rustc_builtin_macros/deriving/generic/
mod.rs

1//! Some code that abstracts away much of the boilerplate of writing
2//! `derive` instances for traits. Among other things it manages getting
3//! access to the fields of the 4 different sorts of structs and enum
4//! variants, as well as creating the method and impl ast instances.
5//!
6//! Supported features (fairly exhaustive):
7//!
8//! - Methods taking any number of parameters of any type, and returning
9//!   any type, other than vectors, bottom and closures.
10//! - Generating `impl`s for types with type parameters and lifetimes
11//!   (e.g., `Option<T>`), the parameters are automatically given the
12//!   current trait as a bound. (This includes separate type parameters
13//!   and lifetimes for methods.)
14//! - Additional bounds on the type parameters (`TraitDef.additional_bounds`)
15//!
16//! The most important thing for implementors is the `Substructure` and
17//! `SubstructureFields` objects. The latter groups 5 possibilities of the
18//! arguments:
19//!
20//! - `Struct`, when `Self` is a struct (including tuple structs, e.g
21//!   `struct T(i32, char)`).
22//! - `EnumMatching`, when `Self` is an enum and all the arguments are the
23//!   same variant of the enum (e.g., `Some(1)`, `Some(3)` and `Some(4)`)
24//! - `EnumDiscr` when `Self` is an enum, for comparing the enum discriminants.
25//! - `StaticEnum` and `StaticStruct` for static methods, where the type
26//!   being derived upon is either an enum or struct respectively. (Any
27//!   argument with type Self is just grouped among the non-self
28//!   arguments.)
29//!
30//! In the first two cases, the values from the corresponding fields in
31//! all the arguments are grouped together.
32//!
33//! The non-static cases have `Option<ident>` in several places associated
34//! with field `expr`s. This represents the name of the field it is
35//! associated with. It is only not `None` when the associated field has
36//! an identifier in the source code. For example, the `x`s in the
37//! following snippet
38//!
39//! ```rust
40//! struct A {
41//!     x: i32,
42//! }
43//!
44//! struct B(i32);
45//!
46//! enum C {
47//!     C0(i32),
48//!     C1 { x: i32 }
49//! }
50//! ```
51//!
52//! The `i32`s in `B` and `C0` don't have an identifier, so the
53//! `Option<ident>`s would be `None` for them.
54//!
55//! In the static cases, the structure is summarized, either into the just
56//! spans of the fields or a list of spans and the field idents (for tuple
57//! structs and record structs, respectively), or a list of these, for
58//! enums (one for each variant). For empty struct and empty enum
59//! variants, it is represented as a count of 0.
60//!
61//! # "`cs`" functions
62//!
63//! The `cs_...` functions ("combine substructure") are designed to
64//! make life easier by providing some pre-made recipes for common
65//! threads; mostly calling the function being derived on all the
66//! arguments and then combining them back together in some way (or
67//! letting the user chose that). They are not meant to be the only
68//! way to handle the structures that this code creates.
69//!
70//! # Examples
71//!
72//! The following simplified `PartialEq` is used for in-code examples:
73//!
74//! ```rust
75//! trait PartialEq {
76//!     fn eq(&self, other: &Self) -> bool;
77//! }
78//!
79//! impl PartialEq for i32 {
80//!     fn eq(&self, other: &i32) -> bool {
81//!         *self == *other
82//!     }
83//! }
84//! ```
85//!
86//! Some examples of the values of `SubstructureFields` follow, using the
87//! above `PartialEq`, `A`, `B` and `C`.
88//!
89//! ## Structs
90//!
91//! When generating the `expr` for the `A` impl, the `SubstructureFields` is
92//!
93//! ```text
94//! Struct(vec![FieldInfo {
95//!     span: <span of x>,
96//!     name: Some(<ident of x>),
97//!     self_: <expr for &self.x>,
98//!     other: vec![<expr for &other.x>],
99//! }])
100//! ```
101//!
102//! For the `B` impl, called with `B(a)` and `B(b)`,
103//!
104//! ```text
105//! Struct(vec![FieldInfo {
106//!     span: <span of i32>,
107//!     name: None,
108//!     self_: <expr for &a>,
109//!     other: vec![<expr for &b>],
110//! }])
111//! ```
112//!
113//! ## Enums
114//!
115//! When generating the `expr` for a call with `self == C0(a)` and `other
116//! == C0(b)`, the SubstructureFields is
117//!
118//! ```text
119//! EnumMatching(
120//!     0,
121//!     <ast::Variant for C0>,
122//!     vec![FieldInfo {
123//!         span: <span of i32>,
124//!         name: None,
125//!         self_: <expr for &a>,
126//!         other: vec![<expr for &b>],
127//!     }],
128//! )
129//! ```
130//!
131//! For `C1 {x}` and `C1 {x}`,
132//!
133//! ```text
134//! EnumMatching(
135//!     1,
136//!     <ast::Variant for C1>,
137//!     vec![FieldInfo {
138//!         span: <span of x>,
139//!         name: Some(<ident of x>),
140//!         self_: <expr for &self.x>,
141//!         other: vec![<expr for &other.x>],
142//!     }],
143//! )
144//! ```
145//!
146//! For the discriminants,
147//!
148//! ```text
149//! EnumDiscr(
150//!     &[<ident of self discriminant>, <ident of other discriminant>],
151//!     <expr to combine with>,
152//! )
153//! ```
154//!
155//! Note that this setup doesn't allow for the brute-force "match every variant
156//! against every other variant" approach, which is bad because it produces a
157//! quadratic amount of code (see #15375).
158//!
159//! ## Static
160//!
161//! A static method on the types above would result in,
162//!
163//! ```text
164//! StaticStruct(<ast::VariantData of A>, Named(vec![(<ident of x>, <span of x>)]))
165//!
166//! StaticStruct(<ast::VariantData of B>, Unnamed(vec![<span of x>]))
167//!
168//! StaticEnum(
169//!     <ast::EnumDef of C>,
170//!     vec![
171//!         (<ident of C0>, <span of C0>, Unnamed(vec![<span of i32>])),
172//!         (<ident of C1>, <span of C1>, Named(vec![(<ident of x>, <span of x>)])),
173//!     ],
174//! )
175//! ```
176
177use std::cell::RefCell;
178use std::ops::Not;
179use std::{iter, vec};
180
181pub(crate) use StaticFields::*;
182pub(crate) use SubstructureFields::*;
183use rustc_ast::token::{IdentIsRaw, LitKind, Token, TokenKind};
184use rustc_ast::tokenstream::{DelimSpan, Spacing, TokenTree};
185use rustc_ast::{
186    self as ast, AnonConst, AttrArgs, BindingMode, ByRef, DelimArgs, EnumDef, Expr, GenericArg,
187    GenericParamKind, Generics, Mutability, PatKind, Safety, VariantData,
188};
189use rustc_attr_parsing::AttributeParser;
190use rustc_expand::base::{Annotatable, ExtCtxt};
191use rustc_hir::Attribute;
192use rustc_hir::attrs::{AttributeKind, ReprPacked};
193use rustc_span::{DUMMY_SP, Ident, Span, Symbol, kw, sym};
194use thin_vec::{ThinVec, thin_vec};
195use ty::{Bounds, Path, Ref, Self_, Ty};
196
197use crate::{deriving, errors};
198
199pub(crate) mod ty;
200
201pub(crate) struct TraitDef<'a> {
202    /// The span for the current #[derive(Foo)] header.
203    pub span: Span,
204
205    /// Path of the trait, including any type parameters
206    pub path: Path,
207
208    /// Whether to skip adding the current trait as a bound to the type parameters of the type.
209    pub skip_path_as_bound: bool,
210
211    /// Whether `Copy` is needed as an additional bound on type parameters in a packed struct.
212    pub needs_copy_as_bound_if_packed: bool,
213
214    /// Additional bounds required of any type parameters of the type,
215    /// other than the current trait
216    pub additional_bounds: Vec<Ty>,
217
218    /// Can this trait be derived for unions?
