1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
//! Global value numbering.
//!
//! MIR may contain repeated and/or redundant computations. The objective of this pass is to detect
//! such redundancies and re-use the already-computed result when possible.
//!
//! In a first pass, we compute a symbolic representation of values that are assigned to SSA
//! locals. This symbolic representation is defined by the `Value` enum. Each produced instance of
//! `Value` is interned as a `VnIndex`, which allows us to cheaply compute identical values.
//!
//! From those assignments, we construct a mapping `VnIndex -> Vec<(Local, Location)>` of available
//! values, the locals in which they are stored, and a the assignment location.
//!
//! In a second pass, we traverse all (non SSA) assignments `x = rvalue` and operands. For each
//! one, we compute the `VnIndex` of the rvalue. If this `VnIndex` is associated to a constant, we
//! replace the rvalue/operand by that constant. Otherwise, if there is an SSA local `y`
//! associated to this `VnIndex`, and if its definition location strictly dominates the assignment
//! to `x`, we replace the assignment by `x = y`.
//!
//! By opportunity, this pass simplifies some `Rvalue`s based on the accumulated knowledge.
//!
//! # Operational semantic
//!
//! Operationally, this pass attempts to prove bitwise equality between locals. Given this MIR:
//! ```ignore (MIR)
//! _a = some value // has VnIndex i
//! // some MIR
//! _b = some other value // also has VnIndex i
//! ```
//!
//! We consider it to be replacable by:
//! ```ignore (MIR)
//! _a = some value // has VnIndex i
//! // some MIR
//! _c = some other value // also has VnIndex i
//! assume(_a bitwise equal to _c) // follows from having the same VnIndex
//! _b = _a // follows from the `assume`
//! ```
//!
//! Which is simplifiable to:
//! ```ignore (MIR)
//! _a = some value // has VnIndex i
//! // some MIR
//! _b = _a
//! ```
//!
//! # Handling of references
//!
//! We handle references by assigning a different "provenance" index to each Ref/AddressOf rvalue.
//! This ensure that we do not spuriously merge borrows that should not be merged. Meanwhile, we
//! consider all the derefs of an immutable reference to a freeze type to give the same value:
//! ```ignore (MIR)
//! _a = *_b // _b is &Freeze
//! _c = *_b // replaced by _c = _a
//! ```
//!
//! # Determinism of constant propagation
//!
//! When registering a new `Value`, we attempt to opportunistically evaluate it as a constant.
//! The evaluated form is inserted in `evaluated` as an `OpTy` or `None` if evaluation failed.
//!
//! The difficulty is non-deterministic evaluation of MIR constants. Some `Const` can have
//! different runtime values each time they are evaluated. This is the case with
//! `Const::Slice` which have a new pointer each time they are evaluated, and constants that
//! contain a fn pointer (`AllocId` pointing to a `GlobalAlloc::Function`) pointing to a different
//! symbol in each codegen unit.
//!
//! Meanwhile, we want to be able to read indirect constants. For instance:
//! ```
//! static A: &'static &'static u8 = &&63;
//! fn foo() -> u8 {
//!     **A // We want to replace by 63.
//! }
//! fn bar() -> u8 {
//!     b"abc"[1] // We want to replace by 'b'.
//! }
//! ```
//!
//! The `Value::Constant` variant stores a possibly unevaluated constant. Evaluating that constant
//! may be non-deterministic. When that happens, we assign a disambiguator to ensure that we do not
//! merge the constants. See `duplicate_slice` test in `gvn.rs`.
//!
//! Second, when writing constants in MIR, we do not write `Const::Slice` or `Const`
//! that contain `AllocId`s.

use rustc_const_eval::const_eval::DummyMachine;
use rustc_const_eval::interpret::{intern_const_alloc_for_constprop, MemoryKind};
use rustc_const_eval::interpret::{ImmTy, InterpCx, OpTy, Projectable, Scalar};
use rustc_data_structures::fx::FxIndexSet;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_index::newtype_index;
use rustc_index::IndexVec;
use rustc_middle::bug;
use rustc_middle::mir::interpret::GlobalAlloc;
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::def_id::DefId;
use rustc_span::DUMMY_SP;
use rustc_target::abi::{self, Abi, Size, VariantIdx, FIRST_VARIANT};
use smallvec::SmallVec;
use std::borrow::Cow;

use crate::ssa::{AssignedValue, SsaLocals};
use either::Either;

pub struct GVN;

impl<'tcx> MirPass<'tcx> for GVN {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        sess.mir_opt_level() >= 2
    }

    #[instrument(level = "trace", skip(self, tcx, body))]
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        debug!(def_id = ?body.source.def_id());
        propagate_ssa(tcx, body);
    }
}

fn propagate_ssa<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
    let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());
    let ssa = SsaLocals::new(tcx, body, param_env);
    // Clone dominators as we need them while mutating the body.
    let dominators = body.basic_blocks.dominators().clone();

    let mut state = VnState::new(tcx, param_env, &ssa, &dominators, &body.local_decls);
    ssa.for_each_assignment_mut(
        body.basic_blocks.as_mut_preserves_cfg(),
        |local, value, location| {
            let value = match value {
                // We do not know anything of this assigned value.
                AssignedValue::Arg | AssignedValue::Terminator => None,
                // Try to get some insight.
                AssignedValue::Rvalue(rvalue) => {
                    let value = state.simplify_rvalue(rvalue, location);
                    // FIXME(#112651) `rvalue` may have a subtype to `local`. We can only mark `local` as
                    // reusable if we have an exact type match.
                    if state.local_decls[local].ty != rvalue.ty(state.local_decls, tcx) {
                        return;
                    }
                    value
                }
            };
            // `next_opaque` is `Some`, so `new_opaque` must return `Some`.
            let value = value.or_else(|| state.new_opaque()).unwrap();
            state.assign(local, value);
        },
    );

    // Stop creating opaques during replacement as it is useless.
    state.next_opaque = None;

    let reverse_postorder = body.basic_blocks.reverse_postorder().to_vec();
    for bb in reverse_postorder {
        let data = &mut body.basic_blocks.as_mut_preserves_cfg()[bb];
        state.visit_basic_block_data(bb, data);
    }

