmute can just transmute the original field value,
1556            // so long as the bytes of a value from only from a single field.
1557            if let Transmute = kind
1558                && let Value::Aggregate(variant_idx, field_values) = self.get(value)
1559                && let Some((field_idx, field_ty)) =
1560                    self.value_is_all_in_one_field(from, variant_idx)
1561            {
1562                from = field_ty;
1563                value = field_values[field_idx.as_usize()];
1564                was_updated_this_iteration = true;
1565                if field_ty == to {
1566                    return Some(value);
1567                }
1568            }
1569
1570            // Various cast-then-cast cases can be simplified.
1571            if let Value::Cast { kind: inner_kind, value: inner_value } = self.get(value) {
1572                let inner_from = self.ty(inner_value);
1573                let new_kind = match (inner_kind, kind) {
1574                    // Even if there's a narrowing cast in here that's fine, because
1575                    // things like `*mut [i32] -> *mut i32 -> *const i32` and
1576                    // `*mut [i32] -> *const [i32] -> *const i32` can skip the middle in MIR.
1577                    (PtrToPtr, PtrToPtr) => Some(PtrToPtr),
1578                    // PtrToPtr-then-Transmute is fine so long as the pointer cast is identity:
1579                    // `*const T -> *mut T -> NonNull<T>` is fine, but we need to check for narrowing
1580                    // to skip things like `*const [i32] -> *const i32 -> NonNull<T>`.
1581                    (PtrToPtr, Transmute) if self.pointers_have_same_metadata(inner_from, from) => {
1582                        Some(Transmute)
1583                    }
1584                    // Similarly, for Transmute-then-PtrToPtr. Note that we need to check different
1585                    // variables for their metadata, and thus this can't merge with the previous arm.
1586                    (Transmute, PtrToPtr) if self.pointers_have_same_metadata(from, to) => {
1587                        Some(Transmute)
1588                    }
1589                    // If would be legal to always do this, but we don't want to hide information
1590                    // from the backend that it'd otherwise be able to use for optimizations.
1591                    (Transmute, Transmute)
1592                        if !self.type_may_have_niche_of_interest_to_backend(from) =>
1593                    {
1594                        Some(Transmute)
1595                    }
1596                    _ => None,
1597                };
1598                if let Some(new_kind) = new_kind {
1599                    kind = new_kind;
1600                    from = inner_from;
1601                    value = inner_value;
1602                    was_updated_this_iteration = true;
1603                    if inner_from == to {
1604                        return Some(inner_value);
1605                    }
1606                }
1607            }
1608
1609            if was_updated_this_iteration {
1610                was_ever_updated = true;
1611            } else {
1612                break;
1613            }
1614        }
1615
1616        if was_ever_updated && let Some(op) = self.try_as_operand(value, location) {
1617            *initial_operand = op;
1618            *initial_kind = kind;
1619        }
1620
1621        Some(self.insert(to, Value::Cast { kind, value }))
1622    }
1623
1624    fn pointers_have_same_metadata(&self, left_ptr_ty: Ty<'tcx>, right_ptr_ty: Ty<'tcx>) -> bool {
1625        let left_meta_ty = left_ptr_ty.pointee_metadata_ty_or_projection(self.tcx);
1626        let right_meta_ty = right_ptr_ty.pointee_metadata_ty_or_projection(self.tcx);
1627        if left_meta_ty == right_meta_ty {
1628            true
1629        } else if let Ok(left) =
1630            self.tcx.try_normalize_erasing_regions(self.typing_env(), left_meta_ty)
1631            && let Ok(right) =
1632                self.tcx.try_normalize_erasing_regions(self.typing_env(), right_meta_ty)
1633        {
1634            left == right
1635        } else {
1636            false
1637        }
1638    }
1639
1640    /// Returns `false` if we know for sure that this type has no interesting niche,
1641    /// and thus we can skip transmuting through it without worrying.
1642    ///
1643    /// The backend will emit `assume`s when transmuting between types with niches,
1644    /// so we want to preserve `i32 -> char -> u32` so that that data is around,
1645    /// but it's fine to skip whole-range-is-value steps like `A -> u32 -> B`.
1646    fn type_may_have_niche_of_interest_to_backend(&self, ty: Ty<'tcx>) -> bool {
1647        let Ok(layout) = self.ecx.layout_of(ty) else {
1648            // If it's too generic or something, then assume it might be interesting later.
