rustc_infer/infer/opaque_types/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
use hir::def_id::{DefId, LocalDefId};
use rustc_data_structures::fx::FxIndexMap;
use rustc_hir as hir;
use rustc_middle::bug;
use rustc_middle::traits::ObligationCause;
use rustc_middle::traits::solve::Goal;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::{
self, OpaqueHiddenType, OpaqueTypeKey, Ty, TyCtxt, TypeFoldable, TypeVisitableExt,
};
use rustc_span::Span;
use tracing::{debug, instrument};
use super::DefineOpaqueTypes;
use crate::errors::OpaqueHiddenTypeDiag;
use crate::infer::{InferCtxt, InferOk};
use crate::traits::{self, Obligation, PredicateObligations};
mod table;
pub(crate) type OpaqueTypeMap<'tcx> = FxIndexMap<OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>>;
pub(crate) use table::{OpaqueTypeStorage, OpaqueTypeTable};
impl<'tcx> InferCtxt<'tcx> {
/// This is a backwards compatibility hack to prevent breaking changes from
/// lazy TAIT around RPIT handling.
pub fn replace_opaque_types_with_inference_vars<T: TypeFoldable<TyCtxt<'tcx>>>(
&self,
value: T,
body_id: LocalDefId,
span: Span,
param_env: ty::ParamEnv<'tcx>,
) -> InferOk<'tcx, T> {
// We handle opaque types differently in the new solver.
if self.next_trait_solver() {
return InferOk { value, obligations: PredicateObligations::new() };
}
if !value.has_opaque_types() {
return InferOk { value, obligations: PredicateObligations::new() };
}
let mut obligations = PredicateObligations::new();
let value = value.fold_with(&mut BottomUpFolder {
tcx: self.tcx,
lt_op: |lt| lt,
ct_op: |ct| ct,
ty_op: |ty| match *ty.kind() {
ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. })
if self.can_define_opaque_ty(def_id) && !ty.has_escaping_bound_vars() =>
{
let def_span = self.tcx.def_span(def_id);
let span = if span.contains(def_span) { def_span } else { span };
let ty_var = self.next_ty_var(span);
obligations.extend(
self.handle_opaque_type(ty, ty_var, span, param_env)
.unwrap()
.into_iter()
.map(|goal| {
Obligation::new(
self.tcx,
ObligationCause::new(
span,
body_id,
traits::ObligationCauseCode::OpaqueReturnType(None),
),
goal.param_env,
goal.predicate,
)
}),
);
ty_var
}
_ => ty,
},
});
InferOk { value, obligations }
}
pub fn handle_opaque_type(
&self,
a: Ty<'tcx>,
b: Ty<'tcx>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, TypeError<'tcx>> {
debug_assert!(!self.next_trait_solver());
let process = |a: Ty<'tcx>, b: Ty<'tcx>| match *a.kind() {
ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) if def_id.is_local() => {
let def_id = def_id.expect_local();
if let ty::TypingMode::Coherence = self.typing_mode() {
// See comment on `insert_hidden_type` for why this is sufficient in coherence
return Some(self.register_hidden_type(
OpaqueTypeKey { def_id, args },
span,
param_env,
b,
));
}
// Check that this is `impl Trait` type is
// declared by `parent_def_id` -- i.e., one whose
// value we are inferring. At present, this is
// always true during the first phase of
// type-check, but not always true later on during
// NLL. Once we support named opaque types more fully,
// this same scenario will be able to arise during all phases.
//
// Here is an example using type alias `impl Trait`
// that indicates the distinction we are checking for:
//
// ```rust
// mod a {
// pub type Foo = impl Iterator;
// pub fn make_foo() -> Foo { .. }
// }
//
// mod b {
// fn foo() -> a::Foo { a::make_foo() }
// }
// ```
//
// Here, the return type of `foo` references an
// `Opaque` indeed, but not one whose value is
// presently being inferred. You can get into a
// similar situation with closure return types
// today:
//
// ```rust
// fn foo() -> impl Iterator { .. }
// fn bar() {
// let x = || foo(); // returns the Opaque assoc with `foo`
// }
// ```
if !self.can_define_opaque_ty(def_id) {
return None;
}
if let ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }) = *b.kind() {
// We could accept this, but there are various ways to handle this situation,
// and we don't want to make a decision on it right now. Likely this case is so
// super rare anyway, that no one encounters it in practice. It does occur
// however in `fn fut() -> impl Future<Output = i32> { async { 42 } }`, where
// it is of no concern, so we only check for TAITs.
if self.can_define_opaque_ty(b_def_id)
&& matches!(
self.tcx.opaque_ty_origin(b_def_id),
hir::OpaqueTyOrigin::TyAlias { .. }
)
{
self.dcx().emit_err(OpaqueHiddenTypeDiag {
span,
hidden_type: self.tcx.def_span(b_def_id),
opaque_type: self.tcx.def_span(def_id),
});
}
}
Some(self.register_hidden_type(OpaqueTypeKey { def_id, args }, span, param_env, b))
}
_ => None,
};
if let Some(res) = process(a, b) {
res
} else if let Some(res) = process(b, a) {
res
} else {
let (a, b) = self.resolve_vars_if_possible((a, b));
Err(TypeError::Sorts(ExpectedFound::new(a, b)))
}
}
}
impl<'tcx> InferCtxt<'tcx> {
#[instrument(skip(self), level = "debug")]
fn register_hidden_type(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
hidden_ty: Ty<'tcx>,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, TypeError<'tcx>> {
let mut goals = Vec::new();
self.insert_hidden_type(opaque_type_key, span, param_env, hidden_ty, &mut goals)?;
self.add_item_bounds_for_hidden_type(
opaque_type_key.def_id.to_def_id(),
opaque_type_key.args,
param_env,
hidden_ty,
&mut goals,
);
Ok(goals)
}
/// Insert a hidden type into the opaque type storage, making sure
/// it hasn't previously been defined. This does not emit any
/// constraints and it's the responsibility of the caller to make
/// sure that the item bounds of the opaque are checked.
pub fn inject_new_hidden_type_unchecked(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
hidden_ty: OpaqueHiddenType<'tcx>,
) {
let prev = self.inner.borrow_mut().opaque_types().register(opaque_type_key, hidden_ty);
assert_eq!(prev, None);
}
/// Insert a hidden type into the opaque type storage, equating it
/// with any previous entries if necessary.