    // For each local that is reused (`y` above), we remove its storage statements do avoid any
    // difficulty. Those locals are SSA, so should be easy to optimize by LLVM without storage
    // statements.
    StorageRemover { tcx, reused_locals: state.reused_locals }.visit_body_preserves_cfg(body);
}

newtype_index! {
    struct VnIndex {}
}

/// Computing the aggregate's type can be quite slow, so we only keep the minimal amount of
/// information to reconstruct it when needed.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum AggregateTy<'tcx> {
    /// Invariant: this must not be used for an empty array.
    Array,
    Tuple,
    Def(DefId, ty::GenericArgsRef<'tcx>),
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum AddressKind {
    Ref(BorrowKind),
    Address(Mutability),
}

#[derive(Debug, PartialEq, Eq, Hash)]
enum Value<'tcx> {
    // Root values.
    /// Used to represent values we know nothing about.
    /// The `usize` is a counter incremented by `new_opaque`.
    Opaque(usize),
    /// Evaluated or unevaluated constant value.
    Constant {
        value: Const<'tcx>,
        /// Some constants do not have a deterministic value. To avoid merging two instances of the
        /// same `Const`, we assign them an additional integer index.
        disambiguator: usize,
    },
    /// An aggregate value, either tuple/closure/struct/enum.
    /// This does not contain unions, as we cannot reason with the value.
    Aggregate(AggregateTy<'tcx>, VariantIdx, Vec<VnIndex>),
    /// This corresponds to a `[value; count]` expression.
    Repeat(VnIndex, ty::Const<'tcx>),
    /// The address of a place.
    Address {
        place: Place<'tcx>,
        kind: AddressKind,
        /// Give each borrow and pointer a different provenance, so we don't merge them.
        provenance: usize,
    },

    // Extractions.
    /// This is the *value* obtained by projecting another value.
    Projection(VnIndex, ProjectionElem<VnIndex, Ty<'tcx>>),
    /// Discriminant of the given value.
    Discriminant(VnIndex),
    /// Length of an array or slice.
    Len(VnIndex),

    // Operations.
    NullaryOp(NullOp<'tcx>, Ty<'tcx>),
    UnaryOp(UnOp, VnIndex),
    BinaryOp(BinOp, VnIndex, VnIndex),
    CheckedBinaryOp(BinOp, VnIndex, VnIndex),
    Cast {
        kind: CastKind,
        value: VnIndex,
        from: Ty<'tcx>,
        to: Ty<'tcx>,
    },
}

struct VnState<'body, 'tcx> {
    tcx: TyCtxt<'tcx>,
    ecx: InterpCx<'tcx, 'tcx, DummyMachine>,
    param_env: ty::ParamEnv<'tcx>,
    local_decls: &'body LocalDecls<'tcx>,
    /// Value stored in each local.
    locals: IndexVec<Local, Option<VnIndex>>,
    /// Locals that are assigned that value.
    // This vector does not hold all the values of `VnIndex` that we create.
    // It stops at the largest value created in the first phase of collecting assignments.
    rev_locals: IndexVec<VnIndex, SmallVec<[Local; 1]>>,
    values: FxIndexSet<Value<'tcx>>,
    /// Values evaluated as constants if possible.
    evaluated: IndexVec<VnIndex, Option<OpTy<'tcx>>>,
    /// Counter to generate different values.
    /// This is an option to stop creating opaques during replacement.
    next_opaque: Option<usize>,
    /// Cache the value of the `unsized_locals` features, to avoid fetching it repeatedly in a loop.
    feature_unsized_locals: bool,
    ssa: &'body SsaLocals,
    dominators: &'body Dominators<BasicBlock>,
    reused_locals: BitSet<Local>,
}

impl<'body, 'tcx> VnState<'body, 'tcx> {
    fn new(
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        ssa: &'body SsaLocals,
        dominators: &'body Dominators<BasicBlock>,
        local_decls: &'body LocalDecls<'tcx>,
    ) -> Self {
        VnState {
            tcx,
            ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
            param_env,
            local_decls,
            locals: IndexVec::from_elem(None, local_decls),
            rev_locals: IndexVec::default(),
            values: FxIndexSet::default(),
            evaluated: IndexVec::new(),
            next_opaque: Some(0),
            feature_unsized_locals: tcx.features().unsized_locals,
            ssa,
            dominators,
            reused_locals: BitSet::new_empty(local_decls.len()),
        }
    }

    #[instrument(level = "trace", skip(self), ret)]
    fn insert(&mut self, value: Value<'tcx>) -> VnIndex {
        let (index, new) = self.values.insert_full(value);
        let index = VnIndex::from_usize(index);
        if new {
            let evaluated = self.eval_to_const(index);
            let _index = self.evaluated.push(evaluated);
            debug_assert_eq!(index, _index);
        }
        index
    }

    /// Create a new `Value` for which we have no information at all, except that it is distinct
    /// from all the others.
    #[instrument(level = "trace", skip(self), ret)]
    fn new_opaque(&mut self) -> Option<VnIndex> {
        let next_opaque = self.next_opaque.as_mut()?;
        let value = Value::Opaque(*next_opaque);
        *next_opaque += 1;
        Some(self.insert(value))
    }

    /// Create a new `Value::Address` distinct from all the others.
    #[instrument(level = "trace", skip(self), ret)]
    fn new_pointer(&mut self, place: Place<'tcx>, kind: AddressKind) -> Option<VnIndex> {
        let next_opaque = self.next_opaque.as_mut()?;
        let value = Value::Address { place, kind, provenance: *next_opaque };
        *next_opaque += 1;
        Some(self.insert(value))
    }

    fn get(&self, index: VnIndex) -> &Value<'tcx> {
        self.values.get_index(index.as_usize()).unwrap()
    }

    /// Record that `local` is assigned `value`. `local` must be SSA.
    #[instrument(level = "trace", skip(self))]
    fn assign(&mut self, local: Local, value: VnIndex) {
        self.locals[local] = Some(value);