219    pub supports_unions: bool,
220
221    pub methods: Vec<MethodDef<'a>>,
222
223    pub associated_types: Vec<(Ident, Ty)>,
224
225    pub is_const: bool,
226
227    pub is_staged_api_crate: bool,
228
229    /// The safety of the `impl`.
230    pub safety: Safety,
231
232    /// Whether the added `impl` should appear in rustdoc output.
233    pub document: bool,
234}
235
236pub(crate) struct MethodDef<'a> {
237    /// name of the method
238    pub name: Symbol,
239    /// List of generics, e.g., `R: rand::Rng`
240    pub generics: Bounds,
241
242    /// Is there is a `&self` argument? If not, it is a static function.
243    pub explicit_self: bool,
244
245    /// Arguments other than the self argument.
246    pub nonself_args: Vec<(Ty, Symbol)>,
247
248    /// Returns type
249    pub ret_ty: Ty,
250
251    pub attributes: ast::AttrVec,
252
253    pub fieldless_variants_strategy: FieldlessVariantsStrategy,
254
255    pub combine_substructure: RefCell<CombineSubstructureFunc<'a>>,
256}
257
258/// How to handle fieldless enum variants.
259#[derive(PartialEq)]
260pub(crate) enum FieldlessVariantsStrategy {
261    /// Combine fieldless variants into a single match arm.
262    /// This assumes that relevant information has been handled
263    /// by looking at the enum's discriminant.
264    Unify,
265    /// Don't do anything special about fieldless variants. They are
266    /// handled like any other variant.
267    Default,
268    /// If all variants of the enum are fieldless, expand the special
269    /// `AllFieldLessEnum` substructure, so that the entire enum can be handled
270    /// at once.
271    SpecializeIfAllVariantsFieldless,
272}
273
274/// All the data about the data structure/method being derived upon.
275pub(crate) struct Substructure<'a> {
276    /// ident of self
277    pub type_ident: Ident,
278    /// Verbatim access to any non-selflike arguments, i.e. arguments that
279    /// don't have type `&Self`.
280    pub nonselflike_args: &'a [Box<Expr>],
281    pub fields: &'a SubstructureFields<'a>,
282}
283
284/// Summary of the relevant parts of a struct/enum field.
285pub(crate) struct FieldInfo {
286    pub span: Span,
287    /// None for tuple structs/normal enum variants, Some for normal
288    /// structs/struct enum variants.
289    pub name: Option<Ident>,
290    /// The expression corresponding to this field of `self`
291    /// (specifically, a reference to it).
292    pub self_expr: Box<Expr>,
293    /// The expressions corresponding to references to this field in
294    /// the other selflike arguments.
295    pub other_selflike_exprs: Vec<Box<Expr>>,
296    pub maybe_scalar: bool,
297}
298
299#[derive(Copy, Clone)]
300pub(crate) enum IsTuple {
301    No,
302    Yes,
303}
304
305/// Fields for a static method
306pub(crate) enum StaticFields {
307    /// Tuple and unit structs/enum variants like this.
308    Unnamed(Vec<Span>, IsTuple),
309    /// Normal structs/struct variants.
310    Named(Vec<(Ident, Span, Option<AnonConst>)>),
311}
312
313/// A summary of the possible sets of fields.
314pub(crate) enum SubstructureFields<'a> {
315    /// A non-static method where `Self` is a struct.
316    Struct(&'a ast::VariantData, Vec<FieldInfo>),
317
318    /// A non-static method handling the entire enum at once
319    /// (after it has been determined that none of the enum
320    /// variants has any fields).
321    AllFieldlessEnum(&'a ast::EnumDef),
322
323    /// Matching variants of the enum: variant index, ast::Variant,
324    /// fields: the field name is only non-`None` in the case of a struct
325    /// variant.
326    EnumMatching(&'a ast::Variant, Vec<FieldInfo>),
327
328    /// The discriminant of an enum. The first field is a `FieldInfo` for the discriminants, as
329    /// if they were fields. The second field is the expression to combine the
330    /// discriminant expression with; it will be `None` if no match is necessary.
331    EnumDiscr(FieldInfo, Option<Box<Expr>>),
332
333    /// A static method where `Self` is a struct.
334    StaticStruct(&'a ast::VariantData, StaticFields),
335
336    /// A static method where `Self` is an enum.
337    StaticEnum(&'a ast::EnumDef),
338}
339
340/// Combine the values of all the fields together. The last argument is
341/// all the fields of all the structures.
342pub(crate) type CombineSubstructureFunc<'a> =
343    Box<dyn FnMut(&ExtCtxt<'_>, Span, &Substructure<'_>) -> BlockOrExpr + 'a>;
344
345pub(crate) fn combine_substructure(
346    f: CombineSubstructureFunc<'_>,
347) -> RefCell<CombineSubstructureFunc<'_>> {
348    RefCell::new(f)
349}
350
351struct TypeParameter {
352    bound_generic_params: ThinVec<ast::GenericParam>,
353    ty: Box<ast::Ty>,
354}
355
356/// The code snippets built up for derived code are sometimes used as blocks
357/// (e.g. in a function body) and sometimes used as expressions (e.g. in a match
358/// arm). This structure avoids committing to either form until necessary,
359/// avoiding the insertion of any unnecessary blocks.
360///
361/// The statements come before the expression.
362pub(crate) struct BlockOrExpr(ThinVec<ast::Stmt>, Option<Box<Expr>>);
363
364impl BlockOrExpr {
365    pub(crate) fn new_stmts(stmts: ThinVec<ast::Stmt>) -> BlockOrExpr {
366        BlockOrExpr(stmts, None)
367    }
368
369    pub(crate) fn new_expr(expr: Box<Expr>) -> BlockOrExpr {
370        BlockOrExpr(ThinVec::new(), Some(expr))
371    }
372
373    pub(crate) fn new_mixed(stmts: ThinVec<ast::Stmt>, expr: Option<Box<Expr>>) -> BlockOrExpr {
374        BlockOrExpr(stmts, expr)
375    }
376
377    // Converts it into a block.
378    fn into_block(mut self, cx: &ExtCtxt<'_>, span: Span) -> Box<ast::Block> {
379        if let Some(expr) = self.1 {
380            self.0.push(cx.stmt_expr(expr));
381        }
382        cx.block(span, self.0)
383    }
384
385    // Converts it into an expression.
386    fn into_expr(self, cx: &ExtCtxt<'_>, span: Span) -> Box<Expr> {
387        if self.0.is_empty() {
388            match self.1 {
389                None => cx.expr_block(cx.block(span, ThinVec::new())),
390                Some(expr) => expr,
391            }
392        } else if let [stmt] = self.0.as_slice()
393            && let ast::StmtKind::Expr(expr) = &stmt.kind
394            && self.1.is_none()
395        {
396            // There's only a single statement expression. Pull it out.
397            expr.clone()
398        } else {
399            // Multiple statements and/or expressions.
400            cx.expr_block(self.into_block(cx, span))
401        }
402    }
403}
404
405/// This method helps to extract all the type parameters referenced from a
406/// type. For a type parameter `<T>`, it looks for either a `TyPath` that
407/// is not global and starts with `T`, or a `TyQPath`.
408/// Also include bound generic params from the input type.