1649            return true;
1650        };
1651
1652        if layout.uninhabited {
1653            return true;
1654        }
1655
1656        match layout.backend_repr {
1657            BackendRepr::Scalar(a) => !a.is_always_valid(&self.ecx),
1658            BackendRepr::ScalarPair(a, b) => {
1659                !a.is_always_valid(&self.ecx) || !b.is_always_valid(&self.ecx)
1660            }
1661            BackendRepr::SimdVector { .. } | BackendRepr::Memory { .. } => false,
1662        }
1663    }
1664
1665    fn value_is_all_in_one_field(
1666        &self,
1667        ty: Ty<'tcx>,
1668        variant: VariantIdx,
1669    ) -> Option<(FieldIdx, Ty<'tcx>)> {
1670        if let Ok(layout) = self.ecx.layout_of(ty)
1671            && let abi::Variants::Single { index } = layout.variants
1672            && index == variant
1673            && let Some((field_idx, field_layout)) = layout.non_1zst_field(&self.ecx)
1674            && layout.size == field_layout.size
1675        {
1676            // We needed to check the variant to avoid trying to read the tag
1677            // field from an enum where no fields have variants, since that tag
1678            // field isn't in the `Aggregate` from which we're getting values.
1679            Some((field_idx, field_layout.ty))
1680        } else if let ty::Adt(adt, args) = ty.kind()
1681            && adt.is_struct()
1682            && adt.repr().transparent()
1683            && let [single_field] = adt.non_enum_variant().fields.raw.as_slice()
1684        {
1685            Some((FieldIdx::ZERO, single_field.ty(self.tcx, args)))
1686        } else {
1687            None
1688        }
1689    }
1690}
1691
1692fn op_to_prop_const<'tcx>(
1693    ecx: &mut InterpCx<'tcx, DummyMachine>,
1694    op: &OpTy<'tcx>,
1695) -> Option<ConstValue> {
1696    // Do not attempt to propagate unsized locals.
1697    if op.layout.is_unsized() {
1698        return None;
1699    }
1700
1701    // This constant is a ZST, just return an empty value.
1702    if op.layout.is_zst() {
1703        return Some(ConstValue::ZeroSized);
1704    }
1705
1706    // Do not synthetize too large constants. Codegen will just memcpy them, which we'd like to
1707    // avoid.
1708    if !matches!(op.layout.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) {
1709        return None;
1710    }
1711
1712    // If this constant has scalar ABI, return it as a `ConstValue::Scalar`.
1713    if let BackendRepr::Scalar(abi::Scalar::Initialized { .. }) = op.layout.backend_repr
1714        && let Some(scalar) = ecx.read_scalar(op).discard_err()
1715    {
1716        if !scalar.try_to_scalar_int().is_ok() {
1717            // Check that we do not leak a pointer.
1718            // Those pointers may lose part of their identity in codegen.
1719            // FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
1720            return None;
1721        }
1722        return Some(ConstValue::Scalar(scalar));
1723    }
1724
1725    // If this constant is already represented as an `Allocation`,
1726    // try putting it into global memory to return it.
1727    if let Either::Left(mplace) = op.as_mplace_or_imm() {
1728        let (size, _align) = ecx.size_and_align_of_val(&mplace).discard_err()??;
1729
1730        // Do not try interning a value that contains provenance.
1731        // Due to https://github.com/rust-lang/rust/issues/79738, doing so could lead to bugs.
1732        // FIXME: remove this hack once that issue is fixed.
1733        let alloc_ref = ecx.get_ptr_alloc(mplace.ptr(), size).discard_err()??;
1734        if alloc_ref.has_provenance() {
1735            return None;
1736        }
1737
1738        let pointer = mplace.ptr().into_pointer_or_addr().ok()?;
1739        let (prov, offset) = pointer.prov_and_relative_offset();
1740        let alloc_id = prov.alloc_id();
1741        intern_const_alloc_for_constprop(ecx, alloc_id).discard_err()?;
1742
1743        // `alloc_id` may point to a static. Codegen will choke on an `Indirect` with anything
1744        // by `GlobalAlloc::Memory`, so do fall through to copying if needed.