        // Only register the value if its type is `Sized`, as we will emit copies of it.
        let is_sized = !self.feature_unsized_locals
            || self.local_decls[local].ty.is_sized(self.tcx, self.param_env);
        if is_sized {
            self.rev_locals.ensure_contains_elem(value, SmallVec::new);
            self.rev_locals[value].push(local);
        }
    }

    fn insert_constant(&mut self, value: Const<'tcx>) -> Option<VnIndex> {
        let disambiguator = if value.is_deterministic() {
            // The constant is deterministic, no need to disambiguate.
            0
        } else {
            // Multiple mentions of this constant will yield different values,
            // so assign a different `disambiguator` to ensure they do not get the same `VnIndex`.
            let next_opaque = self.next_opaque.as_mut()?;
            let disambiguator = *next_opaque;
            *next_opaque += 1;
            disambiguator
        };
        Some(self.insert(Value::Constant { value, disambiguator }))
    }

    fn insert_bool(&mut self, flag: bool) -> VnIndex {
        // Booleans are deterministic.
        self.insert(Value::Constant { value: Const::from_bool(self.tcx, flag), disambiguator: 0 })
    }

    fn insert_scalar(&mut self, scalar: Scalar, ty: Ty<'tcx>) -> VnIndex {
        self.insert_constant(Const::from_scalar(self.tcx, scalar, ty))
            .expect("scalars are deterministic")
    }

    fn insert_tuple(&mut self, values: Vec<VnIndex>) -> VnIndex {
        self.insert(Value::Aggregate(AggregateTy::Tuple, VariantIdx::ZERO, values))
    }

    #[instrument(level = "trace", skip(self), ret)]
    fn eval_to_const(&mut self, value: VnIndex) -> Option<OpTy<'tcx>> {
        use Value::*;
        let op = match *self.get(value) {
            Opaque(_) => return None,
            // Do not bother evaluating repeat expressions. This would uselessly consume memory.
            Repeat(..) => return None,

            Constant { ref value, disambiguator: _ } => {
                self.ecx.eval_mir_constant(value, DUMMY_SP, None).ok()?
            }
            Aggregate(kind, variant, ref fields) => {
                let fields = fields
                    .iter()
                    .map(|&f| self.evaluated[f].as_ref())
                    .collect::<Option<Vec<_>>>()?;
                let ty = match kind {
                    AggregateTy::Array => {
                        assert!(fields.len() > 0);
                        Ty::new_array(self.tcx, fields[0].layout.ty, fields.len() as u64)
                    }
                    AggregateTy::Tuple => {
                        Ty::new_tup_from_iter(self.tcx, fields.iter().map(|f| f.layout.ty))
                    }
                    AggregateTy::Def(def_id, args) => {
                        self.tcx.type_of(def_id).instantiate(self.tcx, args)
                    }
                };
                let variant = if ty.is_enum() { Some(variant) } else { None };
                let ty = self.ecx.layout_of(ty).ok()?;
                if ty.is_zst() {
                    ImmTy::uninit(ty).into()
                } else if matches!(ty.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
                    let dest = self.ecx.allocate(ty, MemoryKind::Stack).ok()?;
                    let variant_dest = if let Some(variant) = variant {
                        self.ecx.project_downcast(&dest, variant).ok()?
                    } else {
                        dest.clone()
                    };
                    for (field_index, op) in fields.into_iter().enumerate() {
                        let field_dest = self.ecx.project_field(&variant_dest, field_index).ok()?;
                        self.ecx.copy_op(op, &field_dest).ok()?;
                    }
                    self.ecx.write_discriminant(variant.unwrap_or(FIRST_VARIANT), &dest).ok()?;
                    self.ecx
                        .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
                        .ok()?;
                    dest.into()
                } else {
                    return None;
                }
            }

            Projection(base, elem) => {
                let value = self.evaluated[base].as_ref()?;
                let elem = match elem {
                    ProjectionElem::Deref => ProjectionElem::Deref,
                    ProjectionElem::Downcast(name, read_variant) => {
                        ProjectionElem::Downcast(name, read_variant)
                    }
                    ProjectionElem::Field(f, ty) => ProjectionElem::Field(f, ty),
                    ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
                        ProjectionElem::ConstantIndex { offset, min_length, from_end }
                    }
                    ProjectionElem::Subslice { from, to, from_end } => {
                        ProjectionElem::Subslice { from, to, from_end }
                    }
                    ProjectionElem::OpaqueCast(ty) => ProjectionElem::OpaqueCast(ty),
                    ProjectionElem::Subtype(ty) => ProjectionElem::Subtype(ty),
                    // This should have been replaced by a `ConstantIndex` earlier.
                    ProjectionElem::Index(_) => return None,
                };
                self.ecx.project(value, elem).ok()?
            }
            Address { place, kind, provenance: _ } => {
                if !place.is_indirect_first_projection() {
                    return None;
                }
                let local = self.locals[place.local]?;
                let pointer = self.evaluated[local].as_ref()?;
                let mut mplace = self.ecx.deref_pointer(pointer).ok()?;
                for proj in place.projection.iter().skip(1) {
                    // We have no call stack to associate a local with a value, so we cannot interpret indexing.
                    if matches!(proj, ProjectionElem::Index(_)) {
                        return None;
                    }
                    mplace = self.ecx.project(&mplace, proj).ok()?;
                }
                let pointer = mplace.to_ref(&self.ecx);
                let ty = match kind {
                    AddressKind::Ref(bk) => Ty::new_ref(
                        self.tcx,
                        self.tcx.lifetimes.re_erased,
                        mplace.layout.ty,
                        bk.to_mutbl_lossy(),
                    ),
                    AddressKind::Address(mutbl) => Ty::new_ptr(self.tcx, mplace.layout.ty, mutbl),
                };
                let layout = self.ecx.layout_of(ty).ok()?;
                ImmTy::from_immediate(pointer, layout).into()
            }