409fn find_type_parameters(
410    ty: &ast::Ty,
411    ty_param_names: &[Symbol],
412    cx: &ExtCtxt<'_>,
413) -> Vec<TypeParameter> {
414    use rustc_ast::visit;
415
416    struct Visitor<'a, 'b> {
417        cx: &'a ExtCtxt<'b>,
418        ty_param_names: &'a [Symbol],
419        bound_generic_params_stack: ThinVec<ast::GenericParam>,
420        type_params: Vec<TypeParameter>,
421    }
422
423    impl<'a, 'b> visit::Visitor<'a> for Visitor<'a, 'b> {
424        fn visit_ty(&mut self, ty: &'a ast::Ty) {
425            let stack_len = self.bound_generic_params_stack.len();
426            if let ast::TyKind::FnPtr(fn_ptr) = &ty.kind
427                && !fn_ptr.generic_params.is_empty()
428            {
429                // Given a field `x: for<'a> fn(T::SomeType<'a>)`, we wan't to account for `'a` so
430                // that we generate `where for<'a> T::SomeType<'a>: ::core::clone::Clone`. #122622
431                self.bound_generic_params_stack.extend(fn_ptr.generic_params.iter().cloned());
432            }
433
434            if let ast::TyKind::Path(_, path) = &ty.kind
435                && let Some(segment) = path.segments.first()
436                && self.ty_param_names.contains(&segment.ident.name)
437            {
438                self.type_params.push(TypeParameter {
439                    bound_generic_params: self.bound_generic_params_stack.clone(),
440                    ty: Box::new(ty.clone()),
441                });
442            }
443
444            visit::walk_ty(self, ty);
445            self.bound_generic_params_stack.truncate(stack_len);
446        }
447
448        // Place bound generic params on a stack, to extract them when a type is encountered.
449        fn visit_poly_trait_ref(&mut self, trait_ref: &'a ast::PolyTraitRef) {
450            let stack_len = self.bound_generic_params_stack.len();
451            self.bound_generic_params_stack.extend(trait_ref.bound_generic_params.iter().cloned());
452
453            visit::walk_poly_trait_ref(self, trait_ref);
454
455            self.bound_generic_params_stack.truncate(stack_len);
456        }
457
458        fn visit_mac_call(&mut self, mac: &ast::MacCall) {
459            self.cx.dcx().emit_err(errors::DeriveMacroCall { span: mac.span() });
460        }
461    }
462
463    let mut visitor = Visitor {
464        cx,
465        ty_param_names,
466        bound_generic_params_stack: ThinVec::new(),
467        type_params: Vec::new(),
468    };
469    visit::Visitor::visit_ty(&mut visitor, ty);
470
471    visitor.type_params
472}
473
474impl<'a> TraitDef<'a> {
475    pub(crate) fn expand(
476        self,
477        cx: &ExtCtxt<'_>,
478        mitem: &ast::MetaItem,
479        item: &'a Annotatable,
480        push: &mut dyn FnMut(Annotatable),
481    ) {
482        self.expand_ext(cx, mitem, item, push, false);
483    }
484
485    pub(crate) fn expand_ext(
486        self,
487        cx: &ExtCtxt<'_>,
488        mitem: &ast::MetaItem,
489        item: &'a Annotatable,
490        push: &mut dyn FnMut(Annotatable),
491        from_scratch: bool,
492    ) {
493        match item {
494            Annotatable::Item(item) => {
495                let is_packed = matches!(
496                    AttributeParser::parse_limited(cx.sess, &item.attrs, sym::repr, item.span, item.id, None),
497                    Some(Attribute::Parsed(AttributeKind::Repr { reprs, .. })) if reprs.iter().any(|(x, _)| matches!(x, ReprPacked(..)))
498                );
499
500                let newitem = match &item.kind {
501                    ast::ItemKind::Struct(ident, generics, struct_def) => self.expand_struct_def(
502                        cx,
503                        struct_def,
504                        *ident,
505                        generics,
506                        from_scratch,
507                        is_packed,
508                    ),
509                    ast::ItemKind::Enum(ident, generics, enum_def) => {
510                        // We ignore `is_packed` here, because `repr(packed)`
511                        // enums cause an error later on.
512                        //
513                        // This can only cause further compilation errors
514                        // downstream in blatantly illegal code, so it is fine.
515                        self.expand_enum_def(cx, enum_def, *ident, generics, from_scratch)
516                    }
517                    ast::ItemKind::Union(ident, generics, struct_def) => {
518                        if self.supports_unions {
519                            self.expand_struct_def(
520                                cx,
521                                struct_def,
522                                *ident,
523                                generics,
524                                from_scratch,
525                                is_packed,
526                            )
527                        } else {
528                            cx.dcx().emit_err(errors::DeriveUnion { span: mitem.span });
529                            return;
530                        }
531                    }
532                    _ => unreachable!(),
533                };
534                // Keep the lint attributes of the previous item to control how the
535                // generated implementations are linted
536                let mut attrs = newitem.attrs.clone();
537                attrs.extend(
538                    item.attrs
539                        .iter()
540                        .filter(|a| {
541                            a.has_any_name(&[
542                                sym::allow,
543                                sym::warn,
544                                sym::deny,
545                                sym::forbid,
546                                sym::stable,
547                                sym::unstable,
548                            ])
549                        })
550                        .cloned(),
551                );
552                push(Annotatable::Item(Box::new(ast::Item { attrs, ..(*newitem).clone() })))
553            }
554            _ => unreachable!(),
555        }
556    }
557
558    /// Given that we are deriving a trait `DerivedTrait` for a type like:
559    ///
560    /// ```ignore (only-for-syntax-highlight)
561    /// struct Struct<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
562    /// where
563    ///     C: WhereTrait,
564    /// {
565    ///     a: A,
566    ///     b: B::Item,
567    ///     b1: <B as DeclaredTrait>::Item,
568    ///     c1: <C as WhereTrait>::Item,
569    ///     c2: Option<<C as WhereTrait>::Item>,
570    ///     ...
571    /// }
572    /// ```
573    ///
574    /// create an impl like:
575    ///
576    /// ```ignore (only-for-syntax-highlight)
577    /// impl<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
578    /// where
579    ///     C: WhereTrait,
580    ///     A: DerivedTrait + B1 + ... + BN,
581    ///     B: DerivedTrait + B1 + ... + BN,
582    ///     C: DerivedTrait + B1 + ... + BN,
583    ///     B::Item: DerivedTrait + B1 + ... + BN,
584    ///     <C as WhereTrait>::Item: DerivedTrait + B1 + ... + BN,
585    ///     ...
586    /// {
587    ///     ...
588    /// }
589    /// ```
590    ///
591    /// where B1, ..., BN are the bounds given by `bounds_paths`.'. Z is a phantom type, and
592    /// therefore does not get bound by the derived trait.
593    fn create_derived_impl(
594        &self,
595        cx: &ExtCtxt<'_>,
596        type_ident: Ident,
597        generics: &Generics,
598        field_tys: Vec<Box<ast::Ty>>,
599        methods: Vec<Box<ast::AssocItem>>,
600        is_packed: bool,
601    ) -> Box<ast::Item> {
602        let trait_path = self.path.to_path(cx, self.span, type_ident, generics);
603
604        // Transform associated types from `deriving::ty::Ty` into `ast::AssocItem`
605        let associated_types = self.associated_types.iter().map(|&(ident, ref type_def)| {
606            Box::new(ast::AssocItem {
607                id: ast::DUMMY_NODE_ID,
608                span: self.span,
609                vis: ast::Visibility {
610                    span: self.span.shrink_to_lo(),
611                    kind: ast::VisibilityKind::Inherited,
612                    tokens: None,
613                },
614                attrs: ast::AttrVec::new(),
615                kind: ast::AssocItemKind::Type(Box::new(ast::TyAlias {
616                    defaultness: ast::Defaultness::Final,
617                    ident,
618                    generics: Generics::default(),
619                    after_where_clause: ast::WhereClause::default(),
620                    bounds: Vec::new(),
621                    ty: Some(type_def.to_ty(cx, self.span, type_ident, generics)),
622                })),
623                tokens: None,
624            })
625        });
626
627        let mut where_clause = ast::WhereClause::default();
628        where_clause.span = generics.where_clause.span;
629        let ctxt = self.span.ctxt();
630        let span = generics.span.with_ctxt(ctxt);
631
632        // Create the generic parameters
633        let params: ThinVec<_> = generics
634            .params
635            .iter()
636            .map(|param| match &param.kind {
637                GenericParamKind::Lifetime { .. } => param.clone(),
638                GenericParamKind::Type { .. } => {
639                    // Extra restrictions on the generics parameters to the
640                    // type being derived upon.