1745        // FIXME: find a way to treat this more uniformly (probably by fixing codegen)
1746        if let GlobalAlloc::Memory(alloc) = ecx.tcx.global_alloc(alloc_id)
1747            // Transmuting a constant is just an offset in the allocation. If the alignment of the
1748            // allocation is not enough, fallback to copying into a properly aligned value.
1749            && alloc.inner().align >= op.layout.align.abi
1750        {
1751            return Some(ConstValue::Indirect { alloc_id, offset });
1752        }
1753    }
1754
1755    // Everything failed: create a new allocation to hold the data.
1756    let alloc_id =
1757        ecx.intern_with_temp_alloc(op.layout, |ecx, dest| ecx.copy_op(op, dest)).discard_err()?;
1758    let value = ConstValue::Indirect { alloc_id, offset: Size::ZERO };
1759
1760    // Check that we do not leak a pointer.
1761    // Those pointers may lose part of their identity in codegen.
1762    // FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
1763    if ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner().provenance().ptrs().is_empty() {
1764        return Some(value);
1765    }
1766
1767    None
1768}
1769
1770impl<'tcx> VnState<'_, '_, 'tcx> {
1771    /// If either [`Self::try_as_constant`] as [`Self::try_as_place`] succeeds,
1772    /// returns that result as an [`Operand`].
1773    fn try_as_operand(&mut self, index: VnIndex, location: Location) -> Option<Operand<'tcx>> {
1774        if let Some(const_) = self.try_as_constant(index) {
1775            Some(Operand::Constant(Box::new(const_)))
1776        } else if let Some(place) = self.try_as_place(index, location, false) {
1777            self.reused_locals.insert(place.local);
1778            Some(Operand::Copy(place))
1779        } else {
1780            None
1781        }
1782    }
1783
1784    /// If `index` is a `Value::Constant`, return the `Constant` to be put in the MIR.
1785    fn try_as_constant(&mut self, index: VnIndex) -> Option<ConstOperand<'tcx>> {
1786        // This was already constant in MIR, do not change it. If the constant is not
1787        // deterministic, adding an additional mention of it in MIR will not give the same value as
1788        // the former mention.
1789        if let Value::Constant { value, disambiguator: None } = self.get(index) {
1790            debug_assert!(value.is_deterministic());
1791            return Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_: value });
1792        }
1793
1794        let op = self.eval_to_const(index)?;
1795        if op.layout.is_unsized() {
1796            // Do not attempt to propagate unsized locals.
1797            return None;
1798        }
1799
1800        let value = op_to_prop_const(&mut self.ecx, op)?;
1801
1802        // Check that we do not leak a pointer.
1803        // Those pointers may lose part of their identity in codegen.
1804        // FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
1805        assert!(!value.may_have_provenance(self.tcx, op.layout.size));
1806
1807        let const_ = Const::Val(value, op.layout.ty);
1808        Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_ })
1809    }
1810
1811    /// Construct a place which holds the same value as `index` and for which all locals strictly
1812    /// dominate `loc`. If you used this place, add its base local to `reused_locals` to remove
1813    /// storage statements.
1814    #[instrument(level = "trace", skip(self), ret)]
1815    fn try_as_place(
1816        &mut self,
1817        mut index: VnIndex,
1818        loc: Location,
1819        allow_complex_projection: bool,
1820    ) -> Option<Place<'tcx>> {
1821        let mut projection = SmallVec::<[PlaceElem<'tcx>; 1]>::new();
1822        loop {
1823            if let Some(local) = self.try_as_local(index, loc) {
1824                projection.reverse();
1825                let place =
1826                    Place { local, projection: self.tcx.mk_place_elems(projection.as_slice()) };
1827                return Some(place);
1828            } else if projection.last() == Some(&PlaceElem::Deref) {
1829                // `Deref` can only be the first projection in a place.
1830                // If we are here, we failed to find a local, and we already have a `Deref`.
1831                // Trying to add projections will only result in an ill-formed place.
1832                return None;
1833            } else if let Value::Projection(pointer, proj) = self.get(index)
1834                && (allow_complex_projection || proj.is_stable_offset())
1835                && let Some(proj) = self.try_as_place_elem(self.ty(index), proj, loc)
1836            {
1837                projection.push(proj);
1838                index = pointer;
1839            } else {
1840                return None;
1841            }
1842        }
1843    }
1844
1845    /// If there is a local which is assigned `index`, and its assignment strictly dominates `loc`,
1846    /// return it. If you used this local, add it to `reused_locals` to remove storage statements.