            Discriminant(base) => {
                let base = self.evaluated[base].as_ref()?;
                let variant = self.ecx.read_discriminant(base).ok()?;
                let discr_value =
                    self.ecx.discriminant_for_variant(base.layout.ty, variant).ok()?;
                discr_value.into()
            }
            Len(slice) => {
                let slice = self.evaluated[slice].as_ref()?;
                let usize_layout = self.ecx.layout_of(self.tcx.types.usize).unwrap();
                let len = slice.len(&self.ecx).ok()?;
                let imm = ImmTy::try_from_uint(len, usize_layout)?;
                imm.into()
            }
            NullaryOp(null_op, ty) => {
                let layout = self.ecx.layout_of(ty).ok()?;
                if let NullOp::SizeOf | NullOp::AlignOf = null_op
                    && layout.is_unsized()
                {
                    return None;
                }
                let val = match null_op {
                    NullOp::SizeOf => layout.size.bytes(),
                    NullOp::AlignOf => layout.align.abi.bytes(),
                    NullOp::OffsetOf(fields) => {
                        layout.offset_of_subfield(&self.ecx, fields.iter()).bytes()
                    }
                    NullOp::UbChecks => return None,
                };
                let usize_layout = self.ecx.layout_of(self.tcx.types.usize).unwrap();
                let imm = ImmTy::try_from_uint(val, usize_layout)?;
                imm.into()
            }
            UnaryOp(un_op, operand) => {
                let operand = self.evaluated[operand].as_ref()?;
                let operand = self.ecx.read_immediate(operand).ok()?;
                let (val, _) = self.ecx.overflowing_unary_op(un_op, &operand).ok()?;
                val.into()
            }
            BinaryOp(bin_op, lhs, rhs) => {
                let lhs = self.evaluated[lhs].as_ref()?;
                let lhs = self.ecx.read_immediate(lhs).ok()?;
                let rhs = self.evaluated[rhs].as_ref()?;
                let rhs = self.ecx.read_immediate(rhs).ok()?;
                let (val, _) = self.ecx.overflowing_binary_op(bin_op, &lhs, &rhs).ok()?;
                val.into()
            }
            CheckedBinaryOp(bin_op, lhs, rhs) => {
                let lhs = self.evaluated[lhs].as_ref()?;
                let lhs = self.ecx.read_immediate(lhs).ok()?;
                let rhs = self.evaluated[rhs].as_ref()?;
                let rhs = self.ecx.read_immediate(rhs).ok()?;
                let (val, overflowed) = self.ecx.overflowing_binary_op(bin_op, &lhs, &rhs).ok()?;
                let tuple = Ty::new_tup_from_iter(
                    self.tcx,
                    [val.layout.ty, self.tcx.types.bool].into_iter(),
                );
                let tuple = self.ecx.layout_of(tuple).ok()?;
                ImmTy::from_scalar_pair(val.to_scalar(), Scalar::from_bool(overflowed), tuple)
                    .into()
            }
            Cast { kind, value, from: _, to } => match kind {
                CastKind::IntToInt | CastKind::IntToFloat => {
                    let value = self.evaluated[value].as_ref()?;
                    let value = self.ecx.read_immediate(value).ok()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    let res = self.ecx.int_to_int_or_float(&value, to).ok()?;
                    res.into()
                }
                CastKind::FloatToFloat | CastKind::FloatToInt => {
                    let value = self.evaluated[value].as_ref()?;
                    let value = self.ecx.read_immediate(value).ok()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    let res = self.ecx.float_to_float_or_int(&value, to).ok()?;
                    res.into()
                }
                CastKind::Transmute => {
                    let value = self.evaluated[value].as_ref()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    // `offset` for immediates only supports scalar/scalar-pair ABIs,
                    // so bail out if the target is not one.
                    if value.as_mplace_or_imm().is_right() {
                        match (value.layout.abi, to.abi) {
                            (Abi::Scalar(..), Abi::Scalar(..)) => {}
                            (Abi::ScalarPair(..), Abi::ScalarPair(..)) => {}
                            _ => return None,
                        }
                    }
                    value.offset(Size::ZERO, to, &self.ecx).ok()?
                }
                CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize) => {
                    let src = self.evaluated[value].as_ref()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    let dest = self.ecx.allocate(to, MemoryKind::Stack).ok()?;
                    self.ecx.unsize_into(src, to, &dest.clone().into()).ok()?;
                    self.ecx
                        .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
                        .ok()?;
                    dest.into()
                }
                CastKind::FnPtrToPtr | CastKind::PtrToPtr => {
                    let src = self.evaluated[value].as_ref()?;
                    let src = self.ecx.read_immediate(src).ok()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    let ret = self.ecx.ptr_to_ptr(&src, to).ok()?;
                    ret.into()
                }
                CastKind::PointerCoercion(
                    ty::adjustment::PointerCoercion::MutToConstPointer
                    | ty::adjustment::PointerCoercion::ArrayToPointer
                    | ty::adjustment::PointerCoercion::UnsafeFnPointer,
                ) => {
                    let src = self.evaluated[value].as_ref()?;
                    let src = self.ecx.read_immediate(src).ok()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    ImmTy::from_immediate(*src, to).into()
                }
                _ => return None,
            },
        };
        Some(op)
    }

    fn project(
        &mut self,
        place: PlaceRef<'tcx>,
        value: VnIndex,
        proj: PlaceElem<'tcx>,
    ) -> Option<VnIndex> {
        let proj = match proj {
            ProjectionElem::Deref => {
                let ty = place.ty(self.local_decls, self.tcx).ty;
                if let Some(Mutability::Not) = ty.ref_mutability()
                    && let Some(pointee_ty) = ty.builtin_deref(true)
                    && pointee_ty.is_freeze(self.tcx, self.param_env)
                {
                    // An immutable borrow `_x` always points to the same value for the
                    // lifetime of the borrow, so we can merge all instances of `*_x`.
                    ProjectionElem::Deref
                } else {
                    return None;
                }
            }
            ProjectionElem::Downcast(name, index) => ProjectionElem::Downcast(name, index),
            ProjectionElem::Field(f, ty) => {
                if let Value::Aggregate(_, _, fields) = self.get(value) {
                    return Some(fields[f.as_usize()]);
                } else if let Value::Projection(outer_value, ProjectionElem::Downcast(_, read_variant)) = self.get(value)
                    && let Value::Aggregate(_, written_variant, fields) = self.get(*outer_value)
                    // This pass is not aware of control-flow, so we do not know whether the
                    // replacement we are doing is actually reachable. We could be in any arm of
                    // ```
                    // match Some(x) {
                    //     Some(y) => /* stuff */,
                    //     None => /* other */,
                    // }
                    // ```
                    //
                    // In surface rust, the current statement would be unreachable.
                    //
                    // However, from the reference chapter on enums and RFC 2195,
                    // accessing the wrong variant is not UB if the enum has repr.
                    // So it's not impossible for a series of MIR opts to generate
                    // a downcast to an inactive variant.
                    && written_variant == read_variant
                {
                    return Some(fields[f.as_usize()]);
                }
                ProjectionElem::Field(f, ty)
            }
            ProjectionElem::Index(idx) => {
                if let Value::Repeat(inner, _) = self.get(value) {
                    return Some(*inner);
                }
                let idx = self.locals[idx]?;
                ProjectionElem::Index(idx)
            }
            ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
                match self.get(value) {
                    Value::Repeat(inner, _) => {
                        return Some(*inner);
                    }
                    Value::Aggregate(AggregateTy::Array, _, operands) => {
                        let offset = if from_end {
                            operands.len() - offset as usize
                        } else {
                            offset as usize
                        };
                        return operands.get(offset).copied();
                    }
                    _ => {}
                };
                ProjectionElem::ConstantIndex { offset, min_length, from_end }
            }
            ProjectionElem::Subslice { from, to, from_end } => {
                ProjectionElem::Subslice { from, to, from_end }
            }
            ProjectionElem::OpaqueCast(ty) => ProjectionElem::OpaqueCast(ty),
            ProjectionElem::Subtype(ty) => ProjectionElem::Subtype(ty),
        };