641                    let bounds: Vec<_> = self
642                        .additional_bounds
643                        .iter()
644                        .map(|p| {
645                            cx.trait_bound(
646                                p.to_path(cx, self.span, type_ident, generics),
647                                self.is_const,
648                            )
649                        })
650                        .chain(
651                            // Add a bound for the current trait.
652                            self.skip_path_as_bound
653                                .not()
654                                .then(|| cx.trait_bound(trait_path.clone(), self.is_const)),
655                        )
656                        .chain({
657                            // Add a `Copy` bound if required.
658                            if is_packed && self.needs_copy_as_bound_if_packed {
659                                let p = deriving::path_std!(marker::Copy);
660                                Some(cx.trait_bound(
661                                    p.to_path(cx, self.span, type_ident, generics),
662                                    self.is_const,
663                                ))
664                            } else {
665                                None
666                            }
667                        })
668                        .chain(
669                            // Also add in any bounds from the declaration.
670                            param.bounds.iter().cloned(),
671                        )
672                        .collect();
673
674                    cx.typaram(param.ident.span.with_ctxt(ctxt), param.ident, bounds, None)
675                }
676                GenericParamKind::Const { ty, span, .. } => {
677                    let const_nodefault_kind = GenericParamKind::Const {
678                        ty: ty.clone(),
679                        span: span.with_ctxt(ctxt),
680
681                        // We can't have default values inside impl block
682                        default: None,
683                    };
684                    let mut param_clone = param.clone();
685                    param_clone.kind = const_nodefault_kind;
686                    param_clone
687                }
688            })
689            .map(|mut param| {
690                // Remove all attributes, because there might be helper attributes
691                // from other macros that will not be valid in the expanded implementation.
692                param.attrs.clear();
693                param
694            })
695            .collect();
696
697        // and similarly for where clauses
698        where_clause.predicates.extend(generics.where_clause.predicates.iter().map(|clause| {
699            ast::WherePredicate {
700                attrs: clause.attrs.clone(),
701                kind: clause.kind.clone(),
702                id: ast::DUMMY_NODE_ID,
703                span: clause.span.with_ctxt(ctxt),
704                is_placeholder: false,
705            }
706        }));
707
708        let ty_param_names: Vec<Symbol> = params
709            .iter()
710            .filter(|param| matches!(param.kind, ast::GenericParamKind::Type { .. }))
711            .map(|ty_param| ty_param.ident.name)
712            .collect();
713
714        if !ty_param_names.is_empty() {
715            for field_ty in field_tys {
716                let field_ty_params = find_type_parameters(&field_ty, &ty_param_names, cx);
717
718                for field_ty_param in field_ty_params {
719                    // if we have already handled this type, skip it
720                    if let ast::TyKind::Path(_, p) = &field_ty_param.ty.kind
721                        && let [sole_segment] = &*p.segments
722                        && ty_param_names.contains(&sole_segment.ident.name)
723                    {
724                        continue;
725                    }
726                    let mut bounds: Vec<_> = self
727                        .additional_bounds
728                        .iter()
729                        .map(|p| {
730                            cx.trait_bound(
731                                p.to_path(cx, self.span, type_ident, generics),
732                                self.is_const,
733                            )
734                        })
735                        .collect();
736
737                    // Require the current trait.
738                    if !self.skip_path_as_bound {
739                        bounds.push(cx.trait_bound(trait_path.clone(), self.is_const));
740                    }
741
742                    // Add a `Copy` bound if required.
743                    if is_packed && self.needs_copy_as_bound_if_packed {
744                        let p = deriving::path_std!(marker::Copy);
745                        bounds.push(cx.trait_bound(
746                            p.to_path(cx, self.span, type_ident, generics),
747                            self.is_const,
748                        ));
749                    }
750
751                    if !bounds.is_empty() {
752                        let predicate = ast::WhereBoundPredicate {
753                            bound_generic_params: field_ty_param.bound_generic_params,
754                            bounded_ty: field_ty_param.ty,
755                            bounds,
756                        };
757
758                        let kind = ast::WherePredicateKind::BoundPredicate(predicate);
759                        let predicate = ast::WherePredicate {
760                            attrs: ThinVec::new(),
761                            kind,
762                            id: ast::DUMMY_NODE_ID,
763                            span: self.span,
764                            is_placeholder: false,
765                        };
766                        where_clause.predicates.push(predicate);
767                    }
768                }
769            }
770        }
771
772        let trait_generics = Generics { params, where_clause, span };
773
774        // Create the reference to the trait.
775        let trait_ref = cx.trait_ref(trait_path);
776
777        let self_params: Vec<_> = generics
778            .params
779            .iter()
780            .map(|param| match param.kind {
781                GenericParamKind::Lifetime { .. } => {
782                    GenericArg::Lifetime(cx.lifetime(param.ident.span.with_ctxt(ctxt), param.ident))
783                }
784                GenericParamKind::Type { .. } => {
785                    GenericArg::Type(cx.ty_ident(param.ident.span.with_ctxt(ctxt), param.ident))
786                }
787                GenericParamKind::Const { .. } => {
788                    GenericArg::Const(cx.const_ident(param.ident.span.with_ctxt(ctxt), param.ident))
789                }
790            })
791            .collect();
792
793        // Create the type of `self`.
794        let path = cx.path_all(self.span, false, vec![type_ident], self_params);
795        let self_type = cx.ty_path(path);
796        let rustc_const_unstable =
797            cx.path_ident(self.span, Ident::new(sym::rustc_const_unstable, self.span));
798
799        let mut attrs = thin_vec![cx.attr_word(sym::automatically_derived, self.span),];
800
801        // Only add `rustc_const_unstable` attributes if `derive_const` is used within libcore/libstd,
802        // Other crates don't need stability attributes, so adding them is not useful, but libcore needs them
803        // on all const trait impls.