1847    fn try_as_local(&mut self, index: VnIndex, loc: Location) -> Option<Local> {
1848        let other = self.rev_locals.get(index)?;
1849        other
1850            .iter()
1851            .find(|&&other| self.ssa.assignment_dominates(&self.dominators, other, loc))
1852            .copied()
1853    }
1854}
1855
1856impl<'tcx> MutVisitor<'tcx> for VnState<'_, '_, 'tcx> {
1857    fn tcx(&self) -> TyCtxt<'tcx> {
1858        self.tcx
1859    }
1860
1861    fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
1862        self.simplify_place_projection(place, location);
1863        if context.is_mutating_use() && place.is_indirect() {
1864            // Non-local mutation maybe invalidate deref.
1865            self.invalidate_derefs();
1866        }
1867        self.super_place(place, context, location);
1868    }
1869
1870    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
1871        self.simplify_operand(operand, location);
1872        self.super_operand(operand, location);
1873    }
1874
1875    fn visit_assign(
1876        &mut self,
1877        lhs: &mut Place<'tcx>,
1878        rvalue: &mut Rvalue<'tcx>,
1879        location: Location,
1880    ) {
1881        self.simplify_place_projection(lhs, location);
1882
1883        let value = self.simplify_rvalue(lhs, rvalue, location);
1884        if let Some(value) = value {
1885            if let Some(const_) = self.try_as_constant(value) {
1886                *rvalue = Rvalue::Use(Operand::Constant(Box::new(const_)));
1887            } else if let Some(place) = self.try_as_place(value, location, false)
1888                && *rvalue != Rvalue::Use(Operand::Move(place))
1889                && *rvalue != Rvalue::Use(Operand::Copy(place))
1890            {
1891                *rvalue = Rvalue::Use(Operand::Copy(place));
1892                self.reused_locals.insert(place.local);
1893            }
1894        }
1895
1896        if lhs.is_indirect() {
1897            // Non-local mutation maybe invalidate deref.
1898            self.invalidate_derefs();
1899        }
1900
1901        if let Some(local) = lhs.as_local()
1902            && self.ssa.is_ssa(local)
1903            && let rvalue_ty = rvalue.ty(self.local_decls, self.tcx)
1904            // FIXME(#112651) `rvalue` may have a subtype to `local`. We can only mark
1905            // `local` as reusable if we have an exact type match.
1906            && self.local_decls[local].ty == rvalue_ty
1907        {
1908            let value = value.unwrap_or_else(|| self.new_opaque(rvalue_ty));
1909            self.assign(local, value);
1910        }
1911    }
1912
1913    fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
1914        if let Terminator { kind: TerminatorKind::Call { destination, .. }, .. } = terminator {
1915            if let Some(local) = destination.as_local()
1916                && self.ssa.is_ssa(local)
1917            {
1918                let ty = self.local_decls[local].ty;
1919                let opaque = self.new_opaque(ty);
1920                self.assign(local, opaque);
1921            }
1922        }
1923        // Terminators that can write to memory may invalidate (nested) derefs.
1924        if terminator.kind.can_write_to_memory() {
1925            self.invalidate_derefs();
1926        }
1927        self.super_terminator(terminator, location);
1928    }
1929}
1930
1931struct StorageRemover<'tcx> {
1932    tcx: TyCtxt<'tcx>,
1933    reused_locals: DenseBitSet<Local>,
1934}
1935
1936impl<'tcx> MutVisitor<'tcx> for StorageRemover<'tcx> {
1937    fn tcx(&self) -> TyCtxt<'tcx> {
1938        self.tcx
1939    }
1940
1941    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, _: Location) {
1942        if let Operand::Move(place) = *operand
1943            && !place.is_indirect_first_projection()
1944            && self.reused_locals.contains(place.local)
1945        {
1946            *operand = Operand::Copy(place);
1947        }
1948    }
1949
1950    fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, loc: Location) {
1951        match stmt.kind {
1952            // When removing storage statements, we need to remove both (#107511).
1953            StatementKind::StorageLive(l) | StatementKind::StorageDead(l)
1954                if self.reused_locals.contains(l) =>
1955            {
1956                stmt.make_nop(true)
1957            }
1958            _ => self.super_statement(stmt, loc),
1959        }
1960    }
1961}