        Some(self.insert(Value::Projection(value, proj)))
    }

    /// Simplify the projection chain if we know better.
    #[instrument(level = "trace", skip(self))]
    fn simplify_place_projection(&mut self, place: &mut Place<'tcx>, location: Location) {
        // If the projection is indirect, we treat the local as a value, so can replace it with
        // another local.
        if place.is_indirect()
            && let Some(base) = self.locals[place.local]
            && let Some(new_local) = self.try_as_local(base, location)
            && place.local != new_local
        {
            place.local = new_local;
            self.reused_locals.insert(new_local);
        }

        let mut projection = Cow::Borrowed(&place.projection[..]);

        for i in 0..projection.len() {
            let elem = projection[i];
            if let ProjectionElem::Index(idx_local) = elem
                && let Some(idx) = self.locals[idx_local]
            {
                if let Some(offset) = self.evaluated[idx].as_ref()
                    && let Ok(offset) = self.ecx.read_target_usize(offset)
                    && let Some(min_length) = offset.checked_add(1)
                {
                    projection.to_mut()[i] =
                        ProjectionElem::ConstantIndex { offset, min_length, from_end: false };
                } else if let Some(new_idx_local) = self.try_as_local(idx, location)
                    && idx_local != new_idx_local
                {
                    projection.to_mut()[i] = ProjectionElem::Index(new_idx_local);
                    self.reused_locals.insert(new_idx_local);
                }
            }
        }

        if projection.is_owned() {
            place.projection = self.tcx.mk_place_elems(&projection);
        }

        trace!(?place);
    }

    /// Represent the *value* which would be read from `place`, and point `place` to a preexisting
    /// place with the same value (if that already exists).
    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_place_value(
        &mut self,
        place: &mut Place<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        self.simplify_place_projection(place, location);

        // Invariant: `place` and `place_ref` point to the same value, even if they point to
        // different memory locations.
        let mut place_ref = place.as_ref();

        // Invariant: `value` holds the value up-to the `index`th projection excluded.
        let mut value = self.locals[place.local]?;
        for (index, proj) in place.projection.iter().enumerate() {
            if let Value::Projection(pointer, ProjectionElem::Deref) = *self.get(value)
                && let Value::Address { place: mut pointee, kind, .. } = *self.get(pointer)
                && let AddressKind::Ref(BorrowKind::Shared) = kind
                && let Some(v) = self.simplify_place_value(&mut pointee, location)
            {
                value = v;
                place_ref = pointee.project_deeper(&place.projection[index..], self.tcx).as_ref();
            }
            if let Some(local) = self.try_as_local(value, location) {
                // Both `local` and `Place { local: place.local, projection: projection[..index] }`
                // hold the same value. Therefore, following place holds the value in the original
                // `place`.
                place_ref = PlaceRef { local, projection: &place.projection[index..] };
            }

            let base = PlaceRef { local: place.local, projection: &place.projection[..index] };
            value = self.project(base, value, proj)?;
        }

        if let Value::Projection(pointer, ProjectionElem::Deref) = *self.get(value)
            && let Value::Address { place: mut pointee, kind, .. } = *self.get(pointer)
            && let AddressKind::Ref(BorrowKind::Shared) = kind
            && let Some(v) = self.simplify_place_value(&mut pointee, location)
        {
            value = v;
            place_ref = pointee.project_deeper(&[], self.tcx).as_ref();
        }
        if let Some(new_local) = self.try_as_local(value, location) {
            place_ref = PlaceRef { local: new_local, projection: &[] };
        }

        if place_ref.local != place.local || place_ref.projection.len() < place.projection.len() {
            // By the invariant on `place_ref`.
            *place = place_ref.project_deeper(&[], self.tcx);
            self.reused_locals.insert(place_ref.local);
        }

        Some(value)
    }

    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_operand(
        &mut self,
        operand: &mut Operand<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        match *operand {
            Operand::Constant(ref mut constant) => {
                let const_ = constant.const_.normalize(self.tcx, self.param_env);
                self.insert_constant(const_)
            }
            Operand::Copy(ref mut place) | Operand::Move(ref mut place) => {
                let value = self.simplify_place_value(place, location)?;
                if let Some(const_) = self.try_as_constant(value) {
                    *operand = Operand::Constant(Box::new(const_));
                }
                Some(value)
            }
        }
    }

    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_rvalue(
        &mut self,
        rvalue: &mut Rvalue<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        let value = match *rvalue {
            // Forward values.
            Rvalue::Use(ref mut operand) => return self.simplify_operand(operand, location),
            Rvalue::CopyForDeref(place) => {
                let mut operand = Operand::Copy(place);
                let val = self.simplify_operand(&mut operand, location);
                *rvalue = Rvalue::Use(operand);
                return val;
            }

            // Roots.
            Rvalue::Repeat(ref mut op, amount) => {
                let op = self.simplify_operand(op, location)?;
                Value::Repeat(op, amount)
            }
            Rvalue::NullaryOp(op, ty) => Value::NullaryOp(op, ty),
            Rvalue::Aggregate(..) => return self.simplify_aggregate(rvalue, location),
            Rvalue::Ref(_, borrow_kind, ref mut place) => {
                self.simplify_place_projection(place, location);
                return self.new_pointer(*place, AddressKind::Ref(borrow_kind));
            }
            Rvalue::AddressOf(mutbl, ref mut place) => {
                self.simplify_place_projection(place, location);
                return self.new_pointer(*place, AddressKind::Address(mutbl));
            }