804        if self.is_const && self.is_staged_api_crate {
805            attrs.push(
806                cx.attr_nested(
807                    rustc_ast::AttrItem {
808                        unsafety: Safety::Default,
809                        path: rustc_const_unstable,
810                        args: AttrArgs::Delimited(DelimArgs {
811                            dspan: DelimSpan::from_single(self.span),
812                            delim: rustc_ast::token::Delimiter::Parenthesis,
813                            tokens: [
814                                TokenKind::Ident(sym::feature, IdentIsRaw::No),
815                                TokenKind::Eq,
816                                TokenKind::lit(LitKind::Str, sym::derive_const, None),
817                                TokenKind::Comma,
818                                TokenKind::Ident(sym::issue, IdentIsRaw::No),
819                                TokenKind::Eq,
820                                TokenKind::lit(LitKind::Str, sym::derive_const_issue, None),
821                            ]
822                            .into_iter()
823                            .map(|kind| {
824                                TokenTree::Token(Token { kind, span: self.span }, Spacing::Alone)
825                            })
826                            .collect(),
827                        }),
828                        tokens: None,
829                    },
830                    self.span,
831                ),
832            )
833        }
834
835        if !self.document {
836            attrs.push(cx.attr_nested_word(sym::doc, sym::hidden, self.span));
837        }
838
839        cx.item(
840            self.span,
841            attrs,
842            ast::ItemKind::Impl(ast::Impl {
843                generics: trait_generics,
844                of_trait: Some(Box::new(ast::TraitImplHeader {
845                    safety: self.safety,
846                    polarity: ast::ImplPolarity::Positive,
847                    defaultness: ast::Defaultness::Final,
848                    constness: if self.is_const {
849                        ast::Const::Yes(DUMMY_SP)
850                    } else {
851                        ast::Const::No
852                    },
853                    trait_ref,
854                })),
855                self_ty: self_type,
856                items: methods.into_iter().chain(associated_types).collect(),
857            }),
858        )
859    }
860
861    fn expand_struct_def(
862        &self,
863        cx: &ExtCtxt<'_>,
864        struct_def: &'a VariantData,
865        type_ident: Ident,
866        generics: &Generics,
867        from_scratch: bool,
868        is_packed: bool,
869    ) -> Box<ast::Item> {
870        let field_tys: Vec<Box<ast::Ty>> =
871            struct_def.fields().iter().map(|field| field.ty.clone()).collect();
872
873        let methods = self
874            .methods
875            .iter()
876            .map(|method_def| {
877                let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
878                    method_def.extract_arg_details(cx, self, type_ident, generics);
879
880                let body = if from_scratch || method_def.is_static() {
881                    method_def.expand_static_struct_method_body(
882                        cx,
883                        self,
884                        struct_def,
885                        type_ident,
886                        &nonselflike_args,
887                    )
888                } else {
889                    method_def.expand_struct_method_body(
890                        cx,
891                        self,
892                        struct_def,
893                        type_ident,
894                        &selflike_args,
895                        &nonselflike_args,
896                        is_packed,
897                    )
898                };
899
900                method_def.create_method(
901                    cx,
902                    self,
903                    type_ident,
904                    generics,
905                    explicit_self,
906                    nonself_arg_tys,
907                    body,
908                )
909            })
910            .collect();
911
912        self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
913    }
914
915    fn expand_enum_def(
916        &self,
917        cx: &ExtCtxt<'_>,
918        enum_def: &'a EnumDef,
919        type_ident: Ident,
920        generics: &Generics,
921        from_scratch: bool,
922    ) -> Box<ast::Item> {
923        let mut field_tys = Vec::new();
924
925        for variant in &enum_def.variants {
926            field_tys.extend(variant.data.fields().iter().map(|field| field.ty.clone()));
927        }
928
929        let methods = self
930            .methods
931            .iter()
932            .map(|method_def| {
933                let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
934                    method_def.extract_arg_details(cx, self, type_ident, generics);
935
936                let body = if from_scratch || method_def.is_static() {
937                    method_def.expand_static_enum_method_body(
938                        cx,
939                        self,
940                        enum_def,
941                        type_ident,
942                        &nonselflike_args,
943                    )
944                } else {
945                    method_def.expand_enum_method_body(
946                        cx,
947                        self,
948                        enum_def,
949                        type_ident,
950                        selflike_args,
951                        &nonselflike_args,
952                    )
953                };
954
955                method_def.create_method(
956                    cx,
957                    self,
958                    type_ident,
959                    generics,
960                    explicit_self,
961                    nonself_arg_tys,
962                    body,
963                )
964            })
965            .collect();
966
967        let is_packed = false; // enums are never packed
968        self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
969    }
970}
971
972impl<'a> MethodDef<'a> {
973    fn call_substructure_method(
974        &self,
975        cx: &ExtCtxt<'_>,
976        trait_: &TraitDef<'_>,
977        type_ident: Ident,
978        nonselflike_args: &[Box<Expr>],
979        fields: &SubstructureFields<'_>,
980    ) -> BlockOrExpr {
981        let span = trait_.span;
982        let substructure = Substructure { type_ident, nonselflike_args, fields };
983        let mut f = self.combine_substructure.borrow_mut();
984        let f: &mut CombineSubstructureFunc<'_> = &mut *f;
985        f(cx, span, &substructure)
986    }
987
988    fn get_ret_ty(
989        &self,
990        cx: &ExtCtxt<'_>,
991        trait_: &TraitDef<'_>,
992        generics: &Generics,
993        type_ident: Ident,
994    ) -> Box<ast::Ty> {
995        self.ret_ty.to_ty(cx, trait_.span, type_ident, generics)
996    }
997
998    fn is_static(&self) -> bool {
999        !self.explicit_self
1000    }
1001
1002    // The return value includes:
1003    // - explicit_self: The `&self` arg, if present.
1004    // - selflike_args: Expressions for `&self` (if present) and also any other
1005    //   args with the same type (e.g. the `other` arg in `PartialEq::eq`).
1006    // - nonselflike_args: Expressions for all the remaining args.
1007    // - nonself_arg_tys: Additional information about all the args other than
1008    //   `&self`.
1009    fn extract_arg_details(
1010        &self,
1011        cx: &ExtCtxt<'_>,
1012        trait_: &TraitDef<'_>,
1013        type_ident: Ident,
1014        generics: &Generics,
1015    ) -> (Option<ast::ExplicitSelf>, ThinVec<Box<Expr>>, Vec<Box<Expr>>, Vec<(Ident, Box<ast::Ty>)>)
1016    {
1017        let mut selflike_args = ThinVec::new();
1018        let mut nonselflike_args = Vec::new();
1019        let mut nonself_arg_tys = Vec::new();
1020        let span = trait_.span;
1021
1022        let explicit_self = self.explicit_self.then(|| {
1023            let (self_expr, explicit_self) = ty::get_explicit_self(cx, span);
1024            selflike_args.push(self_expr);
1025            explicit_self
1026        });
1027
1028        for (ty, name) in self.nonself_args.iter() {
1029            let ast_ty = ty.to_ty(cx, span, type_ident, generics);
1030            let ident = Ident::new(*name, span);
1031            nonself_arg_tys.push((ident, ast_ty));
1032
1033            let arg_expr = cx.expr_ident(span, ident);
1034
1035            match ty {
1036                // Selflike (`&Self`) arguments only occur in non-static methods.
1037                Ref(box Self_, _) if !self.is_static() => selflike_args.push(arg_expr),
1038                Self_ => cx.dcx().span_bug(span, "`Self` in non-return position"),
1039                _ => nonselflike_args.push(arg_expr),
1040            }
1041        }
1042
1043        (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys)
1044    }
1045
1046    fn create_method(
1047        &self,
1048        cx: &ExtCtxt<'_>,
1049        trait_: &TraitDef<'_>,
1050        type_ident: Ident,
1051        generics: &Generics,
1052        explicit_self: Option<ast::ExplicitSelf>,
1053        nonself_arg_tys: Vec<(Ident, Box<ast::Ty>)>,
1054        body: BlockOrExpr,
1055    ) -> Box<ast::AssocItem> {
1056        let span = trait_.span;
1057        // Create the generics that aren't for `Self`.
1058        let fn_generics = self.generics.to_generics(cx, span, type_ident, generics);
1059
1060        let args = {
1061            let self_arg = explicit_self.map(|explicit_self| {
1062                let ident = Ident::with_dummy_span(kw::SelfLower).with_span_pos(span);
1063                ast::Param::from_self(ast::AttrVec::default(), explicit_self, ident)
1064            });
1065            let nonself_args =
1066                nonself_arg_tys.into_iter().map(|(name, ty)| cx.param(span, name, ty));
1067            self_arg.into_iter().chain(nonself_args).collect()
1068        };
1069
1070        let ret_type = self.get_ret_ty(cx, trait_, generics, type_ident);
1071
1072        let method_ident = Ident::new(self.name, span);
1073        let fn_decl = cx.fn_decl(args, ast::FnRetTy::Ty(ret_type));
1074        let body_block = body.into_block(cx, span);
1075
1076        let trait_lo_sp = span.shrink_to_lo();
1077
1078        let sig = ast::FnSig { header: ast::FnHeader::default(), decl: fn_decl, span };
1079        let defaultness = ast::Defaultness::Final;
1080
1081        // Create the method.
1082        Box::new(ast::AssocItem {
1083            id: ast::DUMMY_NODE_ID,
1084            attrs: self.attributes.clone(),
1085            span,
1086            vis: ast::Visibility {
1087                span: trait_lo_sp,
1088                kind: ast::VisibilityKind::Inherited,
1089                tokens: None,
1090            },
1091            kind: ast::AssocItemKind::Fn(Box::new(ast::Fn {
1092                defaultness,
1093                sig,
1094                ident: method_ident,
1095                generics: fn_generics,
1096                contract: None,
1097                body: Some(body_block),
1098                define_opaque: None,
1099            })),
1100            tokens: None,
1101        })
1102    }
1103
1104    /// The normal case uses field access.