///
/// This **does not** add the item bounds of the opaque as nested
/// obligations. That is only necessary when normalizing the opaque
/// itself, not when getting the opaque type constraints from
/// somewhere else.
pub fn insert_hidden_type(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
hidden_ty: Ty<'tcx>,
goals: &mut Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
) -> Result<(), TypeError<'tcx>> {
// Ideally, we'd get the span where *this specific `ty` came
// from*, but right now we just use the span from the overall
// value being folded. In simple cases like `-> impl Foo`,
// these are the same span, but not in cases like `-> (impl
// Foo, impl Bar)`.
match self.typing_mode() {
ty::TypingMode::Coherence => {
// During intercrate we do not define opaque types but instead always
// force ambiguity unless the hidden type is known to not implement
// our trait.
goals.push(Goal::new(self.tcx, param_env, ty::PredicateKind::Ambiguous));
}
ty::TypingMode::Analysis { .. } => {
let prev = self
.inner
.borrow_mut()
.opaque_types()
.register(opaque_type_key, OpaqueHiddenType { ty: hidden_ty, span });
if let Some(prev) = prev {
goals.extend(
self.at(&ObligationCause::dummy_with_span(span), param_env)
.eq(DefineOpaqueTypes::Yes, prev, hidden_ty)?
.obligations
.into_iter()
// FIXME: Shuttling between obligations and goals is awkward.
.map(Goal::from),
);
}
}
mode @ (ty::TypingMode::PostBorrowckAnalysis { .. } | ty::TypingMode::PostAnalysis) => {
bug!("insert hidden type in {mode:?}")
}
}
Ok(())
}
pub fn add_item_bounds_for_hidden_type(
&self,
def_id: DefId,
args: ty::GenericArgsRef<'tcx>,
param_env: ty::ParamEnv<'tcx>,
hidden_ty: Ty<'tcx>,
goals: &mut Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
) {
let tcx = self.tcx;
// Require that the hidden type is well-formed. We have to
// make sure we wf-check the hidden type to fix #114728.
//
// However, we don't check that all types are well-formed.
// We only do so for types provided by the user or if they are
// "used", e.g. for method selection.
//
// This means we never check the wf requirements of the hidden
// type during MIR borrowck, causing us to infer the wrong
// lifetime for its member constraints which then results in
// unexpected region errors.
goals.push(Goal::new(tcx, param_env, ty::ClauseKind::WellFormed(hidden_ty.into())));
let replace_opaques_in = |clause: ty::Clause<'tcx>, goals: &mut Vec<_>| {
clause.fold_with(&mut BottomUpFolder {
tcx,
ty_op: |ty| match *ty.kind() {
// We can't normalize associated types from `rustc_infer`,
// but we can eagerly register inference variables for them.
// FIXME(RPITIT): Don't replace RPITITs with inference vars.
// FIXME(inherent_associated_types): Extend this to support `ty::Inherent`, too.
ty::Alias(ty::Projection, projection_ty)
if !projection_ty.has_escaping_bound_vars()
&& !tcx.is_impl_trait_in_trait(projection_ty.def_id)
&& !self.next_trait_solver() =>
{
let ty_var = self.next_ty_var(self.tcx.def_span(projection_ty.def_id));
goals.push(Goal::new(
self.tcx,
param_env,
ty::PredicateKind::Clause(ty::ClauseKind::Projection(
ty::ProjectionPredicate {
projection_term: projection_ty.into(),
term: ty_var.into(),
},
)),
));
ty_var
}
// Replace all other mentions of the same opaque type with the hidden type,
// as the bounds must hold on the hidden type after all.
ty::Alias(ty::Opaque, ty::AliasTy { def_id: def_id2, args: args2, .. })
if def_id == def_id2 && args == args2 =>
{
hidden_ty
}
_ => ty,
},
lt_op: |lt| lt,
ct_op: |ct| ct,
})
};
let item_bounds = tcx.explicit_item_bounds(def_id);
for (predicate, _) in item_bounds.iter_instantiated_copied(tcx, args) {
let predicate = replace_opaques_in(predicate, goals);
// Require that the predicate holds for the concrete type.
debug!(?predicate);
goals.push(Goal::new(self.tcx, param_env, predicate));
}
// If this opaque is being defined and it's conditionally const,
if self.tcx.is_conditionally_const(def_id) {
let item_bounds = tcx.explicit_implied_const_bounds(def_id);
for (predicate, _) in item_bounds.iter_instantiated_copied(tcx, args) {
let predicate = replace_opaques_in(
predicate.to_host_effect_clause(self.tcx, ty::BoundConstness::Maybe),
goals,
);
// Require that the predicate holds for the concrete type.
debug!(?predicate);
goals.push(Goal::new(self.tcx, param_env, predicate));
}
}
}
}