            // Operations.
            Rvalue::Len(ref mut place) => return self.simplify_len(place, location),
            Rvalue::Cast(ref mut kind, ref mut value, to) => {
                return self.simplify_cast(kind, value, to, location);
            }
            Rvalue::BinaryOp(op, box (ref mut lhs, ref mut rhs)) => {
                let ty = lhs.ty(self.local_decls, self.tcx);
                let lhs = self.simplify_operand(lhs, location);
                let rhs = self.simplify_operand(rhs, location);
                // Only short-circuit options after we called `simplify_operand`
                // on both operands for side effect.
                let lhs = lhs?;
                let rhs = rhs?;
                if let Some(value) = self.simplify_binary(op, false, ty, lhs, rhs) {
                    return Some(value);
                }
                Value::BinaryOp(op, lhs, rhs)
            }
            Rvalue::CheckedBinaryOp(op, box (ref mut lhs, ref mut rhs)) => {
                let ty = lhs.ty(self.local_decls, self.tcx);
                let lhs = self.simplify_operand(lhs, location);
                let rhs = self.simplify_operand(rhs, location);
                // Only short-circuit options after we called `simplify_operand`
                // on both operands for side effect.
                let lhs = lhs?;
                let rhs = rhs?;
                if let Some(value) = self.simplify_binary(op, true, ty, lhs, rhs) {
                    return Some(value);
                }
                Value::CheckedBinaryOp(op, lhs, rhs)
            }
            Rvalue::UnaryOp(op, ref mut arg) => {
                let arg = self.simplify_operand(arg, location)?;
                if let Some(value) = self.simplify_unary(op, arg) {
                    return Some(value);
                }
                Value::UnaryOp(op, arg)
            }
            Rvalue::Discriminant(ref mut place) => {
                let place = self.simplify_place_value(place, location)?;
                if let Some(discr) = self.simplify_discriminant(place) {
                    return Some(discr);
                }
                Value::Discriminant(place)
            }

            // Unsupported values.
            Rvalue::ThreadLocalRef(..) | Rvalue::ShallowInitBox(..) => return None,
        };
        debug!(?value);
        Some(self.insert(value))
    }

    fn simplify_discriminant(&mut self, place: VnIndex) -> Option<VnIndex> {
        if let Value::Aggregate(enum_ty, variant, _) = *self.get(place)
            && let AggregateTy::Def(enum_did, enum_args) = enum_ty
            && let DefKind::Enum = self.tcx.def_kind(enum_did)
        {
            let enum_ty = self.tcx.type_of(enum_did).instantiate(self.tcx, enum_args);
            let discr = self.ecx.discriminant_for_variant(enum_ty, variant).ok()?;
            return Some(self.insert_scalar(discr.to_scalar(), discr.layout.ty));
        }

        None
    }

    fn simplify_aggregate(
        &mut self,
        rvalue: &mut Rvalue<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        let Rvalue::Aggregate(box ref kind, ref mut fields) = *rvalue else { bug!() };

        let tcx = self.tcx;
        if fields.is_empty() {
            let is_zst = match *kind {
                AggregateKind::Array(..)
                | AggregateKind::Tuple
                | AggregateKind::Closure(..)
                | AggregateKind::CoroutineClosure(..) => true,
                // Only enums can be non-ZST.
                AggregateKind::Adt(did, ..) => tcx.def_kind(did) != DefKind::Enum,
                // Coroutines are never ZST, as they at least contain the implicit states.
                AggregateKind::Coroutine(..) => false,
                AggregateKind::RawPtr(..) => bug!("MIR for RawPtr aggregate must have 2 fields"),
            };

            if is_zst {
                let ty = rvalue.ty(self.local_decls, tcx);
                return self.insert_constant(Const::zero_sized(ty));
            }
        }

        let (ty, variant_index) = match *kind {
            AggregateKind::Array(..) => {
                assert!(!fields.is_empty());
                (AggregateTy::Array, FIRST_VARIANT)
            }
            AggregateKind::Tuple => {
                assert!(!fields.is_empty());
                (AggregateTy::Tuple, FIRST_VARIANT)
            }
            AggregateKind::Closure(did, args)
            | AggregateKind::CoroutineClosure(did, args)
            | AggregateKind::Coroutine(did, args) => (AggregateTy::Def(did, args), FIRST_VARIANT),
            AggregateKind::Adt(did, variant_index, args, _, None) => {
                (AggregateTy::Def(did, args), variant_index)
            }
            // Do not track unions.
            AggregateKind::Adt(_, _, _, _, Some(_)) => return None,
            // FIXME: Do the extra work to GVN `from_raw_parts`
            AggregateKind::RawPtr(..) => return None,
        };

        let fields: Option<Vec<_>> = fields
            .iter_mut()
            .map(|op| self.simplify_operand(op, location).or_else(|| self.new_opaque()))
            .collect();
        let fields = fields?;

        if let AggregateTy::Array = ty
            && fields.len() > 4
        {
            let first = fields[0];
            if fields.iter().all(|&v| v == first) {
                let len = ty::Const::from_target_usize(self.tcx, fields.len().try_into().unwrap());
                if let Some(const_) = self.try_as_constant(first) {
                    *rvalue = Rvalue::Repeat(Operand::Constant(Box::new(const_)), len);
                } else if let Some(local) = self.try_as_local(first, location) {
                    *rvalue = Rvalue::Repeat(Operand::Copy(local.into()), len);
                    self.reused_locals.insert(local);
                }
                return Some(self.insert(Value::Repeat(first, len)));
            }
        }

        Some(self.insert(Value::Aggregate(ty, variant_index, fields)))
    }

    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_unary(&mut self, op: UnOp, value: VnIndex) -> Option<VnIndex> {
        let value = match (op, self.get(value)) {
            (UnOp::Not, Value::UnaryOp(UnOp::Not, inner)) => return Some(*inner),
            (UnOp::Neg, Value::UnaryOp(UnOp::Neg, inner)) => return Some(*inner),
            (UnOp::Not, Value::BinaryOp(BinOp::Eq, lhs, rhs)) => {
                Value::BinaryOp(BinOp::Ne, *lhs, *rhs)
            }
            (UnOp::Not, Value::BinaryOp(BinOp::Ne, lhs, rhs)) => {
                Value::BinaryOp(BinOp::Eq, *lhs, *rhs)
            }
            _ => return None,
        };