1105    ///
1106    /// ```
1107    /// #[derive(PartialEq)]
1108    /// # struct Dummy;
1109    /// struct A { x: u8, y: u8 }
1110    ///
1111    /// // equivalent to:
1112    /// impl PartialEq for A {
1113    ///     fn eq(&self, other: &A) -> bool {
1114    ///         self.x == other.x && self.y == other.y
1115    ///     }
1116    /// }
1117    /// ```
1118    ///
1119    /// But if the struct is `repr(packed)`, we can't use something like
1120    /// `&self.x` because that might cause an unaligned ref. So for any trait
1121    /// method that takes a reference, we use a local block to force a copy.
1122    /// This requires that the field impl `Copy`.
1123    ///
1124    /// ```rust,ignore (example)
1125    /// # struct A { x: u8, y: u8 }
1126    /// impl PartialEq for A {
1127    ///     fn eq(&self, other: &A) -> bool {
1128    ///         // Desugars to `{ self.x }.eq(&{ other.y }) && ...`
1129    ///         { self.x } == { other.y } && { self.y } == { other.y }
1130    ///     }
1131    /// }
1132    /// impl Hash for A {
1133    ///     fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) -> () {
1134    ///         ::core::hash::Hash::hash(&{ self.x }, state);
1135    ///         ::core::hash::Hash::hash(&{ self.y }, state);
1136    ///     }
1137    /// }
1138    /// ```
1139    fn expand_struct_method_body<'b>(
1140        &self,
1141        cx: &ExtCtxt<'_>,
1142        trait_: &TraitDef<'b>,
1143        struct_def: &'b VariantData,
1144        type_ident: Ident,
1145        selflike_args: &[Box<Expr>],
1146        nonselflike_args: &[Box<Expr>],
1147        is_packed: bool,
1148    ) -> BlockOrExpr {
1149        assert!(selflike_args.len() == 1 || selflike_args.len() == 2);
1150
1151        let selflike_fields =
1152            trait_.create_struct_field_access_fields(cx, selflike_args, struct_def, is_packed);
1153        self.call_substructure_method(
1154            cx,
1155            trait_,
1156            type_ident,
1157            nonselflike_args,
1158            &Struct(struct_def, selflike_fields),
1159        )
1160    }
1161
1162    fn expand_static_struct_method_body(
1163        &self,
1164        cx: &ExtCtxt<'_>,
1165        trait_: &TraitDef<'_>,
1166        struct_def: &VariantData,
1167        type_ident: Ident,
1168        nonselflike_args: &[Box<Expr>],
1169    ) -> BlockOrExpr {
1170        let summary = trait_.summarise_struct(cx, struct_def);
1171
1172        self.call_substructure_method(
1173            cx,
1174            trait_,
1175            type_ident,
1176            nonselflike_args,
1177            &StaticStruct(struct_def, summary),
1178        )
1179    }
1180
1181    /// ```
1182    /// #[derive(PartialEq)]
1183    /// # struct Dummy;
1184    /// enum A {
1185    ///     A1,
1186    ///     A2(i32)
1187    /// }
1188    /// ```
1189    ///
1190    /// is equivalent to:
1191    ///
1192    /// ```
1193    /// #![feature(core_intrinsics)]
1194    /// enum A {
1195    ///     A1,
1196    ///     A2(i32)
1197    /// }
1198    /// impl ::core::cmp::PartialEq for A {
1199    ///     #[inline]
1200    ///     fn eq(&self, other: &A) -> bool {
1201    ///         let __self_discr = ::core::intrinsics::discriminant_value(self);
1202    ///         let __arg1_discr = ::core::intrinsics::discriminant_value(other);
1203    ///         __self_discr == __arg1_discr
1204    ///             && match (self, other) {
1205    ///                 (A::A2(__self_0), A::A2(__arg1_0)) => *__self_0 == *__arg1_0,
1206    ///                 _ => true,
1207    ///             }
1208    ///     }
1209    /// }
1210    /// ```
1211    ///
1212    /// Creates a discriminant check combined with a match for a tuple of all
1213    /// `selflike_args`, with an arm for each variant with fields, possibly an
1214    /// arm for each fieldless variant (if `unify_fieldless_variants` is not
1215    /// `Unify`), and possibly a default arm.
1216    fn expand_enum_method_body<'b>(
1217        &self,
1218        cx: &ExtCtxt<'_>,
1219        trait_: &TraitDef<'b>,
1220        enum_def: &'b EnumDef,
1221        type_ident: Ident,
1222        mut selflike_args: ThinVec<Box<Expr>>,
1223        nonselflike_args: &[Box<Expr>],
1224    ) -> BlockOrExpr {
1225        assert!(
1226            !selflike_args.is_empty(),
1227            "static methods must use `expand_static_enum_method_body`",
1228        );
1229
1230        let span = trait_.span;
1231        let variants = &enum_def.variants;
1232
1233        // Traits that unify fieldless variants always use the discriminant(s).
1234        let unify_fieldless_variants =
1235            self.fieldless_variants_strategy == FieldlessVariantsStrategy::Unify;
1236
1237        // For zero-variant enum, this function body is unreachable. Generate
1238        // `match *self {}`. This produces machine code identical to `unsafe {
1239        // core::intrinsics::unreachable() }` while being safe and stable.
1240        if variants.is_empty() {
1241            selflike_args.truncate(1);
1242            let match_arg = cx.expr_deref(span, selflike_args.pop().unwrap());
1243            let match_arms = ThinVec::new();
1244            let expr = cx.expr_match(span, match_arg, match_arms);
1245            return BlockOrExpr(ThinVec::new(), Some(expr));
1246        }
1247
1248        let prefixes = iter::once("__self".to_string())
1249            .chain(
1250                selflike_args
1251                    .iter()
1252                    .enumerate()
1253                    .skip(1)
1254                    .map(|(arg_count, _selflike_arg)| format!("__arg{arg_count}")),
1255            )
1256            .collect::<Vec<String>>();
1257
1258        // Build a series of let statements mapping each selflike_arg
1259        // to its discriminant value.
1260        //
1261        // e.g. for `PartialEq::eq` builds two statements:
1262        // ```
1263        // let __self_discr = ::core::intrinsics::discriminant_value(self);
1264        // let __arg1_discr = ::core::intrinsics::discriminant_value(other);
1265        // ```
1266        let get_discr_pieces = |cx: &ExtCtxt<'_>| {
1267            let discr_idents: Vec<_> = prefixes
1268                .iter()
1269                .map(|name| Ident::from_str_and_span(&format!("{name}_discr"), span))
1270                .collect();
1271
1272            let mut discr_exprs: Vec<_> = discr_idents
1273                .iter()
1274                .map(|&ident| cx.expr_addr_of(span, cx.expr_ident(span, ident)))
1275                .collect();
1276
1277            let self_expr = discr_exprs.remove(0);
1278            let other_selflike_exprs = discr_exprs;
1279            let discr_field =
1280                FieldInfo { span, name: None, self_expr, other_selflike_exprs, maybe_scalar: true };
1281
1282            let discr_let_stmts: ThinVec<_> = iter::zip(&discr_idents, &selflike_args)
1283                .map(|(&ident, selflike_arg)| {
1284                    let variant_value = deriving::call_intrinsic(
1285                        cx,
1286                        span,
1287                        sym::discriminant_value,
1288                        thin_vec![selflike_arg.clone()],
1289                    );
1290                    cx.stmt_let(span, false, ident, variant_value)
1291                })
1292                .collect();
1293
1294            (discr_field, discr_let_stmts)
1295        };
1296
1297        // There are some special cases involving fieldless enums where no
1298        // match is necessary.
1299        let all_fieldless = variants.iter().all(|v| v.data.fields().is_empty());
1300        if all_fieldless {
1301            if variants.len() > 1 {
1302                match self.fieldless_variants_strategy {
1303                    FieldlessVariantsStrategy::Unify => {
1304                        // If the type is fieldless and the trait uses the discriminant and
1305                        // there are multiple variants, we need just an operation on
1306                        // the discriminant(s).