        Some(self.insert(value))
    }

    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_binary(
        &mut self,
        op: BinOp,
        checked: bool,
        lhs_ty: Ty<'tcx>,
        lhs: VnIndex,
        rhs: VnIndex,
    ) -> Option<VnIndex> {
        // Floats are weird enough that none of the logic below applies.
        let reasonable_ty =
            lhs_ty.is_integral() || lhs_ty.is_bool() || lhs_ty.is_char() || lhs_ty.is_any_ptr();
        if !reasonable_ty {
            return None;
        }

        let layout = self.ecx.layout_of(lhs_ty).ok()?;

        let as_bits = |value| {
            let constant = self.evaluated[value].as_ref()?;
            if layout.abi.is_scalar() {
                let scalar = self.ecx.read_scalar(constant).ok()?;
                scalar.to_bits(constant.layout.size).ok()
            } else {
                // `constant` is a wide pointer. Do not evaluate to bits.
                None
            }
        };

        // Represent the values as `Left(bits)` or `Right(VnIndex)`.
        use Either::{Left, Right};
        let a = as_bits(lhs).map_or(Right(lhs), Left);
        let b = as_bits(rhs).map_or(Right(rhs), Left);
        let result = match (op, a, b) {
            // Neutral elements.
            (BinOp::Add | BinOp::BitOr | BinOp::BitXor, Left(0), Right(p))
            | (
                BinOp::Add
                | BinOp::BitOr
                | BinOp::BitXor
                | BinOp::Sub
                | BinOp::Offset
                | BinOp::Shl
                | BinOp::Shr,
                Right(p),
                Left(0),
            )
            | (BinOp::Mul, Left(1), Right(p))
            | (BinOp::Mul | BinOp::Div, Right(p), Left(1)) => p,
            // Attempt to simplify `x & ALL_ONES` to `x`, with `ALL_ONES` depending on type size.
            (BinOp::BitAnd, Right(p), Left(ones)) | (BinOp::BitAnd, Left(ones), Right(p))
                if ones == layout.size.truncate(u128::MAX)
                    || (layout.ty.is_bool() && ones == 1) =>
            {
                p
            }
            // Absorbing elements.
            (BinOp::Mul | BinOp::BitAnd, _, Left(0))
            | (BinOp::Rem, _, Left(1))
            | (
                BinOp::Mul | BinOp::Div | BinOp::Rem | BinOp::BitAnd | BinOp::Shl | BinOp::Shr,
                Left(0),
                _,
            ) => self.insert_scalar(Scalar::from_uint(0u128, layout.size), lhs_ty),
            // Attempt to simplify `x | ALL_ONES` to `ALL_ONES`.
            (BinOp::BitOr, _, Left(ones)) | (BinOp::BitOr, Left(ones), _)
                if ones == layout.size.truncate(u128::MAX)
                    || (layout.ty.is_bool() && ones == 1) =>
            {
                self.insert_scalar(Scalar::from_uint(ones, layout.size), lhs_ty)
            }
            // Sub/Xor with itself.
            (BinOp::Sub | BinOp::BitXor, a, b) if a == b => {
                self.insert_scalar(Scalar::from_uint(0u128, layout.size), lhs_ty)
            }
            // Comparison:
            // - if both operands can be computed as bits, just compare the bits;
            // - if we proved that both operands have the same value, we can insert true/false;
            // - otherwise, do nothing, as we do not try to prove inequality.
            (BinOp::Eq, Left(a), Left(b)) => self.insert_bool(a == b),
            (BinOp::Eq, a, b) if a == b => self.insert_bool(true),
            (BinOp::Ne, Left(a), Left(b)) => self.insert_bool(a != b),
            (BinOp::Ne, a, b) if a == b => self.insert_bool(false),
            _ => return None,
        };

        if checked {
            let false_val = self.insert_bool(false);
            Some(self.insert_tuple(vec![result, false_val]))
        } else {
            Some(result)
        }
    }

    fn simplify_cast(
        &mut self,
        kind: &mut CastKind,
        operand: &mut Operand<'tcx>,
        to: Ty<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        use rustc_middle::ty::adjustment::PointerCoercion::*;
        use CastKind::*;

        let mut from = operand.ty(self.local_decls, self.tcx);
        let mut value = self.simplify_operand(operand, location)?;
        if from == to {
            return Some(value);
        }

        if let CastKind::PointerCoercion(ReifyFnPointer | ClosureFnPointer(_)) = kind {
            // Each reification of a generic fn may get a different pointer.
            // Do not try to merge them.
            return self.new_opaque();
        }

        if let PtrToPtr | PointerCoercion(MutToConstPointer) = kind
            && let Value::Cast { kind: inner_kind, value: inner_value, from: inner_from, to: _ } =
                *self.get(value)
            && let PtrToPtr | PointerCoercion(MutToConstPointer) = inner_kind
        {
            from = inner_from;
            value = inner_value;
            *kind = PtrToPtr;
            if inner_from == to {
                return Some(inner_value);
            }
            if let Some(const_) = self.try_as_constant(value) {
                *operand = Operand::Constant(Box::new(const_));
            } else if let Some(local) = self.try_as_local(value, location) {
                *operand = Operand::Copy(local.into());
                self.reused_locals.insert(local);
            }
        }

        Some(self.insert(Value::Cast { kind: *kind, value, from, to }))
    }

    fn simplify_len(&mut self, place: &mut Place<'tcx>, location: Location) -> Option<VnIndex> {
        // Trivial case: we are fetching a statically known length.
        let place_ty = place.ty(self.local_decls, self.tcx).ty;
        if let ty::Array(_, len) = place_ty.kind() {
            return self.insert_constant(Const::from_ty_const(*len, self.tcx));
        }

        let mut inner = self.simplify_place_value(place, location)?;

        // The length information is stored in the fat pointer.
        // Reborrowing copies length information from one pointer to the other.
        while let Value::Address { place: borrowed, .. } = self.get(inner)
            && let [PlaceElem::Deref] = borrowed.projection[..]
            && let Some(borrowed) = self.locals[borrowed.local]
        {
            inner = borrowed;
        }

        // We have an unsizing cast, which assigns the length to fat pointer metadata.
        if let Value::Cast { kind, from, to, .. } = self.get(inner)
            && let CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize) = kind
            && let Some(from) = from.builtin_deref(true)
            && let ty::Array(_, len) = from.kind()
            && let Some(to) = to.builtin_deref(true)
            && let ty::Slice(..) = to.kind()
        {
            return self.insert_constant(Const::from_ty_const(*len, self.tcx));
        }