1307                        let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
1308                        let mut discr_check = self.call_substructure_method(
1309                            cx,
1310                            trait_,
1311                            type_ident,
1312                            nonselflike_args,
1313                            &EnumDiscr(discr_field, None),
1314                        );
1315                        discr_let_stmts.append(&mut discr_check.0);
1316                        return BlockOrExpr(discr_let_stmts, discr_check.1);
1317                    }
1318                    FieldlessVariantsStrategy::SpecializeIfAllVariantsFieldless => {
1319                        return self.call_substructure_method(
1320                            cx,
1321                            trait_,
1322                            type_ident,
1323                            nonselflike_args,
1324                            &AllFieldlessEnum(enum_def),
1325                        );
1326                    }
1327                    FieldlessVariantsStrategy::Default => (),
1328                }
1329            } else if let [variant] = variants.as_slice() {
1330                // If there is a single variant, we don't need an operation on
1331                // the discriminant(s). Just use the most degenerate result.
1332                return self.call_substructure_method(
1333                    cx,
1334                    trait_,
1335                    type_ident,
1336                    nonselflike_args,
1337                    &EnumMatching(variant, Vec::new()),
1338                );
1339            }
1340        }
1341
1342        // These arms are of the form:
1343        // (Variant1, Variant1, ...) => Body1
1344        // (Variant2, Variant2, ...) => Body2
1345        // ...
1346        // where each tuple has length = selflike_args.len()
1347        let mut match_arms: ThinVec<ast::Arm> = variants
1348            .iter()
1349            .filter(|&v| !(unify_fieldless_variants && v.data.fields().is_empty()))
1350            .map(|variant| {
1351                // A single arm has form (&VariantK, &VariantK, ...) => BodyK
1352                // (see "Final wrinkle" note below for why.)
1353
1354                let fields = trait_.create_struct_pattern_fields(cx, &variant.data, &prefixes);
1355
1356                let sp = variant.span.with_ctxt(trait_.span.ctxt());
1357                let variant_path = cx.path(sp, vec![type_ident, variant.ident]);
1358                let by_ref = ByRef::No; // because enums can't be repr(packed)
1359                let mut subpats = trait_.create_struct_patterns(
1360                    cx,
1361                    variant_path,
1362                    &variant.data,
1363                    &prefixes,
1364                    by_ref,
1365                );
1366
1367                // `(VariantK, VariantK, ...)` or just `VariantK`.
1368                let single_pat = if subpats.len() == 1 {
1369                    subpats.pop().unwrap()
1370                } else {
1371                    cx.pat_tuple(span, subpats)
1372                };
1373
1374                // For the BodyK, we need to delegate to our caller,
1375                // passing it an EnumMatching to indicate which case
1376                // we are in.
1377                //
1378                // Now, for some given VariantK, we have built up
1379                // expressions for referencing every field of every
1380                // Self arg, assuming all are instances of VariantK.
1381                // Build up code associated with such a case.
1382                let substructure = EnumMatching(variant, fields);
1383                let arm_expr = self
1384                    .call_substructure_method(
1385                        cx,
1386                        trait_,
1387                        type_ident,
1388                        nonselflike_args,
1389                        &substructure,
1390                    )
1391                    .into_expr(cx, span);
1392
1393                cx.arm(span, single_pat, arm_expr)
1394            })
1395            .collect();
1396
1397        // Add a default arm to the match, if necessary.
1398        let first_fieldless = variants.iter().find(|v| v.data.fields().is_empty());
1399        let default = match first_fieldless {
1400            Some(v) if unify_fieldless_variants => {
1401                // We need a default case that handles all the fieldless
1402                // variants. The index and actual variant aren't meaningful in
1403                // this case, so just use dummy values.
1404                Some(
1405                    self.call_substructure_method(
1406                        cx,
1407                        trait_,
1408                        type_ident,
1409                        nonselflike_args,
1410                        &EnumMatching(v, Vec::new()),
1411                    )
1412                    .into_expr(cx, span),
1413                )
1414            }
1415            _ if variants.len() > 1 && selflike_args.len() > 1 => {
1416                // Because we know that all the arguments will match if we reach
1417                // the match expression we add the unreachable intrinsics as the
1418                // result of the default which should help llvm in optimizing it.
1419                Some(deriving::call_unreachable(cx, span))
1420            }
1421            _ => None,
1422        };
1423        if let Some(arm) = default {
1424            match_arms.push(cx.arm(span, cx.pat_wild(span), arm));
1425        }
1426
1427        // Create a match expression with one arm per discriminant plus
1428        // possibly a default arm, e.g.:
1429        //      match (self, other) {
1430        //          (Variant1, Variant1, ...) => Body1
1431        //          (Variant2, Variant2, ...) => Body2,
1432        //          ...
1433        //          _ => ::core::intrinsics::unreachable(),
1434        //      }
1435        let get_match_expr = |mut selflike_args: ThinVec<Box<Expr>>| {
1436            let match_arg = if selflike_args.len() == 1 {
1437                selflike_args.pop().unwrap()
1438            } else {
1439                cx.expr(span, ast::ExprKind::Tup(selflike_args))
1440            };
1441            cx.expr_match(span, match_arg, match_arms)
1442        };
1443
1444        // If the trait uses the discriminant and there are multiple variants, we need
1445        // to add a discriminant check operation before the match. Otherwise, the match
1446        // is enough.
1447        if unify_fieldless_variants && variants.len() > 1 {
1448            let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
1449
1450            // Combine a discriminant check with the match.
1451            let mut discr_check_plus_match = self.call_substructure_method(
1452                cx,
1453                trait_,
1454                type_ident,
1455                nonselflike_args,
1456                &EnumDiscr(discr_field, Some(get_match_expr(selflike_args))),
1457            );
1458            discr_let_stmts.append(&mut discr_check_plus_match.0);
1459            BlockOrExpr(discr_let_stmts, discr_check_plus_match.1)
1460        } else {
1461            BlockOrExpr(ThinVec::new(), Some(get_match_expr(selflike_args)))
1462        }
1463    }
1464
1465    fn expand_static_enum_method_body(
1466        &self,
1467        cx: &ExtCtxt<'_>,
1468        trait_: &TraitDef<'_>,
1469        enum_def: &EnumDef,
1470        type_ident: Ident,
1471        nonselflike_args: &[Box<Expr>],
1472    ) -> BlockOrExpr {
1473        self.call_substructure_method(
1474            cx,
1475            trait_,
1476            type_ident,
1477            nonselflike_args,
1478            &StaticEnum(enum_def),
1479        )
1480    }
1481}
1482
1483// general helper methods.