        // Fallback: a symbolic `Len`.
        Some(self.insert(Value::Len(inner)))
    }
}

fn op_to_prop_const<'tcx>(
    ecx: &mut InterpCx<'_, 'tcx, DummyMachine>,
    op: &OpTy<'tcx>,
) -> Option<ConstValue<'tcx>> {
    // Do not attempt to propagate unsized locals.
    if op.layout.is_unsized() {
        return None;
    }

    // This constant is a ZST, just return an empty value.
    if op.layout.is_zst() {
        return Some(ConstValue::ZeroSized);
    }

    // Do not synthetize too large constants. Codegen will just memcpy them, which we'd like to avoid.
    if !matches!(op.layout.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
        return None;
    }

    // If this constant has scalar ABI, return it as a `ConstValue::Scalar`.
    if let Abi::Scalar(abi::Scalar::Initialized { .. }) = op.layout.abi
        && let Ok(scalar) = ecx.read_scalar(op)
        && scalar.try_to_int().is_ok()
    {
        return Some(ConstValue::Scalar(scalar));
    }

    // If this constant is already represented as an `Allocation`,
    // try putting it into global memory to return it.
    if let Either::Left(mplace) = op.as_mplace_or_imm() {
        let (size, _align) = ecx.size_and_align_of_mplace(&mplace).ok()??;

        // Do not try interning a value that contains provenance.
        // Due to https://github.com/rust-lang/rust/issues/79738, doing so could lead to bugs.
        // FIXME: remove this hack once that issue is fixed.
        let alloc_ref = ecx.get_ptr_alloc(mplace.ptr(), size).ok()??;
        if alloc_ref.has_provenance() {
            return None;
        }

        let pointer = mplace.ptr().into_pointer_or_addr().ok()?;
        let (prov, offset) = pointer.into_parts();
        let alloc_id = prov.alloc_id();
        intern_const_alloc_for_constprop(ecx, alloc_id).ok()?;
        if matches!(ecx.tcx.global_alloc(alloc_id), GlobalAlloc::Memory(_)) {
            // `alloc_id` may point to a static. Codegen will choke on an `Indirect` with anything
            // by `GlobalAlloc::Memory`, so do fall through to copying if needed.
            // FIXME: find a way to treat this more uniformly
            // (probably by fixing codegen)
            return Some(ConstValue::Indirect { alloc_id, offset });
        }
    }

    // Everything failed: create a new allocation to hold the data.
    let alloc_id = ecx.intern_with_temp_alloc(op.layout, |ecx, dest| ecx.copy_op(op, dest)).ok()?;
    let value = ConstValue::Indirect { alloc_id, offset: Size::ZERO };

    // Check that we do not leak a pointer.
    // Those pointers may lose part of their identity in codegen.
    // FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
    if ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner().provenance().ptrs().is_empty() {
        return Some(value);
    }

    None
}

impl<'tcx> VnState<'_, 'tcx> {
    /// If `index` is a `Value::Constant`, return the `Constant` to be put in the MIR.
    fn try_as_constant(&mut self, index: VnIndex) -> Option<ConstOperand<'tcx>> {
        // This was already constant in MIR, do not change it.
        if let Value::Constant { value, disambiguator: _ } = *self.get(index)
            // If the constant is not deterministic, adding an additional mention of it in MIR will
            // not give the same value as the former mention.
            && value.is_deterministic()
        {
            return Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_: value });
        }

        let op = self.evaluated[index].as_ref()?;
        if op.layout.is_unsized() {
            // Do not attempt to propagate unsized locals.
            return None;
        }

        let value = op_to_prop_const(&mut self.ecx, op)?;

        // Check that we do not leak a pointer.
        // Those pointers may lose part of their identity in codegen.
        // FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
        assert!(!value.may_have_provenance(self.tcx, op.layout.size));

        let const_ = Const::Val(value, op.layout.ty);
        Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_ })
    }

    /// If there is a local which is assigned `index`, and its assignment strictly dominates `loc`,
    /// return it.
    fn try_as_local(&mut self, index: VnIndex, loc: Location) -> Option<Local> {
        let other = self.rev_locals.get(index)?;
        other
            .iter()
            .find(|&&other| self.ssa.assignment_dominates(self.dominators, other, loc))
            .copied()
    }
}

impl<'tcx> MutVisitor<'tcx> for VnState<'_, 'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_place(&mut self, place: &mut Place<'tcx>, _: PlaceContext, location: Location) {
        self.simplify_place_projection(place, location);
    }

    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
        self.simplify_operand(operand, location);
    }

    fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, location: Location) {
        if let StatementKind::Assign(box (ref mut lhs, ref mut rvalue)) = stmt.kind {
            self.simplify_place_projection(lhs, location);

            // Do not try to simplify a constant, it's already in canonical shape.
            if matches!(rvalue, Rvalue::Use(Operand::Constant(_))) {
                return;
            }

            let value = lhs
                .as_local()
                .and_then(|local| self.locals[local])
                .or_else(|| self.simplify_rvalue(rvalue, location));
            let Some(value) = value else { return };

            if let Some(const_) = self.try_as_constant(value) {
                *rvalue = Rvalue::Use(Operand::Constant(Box::new(const_)));
            } else if let Some(local) = self.try_as_local(value, location)
                && *rvalue != Rvalue::Use(Operand::Move(local.into()))
            {
                *rvalue = Rvalue::Use(Operand::Copy(local.into()));
                self.reused_locals.insert(local);
            }

            return;
        }
        self.super_statement(stmt, location);
    }
}

struct StorageRemover<'tcx> {
    tcx: TyCtxt<'tcx>,
    reused_locals: BitSet<Local>,
}

impl<'tcx> MutVisitor<'tcx> for StorageRemover<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, _: Location) {
        if let Operand::Move(place) = *operand
            && !place.is_indirect_first_projection()
            && self.reused_locals.contains(place.local)
        {
            *operand = Operand::Copy(place);
        }
    }

    fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, loc: Location) {
        match stmt.kind {
            // When removing storage statements, we need to remove both (#107511).
            StatementKind::StorageLive(l) | StatementKind::StorageDead(l)
                if self.reused_locals.contains(l) =>
            {
                stmt.make_nop()
            }
            _ => self.super_statement(stmt, loc),
        }
    }
}