1484impl<'a> TraitDef<'a> {
1485    fn summarise_struct(&self, cx: &ExtCtxt<'_>, struct_def: &VariantData) -> StaticFields {
1486        let mut named_idents = Vec::new();
1487        let mut just_spans = Vec::new();
1488        for field in struct_def.fields() {
1489            let sp = field.span.with_ctxt(self.span.ctxt());
1490            match field.ident {
1491                Some(ident) => named_idents.push((ident, sp, field.default.clone())),
1492                _ => just_spans.push(sp),
1493            }
1494        }
1495
1496        let is_tuple = match struct_def {
1497            ast::VariantData::Tuple(..) => IsTuple::Yes,
1498            _ => IsTuple::No,
1499        };
1500        match (just_spans.is_empty(), named_idents.is_empty()) {
1501            (false, false) => cx
1502                .dcx()
1503                .span_bug(self.span, "a struct with named and unnamed fields in generic `derive`"),
1504            // named fields
1505            (_, false) => Named(named_idents),
1506            // unnamed fields
1507            (false, _) => Unnamed(just_spans, is_tuple),
1508            // empty
1509            _ => Named(Vec::new()),
1510        }
1511    }
1512
1513    fn create_struct_patterns(
1514        &self,
1515        cx: &ExtCtxt<'_>,
1516        struct_path: ast::Path,
1517        struct_def: &'a VariantData,
1518        prefixes: &[String],
1519        by_ref: ByRef,
1520    ) -> ThinVec<ast::Pat> {
1521        prefixes
1522            .iter()
1523            .map(|prefix| {
1524                let pieces_iter =
1525                    struct_def.fields().iter().enumerate().map(|(i, struct_field)| {
1526                        let sp = struct_field.span.with_ctxt(self.span.ctxt());
1527                        let ident = self.mk_pattern_ident(prefix, i);
1528                        let path = ident.with_span_pos(sp);
1529                        (
1530                            sp,
1531                            struct_field.ident,
1532                            cx.pat(
1533                                path.span,
1534                                PatKind::Ident(BindingMode(by_ref, Mutability::Not), path, None),
1535                            ),
1536                        )
1537                    });
1538
1539                let struct_path = struct_path.clone();
1540                match *struct_def {
1541                    VariantData::Struct { .. } => {
1542                        let field_pats = pieces_iter
1543                            .map(|(sp, ident, pat)| {
1544                                if ident.is_none() {
1545                                    cx.dcx().span_bug(
1546                                        sp,
1547                                        "a braced struct with unnamed fields in `derive`",
1548                                    );
1549                                }
1550                                ast::PatField {
1551                                    ident: ident.unwrap(),
1552                                    is_shorthand: false,
1553                                    attrs: ast::AttrVec::new(),
1554                                    id: ast::DUMMY_NODE_ID,
1555                                    span: pat.span.with_ctxt(self.span.ctxt()),
1556                                    pat: Box::new(pat),
1557                                    is_placeholder: false,
1558                                }
1559                            })
1560                            .collect();
1561                        cx.pat_struct(self.span, struct_path, field_pats)
1562                    }
1563                    VariantData::Tuple(..) => {
1564                        let subpats = pieces_iter.map(|(_, _, subpat)| subpat).collect();
1565                        cx.pat_tuple_struct(self.span, struct_path, subpats)
1566                    }
1567                    VariantData::Unit(..) => cx.pat_path(self.span, struct_path),
1568                }
1569            })
1570            .collect()
1571    }
1572
1573    fn create_fields<F>(&self, struct_def: &'a VariantData, mk_exprs: F) -> Vec<FieldInfo>
1574    where
1575        F: Fn(usize, &ast::FieldDef, Span) -> Vec<Box<ast::Expr>>,
1576    {
1577        struct_def
1578            .fields()
1579            .iter()
1580            .enumerate()
1581            .map(|(i, struct_field)| {
1582                // For this field, get an expr for each selflike_arg. E.g. for
1583                // `PartialEq::eq`, one for each of `&self` and `other`.
1584                let sp = struct_field.span.with_ctxt(self.span.ctxt());
1585                let mut exprs: Vec<_> = mk_exprs(i, struct_field, sp);
1586                let self_expr = exprs.remove(0);
1587                let other_selflike_exprs = exprs;
1588                FieldInfo {
1589                    span: sp.with_ctxt(self.span.ctxt()),
1590                    name: struct_field.ident,
1591                    self_expr,
1592                    other_selflike_exprs,
1593                    maybe_scalar: struct_field.ty.peel_refs().kind.maybe_scalar(),
1594                }
1595            })
1596            .collect()
1597    }
1598
1599    fn mk_pattern_ident(&self, prefix: &str, i: usize) -> Ident {
1600        Ident::from_str_and_span(&format!("{prefix}_{i}"), self.span)
1601    }
1602
1603    fn create_struct_pattern_fields(
1604        &self,
1605        cx: &ExtCtxt<'_>,
1606        struct_def: &'a VariantData,
1607        prefixes: &[String],
1608    ) -> Vec<FieldInfo> {
1609        self.create_fields(struct_def, |i, _struct_field, sp| {
1610            prefixes
1611                .iter()
1612                .map(|prefix| {
1613                    let ident = self.mk_pattern_ident(prefix, i);
1614                    cx.expr_path(cx.path_ident(sp, ident))
1615                })
1616                .collect()
1617        })
1618    }
1619
1620    fn create_struct_field_access_fields(
1621        &self,
1622        cx: &ExtCtxt<'_>,
1623        selflike_args: &[Box<Expr>],
1624        struct_def: &'a VariantData,
1625        is_packed: bool,
1626    ) -> Vec<FieldInfo> {
1627        self.create_fields(struct_def, |i, struct_field, sp| {
1628            selflike_args
1629                .iter()
1630                .map(|selflike_arg| {
1631                    // Note: we must use `struct_field.span` rather than `sp` in the
1632                    // `unwrap_or_else` case otherwise the hygiene is wrong and we get
1633                    // "field `0` of struct `Point` is private" errors on tuple
1634                    // structs.
1635                    let mut field_expr = cx.expr(
1636                        sp,
1637                        ast::ExprKind::Field(
1638                            selflike_arg.clone(),
1639                            struct_field.ident.unwrap_or_else(|| {
1640                                Ident::from_str_and_span(&i.to_string(), struct_field.span)
1641                            }),
1642                        ),
1643                    );
1644                    if is_packed {
1645                        // Fields in packed structs are wrapped in a block, e.g. `&{self.0}`,
1646                        // causing a copy instead of a (potentially misaligned) reference.
1647                        field_expr = cx.expr_block(
1648                            cx.block(struct_field.span, thin_vec![cx.stmt_expr(field_expr)]),
1649                        );
1650                    }
1651                    cx.expr_addr_of(sp, field_expr)
1652                })
1653                .collect()
1654        })
1655    }
1656}
1657
1658/// The function passed to `cs_fold` is called repeatedly with a value of this
1659/// type. It describes one part of the code generation. The result is always an
1660/// expression.
1661pub(crate) enum CsFold<'a> {
1662    /// The basic case: a field expression for one or more selflike args. E.g.
1663    /// for `PartialEq::eq` this is something like `self.x == other.x`.
1664    Single(&'a FieldInfo),
1665
1666    /// The combination of two field expressions. E.g. for `PartialEq::eq` this
1667    /// is something like `<field1 equality> && <field2 equality>`.
1668    Combine(Span, Box<Expr>, Box<Expr>),
1669
1670    // The fallback case for a struct or enum variant with no fields.
1671    Fieldless,
1672}
1673
1674/// Folds over fields, combining the expressions for each field in a sequence.
1675/// Statics may not be folded over.
1676pub(crate) fn cs_fold<F>(
1677    use_foldl: bool,
1678    cx: &ExtCtxt<'_>,
1679    trait_span: Span,
1680    substructure: &Substructure<'_>,
1681    mut f: F,
1682) -> Box<Expr>
1683where
1684    F: FnMut(&ExtCtxt<'_>, CsFold<'_>) -> Box<Expr>,
1685{
1686    match substructure.fields {
1687        EnumMatching(.., all_fields) | Struct(_, all_fields) => {
1688            if all_fields.is_empty() {
1689                return f(cx, CsFold::Fieldless);
1690            }
1691
1692            let (base_field, rest) = if use_foldl {
1693                all_fields.split_first().unwrap()
1694            } else {
1695                all_fields.split_last().unwrap()
1696            };
1697
1698            let base_expr = f(cx, CsFold::Single(base_field));
1699
1700            let op = |old, field: &FieldInfo| {
1701                let new = f(cx, CsFold::Single(field));
1702                f(cx, CsFold::Combine(field.span, old, new))
1703            };
1704
1705            if use_foldl {
1706                rest.iter().fold(base_expr, op)
1707            } else {
1708                rest.iter().rfold(base_expr, op)
1709            }
1710        }
1711        EnumDiscr(discr_field, match_expr) => {
1712            let discr_check_expr = f(cx, CsFold::Single(discr_field));
1713            if let Some(match_expr) = match_expr {
1714                if use_foldl {
1715                    f(cx, CsFold::Combine(trait_span, discr_check_expr, match_expr.clone()))
1716                } else {
1717                    f(cx, CsFold::Combine(trait_span, match_expr.clone(), discr_check_expr))
1718                }
1719            } else {
1720                discr_check_expr
1721            }
1722        }
1723        StaticEnum(..) | StaticStruct(..) => {
1724            cx.dcx().span_bug(trait_span, "static function in `derive`")
1725        }
1726        AllFieldlessEnum(..) => cx.dcx().span_bug(trait_span, "fieldless enum in `derive`"),
1727    }
1728}